Photometric invariant stereo matching method.
Gu, Feifei; Zhao, Hong; Zhou, Xiang; Li, Jinjun; Bu, Penghui; Zhao, Zixin
2015-12-14
A robust stereo matching method based on a comprehensive mathematical model for color formation process is proposed to estimate the disparity map of stereo images with noise and photometric variations. The band-pass filter with DoP kernel is firstly used to filter out noise component of the stereo images. Then the log-chromaticity normalization process is applied to eliminate the influence of lightning geometry. All the other factors that may influence the color formation process are removed through the disparity estimation process with a specific matching cost. Performance of the developed method is evaluated by comparing with some up-to-date algorithms. Experimental results are presented to demonstrate the robustness and accuracy of the method.
A new affine-invariant image matching method based on SIFT
NASA Astrophysics Data System (ADS)
Wang, Peng-cheng; Chen, Qian; Chen, Hai-xin; Cheng, Hong-chang; Gong, Zhen-fei
2013-09-01
Local invariant feature extraction, as one of the main problems in the field of computer vision, has been widely applied to image matching, splicing and target recognition etc. Lowe's scale invariant feature transform (known as SIFT) algorithm has attracted much attention due to its invariance to scale, rotation and illumination. However, SIFT is not robust to affine deformations, because it is based on the DoG detector which extracts keypoints in a circle region. Besides, the feature descriptor is represented by a 128-dimensional vector, which means that the algorithm complexity is extremely large especially when there is a great quantity of keypoints in the image. In this paper, a new feature descriptor, which is robust to affine deformations, is proposed. Considering that circles turn to be ellipses after affine deformations, some improvements have been made. Firstly, the Gaussian image pyramids are constructed by convoluting the source image and the elliptical Gaussian kernel with two volatile parameters, orientation and eccentricity. In addition, the two parameters are discretely selected in order to imitate the possibilities of the affine deformation, which can make sure that anisotropic regions are transformed into isotropic ones. Next, all extreme points can be extracted as the candidates for the affine-invariant keypoints in the image pyramids. After accurate keypoints localization is performed, the secondary moment of the keypoints' neighborhood is calculated to identify the elliptical region which is affineinvariant, the same as SIFT, the main orientation of the keypoints can be determined and the feature descriptor is generated based on the histogram constructed in this region. At last, the PCA method for the 128-dimensional descriptor's reduction is used to improve the computer calculating efficiency. The experiments show that this new algorithm inherits all SIFT's original advantages, and has a good resistance to affine deformations; what's more, it
Optimal Affine-Invariant Point Matching
NASA Astrophysics Data System (ADS)
Costa, Mauro S.; Haralick, Robert M.; Phillips, Tsaiyun I.; Shapiro, Linda G.
1989-03-01
The affine-transformation matching scheme proposed by Hummel and Wolfson (1988) is very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. This paper addresses the implementation of the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. It points out errors that can occur with this method due to quantization, stability, symmetry, and noise problems. By beginning with an explicit noise model which the Hummel and Wolfson technique lacks, we can derive an optimal approach which overcomes these problems. We show that results obtained with the new algorithm are clearly better than the results from the original method.
Geometry and Radiometry Invariant Matched Manifold Detection.
Sharon, Ran; Francos, Joseph M; Hagege, Rami R
2017-09-01
Consider a set of deformable objects undergoing geometric and radiometric transformations. As a result of the action of these transformations, the set of different realizations of each object is generally a manifold in the space of observations. Assuming the geometric deformations an object undergoes, belong to some finite dimensional family, it has been shown that the universal manifold embedding (UME) provides a set of nonlinear operators that universally maps each of the different manifolds, where each manifold is generated by the set all of possible appearances of a single object, into a distinct linear subspace of an Euclidean space. In this paper, we generalize this framework to the case where the observed object undergoes both an affine geometric transformation, and a monotonic radiometric transformation, and present a novel framework for the detection and recognition of the deformable objects. Applying to each of the observations an operator that makes it invariant to monotonic amplitude transformations, but is geometry-covariant with the affine transformation, the set of all possible observations on that object is mapped by the UME into a single linear subspace-invariant with respect to both the geometric and radiometric transformations. The embedding of the space of observations is independent of the specific observed object; hence it is universal. The invariant representation of the object is the basis of a matched manifold detection and tracking framework of objects that undergo complex geometric and radiometric deformations: the observed surface is tessellated into a set of tiles such that the deformation of each one is well approximated by an affine geometric transformation and a monotonic transformation of the measured intensities. Since each tile is mapped by the radiometry invariant UME to a distinct linear subspace, the detection and tracking problems are solved by evaluating distances between linear subspaces. Classification in this context
Scale and Rotation Invariant Matching Using Linearly Augmented Trees.
