Science.gov

Sample records for invariant matching methods

  1. Photometric invariant stereo matching method.

    PubMed

    Gu, Feifei; Zhao, Hong; Zhou, Xiang; Li, Jinjun; Bu, Penghui; Zhao, Zixin

    2015-12-14

    A robust stereo matching method based on a comprehensive mathematical model for color formation process is proposed to estimate the disparity map of stereo images with noise and photometric variations. The band-pass filter with DoP kernel is firstly used to filter out noise component of the stereo images. Then the log-chromaticity normalization process is applied to eliminate the influence of lightning geometry. All the other factors that may influence the color formation process are removed through the disparity estimation process with a specific matching cost. Performance of the developed method is evaluated by comparing with some up-to-date algorithms. Experimental results are presented to demonstrate the robustness and accuracy of the method. PMID:26698970

  2. Optimal affine-invariant matching: performance characterization

    NASA Astrophysics Data System (ADS)

    Costa, Mauro S.; Haralick, Robert M.; Shapiro, Linda G.

    1992-04-01

    The geometric hashing scheme proposed by Lamdan and Wolfson can be very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. In a recent paper, we discussed errors that can occur with this method due to quantization, stability, symmetry, and noise problems. These errors make the original geometric hashing technique unsuitable for use on the factory floor. Beginning with an explicit noise model, which the original Lamdan and Wolfson technique lacks, we derived an optimal approach that overcomes these problems. We showed that the results obtained with the new algorithm are clearly better than the results from the original method. This paper addresses the performance characterization of the geometric hashing technique, more specifically the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. The experiments indicate that with a model having 10 to 14 points, with 2 points of the model undetected and 10 extraneous points detected, and with the model points perturbed by Gaussian noise of standard deviation 3 (0.58 of range), the average amount of computation required to obtain an answer is equivalent to trying 11 of the possible three-point bases. The misdetection rate, measured by the percentage of correct bases matches that fail to verify, is 0.9. The percentage of incorrect bases that successfully produced a match that did verify (false alarm rate) is 13. And, finally, 2 of the experiments failed to find a correct match and verify it. Results for experiments with real images are also presented.

  3. Scale and Rotation Invariant Matching Using Linearly Augmented Trees.

    PubMed

    Jiang, Hao; Tian, Tai-Peng; Sclaroff, Stan

    2015-12-01

    We propose a novel linearly augmented tree method for efficient scale and rotation invariant object matching. The proposed method enforces pairwise matching consistency defined on trees, and high-order constraints on all the sites of a template. The pairwise constraints admit arbitrary metrics while the high-order constraints use L1 norms and therefore can be linearized. Such a linearly augmented tree formulation introduces hyperedges and loops into the basic tree structure. But, different from a general loopy graph, its special structure allows us to relax and decompose the optimization into a sequence of tree matching problems that are efficiently solvable by dynamic programming. The proposed method also works on continuous scale and rotation parameters; we can match with a scale up to any large value with the same efficiency. Our experiments on ground truth data and a variety of real images and videos show that the proposed method is efficient, accurate and reliable. PMID:26539858

  4. Template match using local feature with view invariance

    NASA Astrophysics Data System (ADS)

    Lu, Cen; Zhou, Gang

    2013-10-01

    Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.

  5. Object matching using a locally affine invariant and linear programming techniques.

    PubMed

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  6. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.

    PubMed

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H; J Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  7. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    PubMed Central

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  8. Energy normalization for pose-invariant face recognition based on MRF model image matching.

    PubMed

    Arashloo, Shervin Rahimzadeh; Kittler, Josef

    2011-06-01

    A pose-invariant face recognition system based on an image matching method formulated on MRFs is presented. The method uses the energy of the established match between a pair of images as a measure of goodness-of-match. The method can tolerate moderate global spatial transformations between the gallery and the test images and alleviate the need for geometric preprocessing of facial images by encapsulating a registration step as part of the system. It requires no training on non-frontal face images. A number of innovations, such as a dynamic block size and block shape adaptation, as well as label pruning and error pre-whitening measures have been introduced to increase the effectiveness of the approach. The experimental evaluation of the method is performed on two publicly available databases. First, the method is tested on the rotation shots of the XM2VTS data set in a verification scenario. Next, the evaluation is conducted in an identification scenario on the CMU-PIE database. The method compares favorably with the existing 2D or 3D generative model-based methods on both databases in both identification and verification scenarios. PMID:21135436

  9. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  10. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  11. Global invariant methods for object recognition

    NASA Astrophysics Data System (ADS)

    Stiller, Peter F.

    2001-11-01

    The general problem of single-view recognition is central to man image understanding and computer vision tasks; so central, that it has been characterized as the holy grail of computer vision. In previous work, we have shown how to approach the general problem of recognizing three dimensional geometric configurations (such as arrangements of lines, points, and conics) from a single two dimensional view, in a manner that is view independent. Our methods make use of advanced mathematical techniques from algebraic geometry, notably the theory of correspondences, and a novel equivariant geometric invariant theory. The machinery gives us a way to understand the relationship that exists between the 3D geometry and its residual in a 2D image. This relationship is shown to be a correspondence in the technical sense of algebraic geometry. Exploiting this, one can compute a set of fundamental equations in 3D and 2D invariants which generate the ideal of the correspondence, and which completely describe the mutual 3D/2D constraints. We have chosen to call these equations object/image equations. They can be exploited in a number of ways. For example, from a given 2D configuration, we can determine a set of non-linear constraints on the geometric invariants of a 3D configurations capable of imaging to the given 2D configuration (features on an object), we can derive a set of equations that constrain the images of that object; helping us to determine if that particular object appears in various images. One previous difficulty has been that the usual numerical geometric invariants get expressed as rational functions of the geometric parameters. As such they are not always defined. This leads to degeneracies in algorithms based on these invariants. We show how to replace these invariants by certain toric subvarieties of Grassmannians where the object/image equations become resultant like expressions for the existence of a non- trivial intersection of these subvarieties with

  12. Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology

    SciTech Connect

    Chu, C.-S.; Furuta, K.; Lin, F.-L.

    2006-05-15

    In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale.

  13. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  14. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xue; Liu, Jianguo; Yan, Hongshi; Morgan, Gareth L. K.

    2016-09-01

    This paper presents an UAV (Unmanned Aerial Vehicle) localisation algorithm for its autonomous navigation based on matching between on-board UAV image sequences to a pre-installed reference satellite image. As the UAV images and the reference image are not necessarily taken under the same illumination condition, illumination-invariant image matching is essential. Based on the investigation of illumination-invariant property of Phase Correlation (PC) via mathematical derivation and experiments, we propose a PC based fast and robust illumination-invariant localisation algorithm for UAV navigation. The algorithm accurately determines the current UAV position as well as the next UAV position even the illumination condition of UAV on-board images is different from the reference satellite image. A Dirac delta function based registration quality assessment together with a risk alarming criterion is introduced to enable the UAV to perform self-correction in case the UAV deviates from the planned route. UAV navigation experiments using simulated terrain shading images and remote sensing images have demonstrated a robust high performance of the proposed PC based localisation algorithm under very different illumination conditions resulted from solar motion. The superiority of the algorithm, in comparison with two other widely used image matching algorithms, MI (Mutual Information) and NCC (Normalised Correlation Coefficient), is significant for its high matching accuracy and fast processing speed.

  15. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions. PMID:21476638

  16. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions.

  17. Visual odometry based on structural matching of local invariant features using stereo camera sensor.

    PubMed

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields.

  18. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    PubMed Central

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  19. Visual odometry based on structural matching of local invariant features using stereo camera sensor.

    PubMed

    Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio

    2011-01-01

    This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016

  20. Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Vernizzi, Filippo

    2002-10-01

    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era.

  1. The relationship between peripherally matched invariant hues and unique hues: a cone-contrast approach.

    PubMed

    Panorgias, Athanasios; Kulikowski, Janus J; Parry, Neil R A; McKeefry, Declan J; Murray, Ian J

    2012-02-01

    A characteristic shift in hue and saturation occurs when colored targets are viewed peripherally compared with centrally. Four hues, one in each of the red, blue, green, and yellow regions of color space, remain unchanged when presented in the peripheral field. Apart from green, these peripherally invariant hues correspond almost exactly in color space with the unique hues. We explore this puzzling observation using asymmetric color-matching and color-naming experiments and computing cone contrasts for peripheral and central stimuli. We find that the difference between cone contrasts for the peripheral and central stimuli reaches a maximum at the chromatic axis corresponding to peripherally invariant green. We speculate that the effect is linked to a weakened signal from M-cones and probably associated with a reduced number of M-cones in peripheral retina.

  2. Shift, fully rotational, and limited-size-invariant pattern recognition using a circular harmonic matched filter

    NASA Astrophysics Data System (ADS)

    Wang, Sha-Wei; Yau, Hon-Fai; Yueh, OuYang; Lee, Hsiao-Yi

    1992-10-01

    A simple way to synthesize a shift, fully rotational and limited size invariant composite matched spatial filter for a coherent optical correlator is proposed. We use circular harmonic components of the same order of a reference pattern in different sizes as the training images instead of using the whole reference pattern in different orientations and different sizes as is reported by other workers. This saves much labor and time in the synthesis of the filter. In this article, we have synthesized a simple filter containing four second order circular harmonic components of the alphabetic letter `E' in four relative sizes 1, 1.17, 1.33, and 1.5. Results of computer simulation have shown that this filter is shift, fully rotational and limited size invariant over the size range from 1 to 1.5. Computer simulation has also shown that this filter possesses discriminating ability.

  3. On the matching method and the Goldstone theorem in holography

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Lugo, Adrián R.

    2013-07-01

    We study the transition of a scalar field in a fixed AdS d+1 background between an extremum and a minimum of a potential. We compute analytically the solution to the perturbation equation for the vev deformation case by generalizing the usual matching method to higher orders and find the propagator of the boundary theory operator defined through the AdS-CFT correspondence. We show that, contrary to what happens at the leading order of the matching method, the next-to-leading order presents a simple pole at q 2 = 0 in accordance with the Goldstone theorem applied to a spontaneously broken dilatation invariance.

  4. Robust estimation of albedo for illumination-invariant matching and shape recovery.

    PubMed

    Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama

    2009-05-01

    We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions. PMID:19299862

  5. Constructive methods of invariant manifolds for kinetic problems

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.

    2004-06-01

    The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.

  6. Systems and methods for measuring component matching

    NASA Technical Reports Server (NTRS)

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)

    2006-01-01

    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  7. Interferometric measurement method for Z2 invariants of time-reversal invariant topological insulators

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Abanin, Dmitry; Demler, Eugene

    2013-05-01

    Recently experiments with ultracold atoms started to explore topological phases in 1D optical lattices. While transport measurements are challenging in these systems, ways to directly measure topological quantum numbers using a combination of Bloch oscillations and Ramsey interferometry have been explored (Atala et al., arXiv:1212.0572). In this talk I will present ways to measure the Z2 topological quantum numbers of two and three dimensional time-reversal invariant (TR) topological insulators. In this case non-Abelian Bloch oscillations can be combined with Ramsey interferometry to map out the topological properties of a given band-structure. Our method is very general and works even in the presence of accidental degeneracies. The applicability of the scheme is discussed for different theoretically proposed implementations of TR topological insulators using ultracold atoms. F. G. is grateful to Harvard University for hospitality and acknowledges financial support from Graduate School Materials Science in Mainz (MAINZ).

  8. Vortex shedding by matched asymptotic vortex method

    NASA Astrophysics Data System (ADS)

    Guo, Xinjun; Mandre, Shreyas

    2014-11-01

    An extension of the Kutta condition, using matched asymptotic expansion applied to the Navier-Stokes equations, is presented for flow past a smooth body at high Reynolds number. The goal is to study the influence of unsteady fluid dynamical effects like leading edge vortex, unsteady boundary layer separation, etc. In order to capture accurately the location and strength of vortex shedding, the simplified Navier-Stokes equations in the form of boundary layer approximation are solved in the thin inner region close to the solid body. In the outer region far from the structure, the vortex methods are applied, which significantly reduces the computational cost compared to CFD in the whole domain. With this method, the flow past an airfoil with two degrees of freedom, pitching and heaving, is investigated.

  9. Change detection based on features invariant to monotonic transforms and spatially constrained matching

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco Túlio A. N.; Balbino de Mesquita, Daniel; Nascimento, Erickson R.; Schwartz, William Robson

    2016-01-01

    In several image processing applications, discovering regions that have changed in a set of images acquired from a scene at different times and possibly from different viewpoints plays a very important role. Remote sensing, visual surveillance, medical diagnosis, civil infrastructure, and underwater sensing are examples of such applications that operate in dynamic environments. We propose an approach to detect such changes automatically by using image analysis techniques and segmentation based on superpixels in two stages: (1) the tuning stage, which is focused on adjusting the parameters; and (2) the unsupervised stage that is executed in real scenarios without an appropriate ground truth. Unlike most common approaches, which are pixel-based, our approach combines superpixel extraction, hierarchical clustering, and segment matching. Experimental results demonstrate the effectiveness of the proposed approach compared to a remote sensing technique and a background subtraction technique, demonstrating the robustness of our algorithm against illumination variations.

  10. Fourier-matching pseudospectral modal method for diffraction gratings.

    PubMed

    Song, Dawei; Yuan, Lijun; Lu, Ya Yan

    2011-04-01

    A Fourier-matching pseudospectral modal method [PSMM(f)] is developed for analyzing lamellar diffraction gratings or grating stacks. A Chebyshev pseudospectral method is first used to accurately calculate the eigenmodes of the grating layers, and then the Fourier coefficients are matched at the interfaces between the layers. Compared with an existing pseudospectral modal method based on point matching, the PSMM(f) is more robust and accurate. The method performs better than the standard Fourier modal method for gratings involving metals.

  11. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  12. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology

    PubMed Central

    Hipp, Jason D.; Cheng, Jerome Y.; Toner, Mehmet; Tompkins, Ronald G.; Balis, Ulysses J.

    2011-01-01

    Introduction: Historically, effective clinical utilization of image analysis and pattern recognition algorithms in pathology has been hampered by two critical limitations: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. Results: In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. Conclusion: With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their

  13. A quantitative method for measuring the quality of history matches

    SciTech Connect

    Shaw, T.S.; Knapp, R.M.

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  14. Feature matching method for uncorrected fisheye lens image

    NASA Astrophysics Data System (ADS)

    Liu, Na; Zhang, Baofeng; Jiao, Yingkui; Zhu, Junchao

    2016-01-01

    Traditional matching algorithms cannot be directly applied to the fisheye image matching for large distortion existing in fisheye image. Therefore, a matching algorithm based on uncorrected fisheye images is proposed. This algorithm adopts a local feature description method which combines MSER detector with CSLBP descriptor to obtain the image feature. First, the two uncorrected fisheye images captured by binocular vision system are described by the principle of epipolar constraint. Then the region detection is done with MSER and the ellipse fitting is used to the obtained regions. The MSER regions are described by CSLBP subsequently. Finally, in order to exclude the mismatching points of initial match, random sample consensus (RANSAC) algorithm has been adopted to achieve exact match. Experiments show that the method has a good effect on the uncorrected fisheye image matching.

  15. Construction of invariants of the coadjoint representation of Lie groups using linear algebra methods

    NASA Astrophysics Data System (ADS)

    Kurnyavko, O. L.; Shirokov, I. V.

    2016-07-01

    We offer a method for constructing invariants of the coadjoint representation of Lie groups that reduces this problem to known problems of linear algebra. This method is based on passing to symplectic coordinates on the coadjoint representation orbits, which play the role of local coordinates on those orbits. The corresponding transition functions are their parametric equations. Eliminating the symplectic coordinates from the transition functions, we can obtain the complete set of invariants. The proposed method allows solving the problem of constructing invariants of the coadjoint representation for Lie groups with an arbitrary dimension and structure.

  16. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method.

    PubMed

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-01-01

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy. PMID:26703609

  17. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method

    PubMed Central

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-01-01

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy. PMID:26703609

  18. A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method.

    PubMed

    Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke

    2015-12-21

    The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy.

  19. A Star Pattern Recognition Method Based on Decreasing Redundancy Matching

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Xiao-xiang, Zhang; Rong-yu, Sun

    2016-04-01

    During the optical observation of space objects, it is difficult to enable the background stars to get matched when the telescope pointing error and tracking error are significant. Based on the idea of decreasing redundancy matching, an effective recognition method for background stars is proposed in this paper. The simulative images under different conditions and the observed images are used to verify the proposed method. The experimental results show that the proposed method has raised the rate of recognition and reduced the time consumption, it can be used to match star patterns accurately and rapidly.

  20. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  1. Dense Stereo Matching Method Based on Local Affine Model.

    PubMed

    Li, Jie; Shi, Wenxuan; Deng, Dexiang; Jia, Wenyan; Sun, Mingui

    2013-07-01

    A new method for constructing an accurate disparity space image and performing an efficient cost aggregation in stereo matching based on local affine model is proposed in this paper. The key algorithm includes a new self-adapting dissimilarity measurement used for calculating the matching cost and a local affine model used in cost aggregation stage. Different from the traditional region-based methods, which try to change the matching window size or to calculate an adaptive weight to do the aggregation, the proposed method focuses on obtaining the efficient and accurate local affine model to aggregate the cost volume while preserving the disparity discontinuity. Moreover, the local affine model can be extended to the color space. Experimental results demonstrate that the proposed method is able to provide subpixel precision disparity maps compared with some state-of-the-art stereo matching methods. PMID:24163727

  2. A method for matching Chinese place-name data

    NASA Astrophysics Data System (ADS)

    Liao, Yilan; Wang, Jinfeng

    2009-10-01

    Conversion and sharing of spatial data from different departments is an essential part of information construction in China. The first step of the solution is to match place-name data. However, there are administrative changes in some places with the development of urbanization process. It undoubtedly increases the difficulty to match place-name data. In the daily work, the data are artificially matched with available place-name database and materials such as graphs and record cards. Although it is easy to put in practice, this method may cost a lot of time and labor to keep the accuracy. The algorithms for matching strings can be used to solve the problem. But most of them focus on solving the English strings match problems and less refer to Chinese. In the paper, BPM-BM (Bit-Parallel Matrix -Boyer Moore) algorithm, the most efficient filter method for approximate string matching of Chinese text, is proposed to match place-names between the national surveillance sites of infectious diseases and the 1:1, 000, 000 scale township map of China in 2000. The study indicated that the proposed method decreased artificial process greatly and the accuracy which achieved 94.2% was higher than the SQL commands method.

  3. A novel feature point matching method of remote sensing images

    NASA Astrophysics Data System (ADS)

    Xu, Yuanquan; Wang, Han; Zhang, Xubing; Wang, ShaoJun

    2015-12-01

    The method of feature-based registration has been successful applied in registration of multi-source remote sensing images. Unfortunately, the mismatching still exists due to the complex textures, spectrum variation, nonlinear distortion and the large scale change. In this paper, we proposed a novel feature point matching method of multi-source remote sensing images. Firstly, the Fast-Hessian detector is to extract the feature points which are described by the SURF descriptor in the following step. After that, we analyze the local neighborhood structures of the feature points, and formulate point matching as an optimization problem to preserve local neighborhood structures. The shape context distances of the feature points are utilized to initialize matching probability matrix. Then relaxation labeling is adopted to update the probability matrix and refine the matching, which is aimed to maximize the value of the object function deduced based on preserving local neighborhood structures. Subsequently, the mismatching elimination method based on affine transformation and distance measurement is used to eliminate the residual mismatching points. During the abovementioned matching produce, the multi-resolution analysis method is adopted to decrease the scale difference between the multi-source remote sensing images. Also the mutual information method is utilized to match the feature points of the down sampling and the original images. The experimental results are shown that the proposed method was robust and efficient for registration of multi-source remote sensing images.

  4. Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods

    NASA Astrophysics Data System (ADS)

    Matringe, Nadir; Moura, Arnaldo Vieira; Rebiha, Rachid

    We describe powerful computational methods, relying on linear algebraic methods, for generating ideals for non-linear invariants of algebraic hybrid systems. We show that the preconditions for discrete transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and so can be suitably represented by matrices. We reduce the non-trivial invariant generation problem to the computation of the associated eigenspaces by encoding the new consecution requirements as specific morphisms represented by matrices. More specifically, we establish very general sufficient conditions that show the existence and allow the computation of invariant ideals. Our methods also embody a strategy to estimate degree bounds, leading to the discovery of rich classes of inductive, i.e. provable, invariants. Our approach avoids first-order quantifier elimination, Grobner basis computation or direct system resolution, thereby circumventing difficulties met by other recent techniques.

  5. Feature matching method in shaped light mode VFD defect detection

    NASA Astrophysics Data System (ADS)

    Jin, Xuanhong; Dai, Shuguang; Mu, Pingan

    2010-08-01

    In recent years, Vacuum Fluorescent Display (VFD) module in the car audio panel has been widely used. However, due to process reasons, VFD display production process will produce defects, not only affect the appearance, but also affect the display correctly. So building a car VFD display panel defect detection system is of great significance. Machine vision technology is introduced into the automotive VFD display defect detection in order to achieve fast and accurate detection of defects. Shaped light mode is a typical flaw detection mode which is based on characteristics of vehicle VFD panel. According to the image features, learning of the gray matching and feature matching method, we integrated use of feature matching method and the gray level matching method to achieve defect detection.

  6. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  7. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  8. Program impact evaluation using a matching method with panel data.

    PubMed

    Nguyen, Viet Cuong

    2012-03-15

    Difference-in-differences with matching is a popular method to measure the impact of an intervention in health and social sciences. This method requires baseline data, that is, data before interventions, which are not always available in reality. Instead, panel data with two time periods are often collected after interventions begin. In this paper, a simple matching method is proposed to measure the impact of an intervention using two-period panel data after the intervention. The method is illustrated by the measurement of the effect of health insurance in Vietnam using household panel data. PMID:22161687

  9. The Vector Matching Method in Geomagnetic Aiding Navigation

    PubMed Central

    Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli

    2016-01-01

    In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line’s variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm. PMID:27447645

  10. The Vector Matching Method in Geomagnetic Aiding Navigation.

    PubMed

    Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli

    2016-01-01

    In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line's variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm. PMID:27447645

  11. A new gauge-invariant method for diagnosing eddy diffusivities

    NASA Astrophysics Data System (ADS)

    Mak, J.; Maddison, J. R.; Marshall, D. P.

    2016-08-01

    Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from unfiltered fluxes are thus contaminated by the presence of these rotational components. Here a new methodology is applied whereby eddy diffusivities are diagnosed directly from the eddy force function. The eddy force function depends only upon flux divergences, is independent of any rotational flux components, and is inherently non-local and smooth. A one-shot inversion procedure is applied, minimising the mis-match between parameterised force functions and force functions derived from eddy resolving calculations. This enables diffusivities associated with the eddy potential vorticity and Gent-McWilliams coefficients associated with eddy buoyancy fluxes to be diagnosed. This methodology is applied to multi-layer quasi-geostrophic ocean gyre simulations. It is found that: (i) a strictly down-gradient scheme for mixing potential vorticity and quasi-geostrophic buoyancy has limited success in reducing the mis-match compared to one with no sign constraint on the eddy diffusivity or Gent--McWilliams coefficient, with prevalent negative signals around the time-mean jet; (ii) the diagnostic is successful away from the jet region and wind-forced top layer; (iii) the locations of closed mean stream lines correlate with signals of positive eddy potential vorticity diffusivity; (iv) there is indication that the magnitude of the eddy potential vorticity diffusivity correlates well with the eddy energy. Implications for parameterisation are discussed in light of these diagnostic results.

  12. Development of a Matched Runs Method for VERITAS

    NASA Astrophysics Data System (ADS)

    Flinders, Andrew; VERITAS Collaboration

    2016-03-01

    VERITAS is an array of four Imaging Air Cherenkov Telescopes located in southern Arizona. It has been successful in detecting Very High Energy (VHE) radiation from a variety of sources including pulsars, Pulsar Wind Nebulae, Blazars, and High Mass X-Ray Binary systems. Each of these detections been accomplished using either the standard Ring Background Method or the Reflected Region Method in order to determine the appropriate background for the source region. For highly extended sources (>1 degree) these background estimation methods become unsuitable due to the possibility of source contamination in the background regions. A new method, called the matched background method, has been implemented for potentially highly extended sources observed by VERITAS. It provides and algorithm for identifying a suitable gamma-ray background estimation from a different field of view than the source region. By carefully matching cosmic-ray event rates between the source and the background sky observations, a suitable gamma-ray background matched data set can be identified. We will describe the matched background method and give examples of its use for several sources including the Crab Nebula and IC443. This research is supported by Grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada.

  13. Matched filtering method for separating magnetic anomaly using fractal model

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  14. Methods for Assessing Item, Step, and Threshold Invariance in Polytomous Items Following the Partial Credit Model

    ERIC Educational Resources Information Center

    Penfield, Randall D.; Myers, Nicholas D.; Wolfe, Edward W.

    2008-01-01

    Measurement invariance in the partial credit model (PCM) can be conceptualized in several different but compatible ways. In this article the authors distinguish between three forms of measurement invariance in the PCM: step invariance, item invariance, and threshold invariance. Approaches for modeling these three forms of invariance are proposed,…

  15. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set. PMID:26513787

  16. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set.

  17. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  18. Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods

    ERIC Educational Resources Information Center

    Merkle, Edgar C.; Zeileis, Achim

    2013-01-01

    The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…

  19. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods

    PubMed Central

    Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675

  20. Aircraft target onboard detecting technology via Circular Information Matching method for remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Xiao, Huachao; Zhou, Quan; Li, Li

    2015-10-01

    Image information onboard processing is one o f important technology to rapidly achieve intelligence for remote sensing satellites. As a typical target, aircraft onboard detection has been getting more attention. In this paper, we propose an efficient method of aircraft detection for remote sensing satellite onboard processing. According to the feature of aircraft performance in remote sensing image, the detection algorithm consists of two steps: First Salient Object Detection (SOD) is employed to reduce the amount of calculation on large remote sensing image. SOD uses Gabor filtering and a simple binary test between pixels in a filtered image. White points are connected as regions. Plane candidate regions are screened from white regions by area, length and width of connected region. Next a new algorithm, called Circumferential Information Matching method, is used to detect aircraft on candidate regions. The results of tests show circumference curve around the plane center is stable shape, so the candidate region can be accurately detecting with this feature. In order to rotation invariant, we use circle matched filter to detect target. And discrete fast Fourier transform (DFFT) is used to accelerate and reduce calculation. Experiments show the detection accuracy rate of proposed algorithm is 90% with less than 0.5s processing time. In addition, the calculation of the proposed method through quantitative anglicized is very small. Experimental results and theoretical analysis show that the proposed method is reasonable and highly-efficient.

  1. An Approximate Matching Method for Clinical Drug Names

    PubMed Central

    Peters, Lee; Kapusnik-Uner, Joan E.; Nguyen, Thang; Bodenreider, Olivier

    2011-01-01

    Objective: To develop an approximate matching method for finding the closest drug names within existing RxNorm content for drug name variants found in local drug formularies. Methods: We used a drug-centric algorithm to determine the closest strings between the RxNorm data set and local variants which failed the exact and normalized string matching searches. Aggressive measures such as token splitting, drug name expansion and spelling correction are used to try and resolve drug names. The algorithm is evaluated against three sets containing a total of 17,164 drug name variants. Results: Mapping of the local variant drug names to the targeted concept descriptions ranged from 83.8% to 92.8% in three test sets. The algorithm identified the appropriate RxNorm concepts as the top candidate in 76.8%, 67.9% and 84.8% of the cases in the three test sets and among the top three candidates in 90–96% of the cases. Conclusion: Using a drug-centric token matching approach with aggressive measures to resolve unknown names provides effective mappings to clinical drug names and has the potential of facilitating the work of drug terminology experts in mapping local formularies to reference terminologies. PMID:22195172

  2. A vector matching method for analysing logic Petri nets

    NASA Astrophysics Data System (ADS)

    Du, YuYue; Qi, Liang; Zhou, MengChu

    2011-11-01

    Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.

  3. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  4. Cartridge case image matching using effective correlation area based method.

    PubMed

    Yammen, S; Muneesawang, P

    2013-06-10

    A firearm leaves a unique impression on fired cartridge cases. The cross-correlation function plays an important role in matching the characteristic features on the cartridge case found at the crime scene with a specific firearm, for accurate firearm identification. This paper proposes that the computational forensic techniques of alignment and effective correlation area-based approaches to image matching are essential to firearm identification. Specifically, the reference and the corresponding cartridge cases are aligned according to the phase-correlation criterion on the transform domain. The informative segments of the breech face marks are identified by a cross-covariance coefficient using the coefficient value in a window located locally in the image space. The segments are then passed to the measurement of edge density for computing effective correlation areas. Experimental results on a new dataset show that the correlation system can make use of the best properties of alignment and effective correlation area-based approaches, and can attain significant improvement of image-correlation results, compared with the traditional image-matching methods for firearm identification, which employ cartridge-case samples. An analysis of image-alignment score matrices suggests that all translation and scaling parameters are estimated correctly, and contribute to the successful extraction of effective correlation areas. It was found that the proposed method has a high discriminant power, compared with the conventional correlator. This paper advocates that this method will enable forensic science to compile a large-scale image database to perform correlation of cartridge case bases, in order to identify firearms that involve pairwise alignments and comparisons.

  5. A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains

    NASA Astrophysics Data System (ADS)

    Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto

    2016-05-01

    This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.

  6. Fourier-matching pseudospectral modal method for diffraction gratings: comment.

    PubMed

    Granet, Gérard

    2012-09-01

    Recently two variants of a pseudospectral modal method were developed for analyzing lamellar diffraction gratings: [J. Lightwave Technol. 27, 5151 (2009)] and [J. Opt. Soc. Am. A 28, 613 (2011)]. Both of them divide the computational domain into nonoverlapping subdomains and replace the spatial derivative in the Helmoltz equation by a differentiation matrix at the Chebyshev collocation points. The authors of the second reference claim that their method is more robust and accurate because they match the Fourier coefficient at the interfaces between the layers and drop some computed eigenmodes. We challenge these two ideas. Instead, we numerically demonstrate that by keeping all computed eigenmodes and by also numerically computing eigenmodes in homogeneous regions, the pseudospectral method performs better.

  7. Template matching method for the analysis of interstellar cloud structure

    NASA Astrophysics Data System (ADS)

    Juvela, M.

    2016-09-01

    Context. The structure of interstellar medium can be characterised at large scales in terms of its global statistics (e.g. power spectra) and at small scales by the properties of individual cores. Interest has been increasing in structures at intermediate scales, resulting in a number of methods being developed for the analysis of filamentary structures. Aims: We describe the application of the generic template-matching (TM) method to the analysis of maps. Our aim is to show that it provides a fast and still relatively robust way to identify elongated structures or other image features. Methods: We present the implementation of a TM algorithm for map analysis. The results are compared against rolling Hough transform (RHT), one of the methods previously used to identify filamentary structures. We illustrate the method by applying it to Herschel surface brightness data. Results: The performance of the TM method is found to be comparable to that of RHT but TM appears to be more robust regarding the input parameters, for example, those related to the selected spatial scales. Small modifications of TM enable one to target structures at different size and intensity levels. In addition to elongated features, we demonstrate the possibility of using TM to also identify other types of structures. Conclusions: The TM method is a viable tool for data quality control, exploratory data analysis, and even quantitative analysis of structures in image data.

  8. A critical appraisal of NLO+PS matching methods

    NASA Astrophysics Data System (ADS)

    Höche, Stefan; Krauss, Frank; Schönherr, Marek; Siegert, Frank

    2012-09-01

    In this publication, uncertainties in and differences between the M C@NLO and P OWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator S HERPA and based on Catani-Seymour subtraction are employed to assess the impact on a representative selection of observables. In the case of M C@NLO a substantial simplification is achieved by using dipole subtraction terms to generate the first emission. A phase space restriction is employed, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W ± and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

  9. A Critical Appraisal of NLO+PS Matching Methods

    SciTech Connect

    Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Siegert, Frank; /Freiburg U.

    2012-03-19

    In this publication, uncertainties in and differences between the MC{at}NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA are employed to assess the impact on a representative selection of observables. In the MC{at}NLO approach a phase space restriction has been added to subtraction and parton shower, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W{sup {+-}} and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

  10. Multiscale molecular dynamics using the matched interface and boundary method

    SciTech Connect

    Geng Weihua; Wei, G.W.

    2011-01-20

    The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.

  11. An Invariant-Preserving ALE Method for Solids under Extreme Conditions

    SciTech Connect

    Sambasivan, Shiv Kumar; Christon, Mark A

    2012-07-17

    We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore

  12. Assessment of identity during adolescence using daily diary methods: Measurement invariance across time and sex.

    PubMed

    Becht, Andrik I; Branje, Susan J T; Vollebergh, Wilma A M; Maciejewski, Dominique F; van Lier, Pol A C; Koot, Hans M; Denissen, Jaap J A; Meeus, Wim H J

    2016-06-01

    The aim of this study was to assess measurement invariance of adolescents' daily reports on identity across time and sex. Adolescents (N = 497; mean age = 13.32 years at Time 1, 56.7% boys) from the general population reported on their identity commitments, exploration in depth and reconsideration on a daily basis for 3 weeks within 1 year across 5 years. We used the single-item version of the Utrecht Management of Identity Commitments Scale (UMICS; Klimstra et al., 2010), a broad measure of identity-formation processes covering both interpersonal and educational identity domains. This study tested configural, metric, scalar, and strict measurement invariance across days within weeks, across sex, across weeks within years, and across years. Results indicated that daily diary reports show strict measurement invariance across days, across weeks within years, across years, and across boys and girls. These results support the use of daily diary methods to assess identity at various time intervals ranging from days to years and across sex. Results are discussed with regard to future implications to study identity processes, both on smaller and larger time intervals. (PsycINFO Database Record

  13. Effects of using a posteriori methods for the conservation of integral invariants. [for weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.

    1988-01-01

    The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.

  14. Matched Interface and Boundary Method for Elasticity Interface Problems

    PubMed Central

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439

  15. Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials.

    PubMed

    Hasar, U C; Kaya, Y; Bute, M; Barroso, J J; Ertugrul, M

    2014-01-01

    An attractive transmission-reflection method based on reference-plane invariant and thickness-independent expressions has been proposed for accurate and unique retrieval of complex permittivity of dielectric liquid samples. The method uses both branch-index-independent expressions and a restricted solution set for determining unique and fast complex permittivities. A 2D graphical method has been applied to demonstrate the operation and validation of the proposed method. A uncertainty analysis has been performed to monitor how the accuracy of the proposed method can be improved by a correct selection of sample holder properties. Scattering parameter measurements of two tested reference liquids (distilled water and methanol) have been carried out for comparison of various techniques with the proposed one when the reference-planes and sample thickness are not precisely known. We note from the comparison that whereas other techniques are seriously affected by imprecise knowledge of both reference-planes and sample thickness, the proposed method removes this restriction.

  16. Matched-filtering line search methods applied to Suzaku data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Naoto; Yamada, Shin'ya; Enoto, Teruaki; Axelsson, Magnus; Ohashi, Takaya

    2016-10-01

    A detailed search for emission and absorption lines and an assessment of their upper limits are performed for Suzaku data. The method utilizes a matched-filtering approach to maximize the signal-to-noise ratio for a given energy resolution, which could be applicable to many types of line search. We first applied it to well-known active galactic nuclei spectra that have been reported to have ultra-fast outflows, and find that our results are consistent with previous findings at the ˜3σ level. We proceeded to search for emission and absorption features in two bright magnetars 4U 0142+61 and 1RXS J1708-4009, applying the filtering method to Suzaku data. We found that neither source showed any significant indication of line features, even using long-term Suzaku observations or dividing their spectra into spin phases. The upper limits on the equivalent width of emission/absorption lines are constrained to be a few eV at ˜1 keV and a few hundreds of eV at ˜10 keV. This strengthens previous reports that persistently bright magnetars do not show proton cyclotron absorption features in soft X-rays and, even if they exist, they would be broadened or much weaker than below the detection limit of X-ray CCD.

  17. On the NP-completeness of the Hartree-Fock method for translationally invariant systems

    SciTech Connect

    Whitfield, James Daniel; Zimborás, Zoltán

    2014-12-21

    The self-consistent field method utilized for solving the Hartree-Fock (HF) problem and the closely related Kohn-Sham problem is typically thought of as one of the cheapest methods available to quantum chemists. This intuition has been developed from the numerous applications of the self-consistent field method to a large variety of molecular systems. However, as characterized by its worst-case behavior, the HF problem is NP-complete. In this work, we map out boundaries of the NP-completeness by investigating restricted instances of HF. We have constructed two new NP-complete variants of the problem. The first is a set of Hamiltonians whose translationally invariant Hartree-Fock solutions are trivial, but whose broken symmetry solutions are NP-complete. Second, we demonstrate how to embed instances of spin glasses into translationally invariant Hartree-Fock instances and provide a numerical example. These findings are the first steps towards understanding in which cases the self-consistent field method is computationally feasible and when it is not.

  18. A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Villanueva, Jordi

    2016-06-01

    We present a numerical method for computing initial conditions of Lagrangian quasi-periodic invariant tori of Hamiltonian systems and symplectic maps. Such initial conditions are found by solving, using the Newton method, a nonlinear system obtained by imposing suitable conditions on the frequency map. The basic tool is a newly developed methodology to perform the frequency analysis of a discrete quasi-periodic signal, allowing to compute frequencies and their derivatives with respect to parameters. Roughly speaking, this method consists in computing suitable weighted averages of the iterates of the signal and using the Richardson extrapolation method. The proposed approach performs with high accuracy at a moderate computational cost. We illustrate the method by considering a discrete FPU model and the vicinity of the point L4 in a RTBP.

  19. An Analysis of Scale and Rotation Invariance in the Bag-of-Features Method for Histopathological Image Classification

    PubMed Central

    Raza, S. Hussain; Parry, R. Mitchell; Moffitt, Richard A.; Young, Andrew N.; Wang, May D.

    2016-01-01

    The bag-of-features method has emerged as a useful and flexible tool that can capture medically relevant image characteristics. In this paper, we study the effect of scale and rotation invariance in the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the performance of different features by linear support vector machine over 10 iterations of 3-fold cross validation. For a very heterogeneous dataset labeled by an expert pathologist, we achieve a classification accuracy of 88% with four subtypes. Our study shows that rotation invariance is more important than scale invariance but combining both properties gives better classification performance. PMID:22003685

  20. Matching wind turbine rotors and loads: computational methods for designers

    SciTech Connect

    Seale, J.B.

    1983-04-01

    This report provides a comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications. The user must supply: (1) turbine aerodynamic efficiency as a function of tipspeed ratio; (2) mechanical load torque as a function of rotation speed; (3) useful delivered power as a function of incoming mechanical power; (4) site average windspeed and, for maximum accuracy, distribution data. The description of the data includes governing limits consistent with the capacities of components. The report develops, a step-by-step method for converting the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) a decision is made how turbine power is to be governed (it may self-govern) to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics come into play to predict longterm energy output. Most systems can be approximated by a graph-and-calculator approach: Computer-generated families of coefficient curves provide data for algebraic scaling formulas. The method leads not only to energy predictions, but also to insight into the processes being modeled. Direct use of a computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out witn in-depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps, including three different load-compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.

  1. Application of general invariance relations reduction method to solution of radiation transfer problems

    NASA Astrophysics Data System (ADS)

    Rogovtsov, Nikolai N.; Borovik, Felix

    2016-11-01

    A brief analysis of different properties and principles of invariance to solve a number of classical problems of the radiation transport theory is presented. The main ideas, constructions, and assertions used in the general invariance relations reduction method are described in outline. The most important distinctive features of this general method of solving a wide enough range of problems of the radiation transport theory and mathematical physics are listed. To illustrate the potential of this method, a number of problems of the scalar radiative transfer theory have been solved rigorously in the article. The main stages of rigorous derivations of asymptotical formulas for the smallest in modulo elements of the discrete spectrum and the eigenfunctions, corresponding to them, of the characteristic equation for the case of an arbitrary phase function and almost conservative scattering are described. Formulas of the same type for the azimuthal averaged reflection function, the plane and spherical albedos have been obtained rigorously. New analytical representations for the reflection function, the plane and spherical albedos have been obtained, and effective algorithms for calculating these values have been offered for the case of a practically arbitrary phase function satisfying the Hölder condition. New analytical representation of the «surface» Green function of the scalar radiative transfer equation for a semi-infinite plane-parallel conservatively scattering medium has been found. The deep regime asymptotics of the "volume" Green function has been obtained for the case of a turbid medium of cylindrical form.

  2. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.

    2006-03-01

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  3. A comparison of specularly reflective boundary conditions and rotationally invariant formulations for Discrete Ordinate Methods in axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Roy, Somesh; Modest, Michael F.

    2016-10-01

    In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems. Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a new rotationally invariant boundary condition specially designed for axisymmetric problems on wedge shape is proposed to enforce the rotational invariance properties possessed by the radiative transfer equation (RTE) but violated by three-dimensional conventional Discrete Ordinate Methods. Both boundary conditions have the advantage that the discretization and linear equation solution procedures of conventional three-dimensional DOM are not affected by changing to a reduced geometry. Consistency, accuracy and efficiency of the new boundary conditions are demonstrated by multiple numerical examples involving periodic symmetry and axisymmetry. A comparison between specularly reflective boundary conditions and the rotationally invariant formulation shows that the latter offers several advantages for wedge geometries. In other symmetry conditions, when the rotational invariant formulation is not applicable, specular reflective boundary conditions are still effective.

  4. Using the Kernel Method of Test Equating for Estimating the Standard Errors of Population Invariance Measures

    ERIC Educational Resources Information Center

    Moses, Tim

    2008-01-01

    Equating functions are supposed to be population invariant, meaning that the choice of subpopulation used to compute the equating function should not matter. The extent to which equating functions are population invariant is typically assessed in terms of practical difference criteria that do not account for equating functions' sampling…

  5. Assessing factorial invariance of two-way rating designs using three-way methods

    PubMed Central

    Kroonenberg, Pieter M.

    2015-01-01

    Assessing the factorial invariance of two-way rating designs such as ratings of concepts on several scales by different groups can be carried out with three-way models such as the Parafac and Tucker models. By their definitions these models are double-metric factorially invariant. The differences between these models lie in their handling of the links between the concept and scale spaces. These links may consist of unrestricted linking (Tucker2 model), invariant component covariances but variable variances per group and per component (Parafac model), zero covariances and variances different per group but not per component (Replicated Tucker3 model) and strict invariance (Component analysis on the average matrix). This hierarchy of invariant models, and the procedures by which to evaluate the models against each other, is illustrated in some detail with an international data set from attachment theory. PMID:25620936

  6. Invariance and neural nets.

    PubMed

    Barnard, E; Casasent, D

    1991-01-01

    Application of neural nets to invariant pattern recognition is considered. The authors study various techniques for obtaining this invariance with neural net classifiers and identify the invariant-feature technique as the most suitable for current neural classifiers. A novel formulation of invariance in terms of constraints on the feature values leads to a general method for transforming any given feature space so that it becomes invariant to specified transformations. A case study using range imagery is used to exemplify these ideas, and good performance is obtained.

  7. Optimal full matching for survival outcomes: a method that merits more widespread use.

    PubMed

    Austin, Peter C; Stuart, Elizabeth A

    2015-12-30

    Matching on the propensity score is a commonly used analytic method for estimating the effects of treatments on outcomes. Commonly used propensity score matching methods include nearest neighbor matching and nearest neighbor caliper matching. Rosenbaum (1991) proposed an optimal full matching approach, in which matched strata are formed consisting of either one treated subject and at least one control subject or one control subject and at least one treated subject. Full matching has been used rarely in the applied literature. Furthermore, its performance for use with survival outcomes has not been rigorously evaluated. We propose a method to use full matching to estimate the effect of treatment on the hazard of the occurrence of the outcome. An extensive set of Monte Carlo simulations were conducted to examine the performance of optimal full matching with survival analysis. Its performance was compared with that of nearest neighbor matching, nearest neighbor caliper matching, and inverse probability of treatment weighting using the propensity score. Full matching has superior performance compared with that of the two other matching algorithms and had comparable performance with that of inverse probability of treatment weighting using the propensity score. We illustrate the application of full matching with survival outcomes to estimate the effect of statin prescribing at hospital discharge on the hazard of post-discharge mortality in a large cohort of patients who were discharged from hospital with a diagnosis of acute myocardial infarction. Optimal full matching merits more widespread adoption in medical and epidemiological research. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  8. Are Boys Better Off with Male and Girls with Female Teachers? A Multilevel Investigation of Measurement Invariance and Gender Match in Teacher-Student Relationship Quality

    ERIC Educational Resources Information Center

    Spilt, Jantine L.; Koomen, Helma M. Y.; Jak, Suzanne

    2012-01-01

    Although research consistently points to poorer teacher-student relationships for boys than girls, there are no studies that take into account the effects of teacher gender and control for possible measurement non-invariance across student and teacher gender. This study addressed both issues. The sample included 649 primary school teachers (182…

  9. A triangulation-invariant method for anisotropic geodesic map computation on surface meshes.

    PubMed

    Yoo, Sang Wook; Seong, Joon-Kyung; Sung, Min-Hyuk; Shin, Sung Yo; Cohen, Elaine

    2012-10-01

    This paper addresses the problem of computing the geodesic distance map from a given set of source vertices to all other vertices on a surface mesh using an anisotropic distance metric. Formulating this problem as an equivalent control theoretic problem with Hamilton-Jacobi-Bellman partial differential equations, we present a framework for computing an anisotropic geodesic map using a curvature-based speed function. An ordered upwind method (OUM)-based solver for these equations is available for unstructured planar meshes. We adopt this OUM-based solver for surface meshes and present a triangulation-invariant method for the solver. Our basic idea is to explore proximity among the vertices on a surface while locally following the characteristic direction at each vertex. We also propose two speed functions based on classical curvature tensors and show that the resulting anisotropic geodesic maps reflect surface geometry well through several experiments, including isocontour generation, offset curve computation, medial axis extraction, and ridge/valley curve extraction. Our approach facilitates surface analysis and processing by defining speed functions in an application-dependent manner.

  10. A triangulation-invariant method for anisotropic geodesic map computation on surface meshes.

    PubMed

    Yoo, Sang Wook; Seong, Joon-Kyung; Sung, Min-Hyuk; Shin, Sung Yo; Cohen, Elaine

    2012-10-01

    This paper addresses the problem of computing the geodesic distance map from a given set of source vertices to all other vertices on a surface mesh using an anisotropic distance metric. Formulating this problem as an equivalent control theoretic problem with Hamilton-Jacobi-Bellman partial differential equations, we present a framework for computing an anisotropic geodesic map using a curvature-based speed function. An ordered upwind method (OUM)-based solver for these equations is available for unstructured planar meshes. We adopt this OUM-based solver for surface meshes and present a triangulation-invariant method for the solver. Our basic idea is to explore proximity among the vertices on a surface while locally following the characteristic direction at each vertex. We also propose two speed functions based on classical curvature tensors and show that the resulting anisotropic geodesic maps reflect surface geometry well through several experiments, including isocontour generation, offset curve computation, medial axis extraction, and ridge/valley curve extraction. Our approach facilitates surface analysis and processing by defining speed functions in an application-dependent manner. PMID:22291150

  11. The Method of Decomposition in Invariant Structures: Exact Solutions for N Internal Waves in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Victor

    2015-11-01

    The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.

  12. EVIDENCE ON THE SIMPLE STRUCTURE AND FACTOR INVARIANCE ACHIEVED BY FIVE ROTATIONAL METHODS ON FOUR TYPES OF DATA.

    PubMed

    Dielman, T E; Cattell, R B; Wagner, A

    1972-01-01

    Five methods of factor rotation-Maxplane, Oblimax, Promax, Harris- Kaiser, and Varimax-were applied to four types of data-questionnaire, objeckive test, a physical problem, and a plasmode. In addition, the Maxplane procedure was followed in each case by Rotoplot-assisted visual robations. The results were compared with respect to simple structure (hyperplane percentages) and factor invaniance (congruence coefficient). It was concluded that, in general, the oblique methods were superior to Varimax in terms of simple structure although not consistently in terms of factor invariance. Among the oblique methods, the Rotoplot-assisted Maxplane usually resulted in the maximum simple structure at the f .10 hyperplane width but not consistently at either of the other two arbitrarily chosen widths. The unassisted Maxplane was generally excelled by the less expensive oblique methods both wiith respect to hyperplane count and factor invariance. The Harris-Kaiser method was generally more satisfadory in terms of the two criteria combined.

  13. Reconstruction of Banknote Fragments Based on Keypoint Matching Method.

    PubMed

    Gwo, Chih-Ying; Wei, Chia-Hung; Li, Yue; Chiu, Nan-Hsing

    2015-07-01

    Banknotes may be shredded by a scrap machine, ripped up by hand, or damaged in accidents. This study proposes an image registration method for reconstruction of multiple sheets of banknotes. The proposed method first constructs different scale spaces to identify keypoints in the underlying banknote fragments. Next, the features of those keypoints are extracted to represent their local patterns around keypoints. Then, similarity is computed to find the keypoint pairs between the fragment and the reference banknote. The banknote fragments can determine the coordinate and amend the orientation. Finally, an assembly strategy is proposed to piece multiple sheets of banknote fragments together. Experimental results show that the proposed method causes, on average, a deviation of 0.12457 ± 0.12810° for each fragment while the SIFT method deviates 1.16893 ± 2.35254° on average. The proposed method not only reconstructs the banknotes but also decreases the computing cost. Furthermore, the proposed method can estimate relatively precisely the orientation of the banknote fragments to assemble.

  14. A method to analyse measurement invariance under uncertainty in between-subjects design.

    PubMed

    Martínez, José A; Ruiz Marin, Manuel; Vivo Molina, Maria del Carmen

    2012-11-01

    In this research we have introduced a new test (H-test) for analyzing scale invariance in between group designs, and considering uncertainty in individual responses, in order to study the adequacy of disparate rating and visual scales for measuring abstract concepts. The H-test is easy to compute and, as a nonparametric test, does not require any a priori distribution of the data nor conditions on the variances of the distributions to be tested. We apply this test to measure perceived service quality of consumers of a sports services. Results show that, without considering uncertainty, the 1-7 scale is invariant, in line with the related works regarding this topic. However, de 1-5 scale and the 1-7 scale are invariant when adding uncertainty to the analysis. Therefore, adding uncertainty importantly change the conclusions regarding invariance analysis. Both types of visual scales are not invariant in the uncertainty scenario. Implications for the use of rating scales are discussed.

  15. Research on image matching method of big data image of three-dimensional reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Qiu, Zhenguo; Zhu, Shihuan; Wang, Xiqi; Xu, Xiaolei; Zhong, Sidong

    2015-12-01

    Image matching is the main flow of a three-dimensional reconstruction. With the development of computer processing technology, seeking the image to be matched from the large date image sets which acquired from different image formats, different scales and different locations has put forward a new request for image matching. To establish the three dimensional reconstruction based on image matching from big data images, this paper put forward a new effective matching method based on visual bag of words model. The main technologies include building the bag of words model and image matching. First, extracting the SIFT feature points from images in the database, and clustering the feature points to generate the bag of words model. We established the inverted files based on the bag of words. The inverted files can represent all images corresponding to each visual word. We performed images matching depending on the images under the same word to improve the efficiency of images matching. Finally, we took the three-dimensional model with those images. Experimental results indicate that this method is able to improve the matching efficiency, and is suitable for the requirements of large data reconstruction.

  16. Another view on Norplant: match method with users.

    PubMed

    Herndon, N

    1992-10-01

    Even though most family planning specialists believe that Norplant has an important role in public sector family planning programs in developing countries, cost studies in 3 developing countries indicate that its overall costs are greater than those for IUDs, sterilization, or oral contraceptives (OCs). Thus, it may be more worthwhile for programs to target Norplant use to the most appropriate candidates. The study in the Dominican Republic finds the yearly cost of providing contraceptive protection via Norplant is US$ 28, compared to US$ 13.55 for the IUD, US$ 15 for sterilization, and US$ 10 for OCs. Thus, public sector programs should target women who want a long-acting method but are contraindicated for the IUD and do not want to be sterilized. The reasons for Norplant having the highest cost are the high cost o purchasing Norplant and the number of years of protection afforded by Norplant when compared with other methods. For example, women who have undergone sterilization are protected from pregnancy an average of 16 years compared to an average of 3.5 years for Norplant. Clinic visits and staff time do not contribute to overall cost differences. Studies in Bolivia and Thailand indicate similar results. USAID is buying 50,000-100,000 Norplant units to distribute to 8 countries. An advantage of Norplant is that it contains a progestin making it tolerable for women who cannot use OCs with estrogen. According to the manufacturer in Finland, the unit price of Norplant for public programs ranks just a bit higher than production costs. The manufacturer is testing an optimal semiautomated assembly method to reduce production costs (the high unit price of $350 in the US is due to malpractice insurance). It is also thinking about moving manufacturing capabilities to Indonesia to reduce costs.

  17. Theory of the lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability

    NASA Technical Reports Server (NTRS)

    Lallemand, Pierre; Luo, Li-Shi

    2000-01-01

    The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters which optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.

  18. Speed-up matching method with navigation data for UAV remote sensing images of coastal region

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Jiang, Gangwu; Di, Yanan

    2015-08-01

    UAV remote sensing platform can obtain images of target regions quickly. It has distinct advantages in the detection of oil spill, the emergency response of searching and rescuing, the survey of coastal regions, etc. However, the existing UAV images are difficult to meet the needs of rapid processing, because the amount of their data is too large and the traditional processing methods take too much time in the matching stage. This paper designs a speed-up matching algorithm which utilizes navigation data in UAV to get the elements of exterior orientation. The algorithm is based on the collinearity equation with the flat terrain in the coastal regions. Those elements can be used to compute the original homography matrix and overlapping regions. After extracting interest points by SURF algorithm, the matching method only chooses some points in overlapping regions for matching stage. The algorithm can improve the matching speed , and also can decrease mismatching to improve the accuracy.

  19. An effective method for calculating phase-matching conditions in biaxial crystals

    NASA Astrophysics Data System (ADS)

    Huo, Guangwen; Wang, Yongcang; Zhang, Meizhi

    2015-08-01

    We present an effective method for calculating phase-matching conditions in biaxial crystals, especially for nonlinear orthorhombic crystals. Exploiting the angle definition introduced by Japanese mathematician Kodaira Kunihiko, we deduce the angular relations in geometry and obtain the expressions of refractive indices depending on angular orientation of wave vector k and optical axis angle. Then, we directly calculate the phase-matching conditions with BIBO crystal in spontaneous parametric down-conversion (SPDC) process and gain the optimum phase matching schemes for the type I and type II. On its basis, we discuss the angular gradients of the pump and emission wave refractive index near the exact phase matching direction and compare the SPDC with double-frequency process in geometrical relations of the refractive index ellipsoids. This method based on angle-dependent refractive index can be applied to three-wave interactions. It is convenient to calculate the phase matching parameters without solving the quadratic Fresnel equations.

  20. Scale invariance vs conformal invariance

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2015-03-01

    In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and

  1. Method of electric powertrain matching for battery-powered electric cars

    NASA Astrophysics Data System (ADS)

    Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping

    2013-05-01

    The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.

  2. Rotational invariant similarity measurement for content-based image indexing

    NASA Astrophysics Data System (ADS)

    Ro, Yong M.; Yoo, Kiwon

    2000-04-01

    We propose a similarity matching technique for contents based image retrieval. The proposed technique is invariant from rotated images. Since image contents for image indexing and retrieval would be arbitrarily extracted from still image or key frame of video, the rotation invariant property of feature description of image is important for general application of contents based image indexing and retrieval. In this paper, we propose a rotation invariant similarity measurement in cooperating with texture featuring base on HVS. To simplify computational complexity, we employed hierarchical similarity distance searching. To verify the method, experiments with MPEG-7 data set are performed.

  3. A fingerprint recognition method based on Fourier filtering enhancement and minutia matching

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2005-01-01

    The fingerprint (FP) provides an optimal foundation for Automatic Personal Identification Systems. Over the last two decades significant progress in Automatic Fingerprint Identification Systems (AFIS) has been achieved. However, the performance of AFIS still suffers from the FP image quality captured by FP sensors, the enhancement techniques for FP images and feature extraction, and the available approaches of feature matching. In this paper, we proposed a fingerprint enhancement algorithm based on Fourier filtering. In our algorithm the fingerprint enhancement were transformed from spatial domain to frequency domain by Fourier transforming. In addition, Fingerprint matching is one of the most important problems in AFIS. We proposed a minutia matching algorithm. In our algorithm, a simpler alignment method is used. We introduced ridge information into the minutia matching process in a simple but effective way and solved the problem of the matching of vector pairs with low computational cost.

  4. A Method for Non-Rigid Face Alignment via Combining Local and Holistic Matching

    PubMed Central

    Yang, Yang; Chen, Zhuo

    2016-01-01

    We propose a method for non-rigid face alignment which only needs a single template, such as using a person’s smile face to match his surprise face. First, in order to be robust to outliers caused by complex geometric deformations, a new local feature matching method called K Patch Pairs (K-PP) is proposed. Specifically, inspired by the state-of-art similarity measure used in template matching, K-PP is to find the mutual K nearest neighbors between two images. A weight matrix is then presented to balance the similarity and the number of local matching. Second, we proposed a modified Lucas-Kanade algorithm combined with local matching constraint to solve the non-rigid face alignment, so that a holistic face representation and local features can be jointly modeled in the object function. Both the flexible ability of local matching and the robust ability of holistic fitting are included in our method. Furthermore, we show that the optimization problem can be efficiently solved by the inverse compositional algorithm. Comparison results with conventional methods demonstrate our superiority in terms of both accuracy and robustness. PMID:27494319

  5. Matching methods evaluation framework for stereoscopic breast x-ray images.

    PubMed

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps. PMID:26587552

  6. FOCUSR: Feature Oriented Correspondence using Spectral Regularization–A Method for Precise Surface Matching

    PubMed Central

    Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida

    2013-01-01

    Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776

  7. A new method for generating an invariant iris private key based on the fuzzy vault system.

    PubMed

    Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie

    2008-10-01

    Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment. PMID:18784013

  8. Fired Cartridge Case Identification Using Optical Images and the Congruent Matching Cells (CMC) Method

    PubMed Central

    Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M

    2014-01-01

    The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters – TCCF, Tθ, Tx and Ty are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images. PMID:26601045

  9. Magnetohydrodynamic mode identification from magnetic probe signals via a matched filter method

    NASA Astrophysics Data System (ADS)

    Edgell, Dana H.; Kim, Jin-Soo; Bogatu, Ioan N.; Humphreys, David A.; Turnbull, Alan D.

    2002-04-01

    A matched filter analysis has been developed to identify the amplitude and phase of magnetohydrodynamic modes in DIII-D tokamak plasmas using magnetic probe signals (δBp). As opposed to conventional Fourier spatial analysis of toroidally spaced probes, this analysis includes data from both toroidally and poloidally spaced magnetic probe arrays. Using additional probes both improves the statistics of the analysis and more importantly incorporates poloidal information into the mode analysis. The matched filter is a numeric filter that matches signals from the magnetic probes with numerically predicted signals for the mode. The numerical predictions are developed using EFIT equilibrium reconstruction data as input to the stability code GATO and the vacuum field code VACUUM. Changes is the plasma equilibrium that occur on the same time scale as the mode are taken into account by modeling simple matched filter vectors corresponding to changes in total plasma current, plus vertical and horizontal plasma shifts. The matched filter method works well when there is good understanding of a mode and good modeling of its structure. Matched filter analysis results for a fast growing ideal kink mode, where equilibrium change effects are minimal, show the effectiveness of this method. A slow growing resistive-wall mode (RWM) is also analyzed using the matched filter method. The method gives good results for identifying the amplitude and phase of the RWM but the simple equilibrium vectors are insufficient for complete elimination of equilibrium changes on this time scale. An analysis of the computational requirements of the scheme indicates that real-time application of the matched filter for RWM identification will be possible.

  10. Line segment confidence region-based string matching method for map conflation

    NASA Astrophysics Data System (ADS)

    Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong

    2013-04-01

    In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.

  11. Gearbox coupling modulation separation method based on match pursuit and correlation filtering

    NASA Astrophysics Data System (ADS)

    He, Guolin; Ding, Kang; Lin, Huibin

    2016-01-01

    The vibration signal of faulty gearbox commonly involves complex coupling modulation components. The method of sparse representation has been successfully used for gearbox fault diagnosis, but most of the literatures only focus on the extraction of impact modulation and always neglect the steady modulation representing the distributed faults. This paper presents a new method for separating coupling modulation from vibration signal of gearbox based on match pursuit and correlation filtering. To separate the steady modulation caused by distributed fault and the impact modulation caused by impact fault, two sub-dictionaries are specially designed according to the gearbox operating and structural parameters and the characteristics of vibration signal. The new dictionaries have clear physical meaning and good adaptability. In addition, an amplitude recovery step is conducted to improve the matching accuracy in the match pursuit. Simulation and experimental results show that the proposed method can separate the coupling components of gearbox vibration signal effectively under intensive background noise.

  12. A new method for analyzing heat exchangers-matching of temperature field

    NASA Astrophysics Data System (ADS)

    Wang, HuanGuang; Huai, XiuLan

    2012-10-01

    In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed — matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.

  13. A KARAOKE System Singing Evaluation Method that More Closely Matches Human Evaluation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo

    KARAOKE is a popular amusement for old and young. Many KARAOKE machines have singing evaluation function. However, it is often said that the scores given by KARAOKE machines do not match human evaluation. In this paper a KARAOKE scoring method strongly correlated with human evaluation is proposed. This paper proposes a way to evaluate songs based on the distance between singing pitch and musical scale, employing a vibrato extraction method based on template matching of spectrum. The results show that correlation coefficients between scores given by the proposed system and human evaluation are -0.76∼-0.89.

  14. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching.

    PubMed

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi

    2015-07-03

    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise.

  15. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching

    PubMed Central

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi

    2015-01-01

    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263

  16. Method of airborne SAR image match integrating multi-information for block adjustment

    NASA Astrophysics Data System (ADS)

    Yang, S. C.; Huang, G. M.; Zhao, Z.; Lu, L. J.

    2015-06-01

    For the automation of SAR image Block Adjustment, this paper proposed a method of SAR image matching integrating multiinformation. It takes full advantage of SAR image geometric information, feature information, gray-related information and external auxiliary terrain information for SAR image matching. And then Image Tie Points (ITPs) of Block Adjustment can be achieved automatically. The main parts of extracting ITPs automatically include: First, SAR images were rectified geometrically based on the geometric information and external auxiliary terrain information (existed DEM) before match. Second, ground grid points with a certain interval can be get in the block area and approximate ITPs were acquired based on external auxiliary terrain information. Then match reference point was extracted for homologous image blocks with Harris feature detection operator and ITPs were obtained with pyramid matching based on gray-related information. At last, ITPs were transferred from rectified images to original SAR images and used in block adjustment. In the experiment, X band airborne SAR images acquired by Chinese airborne SAR system - CASMSAR system were used to make up the block. The result had showed that the method is effective for block adjustment of SAR data.

  17. OSRI: a rotationally invariant binary descriptor.

    PubMed

    Xu, Xianwei; Tian, Lu; Feng, Jianjiang; Zhou, Jie

    2014-07-01

    Binary descriptors are becoming widely used in computer vision field because of their high matching efficiency and low memory requirements. Since conventional approaches, which first compute a floating-point descriptor then binarize it, are computationally expensive, some recent efforts have focused on directly computing binary descriptors from local image patches. Although these binary descriptors enable a significant speedup in processing time, their performances usually drop a lot due to orientation estimation errors and limited description abilities. To address these issues, we propose a novel binary descriptor based on the ordinal and spatial information of regional invariants (OSRIs) over a rotation invariant sampling pattern. Our main contributions are twofold: 1) each bit in OSRI is computed based on difference tests of regional invariants over pairwise sampling-regions instead of difference tests of pixel intensities commonly used in existing binary descriptors, which can significantly enhance the discriminative ability and 2) rotation and illumination changes are handled well by ordering pixels according to their intensities and gradient orientations, meanwhile, which is also more reliable than those methods that resort to a reference orientation for rotation invariance. Besides, a statistical analysis of discriminative abilities of different parts in the descriptor is conducted to design a cascade filter which can reject nonmatching descriptors at early stages by comparing just a small portion of the whole descriptor, further reducing the matching time. Extensive experiments on four challenging data sets (Oxford, 53 Objects, ZuBuD, and Kentucky) show that OSRI significantly outperforms two state-of-the-art binary descriptors (FREAK and ORB). The matching performance of OSRI with only 512 bits is also better than the well-known floating-point descriptor SIFT (4K bits) and is comparable with the state-of-the-art floating-point descriptor MROGH (6K bits

  18. Scale-invariant features and polar descriptors in omnidirectional imaging.

    PubMed

    Arican, Zafer; Frossard, Pascal

    2012-05-01

    We propose a method to compute scale-invariant features in omnidirectional images. We present a formulation based on the Riemannian geometry for the definition of differential operators on non-Euclidian manifolds that adapt to the mirror and lens structures in omnidirectional imaging. These operators lead to a scale-space analysis that preserves the geometry of the visual information in omnidirectional images. We then build a novel scale-invariant feature detection framework for omnidirectional images that can be mapped on the sphere. We further present a new descriptor and feature matching solution for these omnidirectional images. The descriptor builds on the log-polar planar descriptors and adapts the descriptor computation to the specific geometry and the nonuniform sampling density of omnidirectional images. We also propose a rotation-invariant matching method that eliminates the orientation computation during the feature detection phase and thus decreases the computational complexity. Experimental results demonstrate that the new feature computation method combined with the adapted descriptors offers promising detection and matching performance, i.e., it improves on the common scale-invariant feature transform (SIFT) features computed on the unwrapped omnidirectional images, as well as spherical SIFT features. Finally, we show that the proposed framework also permits to match features between images with different native geometry.

  19. Adjusting and positioning method with high displacement resolution for large-load worktable based on the invariable restoring force

    NASA Astrophysics Data System (ADS)

    Huang, Jingzhi; Sun, Tao; Gu, Wei; Wen, Zhongpu; Guo, Tenghui

    2015-02-01

    With the fast development of the advanced equipment manufacturing toward precision and ultra-precision trend, especially with the continuously improving of the aviation engine's performance, the problem of high displacement resolution for the large-load two-dimension adjusting and positioning worktable used for the aeroengine assembling become evident. A method was proposed which is based on the invariable restoring force, and the adjusting and positioning physical model was established. The experiment results indicate that under the occasion of a load with 508 kilogram, the worktable has got a displacement resolution of 0.3μm after using the improved method compared to 1.4μm of the traditional method. The improved method could meet the requirements of aviation engine assembling worktable.

  20. Propensity Scores: Method for Matching on Multiple Variables in Down Syndrome Research

    ERIC Educational Resources Information Center

    Blackford, Jennifer Urbano

    2009-01-01

    Confounding variables can affect the results from studies of children with Down syndrome and their families. Traditional methods for addressing confounders are often limited, providing control for only a few confounding variables. This study introduces propensity score matching to control for multiple confounding variables. Using Tennessee birth…

  1. A novel method for the detection of persistent and recurrent climatic regimes as almost invariants of the transfer operator

    NASA Astrophysics Data System (ADS)

    Tantet, A.; Dijkstra, H. A.

    2014-12-01

    A novel method and its numerical implementation to find almost invariants of a dynamical system will be presented, with applications to the detection of persistent and recurrent climatic regimes, coherent structures in ocean flows and spatial patterns of climate variability. The method is based on an estimation of the transfer operator of the particular dynamical system. The detection of almost invariants is posed as a Markov reduction problem with a minimization of the relative entropy, here a measure of the distance between the fine-grained system and the reduced Markov chain. It is implemented using a fast-greedy algorithm from complex network theory. Two applications in different domains of climate science are presented. In the first one, two persistent and recurrent atmospheric flow regimes are identified from a simulation of a barotropic model of the northern hemispheric atmosphere with realistic winter forcing. The regimes correspond to the well-known blocked and zonal circulation regimes of the northern hemisphere. Secondly, the algorithm is applied to a correlation network estimated from 140 years of sea surface temperature data to identify spatial patterns of variability. Dominant patterns on interannual to decadal time-scales are found in the tropical Pacific (El Niño-Southern Oscillation), the North Atlantic (the Atlantic Multidecadal Oscillation) and the Indian ocean and West Pacific.

  2. Development of Matched (migratory Analytical Time Change Easy Detection) Method for Satellite-Tracked Migratory Birds

    NASA Astrophysics Data System (ADS)

    Doko, Tomoko; Chen, Wenbo; Higuchi, Hiroyoshi

    2016-06-01

    Satellite tracking technology has been used to reveal the migration patterns and flyways of migratory birds. In general, bird migration can be classified according to migration status. These statuses include the wintering period, spring migration, breeding period, and autumn migration. To determine the migration status, periods of these statuses should be individually determined, but there is no objective method to define 'a threshold date' for when an individual bird changes its status. The research objective is to develop an effective and objective method to determine threshold dates of migration status based on satellite-tracked data. The developed method was named the "MATCHED (Migratory Analytical Time Change Easy Detection) method". In order to demonstrate the method, data acquired from satellite-tracked Tundra Swans were used. MATCHED method is composed by six steps: 1) dataset preparation, 2) time frame creation, 3) automatic identification, 4) visualization of change points, 5) interpretation, and 6) manual correction. Accuracy was tested. In general, MATCHED method was proved powerful to identify the change points between migration status as well as stopovers. Nevertheless, identifying "exact" threshold dates is still challenging. Limitation and application of this method was discussed.

  3. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  4. Invariant death

    PubMed Central

    Frank, Steven A.

    2016-01-01

    In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361

  5. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen.

    PubMed

    Govindarajan, Srinath; Elewaut, Dirk; Drennan, Michael

    2015-01-01

    The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice. PMID:26555769

  6. An Accurate Scene Segmentation Method Based on Graph Analysis Using Object Matching and Audio Feature

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Haseyama, Miki

    A method for accurate scene segmentation using two kinds of directed graph obtained by object matching and audio features is proposed. Generally, in audiovisual materials, such as broadcast programs and movies, there are repeated appearances of similar shots that include frames of the same background, object or place, and such shots are included in a single scene. Many scene segmentation methods based on this idea have been proposed; however, since they use color information as visual features, they cannot provide accurate scene segmentation results if the color features change in different shots for which frames include the same object due to camera operations such as zooming and panning. In order to solve this problem, scene segmentation by the proposed method is realized by using two novel approaches. In the first approach, object matching is performed between two frames that are each included in different shots. By using these matching results, repeated appearances of shots for which frames include the same object can be successfully found and represented as a directed graph. The proposed method also generates another directed graph that represents the repeated appearances of shots with similar audio features in the second approach. By combined use of these two directed graphs, degradation of scene segmentation accuracy, which results from using only one kind of graph, can be avoided in the proposed method and thereby accurate scene segmentation can be realized. Experimental results performed by applying the proposed method to actual broadcast programs are shown to verify the effectiveness of the proposed method.

  7. A layered modulation method for pixel matching in online phase measuring profilometry

    NASA Astrophysics Data System (ADS)

    Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand

    2016-10-01

    An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.

  8. The use of suitable pseudo-invariant targets for MIVIS data calibration by the empirical line method

    NASA Astrophysics Data System (ADS)

    Mei, Alessandro; Bassani, Cristiana; Fontinovo, Giuliano; Salvatori, Rosamaria; Allegrini, Alessia

    2016-04-01

    The Empirical Line Method (ELM) enables the calibration of multi- and hyper-airborne/satellite image converting DN or radiance to reflectance values performed by using at ground data. High quality outcome can be reached with the selection of appropriate Pseudo-Invariant Targets (PIT). In this paper, spectral variability of "usual" (asphalt and concrete) and "unusual" (calcareous gravel, basaltic paving, concrete bricks, tartan paving and artificial turf) PITs is retrieved for ELM application. Such PITs are used to calibrate the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) airborne sensor in 12 different Runs. Firstly, processing of field spectral data enables the evaluation of pseudo-invariance of targets by studying their spectral changes in space and in time. Finally, these surfaces are used as Ground Calibration (GCT) and Validation Targets (GVT) in ELM. High calibration accuracy values are observed in Visible (VIS) range (98.9%) while a general decrease of accuracy in Near-InfraRed (NIR) (96.6%) and Middle-InfraRed (SWIR) (88.1%) are reached. Outcomes show that "usual" surfaces as asphalt and concrete and "unusual" surfaces such as tartan can be successfully used for MIVIS image calibration.

  9. Dense Image Matching for Mars Express HRSC Imagery Based on Precise Point Prediction Method

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Miao, J.; Hou, Y. F.; Xing, S.; Lan, C. Z.

    2016-06-01

    Currently, Mars Express HRSC imagery is an essential data source to derive high accuracy Mars topographic data. In view of the characteristics of Martian surface satellite imagery, a dense image matching scheme for HRSC imagery based on precise point prediction method is proposed. The image matching strategies of our method are elaborated in detail. Based on the proposed method, DEM and DOM of Martian surface are derived and compared with those published by ESA. The experiment results show that the root mean square error in planar direction is about three pixels, while the root mean square error in height direction is about one pixel. Moreover, the mean square error in plane direction show a certain systematic error and the reasons are analysed. Experiment results also demonstrate that the point prediction accuracy for corresponding points is up to 1-3 pixels.

  10. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.

    PubMed

    Nennig, Benoit; Perrey-Debain, Emmanuel; Ben Tahar, Mabrouk

    2010-12-01

    A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.

  11. Fine elasticity imaging utilizing the iterative RF-echo phase matching method.

    PubMed

    Sumi, C

    1999-01-01

    To non-invasively quantify elasticity of soft tissue, we previously developed the iterative two-dimensional (2-D) rf-echo phase matching method for accurately measuring a 2-D displacement vector field generated in vivo in soft tissue during acquisition of two successive rf-echo data frames. We also developed a stable method for uniquely reconstructing a shear modulus distribution using strains derived from the measurement data. However, as in our measurement method a displacement is determined by using the phase characteristics of the finite local echo data as the index to iteratively search for the corresponding local data, change of the local phase characteristics due to tissue deformation deteriorates the accuracy of the determination. Thus, we improve the previous method such that, in principle, the displacement can be determined using an infinitesimal phase characteristics. That is, we incorporate an effective mechanism into the previous iterative phase matching scheme: the local size is made suitably smaller during the iterative phase matching. The demonstrated ability of measurement and reconstruction in simulation, and experiments on in vitro in pork rib and in vivo in breast tissue, shows this refinement allows not only better spatial resolution of the shear modulus image but also improved accuracy, and indicates that the improved method has a high potential to be applied for various soft tissues. PMID:18238410

  12. A New Matching Method for the Resistive Wall Mode Analysis of Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junya; Tokuda, Shinji; Aiba, Nobuyuki

    2008-11-01

    Stabilization of the Resistive Wall Modes (RWMs) by the plasma rotation is one of the most important physical issues for future reactors operated in the advanced tokamak regime [1]. For rotating plasmas, the linear stability problem, which is governed by the Frieman-Rotenberg equation [2], becomes non-self-adjoint, thus the conventional normal mode decomposition is not complete. Therefore, in this study, a new matching method is proposed, which solves the Frieman-Rotenberg equation as an initial value problem. The new method divides the plasma region into outer regions and inner layers as in the conventional asymptotic matching method. The essential difference is that the inner layers of the new method have finite width, thus, the Newcomb equation governing the outer regions has no singularity. The matching condition is numerically satisfied such that the normal components of the Lagrangian displacement are smooth. The new method can study the rotation effect around rational surfaces with high numerical accuracy and short computation time. [1] M. Takechi et al., Phys. Rev. Lett. 98, 055002 (2007). [2] E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

  13. Method of orbit sums in the theory of modular vector invariants

    NASA Astrophysics Data System (ADS)

    Stepanov, S. A.

    2006-12-01

    Let F be a field, V a finite-dimensional F-vector space, G\\leqslant \\operatorname{GL}_F(V) a finite group, and V^m=V\\oplus\\dots\\oplus V the m-fold direct sum with the diagonal action of G. The group G acts naturally on the symmetric graded algebra A_m=F \\lbrack V^m \\rbrack as a group of non-degenerate linear transformations of the variables. Let A_m^G be the subalgebra of invariants of the polynomial algebra A_m with respect to G. A classical result of Noether [1] says that if \\operatorname{char}F=0, then A_m^G is generated as an F-algebra by homogeneous polynomials of degree at most \\vert G\\vert, no matter how large m can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of F is positive and divides the order \\vert G\\vert of G. Let p, p>2, be a prime number, F=F_p a finite field of p elements, V a linear F_p-vector space of dimension n, and H\\leqslant \\operatorname{GL}_{F_p}(V) a cyclic group of order p generated by a matrix \\gamma of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of A_m^H. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of n=2. As a consequence we show (Theorem 3) that if m>n and G\\ge H is an arbitrary finite group, then each complete set of generators of A_m^G contains an element of degree at least 2(m-n+2r)(p-1)/r, where r=r(H) is a positive integer dependent on the structure of the generating matrix \\gamma of the group H. This result refines considerably the earlier lower bound obtained by Richman [3].

  14. Experimental research of methods for clustering and selecting image fragments using spatial invariant equivalent models

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2014-08-01

    In the paper, we show that the nonlinear spatial non-linear equivalency functions on the basis of continuous logic equivalence (nonequivalence) operations have better discriminatory properties for comparing images. Further, using the equivalent model of multiport neural networks and associative memory, (including matrix-matrix and matrix-tensor with adaptive-weighted correlation, multi-port neural-net auto-associative and hetero-associative memory (MP NN AAM and HAM ) and the proposed architecture based on them, we show how we can modify these models and architectures for space-invariant associative recognition and clustering (high performance parallel clustering processing) images. We consider possible implementations of 2D image classifiers, devices for partitioning image fragments into clusters and their architectures. The main base unit of such architectures is a matrix-matrix or matrix-tensor equivalentor, which can be implemented on the basis of two traditional correlators. We show that the classifiers based on the equivalency paradigm and optoelectronic architectures with space-time integration and parallel-serial 2D images processing have advantages such as increased memory capacity (more than ten times of the number of neurons!), High performance in different modes . We present the results of associative significant dimension (128x128, 610x340) image recognition - renewal modeling. It will be shown that these models are capable to recognize images with a significant percentage (20- 30%) damaged pixels. The experimental results show that such models can be successfully used for auto-and heteroassociative pattern recognition. We show simulation results of using these modifications for clustering and learning models and algorithms for cluster analysis of specific images and divide them into categories of the array. Show example of a cluster division of image fragments, letters and graphics for clusters with simultaneous formation of the outputweighted spatial

  15. A new fast matching method for adaptive compression of stereoscopic images

    NASA Astrophysics Data System (ADS)

    Ortis, A.; Battiato, S.

    2015-03-01

    In the last few years, due to the growing use of stereoscopic images, much effort has been spent by the scientific community to develop algorithms for stereoscopic image compression. Stereo images represent the same scene from two different views, and therefore they typically contain a high degree of redundancy. It is then possible to implement some compression strategies devoted to exploit the intrinsic characteristics of the two involved images that are typically embedded in a MPO (Multi Picture Object) data format. MPO files represents a stereoscopic image by building a list of JPEG images. Our previous work introduced a simple block-matching approach to compute local residual useful to reconstruct during the decoding phase, stereoscopic images that maintain high perceptual quality; this allows to the encoder to force high level of compression at least for one of the two involved images. On the other hand the matching approach, based only on the similarity of the blocks, results rather inefficient. Starting from this point, the main contribution of this paper focuses on the improvement of both matching step effectiveness and its computational cost. Such alternative approach aims to greatly enhance matching step by exploiting the geometric properties of a pair of stereoscopic images. In this way we significantly reduce the complexity of the method without affecting results in terms of quality.

  16. Invariants from classical field theory

    SciTech Connect

    Diaz, Rafael; Leal, Lorenzo

    2008-06-15

    We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.

  17. Bayes and empirical Bayes methods for reduced rank regression models in matched case-control studies

    PubMed Central

    Zhou, Qin; Lan, Qing; Rothman, Nathaniel; Langseth, Hilde; Engel, Lawrence S.

    2015-01-01

    Summary Matched case-control studies are popular designs used in epidemiology for assessing the effects of exposures on binary traits. Modern studies increasingly enjoy the ability to examine a large number of exposures in a comprehensive manner. However, several risk factors often tend to be related in a non-trivial way, undermining efforts to identify the risk factors using standard analytic methods due to inflated type I errors and possible masking of effects. Epidemiologists often use data reduction techniques by grouping the prognostic factors using a thematic approach, with themes deriving from biological considerations. We propose shrinkage type estimators based on Bayesian penalization methods to estimate the effects of the risk factors using these themes. The properties of the estimators are examined using extensive simulations. The methodology is illustrated using data from a matched case-control study of polychlorinflated biphenyls in relation to the etiology of non-Hodgkin’s lymphoma. PMID:26575519

  18. Template Matching Method Based on Visual Feature Constraint and Structure Constraint

    NASA Astrophysics Data System (ADS)

    Li, Zhu; Tomotsune, Kojiro; Tomioka, Yoichi; Kitazawa, Hitoshi

    Template matching for image sequences captured with a moving camera is very important for several applications such as Robot Vision, SLAM, ITS, and video surveillance systems. However, it is difficult to realize accurate template matching using only visual feature information such as HSV histograms, edge histograms, HOG histograms, and SIFT features, because it is affected by several phenomena such as illumination change, viewpoint change, size change, and noise. In order to realize robust tracking, structure information such as the relative position of each part of the object should be considered. In this paper, we propose a method that considers both visual feature information and structure information. Experiments show that the proposed method realizes robust tracking and determine the relationships between object parts in the scenes and those in the template.

  19. Native conflict awared layout decomposition in triple patterning lithography using bin-based library matching method

    NASA Astrophysics Data System (ADS)

    Ke, Xianhua; Jiang, Hao; Lv, Wen; Liu, Shiyuan

    2016-03-01

    Triple patterning (TP) lithography becomes a feasible technology for manufacturing as the feature size further scale down to sub 14/10 nm. In TP, a layout is decomposed into three masks followed with exposures and etches/freezing processes respectively. Previous works mostly focus on layout decomposition with minimal conflicts and stitches simultaneously. However, since any existence of native conflict will result in layout re-design/modification and reperforming the time-consuming decomposition, the effective method that can be aware of native conflicts (NCs) in layout is desirable. In this paper, a bin-based library matching method is proposed for NCs detection and layout decomposition. First, a layout is divided into bins and the corresponding conflict graph in each bin is constructed. Then, we match the conflict graph in a prebuilt colored library, and as a result the NCs can be located and highlighted quickly.

  20. Scale invariance in biophysics

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2000-06-01

    In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .

  1. Research on biochemical spectrum denoising based on a novel wavelet threshold function and an improved translation-invariance method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Zeng, Lvming; Huang, Zhen; Huang, Shuanggen

    2008-12-01

    In this paper, an improved wavelet threshold denoising with combined translation invariance(TI)method is adopted to remove noises existed in the bio-chemical spectrum. Meanwhile, a novel wavelet threshold function and an optimal threshold determination algorithm are proposed. The new function is continuous and high-order derivable, it can overcome the vibration phenomena generated by the classical threshold function and decrease the error of reconstructed spectrum. So, it is superior to the frequency-domain filtering methods, the soft- and hard-threshold function proposed by D.L. Donoho and the semisoft-threshold function proposed by Gao, etc. The experimental results show that the improved TI wavelet threshold(TI-WT) denoising method can availably eliminate the Pseudo-Gibbs phenomena generated by the traditional wavelet thresholding method. At the same time, the improved wavelet threshold function and the TI-WT method present lower root mean-square-error (RMSE) and higher signal-to-noise ratio(SNR) than the frequency-domain filtering, classical soft and hard-threshold denoising The SNR increasing from 17.3200 to 32.5609, the RMSE decreasing from 4.0244 to 0.6257. Otherwise, The improved denoising method not only makes the spectrum smooth, but also effectively preserves the edge characteristics of the original spectrum.

  2. Augmented Lagrange Based on Modified Covariance Matching Criterion Method for DOA Estimation in Compressed Sensing

    PubMed Central

    Si, Weijian; Qu, Xinggen; Liu, Lutao

    2014-01-01

    A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is presented, in which DOA estimation is considered as the joint sparse recovery from multiple measurement vectors (MMV). The proposed method is obtained by minimizing the modified-based covariance matching criterion, which is acquired by adding penalties according to the regularization method. This minimization problem is shown to be a semidefinite program (SDP) and transformed into a constrained quadratic programming problem for reducing computational complexity which can be solved by the augmented Lagrange method. The proposed method can significantly improve the performance especially in the scenarios with low signal to noise ratio (SNR), small number of snapshots, and closely spaced correlated sources. In addition, the Cramér-Rao bound (CRB) of the proposed method is developed and the performance guarantee is given according to a version of the restricted isometry property (RIP). The effectiveness and satisfactory performance of the proposed method are illustrated by simulation results. PMID:24678272

  3. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  4. A texture matching method considering geometric transformations in noninvasive ultrasonic measurement of arterial elasticity.

    PubMed

    Niu, Lili; Qian, Ming; Song, Ruibo; Meng, Long; Liu, Xin; Zheng, Hairong

    2012-03-01

    Measurement of arterial elasticity can provide an important reference for understanding arterial wall changes that may occur in the early stages of atherosclerosis. Conventional correlation-based methods for evaluating arterial wall movements consider only the translation, ignoring the rotation and deformation, which limits the accuracy of measurement of arterial displacement and its biomechanical properties. This article proposes a novel texture matching method based on ultrasonic B-mode image considering geometric transformations to accurately measure arterial displacement and acquire arterial elasticity noninvasively. The method was validated by simulated images with rotation and deformation and further by measurements in vitro arterial phantom and in vivo common carotid arteries of 20 healthy volunteers. Simulation results demonstrate that the method can improve the accuracy of measurement of arterial displacement. Experimental results show that the elastic modulus of the arterial phantom agrees well with the results obtained from mechanical tests, deviating only 4.1%. The mean elastic modulus of the common carotid arteries is 361.7 ± 93.5 kPa. The texture matching method was shown to be able to measure the displacement and elasticity of the arterial wall with complex geometric transformations and may be clinically useful for early detecting and monitoring atherosclerosis.

  5. Tropospheric ozone retrieval by using SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Ladstätter-Weissenmayer, Annette; Ebojie, Felix; Rozanov, Alexei; Burrows, John

    2014-05-01

    Tropospheric ozone is photochemically produced during pollution events and transported from the stratosphere towards the troposphere. It is the third most important green house gases and the main component of summer smog. Global covered satellite measurements are well suitable to investigate sources, sinks, and transport mechanisms of tropospheric ozone in a global view, and to study a characteristic behaviour of the tropospheric ozone in regions. However, the usage of satellite data is associated to a large uncertainty as 90% ozone is located in the stratosphere and only the remaining part of 10% can be observed in the troposphere. The limb-nadir matching (LNM) technique is one of the methods suitable to retrieve tropospheric ozone distributions from space borne observations of the scattered solar light in the UV-visible spectral range. In this study we apply the LNM approach to alternating limb and nadir measurements performed by the SCIAMACHY instrument. A precise tropopause height is used to subtract the stratospheric ozone from the total ozone amount for each matching point. The focus of this work is to reduce the uncertainty of the resulting tropospheric ozone distributions by analysing possible error sources, refining both limb and nadir retrievals and the matching technique.

  6. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.

    PubMed

    Bi, Lei; Yang, Ping

    2013-05-01

    The invariant imbedding T-matrix method (II-TM) is employed to simulate the optical properties of normal biconcave and deformed red blood cells (RBCs). The phase matrix elements of a RBC model computed with the II-TM are compared with their counterparts computed with the discrete-dipole approximation (DDA) method. As expected, the DDA results approach the II-TM results with an increase in the number of dipoles per incident wavelength. Computationally, the II-TM is faster than the DDA when multiple RBC orientations are considered. For a single orientation, the DDA is comparable with or even faster than the II-TM because the DDA efficiently converges for optically soft particles; however, the DDA method demands significantly more computer memory than the II-TM. After the applicability of the II-TM is numerically confirmed, a comparison is conducted of the optical properties of oxygenated and deoxygenated RBCs and of normal and deformed RBCs. The spectral variations of RBCs' optical properties are investigated in the wavelength range from 0.25 to 1.0 μm. Furthermore, the statistically averaged phase matrix of spheres and biconcave RBCs are compared. Conducted numerical simulations suggest the applicability of the II-TM for the inverse light scattering analysis and radiative transfer simulations in blood.

  7. Self-Esteem and Method Effects Associated with Negatively Worded Items: Investigating Factorial Invariance by Sex

    ERIC Educational Resources Information Center

    DiStefano, Christine; Motl, Robert W.

    2009-01-01

    The Rosenberg Self-Esteem scale (RSE) has been widely used in examinations of sex differences in global self-esteem. However, previous examinations of sex differences have not accounted for method effects associated with item wording, which have consistently been reported by researchers using the RSE. Accordingly, this study examined the…

  8. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  9. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed.

  10. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    SciTech Connect

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  11. [Using neural networks based template matching method to obtain redshifts of normal galaxies].

    PubMed

    Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng

    2005-06-01

    Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.

  12. Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.

    PubMed

    Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei

    2016-06-01

    Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different

  13. Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.

    PubMed

    Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei

    2016-06-01

    Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different

  14. Simultaneous source separation using a new multichannel matching pursuit method with directional features

    NASA Astrophysics Data System (ADS)

    Cao, J.; Gu, H.

    2015-12-01

    Simultaneous source technology allows us to acquire seismic data in a much more efficient way and saves considerable acquisition time. However, it is necessary to separate these data into their conventionally acquired equivalent state. Luckily, we can simply treat the deblending problem as a noise attenuation problem because the blending noise has been performed to be incoherent in some domains such as common receiver, common offset domains. Multichannel matching pursuit (MCMP) is a lateral coherency based technique and has been widely used in a variety of seismic applications such as seismic trace decomposition and denoising seismic records. It decomposes the signals into a series of wavelets namely atoms, but the atom is just the best match to the average of multiple traces with the same scale factor, translation factor, frequency factor and phase parameter at each iteration, which is not in accord with the real seismic records. In this paper, we propose a new multichannel matching pursuit (MCMP) algorithm with directional features for simultaneous source separation in common receiver gathers. The new MCMP uses local lateral coherence as a constraint and utilizes the maximum semblance coefficient within a multidirectional window as the best direction at each iteration. To verify the effectiveness of this method, we use Ricker wavelet to synthetize a simultaneous source data set and sort the data to common receiver gathers. Comparing the deblending results with multidirectional vector median filter (MDVMF) method, the new MCMP preserves more useful seismic signals, but some individual useful signals are not reconstructed successfully probably because of the zero padding influence. The real data examples also prove that the new MCMP is effective in practice for deblending.

  15. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays

    PubMed Central

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  16. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.

    PubMed

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  17. Systems, methods and apparatus for pattern matching in procedure development and verification

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Rouff, Christopher A. (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which, in some embodiments, a formal specification is pattern-matched from scenarios, the formal specification is analyzed, and flaws in the formal specification are corrected. The systems, methods and apparatus may include pattern-matching an equivalent formal model from an informal specification. Such a model can be analyzed for contradictions, conflicts, use of resources before the resources are available, competition for resources, and so forth. From such a formal model, an implementation can be automatically generated in a variety of notations. The approach can improve the resulting implementation, which, in some embodiments, is provably equivalent to the procedures described at the outset, which in turn can improve confidence that the system reflects the requirements, and in turn reduces system development time and reduces the amount of testing required of a new system. Moreover, in some embodiments, two or more implementations can be "reversed" to appropriate formal models, the models can be combined, and the resulting combination checked for conflicts. Then, the combined, error-free model can be used to generate a new (single) implementation that combines the functionality of the original separate implementations, and may be more likely to be correct.

  18. Study on pixel matching method of the multi-angle observation from airborne AMPR measurements

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han

    2015-10-01

    For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.

  19. Three dimensional template matching segmentation method for motile cells in 3D+t video sequences.

    PubMed

    Pimentel, J A; Corkidi, G

    2010-01-01

    In this work, we describe a segmentation cell method oriented to deal with experimental data obtained from 3D+t microscopical volumes. The proposed segmentation technique takes advantage of the pattern of appearances exhibited by the objects (cells) from different focal planes, as a result of the object translucent properties and its interaction with light. This information allows us to discriminate between cells and artifacts (dust an other) with equivalent size and shape that are present in the biological preparation. Using a simple correlation criteria, the method matches a 3D video template (extracted from a sample of cells) with the motile cells contained into the biological sample, obtaining a high rate of true positives while discarding artifacts. In this work, our analysis is focused on sea urchin spermatozoa cells but is applicable to many other microscopical structures having the same optical properties. PMID:21096252

  20. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  1. Low-quality fingerprint recognition using a limited ellipse-band-based matching method.

    PubMed

    He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2015-06-01

    Current fingerprint recognition technologies are based mostly on the minutia algorithms, which cannot recognize fingerprint images in low-quality conditions. This paper proposes a novel recognition algorithm using a limited ellipse-band-based matching method. It uses the Fourier-Mellin transformation method to improve the limitation of the original algorithm, which cannot resist rotation changes. Furthermore, an ellipse band on the frequency amplitude is used to suppress noise that is introduced by the high-frequency parts of images. Finally, the recognition result is obtained by considering both the contrast and position correlation peaks. The experimental results show that the proposed algorithm can increase the recognition accuracy, particularly of images in low-quality conditions. PMID:26367052

  2. Low-quality fingerprint recognition using a limited ellipse-band-based matching method.

    PubMed

    He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2015-06-01

    Current fingerprint recognition technologies are based mostly on the minutia algorithms, which cannot recognize fingerprint images in low-quality conditions. This paper proposes a novel recognition algorithm using a limited ellipse-band-based matching method. It uses the Fourier-Mellin transformation method to improve the limitation of the original algorithm, which cannot resist rotation changes. Furthermore, an ellipse band on the frequency amplitude is used to suppress noise that is introduced by the high-frequency parts of images. Finally, the recognition result is obtained by considering both the contrast and position correlation peaks. The experimental results show that the proposed algorithm can increase the recognition accuracy, particularly of images in low-quality conditions.

  3. Improved point scale climate projections using a block bootstrap simulation and quantile matching method

    NASA Astrophysics Data System (ADS)

    Kokic, Philip; Jin, Huidong; Crimp, Steven

    2013-08-01

    Statistical downscaling methods are commonly used to address the scale mismatch between coarse resolution Global Climate Model output and the regional or local scales required for climate change impact assessments. The effectiveness of a downscaling method can be measured against four broad criteria: consistency with the existing baseline data in terms of means, trends and distributional characteristics; consistency with the broader scale climate data used to generate the projections; the degree of transparency and repeatability; and the plausibility of results produced. Many existing downscaling methods fail to fulfil all of these criteria. In this paper we examine a block bootstrap simulation technique combined with a quantile prediction and matching method for simulating future daily climate data. By utilising this method the distributional properties of the projected data will be influenced by the distribution of the observed data, the trends in predictors derived from the Global Climate Models and the relationship of these predictors to the observed data. Using observed data from several climate stations in Vanuatu and Fiji and out-of-sample validation techniques, we show that the method is successful at projecting various climate characteristics including the variability and auto-correlation of daily temperature and rainfall, the correlations between these variables and between spatial locations. This paper also illustrates how this novel method can produce more effective point scale projections and a more credible alternative to other approaches in the Pacific region.

  4. Invariant feature extraction for color image mosaic by graph card processing

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Chen, Lin; Li, Deren

    2009-10-01

    Image mosaic can be widely used in remote measuring, scout in battlefield and Panasonic image demonstration. In this project, we find a general method for video (or sequence images) mosaic by techniques, such as extracting invariant features, gpu processing, multi-color feature selection, ransac algorithm for homograph matching. In order to match the image sequence automatically without influence of rotation, scale and contrast transform, local invariant feature descriptor have been extracted by graph card unit. The gpu mosaic algorithm performs very well that can be compare to slow CPU version of mosaic program with little cost time.

  5. [Method of Remote Sensing Identification for Mineral Types Based on Multiple Spectral Characteristic Parameters Matching].

    PubMed

    Wei, Jing; Ming, Yan-fang; Han, Liu-sheng; Ren, Zhong-liang; Guo, Ya-min

    2015-10-01

    The traditional mineral mapping methods with remote sensing data, based on spectral reflectance matching techniques, shows low accuracy, for obviously being affected by the image quality, atmospheric and other factors. A new mineral mapping method based on multiple types of spectral characteristic parameters is presented in this paper. Various spectral characteristic parameters are used together to enhanced the stability in the situation of atmosphere and environment background affecting. AVIRIS (Airborne Visible Infrared Imaging Spectrometer) data of Nevada Cuprite are selected to determine the mineral types with this method. Typical mineral spectral data are also obtained from USGS (United States Geological Survey) spectral library to calculate the spectral characteristic parameters. A mineral identification model based on multiple spectral characteristic parameters is built by analyzing the various characteristic parameters, and is applied in the mineral mapping experiment in Cuprite area. The mineral mapping result produced by Clark et al. in 1995 is used to evaluate the effect of this method, results show, that mineral mapping results with this method can obtain a high precision, the overall mineral identification accuracy is 78.96%.

  6. Application of the Sketch Match method in Sulina coastal study area within PEGASO project

    NASA Astrophysics Data System (ADS)

    Marin, Eugenia; Nichersu, Iuliana; Mierla, Marian; Trifanov, Cristian; Nichersu, Iulian

    2013-04-01

    The Sketch Match approach for Sulina pilot case was carried out in the frame of the project "People for Ecosystem Based Governance in Assessing Sustainable Development of Ocean and Coast" - PEGASO, funded by the Seventh Framework Programme. The PEGASO project has been designed to identify common threats and solutions in relation to the long-term sustainable development and environmental protection of coastal zones bordering the Mediterranean and Black Seas in ways relevant to the implementation of the Integrated Coastal Zone Management Protocol (ICZM) for the Mediterranean. PEGASO will use the model of the existing ICZM Protocol for the Mediterranean and adjust it to the needs of the Black Sea through innovative actions, one of them being Refine and develop efficient and easy to use tools for making sustainability assessments in the coastal zone tested through a number of relevant pilot sites. Thus, for the Romania case study, the Sketch Match approach was selected, being an interactive public participation planning method, developed by the Dutch Government, and applied for Sulina area in order to stimulate support and involvement from stakeholders regarding Integrated Coastal Zone Management Protocol by consulting and involving these people in the planning process and making use of a coherent package of interactive methods. Participants were representatives of a wide range of stakeholders, varying from local fisherman to representatives of the Local and County council and Danube Delta Biosphere Reserve Authority. They participated in a two-day design session, focused on problems and potentials of the area, with the aim to work out possible solutions for an integrated coastal spatial planning, focusing on the parallel enhance of the various local functions in the spatial design (coastal area protection next to industry, tourism, nature, recreation, and other activities).

  7. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications

    PubMed Central

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441

  8. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications.

    PubMed

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441

  9. Face recognition using ensemble string matching.

    PubMed

    Chen, Weiping; Gao, Yongsheng

    2013-12-01

    In this paper, we present a syntactic string matching approach to solve the frontal face recognition problem. String matching is a powerful partial matching technique, but is not suitable for frontal face recognition due to its requirement of globally sequential representation and the complex nature of human faces, containing discontinuous and non-sequential features. Here, we build a compact syntactic Stringface representation, which is an ensemble of strings. A novel ensemble string matching approach that can perform non-sequential string matching between two Stringfaces is proposed. It is invariant to the sequential order of strings and the direction of each string. The embedded partial matching mechanism enables our method to automatically use every piece of non-occluded region, regardless of shape, in the recognition process. The encouraging results demonstrate the feasibility and effectiveness of using syntactic methods for face recognition from a single exemplar image per person, breaking the barrier that prevents string matching techniques from being used for addressing complex image recognition problems. The proposed method not only achieved significantly better performance in recognizing partially occluded faces, but also showed its ability to perform direct matching between sketch faces and photo faces.

  10. Vibration Sensitivity Reduction of Micromachined Tuning Fork Gyroscopes through Stiffness Match Method with Negative Electrostatic Spring Effect.

    PubMed

    Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Zhang, Yaping

    2016-01-01

    In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor. PMID:27455272

  11. Vibration Sensitivity Reduction of Micromachined Tuning Fork Gyroscopes through Stiffness Match Method with Negative Electrostatic Spring Effect

    PubMed Central

    Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Zhang, Yaping

    2016-01-01

    In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor. PMID:27455272

  12. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  13. Efficient Implementation of the Invariant Imbedding T-Matrix Method and the Separation of Variables Method Applied to Large Nonspherical Inhomogeneous Particles

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2012-01-01

    Three terms, ''Waterman's T-matrix method'', ''extended boundary condition method (EBCM)'', and ''null field method'', have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIMþSOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIMþSOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIMþSOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIMþSOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging.

  14. [A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].

    PubMed

    Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng

    2006-09-01

    The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.

  15. Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method.

    PubMed

    Calin, Mihaela Antonina; Coman, Toma; Parasca, Sorin Viorel; Bercaru, Nicolae; Savastru, Roxana; Manea, Dragos

    2015-04-01

    Hyperspectral imaging is a technology that is beginning to occupy an important place in medical research with good prospects in future clinical applications. We evaluated the role of hyperspectral imaging in association with a mixture-tuned matched filtering method in the characterization of open wounds. The methodology and the processing steps of the hyperspectral image that have been performed in order to obtain the most useful information about the wound are described in detail. Correlations between the hyperspectral image and clinical examination are described, leading to a pattern that permits relative evaluation of the square area of the wound and its different components in comparison with the surrounding normal skin. Our results showed that the described method can identify different types of tissues that are present in the wounded area and can objectively measure their respective abundance, which proves its value in wound characterization. In conclusion, the method that was described in this preliminary case presentation shows promising results, but needs further evaluation in order to become a reliable and useful tool. PMID:25867619

  16. "Assessment of identity during adolescence using daily diary methods: Measurement invariance across time and sex": Correction to Becht et al. (2015).

    PubMed

    2016-06-01

    Reports an error in "Assessment of Identity During Adolescence Using Daily Diary Methods: Measurement Invariance Across Time and Sex" by Andrik I. Becht, Susan J. T. Branje, Wilma A. M. Vollebergh, Dominique F. Maciejewski, Pol A. C. van Lier, Hans M. Koot, Jaap J. A. Denissen and Wim H. J. Meeus (Psychological Assessment, Advanced Online Publication, Aug 10, 2015, np). In the article the participants should have been reported as N = 494. No differences were found in the results upon reanalyzing the data with the correct number of participants. Additionally, the last sentence of the first full paragraph in the Invariance Across Boys and Girls subsection of the Method section should read "In the fourth model, strict invariance was examined, in which the residual variances were constrained to be equal for boys and girls." (The following abstract of the original article appeared in record 2015-36246-001.) The aim of this study was to assess measurement invariance of adolescents' daily reports on identity across time and sex. Adolescents (N = 497; mean age = 13.32 years at Time 1, 56.7% boys) from the general population reported on their identity commitments, exploration in depth and reconsideration on a daily basis for 3 weeks within 1 year across 5 years. We used the single-item version of the Utrecht Management of Identity Commitments Scale (UMICS; Klimstra et al., 2010), a broad measure of identity-formation processes covering both interpersonal and educational identity domains. This study tested configural, metric, scalar, and strict measurement invariance across days within weeks, across sex, across weeks within years, and across years. Results indicated that daily diary reports show strict measurement invariance across days, across weeks within years, across years, and across boys and girls. These results support the use of daily diary methods to assess identity at various time intervals ranging from days to years and across sex. Results are discussed with

  17. A Numerical Combination of Extended Boundary Condition Method and Invariant Imbedding Method Applied to Light Scattering by Large Spheroids and Cylinders

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2013-01-01

    The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.

  18. On the question of adiabatic invariants

    NASA Astrophysics Data System (ADS)

    Mitropol'Skii, Iu. A.

    Some aspects of the construction of adiabadic invariants for dynamic systems with a single degree of freedom are discussed. Adiabatic invariants are derived using classical principles and the method proposed by Djukic (1981). The discussion covers an adiabatic invariant for a dynamic system with slowly varying parameters; derivation of an expression for an adiabatic invariant by the Djukic method for a second-order equation with a variable mass; and derivation of an expression for the adiabatic invariant for a nearly integrable differential equation.

  19. Invariant manifolds and global bifurcations.

    PubMed

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems. PMID:26428557

  20. Invariant manifolds and global bifurcations.

    PubMed

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.

  1. Invariant manifolds and global bifurcations

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M.; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.

  2. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    NASA Astrophysics Data System (ADS)

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.

    2016-05-01

    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  3. Applying Seismic Methods to National Security Problems: Matched Field Processing With Geological Heterogeneity

    SciTech Connect

    Myers, S; Larsen, S; Wagoner, J; Henderer, B; McCallen, D; Trebes, J; Harben, P; Harris, D

    2003-10-29

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D) finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site

  4. An Analysis of Initial Acquisition and Maintenance of Sight Words Following Picture Matching and Copy, Cover, and Compare Teaching Methods

    ERIC Educational Resources Information Center

    Conley, Colleen M.; Derby, K. Mark; Roberts-Gwinn, Michelle; Weber, Kimberly P.; McLaughlin, T.F.

    2004-01-01

    This study compared the copy, cover, and compare method to a picture-word matching method for teaching sight word recognition. Participants were 5 kindergarten students with less than preprimer sight word vocabularies who were enrolled in a public school in the Pacific Northwest. A multielement design was used to evaluate the effects of the two…

  5. A Zero-One Programming Approach to Gulliksen's Matched Random Subtests Method. Research Report 86-4.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Boekkooi-Timminga, Ellen

    In order to estimate the classical coefficient of test reliability, parallel measurements are needed. H. Gulliksen's matched random subtests method, which is a graphical method for splitting a test into parallel test halves, has practical relevance because it maximizes the alpha coefficient as a lower bound of the classical test reliability…

  6. A new method for comparing and matching snow profiles, application for profiles measured by penetrometers

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Pilloix, Thibault

    2016-05-01

    Hardness has long been recognized as a good predictor of snow mechanical properties and therefore as an indicator of snowpack stability at the measured point. Portable digital penetrometers enable the amassing of a large number of snow stratigraphic hardness profiles. Numerous probings can be performed to assess the snowpack spatial variability and to compensate for measurement errors. On a decameter scale, continuous internal layers are typically present in the snowpack. The variability in stratigraphic features observed in the measurement set mainly originates from the measured variations in internal layer thickness due to either a real heterogeneity in the snowpack or to errors in depth measurement. For the purpose of real time analysis of snowpack stability, a great amount of data collected by digital penetrometers must be quickly synthesized into a characterization representative of the test site. This paper presents a method with which to match and combine several hardness profiles by automatically adjusting their layer thicknesses. The objectives are to synthesize the information collected by several profiles into one representative profile of the measurement set, disentangle information about hardness and depth variabilities, and quantitatively compare hardness profiles measured by different penetrometers. The method was tested by using co-located hardness profiles measured with three different penetrometers --- the snow micropenetrometer (SMP), the Avatech SP1 and the ramsonde --- during the winter 2014-2015 at two sites in the French Alps. When applied to the SMP profiles of both sites, the method reveals a low spatial variability of hardness properties, which is usually masked by depth variations. The developed algorithm is further used to evaluate the new portable penetrometer SP1. The hardness measured with this instrument is shown to be in good agreement with the SMP measurements, but errors in the recovered depth are notable, with a standard

  7. Confirmatory factor analysis and factorial invariance analysis of the adolescent self-report Strengths and Difficulties Questionnaire: how important are method effects and minor factors?

    PubMed

    van de Looij-Jansen, Petra M; Goedhart, Arnold W; de Wilde, Erik J; Treffers, Philip D A

    2011-06-01

    OBJECTIVES. This study examined the factor structure of the self-report Strengths and Difficulties Questionnaire, paying special attention to the number of factors and to negative effects of reverse-worded items and minor factors within the subscales on model fit. Furthermore, factorial invariance across gender, age, level of education, and ethnicity was investigated. DESIGN. Data were obtained from the Youth Health Monitor Rotterdam, a community-based health surveillance system. METHODS. The sample consisted of 11,881 pupils of 11-16 years old. Next to the original five-factor model, a factor model with the number of factors based on parallel analysis and scree test was investigated. Confirmatory factor analysis for ordered-categorical measures was applied to examine the goodness-of-fit and factorial invariance of the factor models. RESULTS. After allowing reverse-worded items to cross-load on the prosocial behaviour factor and adding error correlations, a good fit to the data was found for the original five-factor model (emotional symptoms, conduct problems, hyperactivity-inattention, peer problems, prosocial behaviour) and a model with four factors (emotional symptoms and peer problems, conduct problems, hyperactivity-inattention, prosocial behaviour). Factorial invariance across gender, age, level of education, and ethnicity was found for the final five- and four-factor model, except for the prosocial factor of the four-factor model that showed partial invariance across gender. Conclusions. While support was found for both models, the final five-factor model is theoretically more plausible and gained additional support as the original scales emotional problems and peer problems showed different relations with gender, educational level, and ethnicity. PMID:21545447

  8. Analysis of the modified point-matching method in the electrostatic problem for axisymmetric particles

    NASA Astrophysics Data System (ADS)

    Farafonov, V. G.; Ustimov, V. I.; Tulegenov, A. R.

    2016-08-01

    An integral modification of the generalized point-matching method (GPMMi) in the electrostatic problem for axisymmetric particles is developed. Scalar potentials that determine electric fields are represented as expansions in terms of eigenfunctions of the Laplace operator in the spherical coordinate system. Unknown expansion coefficients are determined from infinite systems of linear algebraic equations (ISLAEs), which are obtained from the requirement of a minimum of the integrated residual in the boundary conditions on the particle surface. Matrix elements of ISLAEs and expansion coefficients of the "scattered" field at large index values are analyzed analytically and numerically. It is shown analytically that the applicability condition of the GPMMi coincides with that for the extended boundary conditions method (EBCM). As model particles, oblate pseudospheroids r( θ ) = a√ {1 - {^2}{{cos}^2}θ } ,{^2} = 1 - {b^2} {a_2} ≥ 0 with semiaxes a = 1 and b ≤ 1 are considered, which are obtained as a result of the inversion of prolate spheroids with the same semiaxes with respect to the coordinate origin. For pseudospheroids, the range of applicability of the considered methods is determined by the condition {a b} < √ 2 + 1. Numerical calculations show that, as a rule, the EBCM yields considerably more accurate results in this range, with the time consumption being substantially shorter. Beyond the EBCM range of applicability, the GPMMi approach can yield reasonable results for the calculation of the polarizability, which should be considered as approximate and which should be verified with other approaches. For oblate nonconvex pseudospheroids (i.e., at {a b} ≥slant √ 2 ), it is shown that the spheroidal model works well if pseudospheroids are replaced with ordinary "effective" oblate spheroids. Semiaxes a ef and b ef of the effective spheroids are determined from the requirement of the particle volumes, as well as from the equality of the maximal

  9. Matching Instructional Methods with Students Learning Preferences: A Research-Based Initiative for Improving Students' Success in Mathematics

    ERIC Educational Resources Information Center

    Nolting, Kimberly; Nolting, Paul

    2008-01-01

    Research supports the effectiveness of matching instructional methods with student learning preferences (Dunn et al., 1995; Pascarella and Terenzini, 2005). Several challenges exist, however, for mathematics departments to design classroom learning experiences that allow students to learn mathematics and learn how to study math through their…

  10. Toward an Empirical Method for Identifying Matched Stimulation for Automatically Reinforced Behavior: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Rapp, John T.

    2006-01-01

    The effects of noncontingent matched stimulation (NMS) and response blocking on a boy's stereotypic behavior were evaluated using a multiple schedule that contained three 15-min components (preintervention, intervention, and postintervention). Results showed that stereotypy was always higher after response blocking than before response blocking…

  11. Circular block matching based video stabilization

    NASA Astrophysics Data System (ADS)

    Xu, Lidong; Fu, Fangwen; Lin, Xinggang

    2005-07-01

    Video sequences captured by handheld digital camera need to be stabilized to eliminate the tiresome effects caused by camera"s undesirable shake or jiggle. The key issue of video stabilization is to estimate the global motion parameters between two successive frames. In this paper, a novel circular block matching algorithm is proposed to estimate the global motion parameters. This algorithm can deal with not only translational motion but even large rotational motion. For an appointed circular block in current frame, a four-dimensional rotation invariant feature vector is firstly extracted from it and used to judge if it is an effective block. Then the rotation invariant features based circular block matching process is performed to find the best matching blocks in reference frame for those effective blocks. With the matching results of any two effective blocks, a two-dimensional motion model is constructed to produce one group of frame motion parameters. A statistical method is proposed to calculate the estimated global motion parameters with all groups of global motion parameters. Finally, using the estimated motion parameters as the initial values, an iteration algorithm is introduced to obtain the refined global motion parameters. The experimental results show that the proposed algorithm is excellent in stabilizing frames with even burst global translational and rotational motions.

  12. Image mosaicking based on feature points using color-invariant values

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Chang; Kwon, Oh-Seol; Ko, Kyung-Woo; Lee, Ho-Young; Ha, Yeong-Ho

    2008-02-01

    In the field of computer vision, image mosaicking is achieved using image features, such as textures, colors, and shapes between corresponding images, or local descriptors representing neighborhoods of feature points extracted from corresponding images. However, image mosaicking based on feature points has attracted more recent attention due to the simplicity of the geometric transformation, regardless of distortion and differences in intensity generated by camera motion in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a real digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.

  13. On the falsifiability of matching theory.

    PubMed

    McDowell, J J

    1986-01-01

    Herrnstein's matching theory requires the parameter, k, which appears in the single-alternative form of the matching equation, to remain invariant with respect to changes in reinforcement parameters like magnitude or immediacy. Recent experiments have disconfirmed matching theory by showing that the invariant-k requirement does not hold. However, the theory can be asserted in a purely algebraic form that does not require an invariant k and that is not disconfirmed by the recent findings. In addition, both the original and the purely algebraic versions of matching theory can be asserted in forms that allow for commonly observed deviations from matching (bias, undermatching, and overmatching). The recent finding of a variable k does not disconfirm these versions of matching theory either. As a consequence, matching remains a viable theory of behavior, the strength of which lies in its general conceptualization of all behavior as choice, and in its unified mathematical treatment of single- and multialternative environments.

  14. An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John

    2015-04-01

    Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.

  15. A method to assess the influence of individual player performance distribution on match outcome in team sports.

    PubMed

    Robertson, Sam; Gupta, Ritu; McIntosh, Sam

    2016-10-01

    This study developed a method to determine whether the distribution of individual player performances can be modelled to explain match outcome in team sports, using Australian Rules football as an example. Player-recorded values (converted to a percentage of team total) in 11 commonly reported performance indicators were obtained for all regular season matches played during the 2014 Australian Football League season, with team totals also recorded. Multiple features relating to heuristically determined percentiles for each performance indicator were then extracted for each team and match, along with the outcome (win/loss). A generalised estimating equation model comprising eight key features was developed, explaining match outcome at a median accuracy of 63.9% under 10-fold cross-validation. Lower 75th, 90th and 95th percentile values for team goals and higher 25th and 50th percentile values for disposals were linked with winning. Lower 95th and higher 25th percentile values for Inside 50s and Marks, respectively, were also important contributors. These results provide evidence supporting team strategies which aim to obtain an even spread of goal scorers in Australian Rules football. The method developed in this investigation could be used to quantify the importance of individual contributions to overall team performance in team sports.

  16. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  17. ME-PS matching in the simulation of multi-jet production in hadron collisions using a subtraction method

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Watanabe, Norihisa; Kurihara, Yoshimasa

    2015-05-01

    The subtraction method for the matching between the matrix element (ME) and parton shower (PS), which has been developed for combining 0-jet and 1-jet production processes in association with electroweak-boson production in hadron collisions, is extended to multi-jet production. In order to include multi-jet MEs, we have to address the soft-gluon divergence together with the collinear divergence. We introduce an approximation that simultaneously reproduces both divergences in a form suitable for application to our subtraction method. The alteration in the subtraction can be compensated by applying an appropriate correction to the corresponding non-radiative events. We demonstrate that W + 0, 1, and 2 jet production processes can be consistently combined using the developed matching method.

  18. A method for skew-free distribution of digital signals using matched variable delay lines

    NASA Astrophysics Data System (ADS)

    Knight, Thomas; Wu, Henry

    1992-03-01

    The ability to distribute signals to all parts of a circuit with precisely controlled and known delays is essential in large, high-speed digital systems. We present a technique by which a signal driver can adjust the arrival time of the signal at the end of the wire using a pair of matched variable delay lines. We show how this idea can be implemented requiring no extra wiring, and how it can be extended to distribute signals skew-free to receivers along the signal run as well as the receiving end. We demonstrate how this scheme can be implemented as part of the pad and scan logic of a VLSI chip.

  19. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The

  20. Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Wu, Na; Ma, Chunqing; Wang, Huaqing

    2016-02-01

    A novel matching pursuit method based on a new step-impulse dictionary to measure the size of a bearing's spall-like fault is presented in this study. Based on the seemingly double-impact theory and the rolling bearing fault mechanism, a theoretical model for the bearing fault with different spall-like fault sizes is developed and analyzed, and the seemingly double-impact characteristic of the bearing faults is explained. The first action that causes a bearing fault is due to the entry of the roller element into the spall-like fault which can be described as a step-like response. The second action is the exit of the roller element from the spall-like fault, which can be described as an impulse-like response. Based on the quantitative relationship between the time interval of the seemingly double-impact actions and the fault size, a novel matching pursuit method is proposed based on a new step-impulse dictionary. In addition, the quantitative matching pursuit algorithm is proposed for bearing fault diagnosis based on the new dictionary model. Finally, an atomic selection mechanism is proposed to improve the measurement accuracy of bearing fault size. The simulation results of this study indicate that the new matching pursuit method based on the new step-impulse dictionary can be reliably used to measure the sizes of bearing spall-like faults. The applications of this method to the fault signals of bearing outer-races measured at different speeds have shown that the proposed method can effectively measure a bearing's spall-like fault size.

  1. Entanglement, Invariants, and Phylogenetics

    NASA Astrophysics Data System (ADS)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  2. Two dimensional template matching method for buried object discrimination in GPR data

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet

    2009-05-01

    In this study discrimination of two different metallic object classes were studied, utilizing Ground Penetrating Radar (GPR). Feature sets of both classes have almost the same information for both Metal Detector (MD) and GPR data. There were no evident features those are easily discriminate classes. Background removal has been applied to original B-Scan data and then a normalization process was performed. Image thresholding was applied to segment B-Scan GPR images. So, main hyperbolic shape of buried object reflection was extracted and then a morphological process was performed optionally. Templates of each class representatives have been obtained and they were searched whether they match with true class or not. Two data sets were examined experimentally. Actually they were obtained in different time and burial for the same objects. Considerably high discrimination performance was obtained which was not possible by using individual Metal Detector data.

  3. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    SciTech Connect

    Boatner, L.A.

    2008-06-24

    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  4. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    SciTech Connect

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V. E-mail: candler@aem.umn.edu; Truhlar, Donald G. E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with a review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.

  5. The analysis of applicability of the refractive-index-matching method for flow investigation by LDA method in models of the fire chambers of complex geometry

    NASA Astrophysics Data System (ADS)

    Rakhmanov, Vitaly V.; Kulikov, Dmitry V.

    2014-08-01

    Possibility of use of a refractive-index-matching method for flow investigation by LDA method in models of the fire chambers of complex geometry is shown. The technique of flows investigation by LDA method is developed. The given technique can be successfully applied in leading branches of a thermal and hydropower engineering, in case of need of flows diagnostics in models of devices with the complex geometry.

  6. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.

    PubMed

    Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J

    2004-05-01

    An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques. PMID:15046991

  7. αAMG based on Weighted Matching for Systems of Elliptic PDEs Arising From Displacement and Mixed Methods

    SciTech Connect

    D'Ambra, P.; Vassilevski, P. S.

    2014-05-30

    Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. In this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.

  8. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    SciTech Connect

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  9. Similarity, invariance, and musical variation.

    PubMed

    McAdams, S; Matzkin, D

    2001-06-01

    Perceptual similarity underlies a number of important psychological properties of musical materials, including perceptual invariance under transformation, categorization, recognition, and the sense of familiarity. Mental processes involved in the perception of musical similarity may be an integral part of the functional logic of music composition and thus underly important aspects of musical experience. How much and in what ways can musical materials be varied and still be considered as perceptually related or as belonging to the same category? The notions of musical material, musical variation, perceptual similarity and invariance, and form-bearing dimensions are considered in this light. Recent work on similarity perception has demonstrated that the transformation space for a given musical material is limited by several factors ranging from degree of match of the values of auditory attributes of the events composing the sequences to their relations of various levels of abstraction and to the degree that the transformation respects the grammar of the musical system within which the material was composed. These notions and results are considered in the light of future directions of research, particularly concerning the role of similarity and invariance in the understanding of musical form during listening.

  10. Similarity, invariance, and musical variation.

    PubMed

    McAdams, S; Matzkin, D

    2001-06-01

    Perceptual similarity underlies a number of important psychological properties of musical materials, including perceptual invariance under transformation, categorization, recognition, and the sense of familiarity. Mental processes involved in the perception of musical similarity may be an integral part of the functional logic of music composition and thus underly important aspects of musical experience. How much and in what ways can musical materials be varied and still be considered as perceptually related or as belonging to the same category? The notions of musical material, musical variation, perceptual similarity and invariance, and form-bearing dimensions are considered in this light. Recent work on similarity perception has demonstrated that the transformation space for a given musical material is limited by several factors ranging from degree of match of the values of auditory attributes of the events composing the sequences to their relations of various levels of abstraction and to the degree that the transformation respects the grammar of the musical system within which the material was composed. These notions and results are considered in the light of future directions of research, particularly concerning the role of similarity and invariance in the understanding of musical form during listening. PMID:11458867

  11. Scale invariant texture descriptors for classifying celiac disease

    PubMed Central

    Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg

    2013-01-01

    Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171

  12. Detecting and classifying method based on similarity matching of Android malware behavior with profile.

    PubMed

    Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang

    2016-01-01

    Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples. PMID:27006882

  13. Detecting and classifying method based on similarity matching of Android malware behavior with profile.

    PubMed

    Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang

    2016-01-01

    Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.

  14. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme.

    PubMed

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin

    2015-07-08

    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

  15. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme

    PubMed Central

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin

    2015-01-01

    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195

  16. Protein complex prediction via improved verification methods using constrained domain-domain matching.

    PubMed

    Zhao, Yang; Hayashida, Morihiro; Nacher, Jose C; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2012-01-01

    Identification of protein complexes within protein-protein interaction networks is one of the important objectives in functional genomics. Ozawa et al. proposed a verification method of protein complexes by introducing a structural constraint. In this paper, we propose an improved integer programming-based method based on the idea that a candidate complex should not be divided into many small complexes, and combination methods with maximal components and extreme sets. The results of computational experiments suggest that our methods outperform the method by Ozawa et al. We prove that the verification problems are NP-hard, which justifies the use of integer programming. PMID:22961452

  17. A finite analytic method for solving the 2-D time-dependent advection diffusion equation with time-invariant coefficients

    NASA Astrophysics Data System (ADS)

    Lowry, Thomas; Li, Shu-Guang

    2005-02-01

    Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.

  18. Lorentz invariance with an invariant energy scale.

    PubMed

    Magueijo, João; Smolin, Lee

    2002-05-13

    We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.

  19. Genotype-phenotype matching analysis of 38 Lactococcus lactis strains using random forest methods

    PubMed Central

    2013-01-01

    Background Lactococcus lactis is used in dairy food fermentation and for the efficient production of industrially relevant enzymes. The genome content and different phenotypes have been determined for multiple L. lactis strains in order to understand intra-species genotype and phenotype diversity and annotate gene functions. In this study, we identified relations between gene presence and a collection of 207 phenotypes across 38 L. lactis strains of dairy and plant origin. Gene occurrence and phenotype data were used in an iterative gene selection procedure, based on the Random Forest algorithm, to identify genotype-phenotype relations. Results A total of 1388 gene-phenotype relations were found, of which some confirmed known gene-phenotype relations, such as the importance of arabinose utilization genes only for strains of plant origin. We also identified a gene cluster related to growth on melibiose, a plant disaccharide; this cluster is present only in melibiose-positive strains and can be used as a genetic marker in trait improvement. Additionally, several novel gene-phenotype relations were uncovered, for instance, genes related to arsenite resistance or arginine metabolism. Conclusions Our results indicate that genotype-phenotype matching by integrating large data sets provides the possibility to identify gene-phenotype relations, possibly improve gene function annotation and identified relations can be used for screening bacterial culture collections for desired phenotypes. In addition to all gene-phenotype relations, we also provide coherent phenotype data for 38 Lactococcus strains assessed in 207 different phenotyping experiments, which to our knowledge is the largest to date for the Lactococcus lactis species. PMID:23530958

  20. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  1. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method.

    PubMed

    Zhou, Y; Ojeda-May, P; Nagaraju, M; Pu, J

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path-force matching (RP-FM) has been developed. In RP-FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP-FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  2. Testing for measurement invariance and latent mean differences across methods: interesting incremental information from multitrait-multimethod studies

    PubMed Central

    Geiser, Christian; Burns, G. Leonard; Servera, Mateu

    2014-01-01

    Models of confirmatory factor analysis (CFA) are frequently applied to examine the convergent validity of scores obtained from multiple raters or methods in so-called multitrait-multimethod (MTMM) investigations. We show that interesting incremental information about method effects can be gained from including mean structures and tests of MI across methods in MTMM models. We present a modeling framework for testing MI in the first step of a CFA-MTMM analysis. We also discuss the relevance of MI in the context of four more complex CFA-MTMM models with method factors. We focus on three recently developed multiple-indicator CFA-MTMM models for structurally different methods [the correlated traits-correlated (methods – 1), latent difference, and latent means models; Geiser et al., 2014a; Pohl and Steyer, 2010; Pohl et al., 2008] and one model for interchangeable methods (Eid et al., 2008). We demonstrate that some of these models require or imply MI by definition for a proper interpretation of trait or method factors, whereas others do not, and explain why MI may or may not be required in each model. We show that in the model for interchangeable methods, testing for MI is critical for determining whether methods can truly be seen as interchangeable. We illustrate the theoretical issues in an empirical application to an MTMM study of attention deficit and hyperactivity disorder (ADHD) with mother, father, and teacher ratings as methods. PMID:25400603

  3. Applying Research Methods to a Gerontological Population: Matching Data Collection to Characteristics of Older Persons

    ERIC Educational Resources Information Center

    Weil, Joyce

    2015-01-01

    As Baby Boomers reach 65 years of age and methods of studying older populations are becoming increasingly varied (e.g., including mixed methods designs, on-line surveys, and video-based environments), there is renewed interest in evaluating methodologies used to collect data with older persons. The goal of this article is to examine…

  4. Robust matching algorithm for image mosaic

    NASA Astrophysics Data System (ADS)

    Zeng, Luan; Tan, Jiu-bin

    2010-08-01

    In order to improve the matching accuracy and the level of automation for image mosaic, a matching algorithm based on SIFT (Scale Invariant Feature Transform) features is proposed as detailed below. Firstly, according to the result of cursory comparison with the given basal matching threshold, the collection corresponding SIFT features which contains mismatch is obtained. Secondly, after calculating all the ratio of Euclidean distance from the closest neighbor to the distance of the second closest of corresponding features, we select the image coordinates of corresponding SIFT features with the first eight smallest ratios to solve the initial parameters of pin-hole camera model, and then calculate maximum error σ between transformation coordinates and original image coordinates of the eight corresponding features. Thirdly, calculating the scale of the largest original image coordinates of the eight corresponding features to the entire image size, the scale is regarded as control parameter k of matching error threshold. Finally, computing the difference of the transformation coordinates and the original image coordinates of all the features in the collection of features, deleting the corresponding features with difference larger than 3kσ. We can then obtain the exact collection of matching features to solve the parameters for pin-hole camera model. Experimental results indicate that the proposed method is stable and reliable in case of the image having some variation of view point, illumination, rotation and scale. This new method has been used to achieve an excellent matching accuracy on the experimental images. Moreover, the proposed method can be used to select the matching threshold of different images automatically without any manual intervention.

  5. Development of a three-dimensional multistage inverse design method for aerodynamic matching of axial compressor blading

    NASA Astrophysics Data System (ADS)

    van Rooij, Michael P. C.

    Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall

  6. New invariants of weighted graphs for calculating the critical properties of freons

    NASA Astrophysics Data System (ADS)

    Kruglyak, Yu. A.; Peredunova, I. V.

    2015-12-01

    A new approach to structure-property problems using new invariants of fully weighted graphs to provide a quantitative description of the critical properties of freons is proposed. A general principle for constructing topological invariants of fully weighted graphs for structure-property correlations is formulated. Two new invariants are proposed and used to calculate critical properties of freons of the methane, ethane, and propane series. It is shown that unlike all other known incremental methods, the proposed approach does not require the use of experimental data or calibrations to calculate critical properties. It ensures a statistically reliable linear dependence of all critical properties of freons on the value of the matching index for our corresponding molecular graph. Over 2.5 thousand previously unknown values of the critical properties of lower freons are calculated.

  7. Global self-esteem and method effects: competing factor structures, longitudinal invariance and response styles in adolescents

    PubMed Central

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2013-01-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for RSES; and to quantify and predict the method effects. This sample involves two waves (N=2513 ninth-grade and 2370 tenth-grade students) from five waves of a school-based longitudinal study. RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style, and found that being a girl and having higher number of depressive symptoms were associated with both low self-esteem and negative response style measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents. PMID:24061931

  8. Global self-esteem and method effects: competing factor structures, longitudinal invariance, and response styles in adolescents.

    PubMed

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2014-06-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for the RSES and to quantify and predict the method effects. This sample involves two waves (N =2,513 9th-grade and 2,370 10th-grade students) from five waves of a school-based longitudinal study. The RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained a large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style and found that being a girl and having a higher number of depressive symptoms were associated with both low self-esteem and negative response style, as measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents.

  9. Point matching: A new electronic method for homogenizing the phase characteristics of giant magnetoimpedance sensors

    SciTech Connect

    Silva, E. Costa Gusmão, L. A. P.; Barbosa, C. R. Hall; Leipner, Y.; Fortaleza, L. G. S.; Monteiro, E. Costa

    2014-08-15

    Recently, our research group at PUC-Rio discovered that magnetic transducers based on the impedance phase characteristics of GMI sensors have the potential to multiply by one hundred the sensitivity values when compared to magnitude-based GMI transducers. Those GMI sensors can be employed in the measurement of ultra-weak magnetic fields, which intensities are even lower than the environmental magnetic noise. A traditional solution for cancelling the electromagnetic noise and interference makes use of gradiometric configurations, but the performance is strongly tied to the homogeneity of the sensing elements. This paper presents a new method that uses electronic circuits to modify the equivalent impedance of the GMI samples, aiming at homogenizing their phase characteristics and, consequently, improving the performance of gradiometric configurations based on GMI samples. It is also shown a performance comparison between this new method and another homogenization method previously developed.

  10. Indoor Map Acquisition System Using Global Scan Matching Method and Laser Range Scan Data

    NASA Astrophysics Data System (ADS)

    Hisanaga, Satoshi; Kase, Takaaki

    Simultaneous localization and mapping (SLAM) is the latest technique for constructing indoor maps. In indoor environment, a localization method using the features of the walls as landmarks has been studied in the past. The past study has a drawback. It cannot localize in spaces surrounded by featureless walls or walls on which similar features are repeated. To overcome this drawback, we developed an accuracy localization method that ignores the features of the walls. We noted the fact that the walls in a building are aligned along only two orthogonal directions. By considering a specific wall to be a reference wall, the location of a robot was expressed by using the distance between the robot and the reference wall. We developed the robot in order to evaluate the mapping accuracy of our method and carried out an experiment to map a corridor (40m long) that contained featureless parts. The map obtained had a margin of error of less than 2%.

  11. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    PubMed Central

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356

  12. Retrieval of Sea-Bed Parameters by the Method of Matching Acoustic Fields on the Basis of Vertical Angular Spectra

    NASA Astrophysics Data System (ADS)

    Kerzhakov, B. V.; Kulinich, V. V.

    2016-08-01

    We use the field matching method to solve the inverse problem of estimating the geoacoustic parameters of a stratified sea bed using the objective function based on the norm of difference between the experimental and simulated vertical angular spectra of the acoustic field and combination of the rapid-annealing method with direct search methods for localization of the global minimum of the objective function. To reduce the influence of the ravine effects of the objective function, we use regularization on the basis of mutual correlations of the experimental and simulated vertical angular spectra of the acoustic field. The numerical experiment has been performed to retrieve the parameters of the model waveguide, e.g., the thickness of the water layer and the layer of sediments, the velocity and attenuation coefficients of longitudinal waves, and the density of the sediment layer and the subjacent half-space in the presence of noise interference of different intensity levels.

  13. Matching Learning Style Preferences with Suitable Delivery Methods on Textile Design Programmes

    ERIC Educational Resources Information Center

    Sayer, Kate; Studd, Rachel

    2006-01-01

    Textile design is a subject that encompasses both design and technology; aesthetically pleasing patterns and forms must be set within technical parameters to create successful fabrics. When considering education methods in design programmes, identifying the most relevant learning approach is key to creating future successes. Yet are the most…

  14. A Method of Designing Practical Examinations to Match What Is Taught in Laboratory Activities.

    ERIC Educational Resources Information Center

    Stensvold, Mark S.; Wilson, John T.

    1993-01-01

    Proposes methods by which laboratory practical exams may be structured to assess outcomes from laboratory instruction. Presents eight general considerations for writing and using practical exams. Describes four example laboratory exams involving a box camera, circuit boxes, floating objects, and light. (MDH)

  15. Gradient Matching Methods for Computational Inference in Mechanistic Models for Systems Biology: A Review and Comparative Analysis.

    PubMed

    Macdonald, Benn; Husmeier, Dirk

    2015-01-01

    Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimized, so as to minimize some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data.

  16. Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections

    NASA Technical Reports Server (NTRS)

    Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.

    1945-01-01

    A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.

  17. Optoranger: A 3D pattern matching method for bin picking applications

    NASA Astrophysics Data System (ADS)

    Sansoni, Giovanna; Bellandi, Paolo; Leoni, Fabio; Docchio, Franco

    2014-03-01

    This paper presents a new method, based on 3D vision, for the recognition of free-form objects in the presence of clutters and occlusions, ideal for robotic bin picking tasks. The method can be considered as a compromise between complexity and effectiveness. A 3D point cloud representing the scene is generated by a triangulation-based scanning system, where a fast camera acquires a blade projected by a laser source. Image segmentation is based on 2D images, and on the estimation of the distances between point pairs, to search for empty areas. Object recognition is performed using commercial software libraries integrated with custom-developed segmentation algorithms, and a database of model clouds created by means of the same scanning system.

  18. A Template-Matching Method For Measuring Energy Depositions In TES Films

    NASA Astrophysics Data System (ADS)

    Shank, Benjamin; Yen, Jeffrey; Cabrera, Blas; Kreikebaum, John Mark; Moffatt, Robert; Redl, Peter; Young, Betty; Brink, Paul; Cherry, Matthew; Tomada, Astrid

    2014-03-01

    Transition edge sensors (TES) have a wide variety of applications in particle ∖astrophysics for detecting incoming particles with high energy resolution. In TES design, the need for sufficient heat capacity to avoid saturation limits the ultimate energy resolution. Building on the TES model developed for SuperCDMS by Yen et al. for tungsten TESs deposited next to aluminum collection fins, we outline a time-domain non-linear optimal filter method for reconstructing energy depositions in TES films. This allows us to operate devices into their saturation region while taking into account changing noise performance and loss of energy collection. We show how this method has improved our understanding of quasiparticle diffusion and energy collection in our superconducting sensors.

  19. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  20. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    NASA Astrophysics Data System (ADS)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-01

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  1. System and method for knowledge based matching of users in a network

    DOEpatents

    Verspoor, Cornelia Maria; Sims, Benjamin Hayden; Ambrosiano, John Joseph; Cleland, Timothy James

    2011-04-26

    A knowledge-based system and methods to matchmaking and social network extension are disclosed. The system is configured to allow users to specify knowledge profiles, which are collections of concepts that indicate a certain topic or area of interest selected from an. The system utilizes the knowledge model as the semantic space within which to compare similarities in user interests. The knowledge model is hierarchical so that indications of interest in specific concepts automatically imply interest in more general concept. Similarity measures between profiles may then be calculated based on suitable distance formulas within this space.

  2. Response functions for electrically coupled neuronal network: a method of local point matching and its applications.

    PubMed

    Yihe, Lu; Timofeeva, Yulia

    2016-06-01

    Neuronal networks connected by electrical synapses, also referred to as gap junctions, are present throughout the entire central nervous system. Many instances of gap-junctional coupling are formed between dendritic arbours of individual cells, and these dendro-dendritic gap junctions are known to play an important role in mediating various brain rhythms in both normal and pathological states. The dynamics of such neuronal networks modelled by passive or quasi-active (resonant) membranes can be described by the Green's function which provides the fundamental input-output relationships of the entire network. One of the methods for calculating this response function is the so-called 'sum-over-trips' framework which enables the construction of the Green's function for an arbitrary network as a convergent infinite series solution. Here we propose an alternative and computationally efficient approach for constructing the Green's functions on dendro-dendritic gap junction-coupled neuronal networks which avoids any infinite terms in the solutions. Instead, the Green's function is constructed from the solution of a system of linear algebraic equations. We apply this new method to a number of systems including a simple single cell model and two-cell neuronal networks. We also demonstrate that the application of this novel approach allows one to reduce a model with complex dendritic formations to an equivalent model with a much simpler morphological structure. PMID:26994016

  3. Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers.

    PubMed

    Shi, Shouyuan; Chen, Caihua; Prather, Dennis W

    2004-09-01

    We present a new algorithm for calculation of the band structure of photonic crystal slabs. This algorithm combines the plane-wave expansion method with perfectly matched layers for the termination of the computational region in the direction out of the plane. In addition, the effective-medium tensor is applied to improve convergence. A general complex eigenvalue problem is then obtained. Two criteria are presented to distinguish the guided modes from the PML modes. As such, this scheme can accurately determine the band structure both above and below the light cone. The convergence of the algorithm presented has been studied. The results obtained by using this algorithm have been compared with those obtained by the finite-difference time-domain method and found to agree very well.

  4. Multigroup Confirmatory Factor Analysis: Locating the Invariant Referent Sets

    ERIC Educational Resources Information Center

    French, Brian F.; Finch, W. Holmes

    2008-01-01

    Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…

  5. A comparison of methods for the construction of confidence interval for relative risk in stratified matched-pair designs.

    PubMed

    Tang, Nian-Sheng; Li, Hui-Qiong; Tang, Man-Lai

    2010-01-15

    A stratified matched-pair study is often designed for adjusting a confounding effect or effect of different trails/centers/ groups in modern medical studies. The relative risk is one of the most frequently used indices in comparing efficiency of two treatments in clinical trials. In this paper, we propose seven confidence interval estimators for the common relative risk and three simultaneous confidence interval estimators for the relative risks in stratified matched-pair designs. The performance of the proposed methods is evaluated with respect to their type I error rates, powers, coverage probabilities, and expected widths. Our empirical results show that the percentile bootstrap confidence interval and bootstrap-resampling-based Bonferroni simultaneous confidence interval behave satisfactorily for small to large sample sizes in the sense that (i) their empirical coverage probabilities can be well controlled around the pre-specified nominal confidence level with reasonably shorter confidence widths; and (ii) the empirical type I error rates of their associated test statistics are generally closer to the pre-specified nominal level with larger powers. They are hence recommended. Two real examples from clinical laboratory studies are used to illustrate the proposed methodologies.

  6. Ta2O5-memristor synaptic array with winner-take-all method for neuromorphic pattern matching

    NASA Astrophysics Data System (ADS)

    Truong, Son Ngoc; Van Pham, Khoa; Yang, Wonsun; Min, Kyeong-Sik; Abbas, Yawar; Kang, Chi Jung; Shin, Sangho; Pedrotti, Ken

    2016-08-01

    Pattern matching or pattern recognition is one of the elemental components that constitute the very complicated recalling and remembering process in human's brain. To realize this neuromorphic pattern matching, we fabricated and tested a 3 × 3 memristor synaptic array with the winner-take-all method in this research. In the measurement, first, the 3 × 3 Ta2O5 memristor array is programmed to store [LLL], [LHH], and [HLH], where L is a low-resistance state and H is a high-resistance state, at the 1st, 2nd, and 3rd columns, respectively. After the programming, three input patterns, [111], [100], and [010], are applied to the memristor synaptic array. From the measurement results, we confirm that all three input patterns can be recognized well by using a twin memristor crossbar with synaptic arrays. This measurement can be thought of as the first real verification of the twin memristor crossbar with memristive synaptic arrays for neuromorphic pattern recognition.

  7. A Semiparametric Missing-Data-Induced Intensity Method for Missing Covariate Data in Individually Matched Case–Control Studies

    PubMed Central

    Gebregziabher, Mulugeta; Langholz, Bryan

    2010-01-01

    Summary In individually matched case–control studies, when some covariates are incomplete, an analysis based on the complete data may result in a large loss of information both in the missing and completely observed variables. This usually results in a bias and loss of efficiency. In this article, we propose a new method for handling the problem of missing covariate data based on a missing-data-induced intensity approach when the missingness mechanism does not depend on case–control status and show that this leads to a generalization of the missing indicator method. We derive the asymptotic properties of the estimates from the proposed method and, using an extensive simulation study, assess the finite sample performance in terms of bias, efficiency, and 95% confidence coverage under several missing data scenarios. We also make comparisons with complete-case analysis (CCA) and some missing data methods that have been proposed previously. Our results indicate that, under the assumption of predictable missingness, the suggested method provides valid estimation of parameters, is more efficient than CCA, and is competitive with other, more complex methods of analysis. A case–control study of multiple myeloma risk and a polymorphism in the receptor Inter-Leukin-6 (IL-6-α) is used to illustrate our findings. PMID:19751251

  8. Cosmological disformal invariance

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Naruko, Atsushi; Sasaki, Misao

    2015-10-01

    The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.

  9. Reserves determination using type-curve matching and EMB methods in the Medicine Hat shallow gas field

    SciTech Connect

    West, S.L.; Cochrane, P.J.R.

    1995-05-01

    Tight, shallow gas reservoirs in the Western Canada basin present a number of unique challenges in determining reserves accurately. Traditional methods such as decline analysis and material balance are inaccurate owing to the formation`s low permeabilities and poor pressure data. The low permeabilities cause long transient periods that are not separated easily from production decline with conventional decline analysis, resulting in lower confidence in selecting the appropriate decline characteristics (exponential or harmonic), which effects recovery factors and remaining reserves significantly. Limited, poor-quality pressure data and commingled production from the three producing zones results in nonrepresentative pressure data and hence inaccurate material-balance analysis. This paper presents two new methods of reserve evaluation that address the problems described above for tight, shallow gas in the Medicine Hat field. The first method applies type-curve matching, which combines the analytical pressure solutions of the diffusivity equation (transient) with the empirical decline equation. The second method is an extended material balance (EMB), which incorporates the gas deliverability theory to allow selection of appropriate p/z derivatives without relying on pressure data. Excellent results were obtained when these two methods were applied to 10 properties that gather gas from 2,300 wells. The two independent techniques resulted in similar production forecasts and reserves, confirming their validity. They proved to be valuable, practical tools in overcoming the various challenges of tight, shallow gas and in improving the accuracy in gas-reserves determination in the Medicine Hat field.

  10. Palate Shape and Depth: A Shape-Matching and Machine Learning Method for Estimating Ancestry from Human Skeletal Remains.

    PubMed

    Maier, Christopher A; Zhang, Kang; Manhein, Mary H; Li, Xin

    2015-09-01

    In the past, assessing ancestry relied on the naked eye and observer experience; however, replicability has become an important aspect of such analysis through the application of metric techniques. This study examines palate shape and assesses ancestry quantitatively using a 3D digitizer and shape-matching and machine learning methods. Palate curves and depths were recorded, processed, and tested for 376 individuals. Palate shape was an accurate indicator of ancestry in 58% of cases. Cluster analysis revealed that the parabolic, hyperbolic, and elliptical shapes are discrete from one another. Preliminary results indicate that palate depth in Hispanic individuals is greatest. Palate shape appears to be a useful indicator of ancestry, particularly when assessed by a computer. However, these data suggest that palate shape is not useful for assessing ancestry in Hispanic individuals. Although ancestry may be determined from palate shape, the use of multiple features is recommended and more reliable.

  11. Digital holographic PTV for complicated flow in a water by two cameras and refractive index-matching method

    NASA Astrophysics Data System (ADS)

    Kuniyasu, Masataka; Aoyagi, Yusuke; Unno, Noriyuki; Satake, Shin-ichi; Yuki, Kazuhisa; Seki, Yohji

    2016-06-01

    A basic heat transfer promoter such as packed beds of spheres is one of the technologies of the promotion of heat transfer using the turbulent mixture. We carried out 3-D visualization of digital holographic PTV to understand the complicated flow in a sphere-packed pipe (SPP) using a refractive index-matching method with a water used as a working fluid, the spheres was made of MEXFLON, whose refractive index is the same as that of a water. To visualize the detail flow structure around the spheres in water, we performed three-dimensional simultaneous measurements of velocity field in a water flow in the SPP are performed by our proposed holography technique with two cameras. The velocity field by two cameras could obtain finer flow structures than that by one camera.

  12. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method. PMID:25608306

  13. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  14. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  15. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  16. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453

  17. Boosting Shift-Invariant Features

    NASA Astrophysics Data System (ADS)

    Hörnlein, Thomas; Jähne, Bernd

    This work presents a novel method for training shift-invariant features using a Boosting framework. Features performing local convolutions followed by subsampling are used to achieve shift-invariance. Other systems using this type of features, e.g. Convolutional Neural Networks, use complex feed-forward networks with multiple layers. In contrast, the proposed system adds features one at a time using smoothing spline base classifiers. Feature training optimizes base classifier costs. Boosting sample-reweighting ensures features to be both descriptive and independent. Our system has a lower number of design parameters as comparable systems, so adapting the system to new problems is simple. Also, the stage-wise training makes it very scalable. Experimental results show the competitiveness of our approach.

  18. The solar system's invariable plane

    NASA Astrophysics Data System (ADS)

    Souami, D.; Souchay, J.

    2012-07-01

    Context. The dynamics of solar system objects, such as dwarf planets and asteroids, has become a well-established field of celestial mechanics in the past thirty years, owing to the improvements that have been made in observational techniques and numerical studies. In general, the ecliptic is taken as the reference plane in these studies, although there is no dynamical reason for doing so. In contrast, the invariable plane as originally defined by Laplace, seems to be a far more natural choice. In this context, the latest study of this plane dates back to Burkhardt. Aims: We define and determine the orientation of the invariable plane of the solar system with respect to both the ICRF and the equinox-ecliptic of J2000.0, and evaluate the accuracy of our determination. Methods: Using the long-term numerical ephemerides DE405, DE406, and INPOP10a over their entire available time span, we computed the total angular momentum of the solar system, as well as the individual contribution to it made by each of the planets, the dwarf planets Pluto and Ceres, and the two asteroids Pallas and Vesta. We then deduced the orientation of the invariable plane from these ephemerides. Results: We update the previous results on the determination of the orientation of the invariable plane with more accurate data, and a more complete analysis of the problem, taking into account the effect of the dwarf planet (1) Ceres as well as two of the biggest asteroids, (4) Vesta and (2) Pallas. We show that the inclusion of these last three bodies significantly improves the accuracy of determination of the invariable plane, whose orientation over a 100 y interval does not vary more than 0.1 mas in inclination, and 0.3 mas in longitude of the ascending node. Moreover, we determine the individual contributions of each body to the total angular momentum of the solar system, as well as the inclination and longitude of the node with respect to this latter plane. Conclusions: Owing to the high accuracy

  19. Robust Low-Altitude Image Matching Based on Local Region Constraint and Feature Similarity Confidence

    NASA Astrophysics Data System (ADS)

    Chen, Min; Zhu, Qing; Huang, Shengzhi; Hu, Han; Wang, Jingxue

    2016-06-01

    Improving the matching reliability of low-altitude images is one of the most challenging issues in recent years, particularly for images with large viewpoint variation. In this study, an approach for low-altitude remote sensing image matching that is robust to the geometric transformation caused by viewpoint change is proposed. First, multiresolution local regions are extracted from the images and each local region is normalized to a circular area based on a transformation. Second, interest points are detected and clustered into local regions. The feature area of each interest point is determined under the constraint of the local region which the point belongs to. Then, a descriptor is computed for each interest point by using the classical scale invariant feature transform (SIFT). Finally, a feature matching strategy is proposed on the basis of feature similarity confidence to obtain reliable matches. Experimental results show that the proposed method provides significant improvements in the number of correct matches compared with other traditional methods.

  20. Passive estimation of the waveguide invariant per pair of modes.

    PubMed

    Le Gall, Yann; Bonnel, Julien

    2013-08-01

    In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.

  1. Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods

    NASA Astrophysics Data System (ADS)

    Nguyen, K. L.; Treyssède, F.; Hazard, C.

    2015-05-01

    Among the numerous techniques of non-destructive evaluation, elastic guided waves are of particular interest to evaluate defects inside industrial and civil elongated structures owing to their ability to propagate over long distances. However for guiding structures buried in large solid media, waves can be strongly attenuated along the guide axis due to the energy radiation into the surrounding medium, usually considered as unbounded. Hence, searching the less attenuated modes becomes necessary in order to maximize the inspection distance. In the numerical modeling of embedded waveguides, the main difficulty is to account for the unbounded section. This paper presents a numerical approach combining a semi-analytical finite element method and a perfectly matched layer (PML) technique to compute the so-called trapped and leaky modes in three-dimensional embedded elastic waveguides of arbitrary cross-section. Two kinds of PML, namely the Cartesian PML and the radial PML, are considered. In order to understand the various spectral objects obtained by the method, the PML parameters effects upon the eigenvalue spectrum are highlighted through analytical studies and numerical experiments. Then, dispersion curves are computed for test cases taken from the literature in order to validate the approach.

  2. 3D face recognition based on matching of facial surfaces

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, Beatriz A.; Kober, Vitaly

    2015-09-01

    Face recognition is an important task in pattern recognition and computer vision. In this work a method for 3D face recognition in the presence of facial expression and poses variations is proposed. The method uses 3D shape data without color or texture information. A new matching algorithm based on conformal mapping of original facial surfaces onto a Riemannian manifold followed by comparison of conformal and isometric invariants computed in the manifold is suggested. Experimental results are presented using common 3D face databases that contain significant amount of expression and pose variations.

  3. Set-based corral control in stochastic dynamical systems: Making almost invariant sets more invariant

    PubMed Central

    Forgoston, Eric; Billings, Lora; Yecko, Philip; Schwartz, Ira B.

    2011-01-01

    We consider the problem of stochastic prediction and control in a time-dependent stochastic environment, such as the ocean, where escape from an almost invariant region occurs due to random fluctuations. We determine high-probability control-actuation sets by computing regions of uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of geometric and probabilistic methods allows us to design regions of control, which provide an increase in loitering time while minimizing the amount of control actuation. We show how the loitering time in almost invariant sets scales exponentially with respect to the control actuation, causing an exponential increase in loitering times with only small changes in actuation force. The result is that the control actuation makes almost invariant sets more invariant. PMID:21456830

  4. Vector spaces, invariance, and camouflage

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Garcia-Martinez, Pascuala

    2004-12-01

    We present a method based on an orthonormal vector space basis representation to detect camouflaged targets in natural environments. Because the method is intensity invariant we detect camouflage targets independently of the illumination conditions. The detection technique does not require knowing the exact camouflage pattern, but only the class of patterns (foliage, netting, woods...). We used nonlinear filtering based on the calculation of several correlations. Moreover, the nonlinearity of the filtering process allows a high discrimination against false targets. Several experiments confirm the target detectability where strong camouflage might delude even human viewers.

  5. Riemann quasi-invariants

    SciTech Connect

    Pokhozhaev, Stanislav I

    2011-06-30

    The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.

  6. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  7. Idiographic Measurement Invariance?

    ERIC Educational Resources Information Center

    Willoughby, Michael T.; Sideris, John

    2007-01-01

    In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…

  8. Are face representations depth cue invariant?

    PubMed

    Dehmoobadsharifabadi, Armita; Farivar, Reza

    2016-06-01

    The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition. PMID:27271993

  9. Wide baseline stereo matching based on double topological relationship consistency

    NASA Astrophysics Data System (ADS)

    Zou, Xiaohong; Liu, Bin; Song, Xiaoxue; Liu, Yang

    2009-07-01

    Stereo matching is one of the most important branches in computer vision. In this paper, an algorithm is proposed for wide-baseline stereo vision matching. Here, a novel scheme is presented called double topological relationship consistency (DCTR). The combination of double topological configuration includes the consistency of first topological relationship (CFTR) and the consistency of second topological relationship (CSTR). It not only sets up a more advanced model on matching, but discards mismatches by iteratively computing the fitness of the feature matches and overcomes many problems of traditional methods depending on the powerful invariance to changes in the scale, rotation or illumination across large view changes and even occlusions. Experimental examples are shown where the two cameras have been located in very different orientations. Also, epipolar geometry can be recovered using RANSAC by far the most widely method adopted possibly. By the method, we can obtain correspondences with high precision on wide baseline matching problems. Finally, the effectiveness and reliability of this method are demonstrated in wide-baseline experiments on the image pairs.

  10. Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?

    ERIC Educational Resources Information Center

    Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.

    2008-01-01

    This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…

  11. Shift-invariant target in allocation problems.

    PubMed

    Mandal, Saumen; Biswas, Atanu

    2014-07-10

    We provide a template for finding target allocation proportions in optimal allocation designs where the target will be invariant for both shifts in location and scale of the response distributions. One possible application of such target allocation proportions is to carry out a response-adaptive allocation. While most of the existing designs are invariant for any change in scale of the underlying distributions, they are not location invariant in most of the cases. First, we indicate this serious flaw in the existing literature and illustrate how this lack of location invariance makes the performance of the designs very poor in terms of allocation for any drastic change in location, such as the changes from degrees centigrade to degrees Fahrenheit. We illustrate that unless a target allocation is location invariant, it might lead to a completely irrelevant and useless target for allocation. Then we discuss how such location invariance can be achieved for general continuous responses. We illustrate the proposed method using some real clinical trial data. We also indicate the possible extension of the procedure for more than two treatments at hand and in the presence of covariates.

  12. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples.

    PubMed

    Austin, Peter C

    2011-05-20

    Propensity-score matching allows one to reduce the effects of treatment-selection bias or confounding when estimating the effects of treatments when using observational data. Some authors have suggested that methods of inference appropriate for independent samples can be used for assessing the statistical significance of treatment effects when using propensity-score matching. Indeed, many authors in the applied medical literature use methods for independent samples when making inferences about treatment effects using propensity-score matched samples. Dichotomous outcomes are common in healthcare research. In this study, we used Monte Carlo simulations to examine the effect on inferences about risk differences (or absolute risk reductions) when statistical methods for independent samples are used compared with when statistical methods for paired samples are used in propensity-score matched samples. We found that compared with using methods for independent samples, the use of methods for paired samples resulted in: (i) empirical type I error rates that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence intervals that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv) estimated standard errors that more closely reflected the sampling variability of the estimated risk difference. Differences between the empirical and advertised performance of methods for independent samples were greater when the treatment-selection process was stronger compared with when treatment-selection process was weaker. We recommend using statistical methods for paired samples when using propensity-score matched samples for making inferences on the effect of treatment on the reduction in the probability of an event occurring.

  13. Construction of invariant whiskered tori by a parameterization method. Part II: Quasi-periodic and almost periodic breathers in coupled map lattices

    NASA Astrophysics Data System (ADS)

    Fontich, Ernest; de la Llave, Rafael; Sire, Yannick

    2015-09-01

    We construct quasi-periodic and almost periodic solutions for coupled Hamiltonian systems on an infinite lattice which is translation invariant. The couplings can be long range, provided that they decay moderately fast with respect to the distance. For the solutions we construct, most of the sites are moving in a neighborhood of a hyperbolic fixed point, but there are oscillating sites clustered around a sequence of nodes. The amplitude of these oscillations does not need to tend to zero. In particular, the almost periodic solutions do not decay at infinity. The main result is an a posteriori theorem. We formulate an invariance equation. Solutions of this equation are embeddings of an invariant torus on which the motion is conjugate to a rotation. We show that, if there is an approximate solution of the invariance equation that satisfies some non-degeneracy conditions, there is a true solution close by. This does not require that the system is close to integrable, hence it can be used to validate numerical calculations or formal expansions. The proof of this a posteriori theorem is based on a Nash-Moser iteration, which does not use transformation theory. Simpler versions of the scheme were developed in [28]. One technical tool, important for our purposes, is the use of weighted spaces that capture the idea that the maps under consideration are local interactions. Using these weighted spaces, the estimates of iterative steps are similar to those in finite dimensional spaces. In particular, the estimates are independent of the number of nodes that get excited. Using these techniques, given two breathers, we can place them apart and obtain an approximate solution, which leads to a true solution nearby. By repeating the process infinitely often, we can get solutions with infinitely many frequencies which do not tend to zero at infinity.

  14. Matching a Distribution by Matching Quantiles Estimation

    PubMed Central

    Sgouropoulos, Nikolaos; Yao, Qiwei; Yastremiz, Claudia

    2015-01-01

    Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO. PMID:26692592

  15. Uniform smooth filtering approach for fast template matching

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2016-05-01

    Sum of square difference (SSD) and normalized cross correlation (NCC) are two different template matching techniques and their fast implementations have been investigated independently. The SSD approach is known to be simple and fast, however it is variant to image intensity change that lead to low performance. On the other hand, the NCC method is invariant to intensity change and has high performance, but its computational cost is high. In this paper, we derive an equation that connects NCC and SSD. From this equation, we propose SSD based partial elimination for the fast implementation of NCC template matching. This new technique takes the advantages of both NCC's high performance and SSD's low computational cost. It is fast and has high performance. Then we propose a uniform smoothing approach that further reduces computational cost for NCC. Experiments show that the proposed method is significantly faster than the techniques reported in literature.

  16. Invariant imbedding in two dimensions

    SciTech Connect

    Faber, V.; Seth, D.L.; Wing, G.M.

    1988-01-01

    J. Corones has noted that the doubling and addition formulas of invariant imbedding can be extended conceptually to very general situations. All that is needed is a black box ''process'' with n ''ports.'' The /ital i/th port has vector input I/sub i/ and vector output J/sub i/. Addition formulas result when two or more of these processes are joined together to form a new process in some regular way. For example, four congruent squares can be juxtaposed to form a larger square. At each join, the output of one process becomes the input of the other and vice versa. (We always suppose the join to occur at one or more ports.) Addition formulas result from the combination of these shared quantities. Corones has thus pointed out that invariant imbedding is not, as is sometimes asserted, an inherently one-dimensional (1-D) method, but works conceptually in any number of dimensions; some previous work that is conceptually along these lines, with references to other such works, can be found in Refs. 2-4. The details can, of course, become very complicated. We shall show that the method is computationally feasible for certain two-dimensional (2-D) problems. To conform to the thrust of these proceedings, we shall usually phrase our discussions in terms of transport theory rather than speaking of more abstract processes. 7 refs., 13 figs.

  17. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum

    NASA Astrophysics Data System (ADS)

    Wille, M.-L.; Zapf, M.; Ruiter, N. V.; Gemmeke, H.; Langton, C. M.

    2015-06-01

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  18. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum.

    PubMed

    Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M

    2015-06-21

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  19. Automated transformation-invariant shape recognition through wavelet multiresolution

    NASA Astrophysics Data System (ADS)

    Brault, Patrice; Mounier, Hugues

    2001-12-01

    We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.

  20. Dimensional Analysis Using Toric Ideals: Primitive Invariants

    PubMed Central

    Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774

  1. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.

    PubMed

    Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F

    2016-09-01

    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement. PMID:26966098

  2. Gauge invariant quantum cosmology

    NASA Technical Reports Server (NTRS)

    Berger, Beverly K.

    1987-01-01

    The study of boundary conditions, the Hamiltonian constraint, reparameterization-invariance, and quantum dynamics, is presently approached by means of the path-integral quantization of minisuperspace models. The separation of the wave functions for expansion and contraction by the Feynman boundary conditions is such that there can be no interference between them. This is implemented by the choice of a contour in the complex plane, in order to define the phase of the square-root Arnowitt, Deser, and Misner (1960) Hamiltonian for expansion, collapse, and the classically forbidden region.

  3. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  4. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  5. Defending the beauty of the Invariance Principle

    NASA Astrophysics Data System (ADS)

    Barkana, Itzhak

    2014-01-01

    Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.

  6. Sources of selection bias in evaluating social programs: An interpretation of conventional measures and evidence on the effectiveness of matching as a program evaluation method

    PubMed Central

    Heckman, James J.; Ichimura, Hidehiko; Smith, Jeffrey; Todd, Petra

    1996-01-01

    This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator. PMID:8917606

  7. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  8. Affine Invariant Character Recognition by Progressive Removing

    NASA Astrophysics Data System (ADS)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  9. Gauge-Invariant Formulation of Circular Dichroism.

    PubMed

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541

  10. Nonrigid registration of remote sensing images via sparse and dense feature matching.

    PubMed

    Chen, Jun; Luo, Linbo; Liu, Chengyin; Yu, Jin-Gang; Ma, Jiayi

    2016-07-01

    In this paper, we propose a novel formulation for building pixelwise alignments between remote sensing images under nonrigid transformation based on matching both sparsely and densely sampled features. Our formulation contains two coupling variables: the nonrigid geometric transformation and the discrete dense flow field. To match sparse features, we fit a geometric transformation specified in a reproducing kernel Hilbert space and impose a locally linear constraint to regularize the transformation. To match dense features, we compute a dense flow field by using a formulation analogous to scale invariant feature transform (SIFT) flow which allows nonrigid matching across different scene appearances. An additional term is introduced to ensure the coherence between the two variables, and we alternatively solve for one variable under the assumption that the other is known. Extensive experiments on both synthetic and real remote sensing images demonstrate that our approach greatly outperforms state-of-the-art methods, particularly when the data contain severe degradations. PMID:27409688

  11. Nonrigid registration of remote sensing images via sparse and dense feature matching.

    PubMed

    Chen, Jun; Luo, Linbo; Liu, Chengyin; Yu, Jin-Gang; Ma, Jiayi

    2016-07-01

    In this paper, we propose a novel formulation for building pixelwise alignments between remote sensing images under nonrigid transformation based on matching both sparsely and densely sampled features. Our formulation contains two coupling variables: the nonrigid geometric transformation and the discrete dense flow field. To match sparse features, we fit a geometric transformation specified in a reproducing kernel Hilbert space and impose a locally linear constraint to regularize the transformation. To match dense features, we compute a dense flow field by using a formulation analogous to scale invariant feature transform (SIFT) flow which allows nonrigid matching across different scene appearances. An additional term is introduced to ensure the coherence between the two variables, and we alternatively solve for one variable under the assumption that the other is known. Extensive experiments on both synthetic and real remote sensing images demonstrate that our approach greatly outperforms state-of-the-art methods, particularly when the data contain severe degradations.

  12. Invariant algebraic surfaces for a virus dynamics

    NASA Astrophysics Data System (ADS)

    Valls, Claudia

    2015-08-01

    In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.

  13. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.

    PubMed

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. PMID:25790059

  14. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods.

    PubMed

    Nelson, Andrew; Chomitz, Kenneth M

    2011-01-01

    Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods. PMID:21857950

  15. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global Analysis Using Matching Methods

    PubMed Central

    Nelson, Andrew; Chomitz, Kenneth M.

    2011-01-01

    Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods. PMID:21857950

  16. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods.

    PubMed

    Nelson, Andrew; Chomitz, Kenneth M

    2011-01-01

    Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods.

  17. Factorial Invariance in Multiple Populations: A Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.

    2013-01-01

    A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…

  18. Coordinate Projection-based Solver for ODE with Invariants

    2008-04-08

    CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.

  19. Multifractal signatures of complexity matching.

    PubMed

    Delignières, Didier; Almurad, Zainy M H; Roume, Clément; Marmelat, Vivien

    2016-10-01

    The complexity matching effect supposes that synchronization between complex systems could emerge from multiple interactions across multiple scales and has been hypothesized to underlie a number of daily-life situations. Complexity matching suggests that coupled systems tend to share similar scaling properties, and this phenomenon is revealed by a statistical matching between the scaling exponents that characterize the respective behaviors of both systems. However, some recent papers suggested that this statistical matching could originate from local adjustments or corrections, rather than from a genuine complexity matching between systems. In the present paper, we propose an analysis method based on correlation between multifractal spectra, considering different ranges of time scales. We analyze several datasets collected in various situations (bimanual coordination, interpersonal coordination, and walking in synchrony with a fractal metronome). Our results show that this method is able to distinguish between situations underlain by genuine statistical matching and situations where statistical matching results from local adjustments. PMID:27225255

  20. Matching methods to create paired survival data based on an exposure occurring over time: a simulation study with application to breast cancer

    PubMed Central

    2014-01-01

    Background Paired survival data are often used in clinical research to assess the prognostic effect of an exposure. Matching generates correlated censored data expecting that the paired subjects just differ from the exposure. Creating pairs when the exposure is an event occurring over time could be tricky. We applied a commonly used method, Method 1, which creates pairs a posteriori and propose an alternative method, Method 2, which creates pairs in “real-time”. We used two semi-parametric models devoted to correlated censored data to estimate the average effect of the exposure HR¯(t): the Holt and Prentice (HP), and the Lee Wei and Amato (LWA) models. Contrary to the HP, the LWA allowed adjustment for the matching covariates (LWA a ) and for an interaction (LWA i ) between exposure and covariates (assimilated to prognostic profiles). The aim of our study was to compare the performances of each model according to the two matching methods. Methods Extensive simulations were conducted. We simulated cohort data sets on which we applied the two matching methods, the HP and the LWA. We used our conclusions to assess the prognostic effect of subsequent pregnancy after treatment for breast cancer in a female cohort treated and followed up in eight french hospitals. Results In terms of bias and RMSE, Method 2 performed better than Method 1 in designing the pairs, and LWA a was the best model for all the situations except when there was an interaction between exposure and covariates, for which LWA i was more appropriate. On our real data set, we found opposite effects of pregnancy according to the six prognostic profiles, but none were statistically significant. We probably lacked statistical power or reached the limits of our approach. The pairs’ censoring options chosen for combination Method 2 - LWA had to be compared with others. Conclusions Correlated censored data designing by Method 2 seemed to be the most pertinent method to create pairs, when the criterion

  1. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  2. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    SciTech Connect

    Zhen, X; Chen, H; Zhou, L; Yan, H; Jiang, S; Jia, X; Gu, X; Mell, L; Yashar, C; Cervino, L

    2014-06-15

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the random walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no

  3. Computation of maximum gust loads in nonlinear aircraft using a new method based on the matched filter approach and numerical optimization

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III

    1990-01-01

    Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.

  4. A Discussion of Population Invariance

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2008-01-01

    The discussion here covers five articles that are linked in the sense that they all treat population invariance. This discussion of population invariance is a somewhat broader treatment of the subject than simply a discussion of these five articles. In particular, occasional reference is made to publications other than those in this issue. The…

  5. Invariant Measures for Cherry Flows

    NASA Astrophysics Data System (ADS)

    Saghin, Radu; Vargas, Edson

    2013-01-01

    We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.

  6. Three-dimensional particle tracking around microstructures in water via total internal reflection fluorescence microscopy and refractive-index-matching method

    NASA Astrophysics Data System (ADS)

    Unno, Noriyuki; Nakata, Shuichiro; Satake, Shin-ichi; Taniguchi, Jun

    2016-07-01

    Multilayer nanoparticle image velocimetry (MnPIV) with a refractive-index-matching method is powerful technique for x- y- z (3D) flow measurement, because it can detect the 3D position of fluorescent particles with submicron resolution. In MnPIV, the intensity of fluorescence of a particle is used to estimate its z-position. However, it has been difficult to measure 3D flows around microstructures in water by total internal reflection fluorescence microscopy because of light scattering caused by the different refractive indices of the structures and the working fluid. By using a thermal nanoimprinting technique, we succeeded in fabricating microstructures from a polymer resin whose refractive index is equal to that of water, and we used these microstructures to perform MnPIV in water. As a result of the match between the refractive index of water and that of the microstructures, we were able to perform 3D tracking of nanoparticles around the microstructures in water.

  7. Complex-linear invariants of biochemical networks.

    PubMed

    Karp, Robert L; Pérez Millán, Mercedes; Dasgupta, Tathagata; Dickenstein, Alicia; Gunawardena, Jeremy

    2012-10-21

    The nonlinearities found in molecular networks usually prevent mathematical analysis of network behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems of parameter determination. However, molecular networks give rise, through mass-action kinetics, to polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These equations may be analysed by algebraic methods, in which parameters are treated as symbolic expressions whose numerical values do not have to be known in advance. For instance, an "invariant" of a network is a polynomial expression on selected state variables that vanishes in any steady state. Invariants have been found that encode key network properties and that discriminate between different network structures. Although invariants may be calculated by computational algebraic methods, such as Gröbner bases, these become computationally infeasible for biologically realistic networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are linear combinations of "complexes", or the monomials coming from mass action. We show how this procedure can be used in proving earlier results of Horn and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose networks have deficiencies up to four. We show that bifunctionality leads to different forms of concentration control that are robust to changes in initial conditions or total amounts. Finally, we outline a systematic procedure for using complex-linear invariants to analyse molecular networks of any deficiency.

  8. Physical Invariants of Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective

  9. Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments.

    PubMed

    Constantine, Keith L; Davis, Malcolm E; Metzler, William J; Mueller, Luciano; Claus, Brian L

    2006-06-01

    Given the three-dimensional (3D) structure of a protein, the binding pose of a ligand can be determined using distance restraints derived from assigned intra-ligand and protein-ligand nuclear Overhauser effects (NOEs). A primary limitation of this approach is the need for resonance assignments of the ligand-bound protein. We have developed an approach that utilizes data from 3D 13C-edited, 13C/15N-filtered HSQC-NOESY spectra for evaluating ligand binding poses without requiring protein NMR resonance assignments. Only the 1H NMR assignments of the bound ligand are essential. Trial ligand binding poses are generated by any suitable method (e.g., computational docking). For each trial binding pose, the 3D 13C-edited, 13C/15N-filtered HSQC-NOESY spectrum is predicted, and the predicted and observed patterns of protein-ligand NOEs are matched and scored using a fast, deterministic bipartite graph matching algorithm. The best scoring (lowest "cost") poses are identified. Our method can incorporate any explicit restraints or protein assignment data that are available, and many extensions of the basic procedure are feasible. Only a single sample is required, and the method can be applied to both slowly and rapidly exchanging ligands. The method was applied to three test cases: one complex involving muscle fatty acid-binding protein (mFABP) and two complexes involving the leukocyte function-associated antigen 1 (LFA-1) I-domain. Without using experimental protein NMR assignments, the method identified the known binding poses with good accuracy. The addition of experimental protein NMR assignments improves the results. Our "NOE matching" approach is expected to be widely applicable; i.e., it does not appear to depend on a fortuitous distribution of binding pocket residues.

  10. A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching Interpolation.

    PubMed

    Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui

    2016-08-01

    The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed. PMID:27307267

  11. Dimensional analysis using toric ideals: primitive invariants.

    PubMed

    Atherton, Mark A; Bates, Ronald A; Wynn, Henry P

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774

  12. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios; Antón Castro, Francesc; Mioc, Darka

    2016-06-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detected are invariant to image rotations, translations, scaling and also to changes in illumination, brightness and 3-dimensional viewpoint. Afterwards, each feature of the reference image is matched with one in the sensed image if, and only if, the distance between them multiplied by a threshold is shorter than the distances between the point and all the other points in the sensed image. Then, the matched features are used to compute the parameters of the homography that transforms the coordinate system of the sensed image to the coordinate system of the reference image. The Delaunay triangulations of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches.

  13. Generating maps, invariant manifolds, conjugacy

    NASA Astrophysics Data System (ADS)

    Chaperon, Marc

    2015-01-01

    The idea of generating functions and maps is presented, first in global symplectic geometry and then in the theory of invariant manifolds, as introduced by McGehee and Sander in 1996. Their result on the stable manifold theorem is generalised and simplified; the proofs no longer use any functional analysis. Then comes an original "non-autonomous" version of the previous results, yielding-besides Pesin's invariant laminations-seemingly unrelated results on invariant manifolds and conjugacies, presented in the end after a basic example.

  14. Partial hue-matching.

    PubMed

    Logvinenko, Alexander D; Beattie, Lesley L

    2011-01-01

    It is widely believed that color can be decomposed into a small number of component colors. Particularly, each hue can be described as a combination of a restricted set of component hues. Methods, such as color naming and hue scaling, aim at describing color in terms of the relative amount of the component hues. However, there is no consensus on the nomenclature of component hues. Moreover, the very notion of hue (not to mention component hue) is usually defined verbally rather than perceptually. In this paper, we make an attempt to operationalize such a fundamental attribute of color as hue without the use of verbal terms. Specifically, we put forth a new method--partial hue-matching--that is based on judgments of whether two colors have some hue in common. It allows a set of component hues to be established objectively, without resorting to verbal definitions. Specifically, the largest sets of color stimuli, all of which partially match each other (referred to as chromaticity classes), can be derived from the observer's partial hue-matches. A chromaticity class proves to consist of all color stimuli that contain a particular component hue. Thus, the chromaticity classes fully define the set of component hues. Using samples of Munsell papers, a few experiments on partial hue-matching were carried out with twelve inexperienced normal trichromatic observers. The results reinforce the classical notion of four component hues (yellow, blue, red, and green). Black and white (but not gray) were also found to be component colors. PMID:21742961

  15. Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM

    NASA Astrophysics Data System (ADS)

    Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno

    2015-01-01

    Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.

  16. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  17. Tracking visual objects using pyramidal rotation invariant features

    NASA Astrophysics Data System (ADS)

    Paheding, Sidike; Essa, Almabrok; Krieger, Evan; Asari, Vijayan

    2016-02-01

    Challenges in object tracking such as object deformation, occlusion, and background variations require a robust tracker to ensure accurate object location estimation. To address these issues, we present a Pyramidal Rotation Invariant Features (PRIF) that integrates Gaussian Ringlet Intensity Distribution (GRID) and Fourier Magnitude of Histogram of Oriented Gradients (FMHOG) methods for tracking objects from videos in challenging environments. In this model, we initially partition a reference object region into increasingly fine rectangular grid regions to construct a pyramid. Histograms of local features are then extracted for each level of pyramid. This allows the appearance of a local patch to be captured at multiple levels of detail to make the algorithm insensitive to partial occlusion. Then GRID and magnitude of discrete Fourier transform of the oriented gradient are utilized to achieve a robust rotation invariant feature. The GRID feature creates a weighting scheme to emphasize the object center. In the tracking stage, a Kalman filter is employed to estimate the center of the object search regions in successive frames. Within the search regions, we use a sliding window technique to extract the PRIF of candidate objects, and then Earth Mover's Distance (EMD) is used to classify the best matched candidate features with respect to the reference. Our PRIF object tracking algorithm is tested on two challenging Wide Area Motion Imagery (WAMI) datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness. Experimental results show that the proposed PRIF approach yields superior results compared to state-of-the-art feature based object trackers.

  18. Waveguide invariant focusing for broadband beamforming in an oceanic waveguide.

    PubMed

    Tao, Hailiang; Krolik, Jeffrey L

    2008-03-01

    The performance of broadband sonar array processing can degrade significantly in shallow-water environments when interference becomes angularly spread due to multipath propagation. Particularly for towed line arrays near endfire, elevation angle spreading of multipath interference often results in masking of weaker sources of interest. While adaptive beamforming in a series of narrow frequency bands can suppress coherent multipath interference, this approach requires long observation times to estimate the required narrowband covariance matrices. To form wideband covariance matrices which can be estimated with less observation time, plane-wave focusing methods have been used to avoid interference covariance matrix rank inflation. This paper extends wideband focusing to the case of coherent multipath interference. The approach presented here, called waveguide invariant focusing (WIF), exploits a robust relationship for the frequency dependence of horizontal wave number differences. Unlike matched-field methods, WIF does not model multipath wave fronts but rather makes the interference appear to occupy the same rank-one subspace across frequency. This permits formation of wideband covariance matrices without interference rank inflation. Simulation experiments in a realistic ocean environment indicate that adaptive beamforming using WIF covariance matrices can provide a significant array gain improvement over conventional adaptive methods with limited observation time.

  19. Hidden scale invariance of metals

    NASA Astrophysics Data System (ADS)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.

    2015-11-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.

  20. Inter-image matching

    NASA Technical Reports Server (NTRS)

    Wolfe, R. H., Jr.; Juday, R. D.

    1982-01-01

    Interimage matching is the process of determining the geometric transformation required to conform spatially one image to another. In principle, the parameters of that transformation are varied until some measure of some difference between the two images is minimized or some measure of sameness (e.g., cross-correlation) is maximized. The number of such parameters to vary is faily large (six for merely an affine transformation), and it is customary to attempt an a priori transformation reducing the complexity of the residual transformation or subdivide the image into small enough match zones (control points or patches) that a simple transformation (e.g., pure translation) is applicable, yet large enough to facilitate matching. In the latter case, a complex mapping function is fit to the results (e.g., translation offsets) in all the patches. The methods reviewed have all chosen one or both of the above options, ranging from a priori along-line correction for line-dependent effects (the high-frequency correction) to a full sensor-to-geobase transformation with subsequent subdivision into a grid of match points.

  1. Criticality in translation-invariant parafermion chains

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yang, Shuo; Tu, Hong-Hao; Cheng, Meng

    2015-03-01

    In this work, we numerically study critical phases in translation-invariant ZN parafermion chains with both nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a ZN spin model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation and translational invariance ensures that the spin model is always self-dual. We first study the low-energy spectrum of chains with only nearest-neighbor coupling, which are mapped onto standard self-dual ZN clock models. For 3 ≤N ≤6 , we match the numerical results to the known conformal field theory(CFT) identification. We then analyze in detail the phase diagram of a N =3 chain with both nearest and next-nearest-neighbor hopping and six critical phases with central charges being 4 /5 , 1, or 2 are found. We find continuous phase transitions between c =1 and 2 phases, while the phase transition between c =4 /5 and 1 is conjectured to be of Kosterlitz-Thouless type.

  2. Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method.

    PubMed

    Razzaq, M Y; Behl, M; Kratz, K; Lendlein, A

    2013-10-11

    A triple-shape effect is created for a segmented device consisting of an active component encapsulated in a highly flexible polymer network. Segments with the same composition but different interface areas can be recovered independently either at specific field strengths (Hsw ) during inductive heating, at a specific time during environmentally heating, or at different airflow during inductive heating at constant H. Herein the type of heating method regulates the sequence order.

  3. Verification of Java Programs using Symbolic Execution and Invariant Generation

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina; Visser, Willem

    2004-01-01

    Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.

  4. Breaking diffeomorphism invariance and tests for the emergence of gravity

    SciTech Connect

    Anber, Mohamed M.; Aydemir, Ufuk; Donoghue, John F.

    2010-04-15

    If general relativity is an emergent phenomenon, there may be small violations of diffeomorphism invariance. We propose a phenomenology of perturbatively small violations of general relativity by the inclusion of terms which break general covariance. These can be tested by matching to the parameterized post-Newtonian formalism. The most sensitive tests involve pulsar timing and provide an extremely strong bound, with a dimensionless constraint of order 10{sup -20} relative to gravitational strength.

  5. CPT violation implies violation of Lorentz invariance.

    PubMed

    Greenberg, O W

    2002-12-01

    A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal. PMID:12484997

  6. Weyl invariance with a nontrivial mass scale

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio

    2016-09-01

    A theory with a mass scale and yet Weyl invariant is presented. The theory is not invariant under all diffeomorphisms but only under transverse ones. This is the reason why Weyl invariance does not imply scale invariance in a free falling frame. Physical implications of this framework are discussed.

  7. CPT violation implies violation of Lorentz invariance.

    PubMed

    Greenberg, O W

    2002-12-01

    A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.

  8. RESEARCH NOTE: Improving Bahr's invariant parameters using the WAL approach

    NASA Astrophysics Data System (ADS)

    Martí, Anna; Queralt, Pilar; Jones, Alan G.; Ledo, Juanjo

    2005-10-01

    In the magnetotelluric technique, several methods exist to perform dimensionality analysis of the measured data using rotational invariants of the impedance tensor. Among these methods there is some dilemma on the different criteria established, which sometimes lead to non-equivalent interpretations. The aim of this work is to compare the Bahr and Weaver et al. (WAL hereafter) methods, and to propose a new method that makes both dimensionality methods consistent. This new method complements the parameters used in Bahr method with WAL invariant Q, and redefines their threshold values. To accomplish this, we used the analytical relations between both sets of parameters and re-analyse and compare the threshold values of each method. Both the Bahr and WAL methods use sets of rotational invariant parameters of the magnetotelluric tensor ] and establish a classification of their values to determine the kind of dimensionality associated to the measured data.

  9. Localized, partially space-invariant filtering

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Mendlovic, David; Caulfield, John H.

    1997-02-01

    In cases in which the image-to-image spatial variability of the input pattern changes with the spatial location, a localized-filtering method should be used for pattern recognition. Localized space-invariant filtering is investigated, and its improved recognition abilities are demonstrated with the recognition of fingerprints. The motivation for the investigated implementation is related to the fact that a person never presses his finger on a surface with equal pressure. This variation results in different amounts of spatial shifting being required from the optical processor in different regions of the fingerprint. A two-region mathematical model for representing the human finger is presented and investigated by use of localized space-invariant filtering by means of a computer.

  10. Image retrieval based on local grey-level invariants

    NASA Astrophysics Data System (ADS)

    Bordeaux, Eva; Shrikhande, Neelima

    2005-10-01

    During past decades, the enormous growth of image archives has significantly increased the demand for research efforts aimed at efficiently finding specific images within large databases. This paper investigates matching of images of buildings, architectural designs, blueprints and sketches. Their geometrical constrains lead to the proposed approach: the use of local grey-level invariants based on internal contours of the object. The problem involves three key phases: object recognition in image data, matching two images and searching the database of images. The emphasis of this paper is on object recognition based on internal contours of image data. In her master's thesis, M.M. Kulkarni described a technique for image retrieval by contour analysis implemented on external contours of an object in an image data. This is used to define the category of a building (tower, dome, flat, etc). Integration of these results with local grey-level invariant analysis creates a more robust image retrieval system. Thus, the best match result is the intersection of the results of contour analysis and grey-level invariants analysis. Experiments conducted for the database of architectural buildings have shown robustness w.r.t. to image rotation, translation, small view-point variations, partial visibility and extraneous features. The recognition rate is above 99% for a variety of tested images taken under different conditions.

  11. Invariance algorithms for processing NDE signals

    NASA Astrophysics Data System (ADS)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  12. Naming versus matching and the stability of unique hues.

    PubMed

    Panorgias, A; Kulikowski, J J; Parry, N R A; McKeefry, D J; Murray, I J

    2010-09-01

    It is known that there is a distortion of hue and saturation in the peripheral visual field. In a previous study, when an asymmetric matching paradigm was used, four hues in the blue, red, yellow and green regions of colour space were unchanged and these were referred to as peripherally invariant (Parry et al., J Opt Soc Am A, 23, 2006, 1586). Three of these invariant hues were similar to unique blue, red and yellow. However, for most observers there was a marked difference between unique and invariant green. To investigate this apparent paradox, we have measured unique hues using a range of eccentricities and colourimetric purities. An asymmetric matching and a 4-AFC paradigm were used to establish peripherally invariant and unique hues, respectively. In the asymmetric matching task the observer matched a peripheral spot with a para-foveal spot, for 24 different hues at 18° eccentricity. In the 4-AFC paradigm, 41 hues were presented 20 times at three purities (0.5, 0.75 and 1.0) and three eccentricities (18°, 10° and 1°). The observer had to name the hues as red, blue, green or yellow. Unique hues were found to be constant with eccentricity and purity. The unique green, established with 4-AFC, was found to differ from the invariant green, determined using the matching task. However, red, blue and yellow invariant hues correspond well with unique hues. The data suggest that different mechanisms mediate the matching of green compared with the identification of unique hues. This is similar to the difference between detection and discrimination of spectral stimuli: the detection process is dominated by the cone opponent mechanisms and is most sensitive, whereas more central processes, serving unique hues, influence discrimination. PMID:20883339

  13. SU-F-BRF-09: A Non-Rigid Point Matching Method for Accurate Bladder Dose Summation in Cervical Cancer HDR Brachytherapy

    SciTech Connect

    Chen, H; Zhen, X; Zhou, L; Zhong, Z; Pompos, A; Yan, H; Jiang, S; Gu, X

    2014-06-15

    Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by

  14. Waveguide invariant active sonar target detection and depth classification in shallow water

    NASA Astrophysics Data System (ADS)

    Goldhahn, Ryan A.

    Reverberation and clutter are two of the principle obstacles to active sonar target detection in shallow water. Diffuse seabed backscatter can obscure low energy target returns, while clutter discretes, specific features of the sea floor, produce temporally compact returns which may be mistaken for targets of interest. Detecting weak targets in the presence of reverberation and discriminating water column targets from bottom clutter are thus critical to good performance in active sonar. Both problems are addressed in this thesis using the time-frequency interference pattern described by a constant known as the waveguide invariant which summarizes in a scalar parameter the dispersive properties of the ocean environment. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading in a wideband pulse caused by multipath propagation. An alternative to conventional reverberation estimation is presented, motivated by striations observed in time-frequency analysis of active sonar data. A mathematical model for these reverberation striations is derived using waveguide invariant theory. This model is then used to motivate waveguide invariant reverberation estimation which involves averaging the time-frequency spectrum along these striations. An evaluation of this reverberation estimate using real Mediterranean data is given and its use in a generalized likelihood ratio test (GLRT) based CFAR detector is demonstrated. CFAR detection using waveguide invariant reverberation estimates is shown to out-perform conventional cell-averaged and frequency-invariant CFAR detection methods in shallow water environments producing strong reverberation returns which exhibit the described striations. Results are presented on simulated and real Mediterranean data from the SCARAB98 experiment. The ability to discriminate between water column targets and clutter discretes is

  15. Topological invariants in Fermi systems with time-reversal invariance

    NASA Astrophysics Data System (ADS)

    Avron, J. E.; Sadun, L.; Segert, J.; Simon, B.

    1988-09-01

    We discuss topological invariants for Fermi systems that have time-reversal invariance. The TKN2 integers (first Chern numbers) are replaced by second Chern numbers, and Berry's phase becomes a unit quaternion, or equivalently an element of SU(2). The canonical example playing much the same role as spin (1/2 in a magnetic field is spin (3/2 in a quadrupole electric field. In particular, the associated bundles are nontrivial and have +/-1 second Chern number. The connection that governs the adiabatic evolution coincides with the symmetric SU(2) Yang-Mills instanton.

  16. Auto-accumulation method using simulated annealing enables fully automatic particle pickup completely free from a matching template or learning data.

    PubMed

    Ogura, Toshihiko; Sato, Chikara

    2004-06-01

    Single-particle analysis is a 3-D structure determining method using electron microscopy (EM). In this method, a large number of projections is required to create 3-D reconstruction. In order to enable completely automatic pickup without a matching template or a training data set, we established a brand-new method in which the frames to pickup particles are randomly shifted and rotated over the electron micrograph and, using the total average image of the framed images as an index, each frame reaches a particle. In this process, shifts are selected to increase the contrast of the average. By iterated shifts and further selection of the shifts, the frames are induced to shift so as to surround particles. In this algorithm, hundreds of frames are initially distributed randomly over the electron micrograph in which multi-particle images are dispersed. Starting with these frames, one of them is selected and shifted randomly, and acceptance or non-acceptance of its new position is judged using the simulated annealing (SA) method in which the contrast score of the total average image is adopted as an index. After iteration of this process, the position of each frame converges so as to surround a particle and the framed images are picked up. This method is the first unsupervised fully automatic particle picking method which is applicable to EM of various kinds of proteins, especially to low-contrasted cryo-EM protein images.

  17. Time reversal and the spatio-temporal matched filter

    SciTech Connect

    Lehman, S K; Poggio, A J; Kallman, J S; Meyer, A W; Candy, J V

    2004-03-08

    It is known that focusing of an acoustic field by a time-reversal mirror (TRM) is equivalent to a spatio-temporal matched filter under conditions where the Green's function of the field satisfies reciprocity and is time invariant, i.e. the Green's function is independent of the choice of time origin. In this letter, it is shown that both reciprocity and time invariance can be replaced by a more general constraint on the Green's function that allows a TRM to implement the spatio-temporal matched filter even when conditions are time varying.

  18. Recent advances in the methods of cost-benefit analysis in healthcare. Matching the art to the science.

    PubMed

    McIntosh, E; Donaldson, C; Ryan, M

    1999-04-01

    This paper outlines recent advances in the methods of cost-benefit analysis (CBA). Economic evaluations in healthcare can be criticised for, amongst other things, the inappropriate use of incremental cost-effectiveness ratios and the reporting of benefits in terms of cost savings, such as treatment costs averted. Many such economic evaluations are, according to the 'scientific' definition, CBAs. The 'balance-sheet' (or opportunity cost) approach is a form of CBA which can be used to identify who bears the costs and who reaps the benefits from any change. Whilst the next stage in a CBA, as defined in health economics, would require that all costs and benefits be valued in monetary terms, the balance-sheet approach, however, advocates that available monetary values can be augmented by other measures of cost and benefit. As such, this approach, which has a theoretical basis, is proposed as a practical prescription for CBA and highlights the notion that unquantified benefits are important and can be included within CBAs even when monetarisation is not possible. Recent methodological developments in monetary valuation for use in CBA are the development of the technique of willingness to pay, the use of conjoint analysis (CA) to elicit willingness-to-pay (WTP) values and advances in the debate on the inclusion of production gains in CBAs. Whilst acknowledging that there have been developments in each of these areas, it is claimed there has also been progress in using CBA as a framework for evaluation, as reflected by the balance-sheet approach. The paper concludes by stating that almost all types of economic evaluation have an element of the 'cost-benefit' approach in them. The important issue is to focus on the policy question to be addressed and to outline the relevant costs and benefits in a manner which assists the evaluation of welfare changes resulting from changes in healthcare delivery. The focus should not be on moulding a question to fit a hybrid definition of

  19. The Role of Protected Areas in the Avoidance of Anthropogenic Conversion in a High Pressure Region: A Matching Method Analysis in the Core Region of the Brazilian Cerrado

    PubMed Central

    Paiva, Rodrigo José Oliveira; Brites, Ricardo Seixas; Machado, Ricardo Bomfim

    2015-01-01

    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit

  20. Classifying scaled and rotated textures using a region-matched algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Chih-Chia; Chen, Yu-Tin

    2012-07-01

    A novel method to correct texture variations resulting from scale magnification, narrowing caused by cropping into the original size, or spatial rotation is discussed. The variations usually occur in images captured by a camera using different focal lengths. A representative region-matched algorithm is developed to improve texture classification after magnification, narrowing, and spatial rotation. By using a minimum ellipse, a representative region-matched algorithm encloses a specific region extracted by the J-image segmentation algorithm. After translating the coordinates, the equation of an ellipse in the rotated texture can be formulated as that of an ellipse in the original texture. The rotated invariant property of ellipse provides an efficient method to identify the rotated texture. Additionally, the scale-variant representative region can be classified by adopting scale-invariant parameters. Moreover, a hybrid texture filter is developed. In the hybrid texture filter, the scheme of texture feature extraction includes the Gabor wavelet and the representative region-matched algorithm. Support vector machines are introduced as the classifier. The proposed hybrid texture filter performs excellently with respect to classifying both the stochastic and structural textures. Furthermore, experimental results demonstrate that the proposed algorithm outperforms conventional design algorithms.

  1. Dark coupling and gauge invariance

    SciTech Connect

    Gavela, M.B.; Honorez, L. Lopez; Rigolin, S. E-mail: llopezho@ulb.ac.be E-mail: stefano.rigolin@pd.infn.it

    2010-11-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  2. Critical phenomena of invariant circles

    SciTech Connect

    Hu, B.; Shi, J. ); Kim, S. )

    1991-04-15

    Some novel critical phenomena are discovered in a class of nonanalytic twist maps. It is found that the degree of inflection {ital z} plays a role reminiscent of that of dimensionality in phase transitions with {ital z}=2 and 3 corresponding to the lower and upper critical dimensions, respectively. Moreover, recurrence of invariant circles has also been observed. An inverse residue criterion,'' complementary to the residue criterion'' for the determination of the disappearance point, is introduced to determine the reappearance point of invariant circles.

  3. A Detection Method of FAQ Matching Inquiry E-mails by Automatic Generation of Characteristic Word Groups from Past Inquiry E-mails

    NASA Astrophysics Data System (ADS)

    Sakumichi, Yuki; Akiyoshi, Masanori; Samejima, Masaki; Oka, Hironori

    This paper discusses how to detect the inquiry e-mails corresponding to pre-defined FAQs (Frequently Asked Questions). Web-based interactions such as order and registration form on a Web page are usually provided with their FAQ pages for helping a user. However, most users submit their inquiry e-mails without checking such pages. This causes a help desk operator to process lots of e-mails even if some contents match FAQs. Automatic detecting of such e-mails is proposed based on SVM (Support Vector Machine) and specific Jaccard coefficient based on positive and negative already-received inquiry e-mails. Experimental results show its effectiveness, and we also discuss future work to improve our method.

  4. Signature detection and matching for document image retrieval.

    PubMed

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches. PMID:19762928

  5. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    NASA Astrophysics Data System (ADS)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  6. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  7. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080

  8. Invarient patterns in articulatory movements

    NASA Astrophysics Data System (ADS)

    Bonaventura, Patrizia

    2004-04-01

    The purpose of the reported study is to discover an effective method of characterizing movement patterns of the crucial articulator as the function of an abstract syllable magnitude and the adjacent boundary, and at the same time to investigate effects of prosodic control on utterance organization. In particular, the speed of movement when a flesh point on the tongue blade or the lower lip crosses a selected position relative to the occlusion plane is examined. The time of such crossing provides an effective measure of syllable timing and syllable duration according to previous work. In the present work, using a very limited vocabulary with only a few consonants and one vowel as the key speech materials, effects of contrastive emphasis on demisyllabic movement patterns were studied. The theoretical framework for this analysis is the C/D model of speech production in relation to the concept of an invariant part of selected articulatory movements. The results show evidence in favor of the existence of ``iceberg'' patterns, but a linear dependence of slope on the total excursion of the demisyllabic movement, instead of the approximate constancy of the threshold crossing speed as suggested in the original proposal of the iceberg, has been found. Accordingly, a revision of the original concept of iceberg, seems necessary. This refinement is consistent with the C/D model assumption on ``prominence control'' that the syllable magnitude determines the movement amplitude, accompanying directly related syllable duration change. In this assumption, the movement of a consonantal component should also be proportional to syllable magnitude. The results suggests, however, systematic outliers deviating from the linear dependence of movement speed on excursion. This deviation may be caused by the effect of the immediately following boundary, often referred to as phrase-final elongation. Thesis advisor: Osamu Fujimura Copies of this thesis written in English can be obtained from

  9. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    NASA Astrophysics Data System (ADS)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving

  10. Scale invariance and superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Ray, Koushik

    2013-11-01

    We construct a Schroedinger field theory invariant under local spatial scaling. It is shown to provide an effective theory of superfluid turbulence by deriving, analytically, the observed Kolmogorov 5/3 law and to lead to a Biot-Savart interaction between the observed filament excitations of the system as well.

  11. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony

    2008-11-01

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between "chiral" and "invariant" spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  12. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony W.

    2008-10-13

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  13. Identity from classical invariant theory

    SciTech Connect

    Stein, P.R.

    1982-01-01

    A simple derivation is given of a well-known relation involving the so-called Cayley Operator of classical invariant theory. The proof is induction-free and independent of Capelli's identity; it makes use only of a known-theorem in the theory of determinants and some elementary combinatorics.

  14. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.

    PubMed

    Akin-Ojo, Omololu; Song, Yang; Wang, Feng

    2008-08-14

    A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.

  15. [Field matching in breast irradiation

    PubMed

    Varga, Sz; Takácsi Nagy, L; Pesznyák, Cs; Lövey, K; Polgár, I

    2001-01-01

    INTRODUCTION: In this paper the authors have combined different irradiation techniques for breast and adjacent supraclavicular lymph nodes. The aim was to reduce inhomogeneity in the match-line. METHODS: The CadPlan 6.1.5 three-dimensional treatment planning system was applied in this study for CT based plan using a standard medial and lateral wedged tangential breast portals with the adjacent supraclavicular field. Isocenter is placed at depth on the match-line, where asymmetric jaws are used to produce non-divergent field edges. The tangential fields are shaped using multi-leaf collimator (MLC), by following the curvature of the thorax. In this way the cranial vertical match plane is maintaned without using the breast board. The prescribed dose was 50 Gy at the isocentre. RESULTS: The calculated dose distributions were evaluated in three dimension in the match region of supraclavicular field and the two opposing tangential fields. This method produces a more uniform dose distribution in the target volume and in the match-line. Set-up is fast, this is done without the need for table rotation, or vertical cephalad blocks. The average dose to the ipsilateral lung is reduced using the IMRT (intensity modulated radiotherapy) technique by approximately 10% compared with the conventional technique. Furthermore, this new technique has the possibility to improve the field match between the tangential fields and the parasternal field, while maintaning the field match between the tangential fields and the axillary and supraclavicular fields.

  16. Robust Matching of Wavelet Features for Sub-Pixel Registration of Landsat Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Netanyahu, Nathan S.; Masek, Jeffrey G.; Mount, David M.; Goward, Samuel; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    For many Earth and Space Science applications, automatic geo-registration at sub-pixel accuracy has become a necessity. In this work, we are focusing on building an operational system, which will provide a sub-pixel accuracy registration of Landsat-5 and Landsat-7 data. The input to our registration method consists of scenes that have been geometrically and radiometrically corrected. Such pre-processed scenes are then geo-registered relative to a database of Landsat chips. The method assumes a transformation composed of a rotation and a translation, and utilizes rotation- and translation-invariant wavelets to extract image features that are matched using statistically robust feature matching and a generalized Hausdorff distance metric. The registration process is described and results on four Landsat input scenes of the Washington, D.C. area are presented.

  17. Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: adapting methods optimized for characterizing autonomic dysregulation to neural dynamic timeseries.

    PubMed Central

    Tolkunov, Denis; Rubin, Denis; Mujica-Parodi, LR

    2010-01-01

    In a well-regulated control system, excitatory and inhibitory components work closely together with minimum lag; in response to inputs of finite duration, outputs should show rapid rise and, following the input's termination, immediate return to baseline. The efficiency of this response can be quantified using the power spectrum density's scaling parameter β, a measure of self-similarity, applied to the first-derivative of the raw signal. In this study, we adapted power spectrum density methods, previously used to quantify autonomic dysregulation (heart rate variability), to neural time-series obtained via functional MRI. The negative feedback loop we investigated was the limbic system, using affect-valent faces as stimuli. We hypothesized that trait anxiety would be related to efficiency of regulation of limbic responses, as quantified by power law scaling of fMRI time series. Our results supported this hypothesis, showing moderate to strong correlations of β (r = 0.4–0.54) for the amygdala, orbitofrontal cortex, hippocampus, superior temporal gyrus, posterior insula, and anterior cingulate. Strong anticorrelations were also found between the amygdala's β and wake heart rate variability (r = −0.61), suggesting a robust relationship between dysregulated limbic outputs and their autonomic consequences. PMID:20025979

  18. Scale invariance of parity-invariant three-dimensional QED

    NASA Astrophysics Data System (ADS)

    Karthik, Nikhil; Narayanan, Rajamani

    2016-09-01

    We present numerical evidences using overlap fermions for a scale-invariant behavior of parity-invariant three-dimensional QED with two flavors of massless two-component fermions. Using finite-size scaling of the low-lying eigenvalues of the massless anti-Hermitian overlap Dirac operator, we rule out the presence of a bilinear condensate and estimate the mass anomalous dimension. The eigenvectors associated with these low-lying eigenvalues suggest critical behavior in the sense of a metal-insulator transition. We show that there is no mass gap in the scalar and vector correlators in the infinite-volume theory. The vector correlator does not acquire an anomalous dimension. The anomalous dimension associated with the long-distance behavior of the scalar correlator is consistent with the mass anomalous dimension.

  19. Rotation-invariant texture classification using circular Gabor wavelets

    NASA Astrophysics Data System (ADS)

    Yin, Qingbo; Kim, Jong-Nam; Shen, Liran

    2009-01-01

    Rotation-invariant texture classification is one of the most challenging problems in computer vision. We present a new and effective method for rotation-invariant texture classification based on circular Gabor wavelets. Two group features can be constructed by the mean and variance of the circular Gabor filtered images and rotation invariants. Using the two group features, a discriminant can be found to classify rotated images. The proposed method is evaluated on three public texture databases: Brodatz, CUReT, and UIUCTex. The experimental results, based on different testing data sets, show that the proposed method has comparatively high correct classification rates not only for the rotated images, but also for the images under different illuminations and viewing directions. The proposed method is robust to additive white noise.

  20. Rotation-invariant texture analysis using Radon and Fourier transforms

    NASA Astrophysics Data System (ADS)

    Xiao, Song-Shan; Wu, Yong-Xing

    2007-07-01

    Texture analysis is a basic issue in image processing and computer vision, and how to attain the Rotation-invariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transform. This method uses Radon transform to convert rotation to translation, then utilizes the Fourier transform and takes the modules of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify textures images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. To test and evaluate the method, several different kinds of experiments are employed. Experiments results show the feasibility of the proposed method and its robustness to additive white noise.

  1. Emerging universe from scale invariance

    SciTech Connect

    Del Campo, Sergio; Herrera, Ramón; Guendelman, Eduardo I.; Labraña, Pedro E-mail: guendel@bgu.ac.il E-mail: plabrana@ubiobio.cl

    2010-06-01

    We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.

  2. Quantum mechanics from invariance principles

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Florin

    2015-07-01

    Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.

  3. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  4. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski-Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann-Robertson-Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  5. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  6. Holographic multiverse and conformal invariance

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2009-11-01

    We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.

  7. Disformal invariance of curvature perturbation

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; White, Jonathan

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  8. Conformal Invariance of Graphene Sheets.

    PubMed

    Giordanelli, I; Posé, N; Mendoza, M; Herrmann, H J

    2016-03-10

    Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces.

  9. Elementary examples of adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-04-01

    Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product Eτ of energy E and period τ for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found—a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form V=axn, with a=a(t) slowly varying in time. Then, the horizontal bouncer is considered—a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving ``turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform ``betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.

  10. Hidden structures of knot invariants

    NASA Astrophysics Data System (ADS)

    Sleptsov, Alexey

    2014-11-01

    We discuss a connection of HOMFLY polynomials with Hurwitz covers and represent a generating function for the HOMFLY polynomial of a given knot in all representations as Hurwitz partition function, i.e. the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and the loop expansion through Vassiliev invariants explicitly demonstrate this phenomenon. We study the genus expansion and discuss its properties. We also consider the loop expansion in details. In particular, we give an algorithm to calculate Vassiliev invariants, give some examples and discuss relations among Vassiliev invariants. Then we consider superpolynomials for torus knots defined via double affine Hecke algebra. We claim that the superpolynomials are not functions of Hurwitz type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are beta-deformed to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials.

  11. Conformal Invariance of Graphene Sheets

    PubMed Central

    Giordanelli, I.; Posé, N.; Mendoza, M.; Herrmann, H. J.

    2016-01-01

    Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723

  12. Rotation-invariant texture analysis using Radon and Fourier transforms

    NASA Astrophysics Data System (ADS)

    Xiao, Songshan; Wu, Yongxing

    2007-09-01

    Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotation-invariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.

  13. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  14. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  15. In-house validation of a liquid chromatography tandem mass spectrometry method for the analysis of lipophilic marine toxins in shellfish using matrix-matched calibration.

    PubMed

    Gerssen, Arjen; van Olst, Erik H W; Mulder, Patrick P J; de Boer, Jacob

    2010-08-01

    A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of lipophilic marine toxins in shellfish extracts (mussel, oyster, cockle and clam) was validated in-house using European Union (EU) Commission Decision 2002/657/EC as a guideline. The validation included the toxins okadaic acid (OA), yessotoxin (YTX), azaspiracid-1 (AZA1), pectenotoxin-2 (PTX2) and 13-desmethyl spirolide-C (SPX1). Validation was performed at 0.5, 1 and 1.5 times the current EU permitted levels, which are 160 microg kg(-1) for OA, AZA1 and PTX2 and 1,000 microg kg(-1) for YTX. For SPX1, 400 microg kg(-1) was chosen as the target level as no legislation has been established yet for this compound. The method was validated for determination in crude methanolic shellfish extracts and for extracts purified by solid-phase extraction (SPE). Extracts were also subjected to hydrolysis conditions to determine the performance of the method for OA and dinophysistoxin esters. The toxins were quantified against a set of matrix-matched standards instead of standard solutions in methanol. To save valuable standard, methanolic extract instead of the homogenate was spiked with the toxin standard. This was justified by the fact that the extraction efficiency is high for all relevant toxins (above 90%). The method performed very well with respect to accuracy, intraday precision (repeatability), interday precision (within-laboratory reproducibility), linearity, decision limit, specificity and ruggedness. At the permitted level the accuracy ranged from 102 to 111%, the repeatability from 2.6 to 6.7% and the reproducibility from 4.7 to 14.2% in crude methanolic extracts. The crude extracts performed less satisfactorily with respect to the linearity (less than 0.990) and the change in LC-MS/MS sensitivity during the series (more than 25%). SPE purification resulted in greatly improved linearity and signal stability during the series. Recently the European Food Safety Authority

  16. Shape invariant potentials in higher dimensions

    SciTech Connect

    Sandhya, R.; Sree Ranjani, S.; Kapoor, A.K.

    2015-08-15

    In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation of quantum mechanics.

  17. Hierarchical model of matching

    NASA Technical Reports Server (NTRS)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  18. Distinctive Order Based Self-Similarity descriptor for multi-sensor remote sensing image matching

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Ebadi, Hamid

    2015-10-01

    Robust, well-distributed and accurate feature matching in multi-sensor remote sensing image is a difficult task duo to significant geometric and illumination differences. In this paper, a robust and effective image matching approach is presented for multi-sensor remote sensing images. The proposed approach consists of three main steps. In the first step, UR-SIFT (Uniform robust scale invariant feature transform) algorithm is applied for uniform and dense local feature extraction. In the second step, a novel descriptor namely Distinctive Order Based Self Similarity descriptor, DOBSS descriptor, is computed for each extracted feature. Finally, a cross matching process followed by a consistency check in the projective transformation model is performed for feature correspondence and mismatch elimination. The proposed method was successfully applied for matching various multi-sensor satellite images as: ETM+, SPOT 4, SPOT 5, ASTER, IRS, SPOT 6, QuickBird, GeoEye and Worldview sensors, and the results demonstrate its robustness and capability compared to common image matching techniques such as SIFT, PIIFD, GLOH, LIOP and LSS.

  19. Casimir invariants for systems undergoing collective motion

    SciTech Connect

    Bishop, C. Allen; Byrd, Mark S.; Wu Lianao

    2011-06-15

    Dicke states are an important class of states which exhibit collective behavior in many-body systems. They are interesting because (1) the decay rates of these states can be quite different from a set of independently evolving particles and (2) a particular class of these states are decoherence-free or noiseless with respect to a set of errors. These noiseless states, or more generally subsystems, avoid certain types of errors in quantum-information-processing devices. Here we provide a method for determining a set of transformations of these states which leave the states in their subsystems but still enable them to evolve in particular ways. For subsystems of particles undergoing collective motions, these transformations can be calculated by using essentially the same construction which is used to determine the famous Casimir invariants for quantum systems. Such invariants can be used to determine a complete set of commuting observables for a class of Dicke states as well as to identify possible logical operations for decoherence-free-noiseless subsystems. Our method is quite general and provides results for cases where the constituent particles have more than two internal states.

  20. Rotational invariant visual object extraction and understanding

    NASA Astrophysics Data System (ADS)

    Ternovskiy, Igor V.; Jannson, Tomasz P.

    2000-08-01

    In this paper, we discuss a novel method, base don singularity representation, for integrating a rotational invariant visual object extraction and understanding technique. This new compression method applies Arnold's Differential Mapping Singularities Theory in the context of 3D object projection onto the 2D image plane. It takes advantage of the fact that object edges can be interpreted in terms of singularities, which can be described by simple polynomials. We discuss the relationship between traditional approaches, including wavelet transform and differential mapping singularities theory or catastrophe theory (CT) in the context of image understanding and rotational invariant object extraction and compression. CT maps 3D surfaces with exact results to construct an image-compression algorithm based on an expanded set of operations. This set includes shift, scaling rotation, and homogeneous nonlinear transformations. This approach permits the mathematical description of a ful set of singularities that describes edges and other specific points of objects. The edges and specific points are the products of mapping smooth 3D surfaces, which can be described by a simple set of polynomials that are suitable for image compression and ATR.

  1. Surface-invariants in 2D classical Yang-Mills theory

    SciTech Connect

    Diaz, Rafael; Fuenmayor, E.; Leal, Lorenzo

    2006-03-15

    We study a method to obtain invariants under area-preserving diffeomorphisms associated to closed curves in the plane from classical Yang-Mills theory in two dimensions. Taking as starting point the Yang-Mills field coupled to nondynamical particles carrying chromo-electric charge, and by means of a perturbative scheme, we obtain the first two contributions to the on-shell action, which are area-invariants. A geometrical interpretation of these invariants is given.

  2. RGIsearch: A C++ program for the determination of renormalization group invariants

    NASA Astrophysics Data System (ADS)

    Verheyen, Rob

    2016-05-01

    RGIsearch is a C++ program that searches for invariants of a user-defined set of renormalization group equations. Based on the general shape of the β-functions of quantum field theories, RGIsearch searches for several types of invariants that require different methods. Additionally, it supports the computation of invariants up to two-loop level. A manual for the program is given, including the settings and set-up of the program, as well as a test case.

  3. Site change detection for RADIUS using thermophysical algebraic invariants

    NASA Astrophysics Data System (ADS)

    Nandhakumar, Nagaraj; Michel, Johnathan D.; Arnold, D. Gregory; Velten, Vincent J.; Tsihrintzis, George A.

    1996-02-01

    Research on the formulation of invariant features for model-based object recognition has mostly been concerned with geometric constructs either of the object or in the imaging process. We describe a new method that identifies invariant features computed from long wave infrared (LWIR) imagery. These features are called thermophysical invariants and depend primarily on the material composition of the object. Features are defined that are functions of only the thermophysical properties of the imaged materials. A physics-based model is derived from the principle of conservation of energy applied at the surface of the imaged regions. A linear form of the model is used to derive features that remain constant despite changes in scene parameters/driving conditions. Simulated and real imagery, as well as ground truth thermo-couple measurements were used to test the behavior of such features. A method of change detection in outdoor scenes is investigated. The invariants are used to detect when a hypothesized material no longer exists at a given location. For example, one can detect when a patch of clay/gravel has been replaced with concrete at a given site. This formulation yields promising results, but it can produce large values outside a normally small range. Therefore, we adopt a new feature classification algorithm based on the theories of symmetric alpha- stable (S(alpha) S) distributions. We show that symmetric, alpha-stable distributions model the thermophysical invariant data much better than the Gaussian model and suggest a classifier with superior performance.

  4. Machine learning strategies for systems with invariance properties

    NASA Astrophysics Data System (ADS)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  5. Assessment of Rainfall Estimates Using a Standard Z-R Relationship and the Probability Matching Method Applied to Composite Radar Data in Central Florida

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Duchon, Claude E.; Raghavan, Ravikumar; Goodman, Steven J.

    1996-01-01

    Precipitation estimates from radar systems are a crucial component of many hydrometeorological applications, from flash flood forecasting to regional water budget studies. For analyses on large spatial scales and long timescales, it is frequently necessary to use composite reflectivities from a network of radar systems. Such composite products are useful for regional or national studies, but introduce a set of difficulties not encountered when using single radars. For instance, each contributing radar has its own calibration and scanning characteristics, but radar identification may not be retained in the compositing procedure. As a result, range effects on signal return cannot be taken into account. This paper assesses the accuracy with which composite radar imagery can be used to estimate precipitation in the convective environment of Florida during the summer of 1991. Results using Z = 30OR(sup 1.4) (WSR-88D default Z-R relationship) are compared with those obtained using the probability matching method (PMM). Rainfall derived from the power law Z-R was found to he highly biased (+90%-l10%) compared to rain gauge measurements for various temporal and spatial integrations. Application of a 36.5-dBZ reflectivity threshold (determined via the PMM) was found to improve the performance of the power law Z-R, reducing the biases substantially to 20%-33%. Correlations between precipitation estimates obtained with either Z-R relationship and mean gauge values are much higher for areal averages than for point locations. Precipitation estimates from the PMM are an improvement over those obtained using the power law in that biases and root-mean-square errors are much lower. The minimum timescale for application of the PMM with the composite radar dataset was found to be several days for area-average precipitation. The minimum spatial scale is harder to quantify, although it is concluded that it is less than 350 sq km. Implications relevant to the WSR-88D system are

  6. Understanding Y haplotype matching probability.

    PubMed

    Brenner, Charles H

    2014-01-01

    The Y haplotype population-genetic terrain is better explored from a fresh perspective rather than by analogy with the more familiar autosomal ideas. For haplotype matching probabilities, versus for autosomal matching probabilities, explicit attention to modelling - such as how evolution got us where we are - is much more important while consideration of population frequency is much less so. This paper explores, extends, and explains some of the concepts of "Fundamental problem of forensic mathematics - the evidential strength of a rare haplotype match". That earlier paper presented and validated a "kappa method" formula for the evidential strength when a suspect matches a previously unseen haplotype (such as a Y-haplotype) at the crime scene. Mathematical implications of the kappa method are intuitive and reasonable. Suspicions to the contrary raised in rest on elementary errors. Critical to deriving the kappa method or any sensible evidential calculation is understanding that thinking about haplotype population frequency is a red herring; the pivotal question is one of matching probability. But confusion between the two is unfortunately institutionalized in much of the forensic world. Examples make clear why (matching) probability is not (population) frequency and why uncertainty intervals on matching probabilities are merely confused thinking. Forensic matching calculations should be based on a model, on stipulated premises. The model inevitably only approximates reality, and any error in the results comes only from error in the model, the inexactness of the approximation. Sampling variation does not measure that inexactness and hence is not helpful in explaining evidence and is in fact an impediment. Alternative haplotype matching probability approaches that various authors have considered are reviewed. Some are based on no model and cannot be taken seriously. For the others, some evaluation of the models is discussed. Recent evidence supports the adequacy of

  7. Shape-matching approach to content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Park, JongSeung; Oh, HwangSeok; Chang, Duk-Ho

    1999-08-01

    In this paper, to improve the retrieval effectiveness of a content-based image retrieval system, a shape-based object matching method is presented. A new skeleton structure is proposed as a shape representation. The skeleton structure represents an object in a hierarchical manner such that high-level nodes describe parts of coarse trunk of the object and low-level nodes describe fine details. Each low- level node refines the shape of the parent node. Most of the noise disturbances are limited to the bottom levels. The effect of boundary noise is reduce by decreasing weights on the bottom levels. To compute the similarity of two skeleton structures, we consider the best match of spine nodes, nodes in level one of the structure. Both moment invariants and Fourier descriptors are used to compute the similarities of sub-regions. We evaluated the retrieval accuracy and compared the result to that of other shape similarity measures. Experimental results showed that our system gives prominent accuracy in retrieval.

  8. Spatio-Temporal Matching for Human Pose Estimation in Video.

    PubMed

    Zhou, Feng; Torre, Fernando De la

    2016-08-01

    Detection and tracking humans in videos have been long-standing problems in computer vision. Most successful approaches (e.g., deformable parts models) heavily rely on discriminative models to build appearance detectors for body joints and generative models to constrain possible body configurations (e.g., trees). While these 2D models have been successfully applied to images (and with less success to videos), a major challenge is to generalize these models to cope with camera views. In order to achieve view-invariance, these 2D models typically require a large amount of training data across views that is difficult to gather and time-consuming to label. Unlike existing 2D models, this paper formulates the problem of human detection in videos as spatio-temporal matching (STM) between a 3D motion capture model and trajectories in videos. Our algorithm estimates the camera view and selects a subset of tracked trajectories that matches the motion of the 3D model. The STM is efficiently solved with linear programming, and it is robust to tracking mismatches, occlusions and outliers. To the best of our knowledge this is the first paper that solves the correspondence between video and 3D motion capture data for human pose detection. Experiments on the CMU motion capture, Human3.6M, Berkeley MHAD and CMU MAD databases illustrate the benefits of our method over state-of-the-art approaches. PMID:26863647

  9. Quantum Weyl invariance and cosmology

    NASA Astrophysics Data System (ADS)

    Dabholkar, Atish

    2016-09-01

    Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.

  10. Relativistic chaos is coordinate invariant.

    PubMed

    Motter, Adilson E

    2003-12-01

    The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents. PMID:14683170

  11. Invariant metrics for Hamiltonian systems

    SciTech Connect

    Rangarajan, G. ); Dragt, A.J. ); Neri, F. )

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs.

  12. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  13. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli

    PubMed Central

    Aumentado-Armstrong, Tristan; Metzen, Michael G.; Sproule, Michael K. J.; Chacron, Maurice J.

    2015-01-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems. PMID:26474395

  14. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    PubMed

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  15. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Whipple, E. C.

    1991-01-01

    The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.

  16. Machine learning strategies for systems with invariance properties

    DOE PAGESBeta

    Ling, Julia; Jones, Reese E.; Templeton, Jeremy Alan

    2016-05-06

    Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neuralmore » networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.« less

  17. Multi-clues image retrieval based on improved color invariants

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Li, Jian-Xun

    2012-05-01

    At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.

  18. Octupolar invariants for compact binaries on quasicircular orbits

    NASA Astrophysics Data System (ADS)

    Nolan, Patrick; Kavanagh, Chris; Dolan, Sam R.; Ottewill, Adrian C.; Warburton, Niels; Wardell, Barry

    2015-12-01

    We extend the gravitational self-force methodology to identify and compute new O (μ ) tidal invariants for a compact body of mass μ on a quasicircular orbit about a black hole of mass M ≫μ . In the octupolar sector we find seven new degrees of freedom, made up of 3 +3 conservative/dissipative `electric' invariants and 3 +1 `magnetic' invariants, satisfying 1 +1 and 1 +0 trace conditions. We express the new invariants for equatorial circular orbits on Kerr spacetime in terms of the regularized metric perturbation and its derivatives; and we evaluate the expressions in the Schwarzschild case. We employ both Lorenz gauge and Regge-Wheeler gauge numerical codes, and the functional series method of Mano, Suzuki and Takasugi. We present (i) highly-accurate numerical data and (ii) high-order analytical post-Newtonian expansions. We demonstrate consistency between numerical and analytical results, and prior work. We explore the application of these invariants in effective one-body models and binary black hole initial-data formulations.

  19. Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation

    DOEpatents

    Feve, Jean-Philippe; Kliner, Dahv A. V.; Farrow; Roger L.

    2011-02-01

    An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.

  20. New stereo matching algorithm

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser A.; Afifi, Hossam; Rubino, Gerardo

    1999-05-01

    This paper present a new algorithm for stereo matching. The main idea is to decompose the original problem into independent hierarchical and more elementary problems that can be solved faster without any complicated mathematics using BBD. To achieve that, we use a new image feature called 'continuity feature' instead of classical noise. This feature can be extracted from any kind of images by a simple process and without using a searching technique. A new matching technique is proposed to match the continuity feature. The new algorithm resolves the main disadvantages of feature based stereo matching algorithms.

  1. Limit cycles and conformal invariance

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas

    2013-01-01

    There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.

  2. A Local Galilean Invariant Thermostat.

    PubMed

    Groot, Robert D

    2006-05-01

    The thermostat introduced recently by Stoyanov and Groot (J. Chem. Phys. 2005, 122, 114112) is analyzed for inhomogeneous systems. This thermostat has one global feature, because the mean temperature used to drive the system toward equilibrium is a global average. The consequence is that the thermostat locally conserves energy rather than temperature. Thus, local temperature variations can be long-lived, although they do average out by thermal diffusion. To obtain a faster local temperature equilibration, a truly local thermostat must be introduced. To conserve momentum and, hence, to simulate hydrodynamic interactions, the thermostat must be Galilean invariant. Such a local Galilean invariant thermostat is studied here. It is shown that, by defining a local temperature on each particle, the ensemble is locally isothermal. The local temperature is obtained from a local square velocity average around each particle. Simulations on the ideal gas show that this local Nosé-Hoover algorithm has a similar artifact as dissipative particle dynamics:  the ideal gas pair correlation function is slightly distorted. This is attributed to the fact that the thermostat compensates fluctuations that are natural within a small cluster of particles. When the cutoff range rc for the square velocity average is increased, systematic errors decrease proportionally to rc(-)(3/2); hence, the systematic error can be made arbitrary small.

  3. Some estimation formulae for continuous time-invariant linear systems

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Sidhu, G. S.

    1975-01-01

    In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.

  4. Non-Abelian gauge invariance and the infrared approximation

    SciTech Connect

    Cho, H.h.; Fried, H.M.; Grandou, T.

    1988-02-15

    Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter in the strong-coupling, or chiral, limit and are compared to a previous calculation where gauge invariance was not manifest. Both constructions provide results which, in the chiral limit, differ from each other and from the previous estimation by an inessential, multiplicative scaling factor.

  5. Burning invariant manifolds in spatially disordered advection-reaction-diffusion

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; Solomon, Tom; Mahoney, John; Mitchell, Kevin

    2012-02-01

    We introduce burning invariant manifolds (BIMs) which act as barriers to front propagation, similar to the role played by invariant manifolds as barriers to passive transport in two-dimensional flows. We present experimental studies of BIMs in a spatially disordered, time-independent flow. We generate the flow with a magnetohydrodynamic technique that uses a DC current and a disordered pattern of permanent magnets. The velocity field is determined from this flow using particle tracking velocimetry, and reaction fronts are produced using the Ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical reaction. We use the experimental velocity field and a three-dimensional set of ODEs to predict from theory the location and orientation of BIMs. These predicted BIMs are found to match up well with the propagation barriers observed experimentally in the same flow using the BZ reaction. We explore the nature of BIMs as one-sided barriers, in contrast to invariant manifolds that act as barriers for passive transport in all directions. We also explore the role of projection singularities in the theory and how these singularities affect front behavior.

  6. LETTER: On the exactness of the cavity method for weighted b-matchings on arbitrary graphs and its relation to linear programs

    NASA Astrophysics Data System (ADS)

    Bayati, Mohsen; Borgs, Christian; Chayes, Jennifer; Zecchina, Riccardo

    2008-06-01

    We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We prove that, whenever the linear programing relaxation of the problem has no fractional solutions, then the cavity or belief propagation equations converge to the correct solution both for synchronous and asynchronous updating.

  7. Other Historical and Philosophical Perspectives on Invariance in Measurement

    ERIC Educational Resources Information Center

    Fisher, William P., Jr.

    2008-01-01

    Engelhard draws out the similarities and differences in Guttman's, Rasch's, and Mokken's perspectives on invariance in measurement. He provides a valuable model in evaluating the extent to which different measurement theories and methods serve as a basis for achieving the fundamental goals of quantification. The full extent of this point will…

  8. Spectral Analysis Of Linear, Shift-Invariant Interpolants

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.; Park, Stephen K.

    1990-01-01

    Method of analysis provides quantitative measure of reconstruction and interpolation performances of linear, shift-invariant interpolants. Criterion of performance based upon mean-square error of difference between sampled and reconstructed functions. Applicable to reconstruction algorithms used in processing of signals and images and to types of interpolants used in numerical analysis, computer-aided design, and computer graphics.

  9. Stereo matching using Hebbian learning.

    PubMed

    Pajares, G; Cruz, J M; Lopez-Orozco, J A

    1999-01-01

    This paper presents an approach to the local stereo matching problem using edge segments as features with several attributes. We have verified that the differences in attributes for the true matches cluster in a cloud around a center. The correspondence is established on the basis of the minimum distance criterion, computing the Mahalanobis distance between the difference of the attributes for a current pair of features and the cluster center (similarity constraint). We introduce a learning strategy based on the Hebbian Learning to get the best cluster center. A comparative analysis among methods without learning and with other learning strategies is illustrated. PMID:18252332

  10. DOE Matching Grant Program

    SciTech Connect

    Dr Marvin Adams

    2002-03-01

    OAK 270 - The DOE Matching Grant Program provided $50,000.00 to the Dept of N.E. at TAMU, matching a gift of $50,000.00 from TXU Electric. The $100,000.00 total was spent on scholarships, departmental labs, and computing network.

  11. Multiple-invariance esprit for DOA estimation

    NASA Astrophysics Data System (ADS)

    Linczuk, Maciej

    2004-07-01

    We consider the problem of estimating the direction of arrival (DOA) of multiple sources in the presence of noise. First, we introduce a narrowband signal model disturbed by white, Gaussian noise. This signal is detected by Uniform Linear Antenna Array -- ULA. Next, we discuss some properties of this signal model and its cross correlation matrix. Using this properties we introduce SINGLE SHIFT INVARIANCE algorithm for DOA estimation: ESPRIT. Next, we describe an idea of MULTIPLE INVARIANCE algorithm based on MULTIPLE INVARIANCE ESPRIT. In the last section we examine some statistical properties of both algorithms: ESPRIT and MULTIPLE INVARIANCE ESPRIT.

  12. Differential Invariants of the (2+1)-Dimensional Breaking Soliton Equation

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Chen, Yong

    2016-09-01

    We construct the differential invariants of Lie symmetry pseudogroups of the (2+1)-dimensional breaking soliton equation and analyze the structure of the induced differential invariant algebra. Their syzygies and recurrence relations are classified. In addition, a moving frame and the invariantization of the breaking soliton equation are also presented. The algorithms are based on the method of equivariant moving frames.

  13. Localization Computation of One-Point Disk Invariants of Projective Calabi-Yau Complete Intersections

    NASA Astrophysics Data System (ADS)

    Popa, Alexandra

    2014-12-01

    We define one-point disk invariants of a smooth projective Calabi-Yau complete intersection in the presence of an anti-holomorphic involution via localization. We show that these invariants are rational numbers and obtain a formula for them which confirms, in particular, a conjecture by Jinzenji-Shimizu [(Int J Geom Method M 11(1):1456005, 2014), Conjecture 1].

  14. Block Matching for Object Tracking

    SciTech Connect

    Gyaourova, A; Kamath, C; Cheung, S

    2003-10-13

    Models which describe road traffic patterns can be helpful in detection and/or prevention of uncommon and dangerous situations. Such models can be built by the use of motion detection algorithms applied to video data. Block matching is a standard technique for encoding motion in video compression algorithms. We explored the capabilities of the block matching algorithm when applied for object tracking. The goal of our experiments is two-fold: (1) to explore the abilities of the block matching algorithm on low resolution and low frame rate video and (2) to improve the motion detection performance by the use of different search techniques during the process of block matching. Our experiments showed that the block matching algorithm yields good object tracking results and can be used with high success on low resolution and low frame rate video data. We observed that different searching methods have small effect on the final results. In addition, we proposed a technique based on frame history, which successfully overcame false motion caused by small camera movements.

  15. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  16. The matching law

    PubMed Central

    Killeen, Peter

    1972-01-01

    The matching law may be viewed either as an empirical generalization, and therby subject to disproof, or as part of a system of equations used to define the utility (“value”) of a reinforcer. In the latter case it is tautologous, and not subject to disproof within the defining context. A failure to obtain matching will most often be a signal that the independent variables have not been properly scaled. If, however, the proper transformations have been made on the independent variables, and matching is not obtained, the experimental paradigm may be outside the purview of the matching law. At that point, reinterpretations or revisions of the law are called for. The theoretical matching law is but one of many possible ways to define utility, and it may eventually be rejected in favor of a more useful definition. PMID:16811604

  17. Novel invariant Zernike moments as a shape descriptor for machine vision

    NASA Astrophysics Data System (ADS)

    Cao, Danhua; Jiang, Shixiong; Wu, Yubin; Zhu, Song

    2013-12-01

    We present a way to construct a complete set of scaling rotation and translation invariants extract directly from Zernike moments. Zernike moment can be constructed by Radial moment. In our method in order to construct invariant Zernike moment is to achieve invariant Radial moment which is component of Zernike moment. We use matrix form to denote relationship between Radial and Zernike moment, which makes derivation more comprehensible. The translation invariant Radial moment is first introduced, for it is most complicated part of all the three invariant. Rotation and scaling invariant Radial moment is achieved by normalizing the factor caused by rotation and scaling. The form of invariant radial moment is to combine three parts of invariant. Some experiment has done to test the performance of invariance. In this experiment we take an image library containing 23,329 files which are built by translation rotation and zoom in out of one origin Latin character image. Most of the value of standard deviation ratio by mean of proposed moments is nearly 1%. In addition, retrieval experiment is to test the discrimination ability. MPEG-7 CE shape1 - Part A library is taken in this experiment. The recall rate in part A1 is 96.6% and is 100% in part A2.

  18. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  19. Bacterial phenotype identification using Zernike moment invariants

    NASA Astrophysics Data System (ADS)

    Bayraktar, Bulent; Banada, Padmapriya P.; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul; Rajwa, Bartek

    2006-02-01

    Pathogenic bacterial contamination in food products is costly to the public and to industry. Traditional methods for detection and identification of major food-borne pathogens such as Listeria monocytogenes typically take 3-7 days. Herein, the use of optical scattering for rapid detection, characterization, and identification of bacteria is proposed. Scatter patterns produced by the colonies are recognized without the need to use any specific model of light scattering on biological material. A classification system was developed to characterize and identify the scatter patterns obtained from colonies of various species of Listeria. The proposed classification algorithm is based on Zernike moment invariants (features) calculated from the scatter images. It has also been demonstrated that even a simplest approach to multivariate analysis utilizing principal component analysis paired with clustering or linear discriminant analysis can be successfully used to discriminate and classify feature vectors computed from the bacterial scatter patterns.

  20. Criticality in Translation-Invariant Parafermion Chains

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yang, Shuo; Tu, Hong-Hao; Cheng, Meng

    2014-03-01

    Parafermionic zero modes have been recently proposed to emerge at certain topological defects in Abelian fractional quantum Hall systems. In this work, we investigate the phase diagram of a translationally invariant Z3 parafermion chain, with nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a Z3 Potts model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation. The phase diagram is obtained numerically via accurate density matrix renormalization group method, and six gapless phases with central charges being 4/5, 1 or 2 are found. By checking the energy derivatives, we observe continuous phase transitions between c = 1 and c = 2 phases, while the phase transition between c = 4 / 5 and c = 1 is conjectured to be of Kosterlitz-Thouless type.

  1. Asymptotic invariants of homotopy groups

    NASA Astrophysics Data System (ADS)

    Manin, Fedor

    We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.

  2. Real-time pose invariant logo and pattern detection

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  3. Face Recognition in Unrestricted Posture using Invariant Image Information

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Jun'Ichi; Seike, Hiroshi

    In face recognition (face verification, face expression etc.), a full face or near full face is used and the face image is about fixed size in general. Especially, eyes, nose and mouth are usually located from the upper part to the lower part in the input image. But, in order to recognize the face in any posture, it is important to remove an influence caused by the position and three-dimensional turning of the face. The authors propose a method for detecting the face position in unknown posture, using an invariant image information. First, we show that the spectrum, which is obtained by polar transform and Fourier transform of the image, is shift-invariant and rotation-invariant, and is shift-invariant toward depth. Next, we describe on the detection of the face position in unrestricted posture, using the calculation of correlation of the spectrum. In this paper, the proposal method is explained and the experimental result, which is performed to verify the efficacy of the method, is demonstrated.

  4. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  5. Latent fingerprint matching.

    PubMed

    Jain, Anil K; Feng, Jianjiang

    2011-01-01

    Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

  6. Optimal matched filter design for ultrasonic NDE of coarse grain materials

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2016-02-01

    Coarse grain materials are widely used in a variety of key industrial sectors like energy, oil and gas, and aerospace due to their attractive properties. However, when these materials are inspected using ultrasound, the flaw echoes are usually contaminated by high-level, correlated grain noise originating from the material microstructures, which is time-invariant and demonstrates similar spectral characteristics as flaw signals. As a result, the reliable inspection of such materials is highly challenging. In this paper, we present a method for reliable ultrasonic non-destructive evaluation (NDE) of coarse grain materials using matched filters, where the filter is designed to approximate and match the unknown defect echoes, and a particle swarm optimization (PSO) paradigm is employed to search for the optimal parameters in the filter response with an objective to maximise the output signal-to-noise ratio (SNR). Experiments with a 128-element 5MHz transducer array on mild steel and INCONEL Alloy 617 samples are conducted, and the results confirm that the SNR of the images is improved by about 10-20 dB if the optimized matched filter is applied to all the A-scan waveforms prior to image formation. Furthermore, the matched filter can be implemented in real-time with low extra computational cost.

  7. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication

    NASA Astrophysics Data System (ADS)

    Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido

    2013-01-01

    Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.

  8. Contact-free palm-vein recognition based on local invariant features.

    PubMed

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.

  9. Contact-Free Palm-Vein Recognition Based on Local Invariant Features

    PubMed Central

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176

  10. Quantum image matching

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dang, Yijie; Wang, Jian

    2016-09-01

    Quantum image processing (QIP) means the quantum-based methods to speed up image processing algorithms. Many quantum image processing schemes claim that their efficiency is theoretically higher than their corresponding classical schemes. However, most of them do not consider the problem of measurement. As we all know, measurement will lead to collapse. That is to say, executing the algorithm once, users can only measure the final state one time. Therefore, if users want to regain the results (the processed images), they must execute the algorithms many times and then measure the final state many times to get all the pixels' values. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image matching algorithm. Unlike most of the QIP algorithms, our scheme interests only one pixel (the target pixel) instead of the whole image. It modifies the probability of pixels based on Grover's algorithm to make the target pixel to be measured with higher probability, and the measurement step is executed only once. An example is given to explain the algorithm more vividly. Complexity analysis indicates that the quantum scheme's complexity is O(2n) in contradistinction to the classical scheme's complexity O(2^{2n+2m}), where m and n are integers related to the size of images.

  11. Cross-National Invariance of Children's Temperament

    ERIC Educational Resources Information Center

    Benson, Nicholas; Oakland, Thomas; Shermis, Mark

    2009-01-01

    Measurement of temperament is an important endeavor with international appeal; however, cross-national invariance (i.e., equivalence of test scores across countries as established by empirical comparisons) of temperament tests has not been established in published research. This study examines the cross-national invariance of school-aged…

  12. Invariance or Noninvariance, that Is the Question

    ERIC Educational Resources Information Center

    Widaman, Keith F.; Grimm, Kevin J.

    2009-01-01

    Nesselroade, Gerstorf, Hardy, and Ram developed a new and interesting way to enforce invariance at the second-order level in P-technique models, while allowing first-order structure to stray from invariance. We discuss our concerns with this approach under the headings of falsifiability, the nature of manifest variables included in models, and…

  13. Multipartite invariant states. I. Unitary symmetry

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2006-06-15

    We propose a natural generalization of bipartite Werner and isotropic states to multipartite systems consisting of an arbitrary even number of d-dimensional subsystems (qudits). These generalized states are invariant under the action of local unitary operations. We study basic properties of multipartite invariant states and present necessary and sufficient separability criteria.

  14. Factorial invariance in multilevel confirmatory factor analysis.

    PubMed

    Ryu, Ehri

    2014-02-01

    This paper presents a procedure to test factorial invariance in multilevel confirmatory factor analysis. When the group membership is at level 2, multilevel factorial invariance can be tested by a simple extension of the standard procedure. However level-1 group membership raises problems which cannot be appropriately handled by the standard procedure, because the dependency between members of different level-1 groups is not appropriately taken into account. The procedure presented in this article provides a solution to this problem. This paper also shows Muthén's maximum likelihood (MUML) estimation for testing multilevel factorial invariance across level-1 groups as a viable alternative to maximum likelihood estimation. Testing multilevel factorial invariance across level-2 groups and testing multilevel factorial invariance across level-1 groups are illustrated using empirical examples. SAS macro and Mplus syntax are provided.

  15. Geometric invariance of compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  16. Scale invariance and universality of economic fluctuations

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.

    2000-08-01

    In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.

  17. The molecular matching problem

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1993-01-01

    Molecular chemistry contains many difficult optimization problems that have begun to attract the attention of optimizers in the Operations Research community. Problems including protein folding, molecular conformation, molecular similarity, and molecular matching have been addressed. Minimum energy conformations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we focus here on a molecular structure matching (MSM) problem.

  18. Renormalization-group-invariant partial sum of Feynman diagrams and its application to phase transitions

    NASA Astrophysics Data System (ADS)

    Hong, Seok-In

    1995-08-01

    The phase transition of the three-dimensional (3D) φ4 theory is considered in terms of the two-dimensional (2D) effective φ4 theory for sufficiently high temperatures. Instead of the effective potential, we use the renormalization-group-(RG-) invariant mass parameter Γ(2)(p=0) directly. For practical use, we find that superdaisy diagrams are a RG-invariant subset of Feynman diagrams for Γ(2)(p=0). The parameters of the effective theory are related to the original ones by certain matching conditions. The resulting critical temperature is the same as that obtained by Einhorn and Jones.

  19. Distinctive Feature Extraction for Indian Sign Language (ISL) Gesture using Scale Invariant Feature Transform (SIFT)

    NASA Astrophysics Data System (ADS)

    Patil, Sandeep Baburao; Sinha, G. R.

    2016-07-01

    India, having less awareness towards the deaf and dumb peoples leads to increase the communication gap between deaf and hard hearing community. Sign language is commonly developed for deaf and hard hearing peoples to convey their message by generating the different sign pattern. The scale invariant feature transform was introduced by David Lowe to perform reliable matching between different images of the same object. This paper implements the various phases of scale invariant feature transform to extract the distinctive features from Indian sign language gestures. The experimental result shows the time constraint for each phase and the number of features extracted for 26 ISL gestures.

  20. Stereo Correspondence Using Moment Invariants

    NASA Astrophysics Data System (ADS)

    Premaratne, Prashan; Safaei, Farzad

    Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.

  1. Latent palmprint matching.

    PubMed

    Jain, Anil K; Feng, Jianjiang

    2009-06-01

    The evidential value of palmprints in forensic applications is clear as about 30 percent of the latents recovered from crime scenes are from palms. While biometric systems for palmprint-based personal authentication in access control type of applications have been developed, they mostly deal with low-resolution (about 100 ppi) palmprints and only perform full-to-full palmprint matching. We propose a latent-to-full palmprint matching system that is needed in forensic applications. Our system deals with palmprints captured at 500 ppi (the current standard in forensic applications) or higher resolution and uses minutiae as features to be compatible with the methodology used by latent experts. Latent palmprint matching is a challenging problem because latent prints lifted at crime scenes are of poor image quality, cover only a small area of the palm, and have a complex background. Other difficulties include a large number of minutiae in full prints (about 10 times as many as fingerprints), and the presence of many creases in latents and full prints. A robust algorithm to reliably estimate the local ridge direction and frequency in palmprints is developed. This facilitates the extraction of ridge and minutiae features even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture distinctive information around each minutia and an alignment-based minutiae matching algorithm is used to match two palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latent palmprints) are matched to a background database of 10,200 full palmprints to test the proposed system. Despite the inherent difficulty of latent-to-full palmprint matching, rank-1 recognition rates of 78.7 and 69 percent, respectively, were achieved in searching live-scan partial palmprints and latent palmprints against the background database.

  2. A rotation-translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening

    PubMed Central

    2014-01-01

    Background Measures of similarity for chemical molecules have been developed since the dawn of chemoinformatics. Molecular similarity has been measured by a variety of methods including molecular descriptor based similarity, common molecular fragments, graph matching and 3D methods such as shape matching. Similarity measures are widespread in practice and have proven to be useful in drug discovery. Because of our interest in electrostatics and high throughput ligand-based virtual screening, we sought to exploit the information contained in atomic coordinates and partial charges of a molecule. Results A new molecular descriptor based on partial charges is proposed. It uses the autocorrelation function and linear binning to encode all atoms of a molecule into two rotation-translation invariant vectors. Combined with a scoring function, the descriptor allows to rank-order a database of compounds versus a query molecule. The proposed implementation is called ACPC (AutoCorrelation of Partial Charges) and released in open source. Extensive retrospective ligand-based virtual screening experiments were performed and other methods were compared with in order to validate the method and associated protocol. Conclusions While it is a simple method, it performed remarkably well in experiments. At an average speed of 1649 molecules per second, it reached an average median area under the curve of 0.81 on 40 different targets; hence validating the proposed protocol and implementation. PMID:24887178

  3. An Efficient Wide-Baseline Dense Matching Descriptor

    NASA Astrophysics Data System (ADS)

    Wan, Yanli; Miao, Zhenjiang; Tang, Zhen; Wan, Lili; Wang, Zhe

    This letter proposes an efficient local descriptor for wide-baseline dense matching. It improves the existing Daisy descriptor by combining intensity-based Haar wavelet response with a new color-based ratio model. The color ratio model is invariant to changes of viewing direction, object geometry, and the direction, intensity and spectral power distribution of the illumination. The experiments show that our descriptor has high discriminative power and robustness.

  4. Reconsideration of methods and standards: Digestion of diaper wipes and use of matrix-matched calibration standards for dust lead analysis

    SciTech Connect

    Orlova, A.O.; Losh, L.N.; Bannon, D.I.; Lees, P.S.J.; Chisolm, J.J. Jr.; Farfel, M.R.

    1999-12-15

    Diaper wipes are widely used for sampling residential dust for lead analysis. A thicker type of diaper wipe was incompletely digested and had low recoveries of lead on stock solution spikes using existing protocols. A modified protocol was applied to various quality control samples prepared with thicker diaper wipes in 134 batches of field samples. Modifications included a larger reagent volume, more concentrated acid, 3 h on the hot plate, and squeezing wipe residues during filtration. Seventeen batches were reanalyzed using matrix-matched standards. Acceptable lead recoveries were obtained for stock solution spikes (88%) and spikes prepared with leaded dust-SRM 2582 (88%), SRM 2589 (96%), and CRMO 14-050 (99%). Matrix-matched calibration standards increased mean lead recoveries by an additional 8%. Their protocol may provide a basis for a standard operational procedure for wipe digestion and analysis. Differences in estimates of dust lead loadings attributable to the type of wipe and to sample preparation and calibration procedures have implications for risk assessment, clearance testing, and comparability of laboratory data. Reconsideration of current protocols for wipe materials, wipe digestion, and judging laboratory performance is warranted.

  5. Waveguide invariant broadband target detection and reverberation estimation.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2008-11-01

    Reverberation often limits the performance of active sonar systems. In particular, backscatter off of a rough ocean floor can obscure target returns and/or large bottom scatterers can be easily confused with water column targets of interest. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading caused by multipath propagation. This paper presents an alternative to conventional reverberation estimation motivated by striations observed in time-frequency analysis of active sonar data. A mathematical model for these reverberation striations is derived using waveguide invariant theory. This model is then used to motivate waveguide invariant reverberation estimation which involves averaging the time-frequency spectrum along these striations. An evaluation of this reverberation estimate using real Mediterranean data is given and its use in a generalized likelihood ratio test based CFAR detector is demonstrated. CFAR detection using waveguide invariant reverberation estimates is shown to outperform conventional cell-averaged and frequency-invariant CFAR detection methods in shallow water environments producing strong reverberation returns which exhibit the described striations.

  6. Feedback-Driven Dynamic Invariant Discovery

    NASA Technical Reports Server (NTRS)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  7. Invariant variational structures on fibered manifolds

    NASA Astrophysics Data System (ADS)

    Krupka, Demeter

    2015-12-01

    The aim of this paper is to present a relatively complete theory of invariance of global, higher-order integral variational functionals in fibered spaces, as developed during a few past decades. We unify and extend recent results of the geometric invariance theory; new results on deformations of extremals are also included. We show that the theory can be developed by means of the general concept of invariance of a differential form in geometry, which does not require different ad hoc modifications. The concept applies to invariance of Lagrangians, source forms and Euler-Lagrange forms, as well as to extremals of the given variational functional. Equations for generators of invariance transformations of the Lagrangians and the Euler-Lagrange forms are characterized in terms of Lie derivatives. As a consequence of invariance, we derive the global Noether's theorem on existence of conserved currents along extremals, and discuss the meaning of conservation equations. We prove a theorem describing extremals, whose deformations by a vector field are again extremals. The general settings and structures we use admit extension of the global invariance theory to variational principles in physics, especially in field theory.

  8. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  9. A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration

    PubMed Central

    Chen, Jian; Tian, Jie; Lee, Noah; Zheng, Jian; Smith, R. Theodore; Laine, Andrew F.

    2011-01-01

    Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency. PMID:20176538

  10. A partial intensity invariant feature descriptor for multimodal retinal image registration.

    PubMed

    Chen, Jian; Tian, Jie; Lee, Noah; Zheng, Jian; Smith, R Theodore; Laine, Andrew F

    2010-07-01

    Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.

  11. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  12. Protein Surface Characterization Using an Invariant Descriptor

    PubMed Central

    Abu Deeb, Zainab; Adjeroh, Donald A.; Jiang, Bing-Hua

    2011-01-01

    Aim. To develop a new invariant descriptor for the characterization of protein surfaces, suitable for various analysis tasks, such as protein functional classification, and search and retrieval of protein surfaces over a large database. Methods. We start with a local descriptor of selected circular patches on the protein surface. The descriptor records the distance distribution between the central residue and the residues within the patch, keeping track of the number of particular pairwise residue cooccurrences in the patch. A global descriptor for the entire protein surface is then constructed by combining information from the local descriptors. Our method is novel in its focus on residue-specific distance distributions, and the use of residue-distance co-occurrences as the basis for the proposed protein surface descriptors. Results. Results are presented for protein classification and for retrieval for three protein families. For the three families, we obtained an area under the curve for precision and recall ranging from 0.6494 (without residue co-occurrences) to 0.6683 (with residue co-occurrences). Large-scale screening using two other protein families placed related family members at the top of the rank, with a number of uncharacterized proteins also retrieved. Comparative results with other proposed methods are included. PMID:22144981

  13. Multiperiod Maximum Loss is time unit invariant.

    PubMed

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant. PMID:27563531

  14. Comment on ``Pairing interaction and Galilei invariance''

    NASA Astrophysics Data System (ADS)

    Arias, J. M.; Gallardo, M.; Gómez-Camacho, J.

    1999-05-01

    A recent article by Dussel, Sofia, and Tonina studies the relation between Galilei invariance and dipole energy weighted sum rule (EWSR). The authors find that the pairing interaction, which is neither Galilei nor Lorentz invariant, produces big changes in the EWSR and in effective masses of the nucleons. They argue that these effects of the pairing force could be realistic. In this Comment we stress the validity of Galilei invariance to a very good approximation in this context of low-energy nuclear physics and show that the effective masses and the observed change in the EWSR for the electric dipole operator relative to its classical value are compatible with this symmetry.

  15. Introducing a Method for Calculating the Allocation of Attention in a Cognitive “Two-Armed Bandit” Procedure: Probability Matching Gives Way to Maximizing

    PubMed Central

    Heyman, Gene M.; Grisanzio, Katherine A.; Liang, Victor

    2016-01-01

    We tested whether principles that describe the allocation of overt behavior, as in choice experiments, also describe the allocation of cognition, as in attention experiments. Our procedure is a cognitive version of the “two-armed bandit choice procedure.” The two-armed bandit procedure has been of interest to psychologistsand economists because it tends to support patterns of responding that are suboptimal. Each of two alternatives provides rewards according to fixed probabilities. The optimal solution is to choose the alternative with the higher probability of reward on each trial. However, subjects often allocate responses so that the probability of a response approximates its probability of reward. Although it is this result which has attracted most interest, probability matching is not always observed. As a function of monetary incentives, practice, and individual differences, subjects tend to deviate from probability matching toward exclusive preference, as predicted by maximizing. In our version of the two-armed bandit procedure, the monitor briefly displayed two, small adjacent stimuli that predicted correct responses according to fixed probabilities, as in a two-armed bandit procedure. We show that in this setting, a simple linear equation describes the relationship between attention and correct responses, and that the equation’s solution is the allocation of attention between the two stimuli. The calculations showed that attention allocation varied as a function of the degree to which the stimuli predicted correct responses. Linear regression revealed a strong correlation (r = 0.99) between the predictiveness of a stimulus and the probability of attending to it. Nevertheless there were deviations from probability matching, and although small, they were systematic and statistically significant. As in choice studies, attention allocation deviated toward maximizing as a function of practice, feedback, and incentives. Our approach also predicts the

  16. Connection between quantum-mechanical and classical time evolution via a dynamical invariant

    SciTech Connect

    Schuch, Dieter; Moshinsky, Marcos

    2006-06-15

    The time evolution of a quantum system with at most quadratic Hamiltonian is described with the help of different methods, namely the time-dependent Schroedinger equation, the time propagator or Feynman kernel, and the Wigner function. It is shown that all three methods are connected via a dynamical invariant, the so-called Ermakov invariant. This invariant introduces explicitly the quantum aspect via the position uncertainty and its possible time dependence. The importance of this aspect, also for the difference between classical and quantum dynamics, and in particular the role of the initial position uncertainty is investigated.

  17. Effect of familiarity of Multielement matching.

    PubMed

    Regan, J E

    1981-12-01

    The effect of stimulus familiarity on physical matching was examined in three experiments. In Experiment 1, subjects matched English and Armenian letters. String length varied from one to three items. Familiarity had no effect when two single items were compared, but it had increasingly marked effects with two- and three-item strings. The pattern of same/different responses and serial position effects implicated the comparison process for three-item matches. Experiment 2 varied stimulus onset asynchrony to assess the contribution of familiarity to speeding up encoding and/or to maintaining a representation in memory; only two-item strings were used. Encoding Armenian letters required more time than encoding English, but there was no additional decrement due to holding the representation in memory. In Experiment 3, one group of subject learned names for the Armenian letters and another group practiced drawing the letters. The availability of names did not decrease the familiarity effect. These data suggest that familiarity invariably has a strong effect on the encoding process and influences comparison processes when task requirements are sufficiently demanding.

  18. Tumor Sensitive Matching Flow: A Variational Method to Detecting and Segmenting Perihepatic and Perisplenic Ovarian Cancer Metastases on Contrast-Enhanced Abdominal CT

    PubMed Central

    Liu, Jianfei; Wang, Shijun; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.

    2015-01-01

    Accurate automated segmentation and detection of ovarian cancer metastases may improve the diagnosis and prognosis of women with ovarian cancer. In this paper, we focus on an important subset of ovarian cancer metastases that spread to the surface of the liver and spleen. Automated ovarian cancer metastasis detection and segmentation are very challenging problems to solve. These metastases have a wide variety of shapes and intensity values similar to that of the liver, spleen and adjacent soft tissues. To address these challenges, this paper presents a variational approach, called tumor sensitive matching flow (TSMF), to detect and segment perihepatic and perisplenic ovarian cancer metastases. TSMF is an image motion field that only highlights metastasis-caused deformation on the surface of liver and spleen while dampening all other image motion between the patient image and the atlas image. It provides several benefits: 1) juxtaposing the roles of image matching and metastasis classification within a variational framework; 2) only requiring a small set of features from a few patient images to train a metastasis-likelihood function for classification; and 3) dynamically creating shape priors for geodesic active contour (GAC) to prevent inaccurate metastasis segmentation. We compared the TSMF to an organ surface partition (OSP) baseline approach. At a false positive rate of 2 per patient, the sensitivities of TSMF and OSP were 87% and 17% (p < 0.001), respectively. In a comparison of the segmentations conducted using TSMF-constrained GAC and conventional GAC, the volume overlap rates were 73±9% and 46±26% (p < 0.001) and average surface distances were 2.4±1.2mm and 7.0±6.0mm (p < 0.001), respectively. These encouraging results demonstrate that TSMF could accurately detect and segment ovarian cancer metastases. PMID:24835180

  19. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  20. The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

    PubMed Central

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980

  1. The existence of periodic orbits and invariant tori for some 3-dimensional quadratic systems.

    PubMed

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ(3).

  2. All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra

    SciTech Connect

    Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )

    1992-12-10

    In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.

  3. The existence of periodic orbits and invariant tori for some 3-dimensional quadratic systems.

    PubMed

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ(3). PMID:24982980

  4. Topological invariants and renormalization of Lorenz maps

    NASA Astrophysics Data System (ADS)

    Silva, Luis; Sousa Ramos, J.

    2002-02-01

    We prove that the invariants of the topological semiconjugation of Lorenz maps with β-transformations remains constant on the renormalization archipelagoes and analyze how the dynamics on the archipelagoes depends on its structure.

  5. Invariance in the isoheptanes of petroleum

    SciTech Connect

    Mango, F.D.

    1987-07-31

    Four isoheptanes in petroleum display a remarkable invariance in a ratio of sums of concentrations. The isoheptanes are not at thermodynamic equilibrium, nor are they fixed to some constant composition. The four isomers display coherent change in relative amounts but maintain invariance in the ratio of sums. Within sets of genetically related petroleum samples, invariance reaches levels that approach the limits of their analytical precision. The invariance is inconsistent with a chemical origin that involves the thermal fragmentation of natural products or their derivatives. It suggests a reaction process at steady state, in which relative rates of product formation are constant. A mechanism is proposed in which the four isoheptanes are formed pairwise and sequentially through two intermediates in a catalytic process that operates at steady state. 13 references, 3 figures, 1 table.

  6. Scattering matrix invariants of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Fulga, I. C.; Maksymenko, M.

    2016-02-01

    Similar to static systems, periodically driven systems can host a variety of topologically nontrivial phases. Unlike the case of static Hamiltonians, the topological indices of bulk Floquet bands may fail to describe the presence and robustness of edge states, prompting the search for new invariants. We develop a unified description of topological phases and their invariants in driven systems by using scattering theory. We show that scattering matrix invariants correctly describe the topological phase, even when all bulk Floquet bands are trivial. Additionally, we use scattering theory to introduce and analyze new periodically driven phases, such as weak topological Floquet insulators, for which invariants were previously unknown. We highlight some of their similarities with static systems, including robustness to disorder, as well as some of the features unique to driven systems, showing that the weak phase may be destroyed by breaking translational symmetry not in space, but in time.

  7. The Invar tensor package: Differential invariants of Riemann

    NASA Astrophysics Data System (ADS)

    Martín-García, J. M.; Yllanes, D.; Portugal, R.

    2008-10-01

    the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.

  8. MATCH PLAY, SOAP HOPE.

    PubMed

    Rigby, Perry G; Gururaja, Ramnarayan Paragi; Hilton, Charles

    2015-01-01

    The Medical Education Commission (MEC) has published Graduate Medical Education (GME) data since 1997, including the National Residency Matching Program (NRMP) and the Supplemental Offer and Acceptance Program (SOAP), and totals all GME in Louisiana for annual publication. The NRMP provides the quotas and filled positions by institution. Following the NRMP, SOAP attempts to place unmatched candidates with slots that are unfilled. The NRMP Fellowship match also comes close to filling quotas and has a significant SOAP. Thus, an accurate number of total filled positions is best obtained in July of the same match year. All GME programs in Louisiana are represented for 2014, and the number trend 2005 to 2014 shows that the only dip was post-Katrina in 2005-2006. The March match after SOAP 2014 is at the peak for both senior medical students and post graduate year one (PGY-1) residents. A significant and similar number stay in Louisiana GME institutions after graduation. Also noteworthy is that a lower percentage are staying in state, due to increased enrollment in all Louisiana medical schools. PMID:27159458

  9. Derivatives of Matching.

    ERIC Educational Resources Information Center

    Herrnstein, R. J.

    1979-01-01

    The matching law for reinforced behavior solves a differential equation relating infinitesimal changes in behavior to infinitesimal changes in reinforcement. The equation expresses plausible conceptions of behavior and reinforcement, yields a simple nonlinear operator model for acquisition, and suggests a alternative to the economic law of…

  10. Is Matching Innate?

    ERIC Educational Resources Information Center

    Gallistel, C. R.; King, Adam Philip; Gottlieb, Daniel; Balci, Fuat; Papachristos, Efstathios B.; Szalecki, Matthew; Carbone, Kimberly S.

    2007-01-01

    Experimentally naive mice matched the proportions of their temporal investments (visit durations) in two feeding hoppers to the proportions of the food income (pellets per unit session time) derived from them in three experiments that varied the coupling between the behavioral investment and food income, from no coupling to strict coupling.…

  11. On Lorentz invariants in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  12. Galilean invariance at quantum Hall edge

    NASA Astrophysics Data System (ADS)

    Moroz, Sergej; Hoyos, Carlos; Radzihovsky, Leo

    2015-05-01

    We construct the theory of a chiral Luttinger liquid that lives on the boundary of a Galilean invariant quantum Hall fluid. In contrast to previous studies, Galilean invariance of the total (bulk plus edge) theory is guaranteed. We consider electromagnetic response at the edge and calculate momentum- and frequency-dependent electric conductivity and argue that its experimental measurement can provide a new means to determine the "shift" and bulk Hall viscosity.

  13. Computer calculation of Witten's 3-manifold invariant

    NASA Astrophysics Data System (ADS)

    Freed, Daniel S.; Gompf, Robert E.

    1991-10-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.

  14. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  15. Matching Shapes Using Local Descriptors

    SciTech Connect

    White, R; Newsam, S; Kamath, C

    2004-08-13

    We present a method for comparing shapes of grayscale images in noisy circumstances. By establishing correspondences in a new image with a shape model, we can estimate a transformation between the new region and the model. Using a cost function for deviations from the model, we can rank resulting shape matches. We compare two separate distinct region detectors: Scale Saliency and difference of gaussians. We show that this method is successful in comparing images of fluid mixing under anisotropic geometric distortions and additive gaussian noise. Scale Saliency outperforms the difference of Gaussians in this context.

  16. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  17. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  18. Quantitative characterization and comparison of precipitate and grain shape in Nickel -base superalloys using moment invariants

    NASA Astrophysics Data System (ADS)

    Callahan, Patrick Gregory

    A fundamental objective of materials science and engineering is to understand the structure-property-processing-performance relationship. We need to know the true 3-D microstructure of a material to understand certain geometric properties of a material, and thus fulfill this objective. Focused ion beam (FIB) serial sectioning allows us to find the true 3-D microstructure of Ni-base superalloys. Once the true 3-D microstructure is obtained, an accurate quantitative description and characterization of precipitate and/or grain shapes is needed to understand the microstructure and describe it in an unbiased way. In this thesis, second order moment invariants, the shape quotient Q, a convexity measure relating the volume of an object to the volume of its convex hull, V/Vconv, and Gaussian curvature have been used to compare an experimentally observed polycrystalline IN100 microstructure to three synthetic microstructures. The three synthetic microstructures used different shape classes to produce starting grain shapes. The three shape classes are ellipsoids, superellipsoids, and the shapes generated when truncating a cube with an octahedron. The microstructures are compared using a distance measure, the Hellinger distance. The Hellinger distance is used to compare distributions of shape descriptors for the grains in each microstructure. The synthetic microstructure that has the smallest Hellinger distance, and so best matched the experimentally observed microstructure is the microstructure that used superellipsoids as a starting grain shape. While it has the smallest Hellinger distance, and is approaching realistic grain morphologies, the superellipsoidal microstructure is still not realistic. Second order moment invariants, Q, and V/V conv have also been used to characterize the γ' precipitate shapes from four experimental Ru-containing Ni-base superalloys with differences in alloying additions. The superalloys are designated UM-F9, UM-F18, UM-F19, and UM-F22. The

  19. Four motional invariants in axisymmetric tori equilibria

    SciTech Connect

    A ring gren, O.; Moiseenko, V.E.

    2006-05-15

    In addition to the standard set ({epsilon},{mu},p{sub {phi}}) of three invariants in axisymmetric tori, there exists a fourth independent radial drift invariant I{sub r}. For confined particles, the net radial drift has to be zero, whereby the drift orbit average I{sub r}= of the gyro center radial Clebsch coordinate is constant. To lowest order in the banana width, the radial invariant is the gyro center radial coordinate r{sub 0}(x,v), and to this order the gyro center moves on a magnetic flux surface. The gyro center orbit projected on the (r,z) plane determines the radial invariant and first order banana width corrections to I{sub r} are calculated. The radial drift invariant exists for trapped as well as passing particles. The new invariant is applied to construct Vlasov equilibria, where the magnetic field satisfies a generalized Grad-Shafranov equation with a poloidal plasma current and a bridge to ideal magnetohydrodynamic equilibria is found. For equilibria with sufficiently small banana widths and radial drift excursions, the approximation I{sub r}{approx_equal}r{sub 0}(x,v) can be used for the equilibrium state.

  20. A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy

    NASA Astrophysics Data System (ADS)

    Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun

    2016-02-01

    GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the ‘thin plate splines-robust point matching’ (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7  ±  0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7  ±  1.8 mm and 1.6  ±  0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7  ±  2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50  ±  19%, 37  ±  11% and 28  ±  11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases

  1. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  2. On gauge-invariant and phase-invariant spinor analysis. II

    NASA Astrophysics Data System (ADS)

    Buchdahl, H. A.

    1992-01-01

    Granted customary definitions, the operations of juggling indices and covariant differentiation do not commute with one another in a Weyl space. The same noncommutativity obtains in the spinor calculus of Infeld and van der Waerden. Gauge-invariant and phase-invariant calculations therefore tend to be rather cumbersome. Here, a modification of the definition of covariant derivative leads immediately to a manifestly gauge-invariant and phase-invariant version of Weyl-Cartan space and of the two-spinor calculus associated with it in which the metric tensor and the metric spinor are both covariant constant.

  3. Efficient rotation- and scale-invariant texture analysis

    NASA Astrophysics Data System (ADS)

    Fung, Kam-Keung; Lam, Kin-Man

    2010-10-01

    Texture analysis plays an important role in content-based image retrieval and other areas of image processing. It is often desirable for the texture classifier to be rotation and scale invariant. Furthermore, to enable real-time usage, it is desirable to perform the classification efficiently. Toward these goals, we propose several enhancements to the multiresolution Gabor analysis. The first is a new set of kernels called Slit, which can replace Gabor wavelets in applications where high computational speed is desired. Compared to Gabor, feature extraction using Slit requires only 11 to 17% of the numeric operations. The second is to make the features more rotation invariant. We propose a circular sum of the feature elements from the same scale of the feature vector. This has the effect of averaging the feature vector from all orientations. The third is a slide-matching scheme for the final stage of the classifier, which can be applied to different types of distance measures. Distances are calculated at slightly different scales, and the smallest value is used as the actual distance measures. Experimental results using different image databases and distance measures show distinct improvements over existing schemes.

  4. Invariance of Factors of Mouse Emotionality With Changed Experimental Conditions.

    PubMed

    Royce, J R; Poley, W

    1975-10-01

    Six factors of mouse emotionality (autonomic balance, motor discharge, acrophobia, territoriality, tunneling-1, and tunneling-2) were compared across three separate studies. Each study included 19 measures from five tests of emotionality: open field, straightaway, pole, cell, and hole-in-wall. However, conditions of testing differed significantly in each study. In the first study, the measures taken were part of a large test battery. In the second study, a reduced test battery included only the 19 measures. In the third study, this reduced battery was used again, but subjects were injected with psychoactive drugs prior to testing. In addition to these changes, different genotypes were used across studies. Subjects in the first study were tested as part of a 6 × 6 diallel table. In the second and third studies, two emotionally contrasted strains (SWR and SJL) were tested. Each population was refactored by alpha factoring with varimax, followed by promax rotations. Factors obtained were compared by quantitative means using S-index and r[SUBc] coefficients of factor matching. Although support was obtained for the invariance of all six factors, the results indicate invariance as being strongest for motor discharge and acrophobia and weakest for tunneling-1 and tunneling-2 factors.

  5. Testing conditions for viewpoint invariance in object recognition.

    PubMed

    Hayward, W G; Tarr, M J

    1997-10-01

    Based on the geon structural description approach, I. Biederman and P.C. Gerhardstein (1993) proposed 3 conditions under which object recognition is predicted to be viewpoint invariant. Two experiments are reported that satisfied all 3 criteria yet revealed performance that was clearly viewpoint dependent. Experiment 1 demonstrated that for both sequential matching and naming tasks, recognition of qualitatively distinct objects became progressively longer and less accurate as the viewpoint difference between study and test viewpoints increased. Experiment 2 demonstrated that for single-part objects, larger effects of viewpoint occurred when there was a change in the visible structure, indicating sensitivity to qualitative features in the image, not geon structural descriptions. These results suggest that the conditions proposed by I. Biederman and P.C. Gerhardstein are not generally applicable, the recognition of qualitatively distinct objects often relies on viewpoint-dependent mechanisms, and the molar features of view-based mechanisms appear to be image features rather than geons. PMID:9411023

  6. Gauge Invariance of Parametrized Systems and Path Integral Quantization

    NASA Astrophysics Data System (ADS)

    de Cicco, Hernán; Simeone, Claudio

    Gauge invariance of systems whose Hamilton-Jacobi equation is separable is improved by adding surface terms to the action functional. The general form of these terms is given for some complete solutions of the Hamilton-Jacobi equation. The procedure is applied to the relativistic particle and toy universes, which are quantized by imposing canonical gauge conditions in the path integral; in the case of empty models, we first quantize the parametrized system called "ideal clock," and then we examine the possibility of obtaining the amplitude for the minisuperspaces by matching them with the ideal clock. The relation existing between the geometrical properties of the constraint surface and the variables identifying the quantum states in the path integral is discussed.

  7. Correlated Percolation, Fractal Structures, and Scale-Invariant Distribution of Clusters in Natural Images

    PubMed Central

    Saremi, Saeed; Sejnowski, Terrence J.

    2016-01-01

    Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153

  8. Topological Invariants of Edge States for Periodic Two-Dimensional Models

    NASA Astrophysics Data System (ADS)

    Avila, Julio Cesar; Schulz-Baldes, Hermann; Villegas-Blas, Carlos

    2013-06-01

    Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a {Z}_2-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.

  9. Matching forensic sketches to mug shot photos.

    PubMed

    Klare, Brendan F; Li, Zhifeng; Jain, Anil K

    2011-03-01

    The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.

  10. Stereo matching based on census transformation of image gradients

    NASA Astrophysics Data System (ADS)

    Stentoumis, C.; Grammatikopoulos, L.; Kalisperakis, I.; Karras, G.; Petsa, E.

    2015-05-01

    Although multiple-view matching provides certain significant advantages regarding accuracy, occlusion handling and radiometric fidelity, stereo-matching remains indispensable for a variety of applications; these involve cases when image acquisition requires fixed geometry and limited number of images or speed. Such instances include robotics, autonomous navigation, reconstruction from a limited number of aerial/satellite images, industrial inspection and augmented reality through smart-phones. As a consequence, stereo-matching is a continuously evolving research field with growing variety of applicable scenarios. In this work a novel multi-purpose cost for stereo-matching is proposed, based on census transformation on image gradients and evaluated within a local matching scheme. It is demonstrated that when the census transformation is applied on gradients the invariance of the cost function to changes in illumination (non-linear) is significantly strengthened. The calculated cost values are aggregated through adaptive support regions, based both on cross-skeletons and basic rectangular windows. The matching algorithm is tuned for the parameters in each case. The described matching cost has been evaluated on the Middlebury stereo-vision 2006 datasets, which include changes in illumination and exposure. The tests verify that the census transformation on image gradients indeed results in a more robust cost function, regardless of aggregation strategy.

  11. Factor Invariance Assessment of the Dean-Woodcock Sensory-Motor Battery for Patients with ADHD versus Nonclinical Subjects

    ERIC Educational Resources Information Center

    Finch, Holmes; Davis, Andrew; Dean, Raymond S.

    2010-01-01

    The current study examined the measurement invariance of the Dean-Woodcock Sensory-Motor Battery (DWSMB) for children diagnosed with attention deficit hyperactivity disorder (ADHD) and an age- and gender-matched nonclinical sample. The DWSMB is a promising new instrument for assessing a wide range of cortical and subcortical sensory and motor…

  12. Invariance of Woodcock-Johnson III Scores for Students with Learning Disorders and Students without Learning Disorders

    ERIC Educational Resources Information Center

    Benson, Nicholas; Taub, Gordon E.

    2013-01-01

    The purpose of this study was to test the invariance of scores derived from the Woodcock-Johnson III Tests of Cognitive Ability (WJ III COG) and Woodcock-Johnson III Tests of Academic Achievement (WJ III ACH) across a group of students diagnosed with learning disorders (n = 994) and a matched sample of students without known clinical diagnoses (n…

  13. Percolation in invariant Poisson graphs with i.i.d. degrees

    NASA Astrophysics Data System (ADS)

    Deijfen, Maria; Häggström, Olle; Holroyd, Alexander E.

    2012-04-01

    Let each point of a homogeneous Poisson process in ℝ d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution μ on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution μ. Leaving aside degenerate cases, we prove that for any μ there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme which is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on μ for the absence and presence of infinite components.

  14. Digital system of invariant correlation to position and rotation

    NASA Astrophysics Data System (ADS)

    Solorza, Selene; Álvarez-Borrego, Josué

    2010-10-01

    A new correlation digital system invariant to position and rotation is presented. This new algorithm requires low computational cost, because it uses uni-dimensional signatures (vectors). The signature of the target so like the signature of the object to be recognized in the problem image is obtained using a binary ring mask constructed based on the real positive values of the Fourier transform of the corresponding image. In this manner, each image will have one unique binary ring mask, avoiding in this form the relevant information leak. Using linear and non-linear correlations, this methodology is applied first in the identification of the alphabet letters in Arial font style and then in the classification of fossil diatoms images. Also, this system is tested using the diatom images with additive Gaussian noise. The non-linear correlation results were excellent, obtaining in this way a simple but efficient method to achieve rotation and translation invariance pattern recognition.

  15. Test of Lorentz invariance in β decay of polarized 20Na

    NASA Astrophysics Data System (ADS)

    Sytema, A.; van den Berg, J. E.; Böll, O.; Chernowitz, D.; Dijck, E. A.; Grasdijk, J. O.; Hoekstra, S.; Jungmann, K.; Mathavan, S. C.; Meinema, C.; Mohanty, A.; Müller, S. E.; Noordmans, J. P.; Nuñez Portela, M.; Onderwater, C. J. G.; Pijpker, C.; Timmermans, R. G. E.; Vos, K. K.; Willmann, L.; Wilschut, H. W.

    2016-08-01

    Background: Lorentz invariance is key in our understanding of nature, yet relatively few experiments have tested Lorentz invariance in weak interactions. Purpose: Our goal is to obtain limits on Lorentz-invariance violation in weak interactions, in particular rotational invariance in β decay. Method: We search for a dependence of the lifetime of 20Na nuclei on the nuclear spin direction. Such directional dependence would be evidence for Lorentz-invariance violation in weak interactions. A difference in lifetime between nuclei that are polarized in the east and west direction is searched for. This difference is maximally sensitive to the rotation of the Earth, while the sidereal dependence is free from most systematic errors. Results: The experiment sets a limit of 2 ×10-4 at 90% C.L. on the amplitude of the sidereal variation of the relative lifetime differences, an improvement by a factor 15 compared to an earlier result. Conclusions: No significant violation of Lorentz invariance is found. The result sets limits on parameters of theories describing Lorentz-invariance violation.

  16. Blurred face recognition by fusing blur-invariant texture and structure features

    NASA Astrophysics Data System (ADS)

    Zhu, Mengyu; Cao, Zhiguo; Xiao, Yang; Xie, Xiaokang

    2015-10-01

    Blurred face recognition is still remaining as a challenge task, but with wide applications. Image blur can largely affect recognition performance. The local phase quantization (LPQ) was proposed to extract the blur-invariant texture information. It was used for blurred face recognition and achieved good performance. However, LPQ considers only the phase blur-invariant texture information, which is not sufficient. In addition, LPQ is extracted holistically, which cannot fully explore its discriminative power on local spatial properties. In this paper, we propose a novel method for blurred face recognition. The texture and structure blur-invariant features are extracted and fused to generate a more complete description on blurred image. For texture blur-invariant feature, LPQ is extracted in a densely sampled way and vector of locally aggregated descriptors (VLAD) is employed to enhance its performance. For structure blur-invariant feature, the histogram of oriented gradient (HOG) is used. To further enhance its blur invariance, we improve HOG by eliminating weak gradient magnitude which is more sensitive to image blur than the strong gradient. The improved HOG is then fused with the original HOG by canonical correlation analysis (CCA). At last, we fuse them together by CCA to form the final blur-invariant representation of the face image. The experiments are performed on three face datasets. The results demonstrate that our improvements and our proposition can have a good performance in blurred face recognition.

  17. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  18. Quaternion higher-order spectra and their invariants for color image recognition

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoning; Yang, Hang; Ma, Siliang; Song, Dongzhe

    2014-06-01

    This paper describes an invariants generation method for color images, which could be a useful tool in color object recognition tasks. First, by using the algebra of quaternions, we introduce the definition of quaternion higher-order spectra (QHOS) in the spatial domain and derive its equivalent form in the frequency domain. Then, QHOS invariants with respect to rotation, translation, and scaling transformations for color images are constructed using the central slice theorem and quaternion bispectral analysis. The feature data are further reduced to a smaller set using quaternion principal component analysis. The proposed method can deal with color images in a holistic manner, and the constructed QHOS invariants are highly immune to background noise. Experimental results show that the extracted QHOS invariants form compact and isolated clusters, and that a simple minimum distance classifier can yield high recognition accuracy.

  19. The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup

    NASA Astrophysics Data System (ADS)

    Lehrer, G. I.; Zhang, R. B.

    2016-08-01

    We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension (m|2n) and the Brauer algebra with parameter m - 2n. The result may be interpreted either in terms of the group scheme OSp(V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ} . We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

  20. Model of the Newtonian cosmology: Symmetries, invariant and partially invariant solutions

    NASA Astrophysics Data System (ADS)

    Klebanov, I.; Startsun, O.; Ivanov, S.

    2016-10-01

    Symmetry group of the equation system of ideal nonrelativistic self-gravitating fluid with zero pressure is calculated. Submodel invariant under the subgroup of rotations SO(3) is built and symmetry group of the factorsystem is calculated. A particular analytical invariant solution of the factorsystem is obtained.