Jiang, Hao; Tian, Tai-Peng; Sclaroff, Stan
2015-12-01
We propose a novel linearly augmented tree method for efficient scale and rotation invariant object matching. The proposed method enforces pairwise matching consistency defined on trees, and high-order constraints on all the sites of a template. The pairwise constraints admit arbitrary metrics while the high-order constraints use L1 norms and therefore can be linearized. Such a linearly augmented tree formulation introduces hyperedges and loops into the basic tree structure. But, different from a general loopy graph, its special structure allows us to relax and decompose the optimization into a sequence of tree matching problems that are efficiently solvable by dynamic programming. The proposed method also works on continuous scale and rotation parameters; we can match with a scale up to any large value with the same efficiency. Our experiments on ground truth data and a variety of real images and videos show that the proposed method is efficient, accurate and reliable.
Template match using local feature with view invariance
NASA Astrophysics Data System (ADS)
Lu, Cen; Zhou, Gang
2013-10-01
Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.
Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network
NASA Astrophysics Data System (ADS)
Sang, Nong; Zhang, Tianxu
1997-12-01
Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.
Su, Mingzhe; Ma, Yan; Zhang, Xiangfen; Wang, Yan; Zhang, Yuping
2017-01-01
The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.
Su, Mingzhe; Ma, Yan; Zhang, Xiangfen; Wang, Yan; Zhang, Yuping
2017-01-01
The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed. PMID:28542537
Oblique low-altitude image matching using robust perspective invariant features
NASA Astrophysics Data System (ADS)
He, Haiqing; Du, Jing; Chen, Xiaoyong; Wang, Yuqian
2017-01-01
Compared with vertical photogrammtry, oblique photogrammetry is radically different for images acquired from sensor with big yaw, pitch, and roll angles. Image matching is a vital step and core problem of oblique low-altitude photogrammetric process. Among the most popular oblique images matching methods are currently SIFT/ASIFT and many affine invariant feature-based approaches, which are mainly used in computer vision, while these methods are unsuitable for requiring evenly distributed corresponding points and high efficiency simultaneously in oblique photogrammetry. In this paper, we present an oblique low-altitude images matching approach using robust perspective invariant features. Firstly, the homography matrix is estimated by a few corresponding points obtained from top pyramid images matching in several projective simulation. Then images matching are implemented by sub-pixel Harris corners and descriptors after shape perspective transforming on the basis of homography matrix. Finally, the error or gross error matched points are excluded by epipolar geometry, RANSAC algorithm and back projection constraint. Experimental results show that the proposed approach can achieve more excellent performances in oblique low-altitude images matching than the common methods, including SIFT and SURF. And the proposed approach can significantly improve the computational efficiency compared with ASIFT and Affine-SURF.
Object matching using a locally affine invariant and linear programming techniques.
Li, Hongsheng; Huang, Xiaolei; He, Lei
2013-02-01
In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
NASA Astrophysics Data System (ADS)
Wang, Xianmin; Li, Bo; Xu, Qizhi
2016-07-01
The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.
Position, rotation, and intensity invariant recognizing method
Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.
1989-01-01
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.
Position, rotation, and intensity invariant recognizing method
Ochoa, E.; Schils, G.F.; Sweeney, D.W.
1987-09-15
A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.
Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology
Chu, C.-S.; Furuta, K.; Lin, F.-L.
2006-05-15
In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale.
On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.
Shao, Zhanpeng; Li, Youfu
2016-02-01
Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.
Illumination-invariant image matching for autonomous UAV localisation based on optical sensing
NASA Astrophysics Data System (ADS)
Wan, Xue; Liu, Jianguo; Yan, Hongshi; Morgan, Gareth L. K.
2016-09-01
This paper presents an UAV (Unmanned Aerial Vehicle) localisation algorithm for its autonomous navigation based on matching between on-board UAV image sequences to a pre-installed reference satellite image. As the UAV images and the reference image are not necessarily taken under the same illumination condition, illumination-invariant image matching is essential. Based on the investigation of illumination-invariant property of Phase Correlation (PC) via mathematical derivation and experiments, we propose a PC based fast and robust illumination-invariant localisation algorithm for UAV navigation. The algorithm accurately determines the current UAV position as well as the next UAV position even the illumination condition of UAV on-board images is different from the reference satellite image. A Dirac delta function based registration quality assessment together with a risk alarming criterion is introduced to enable the UAV to perform self-correction in case the UAV deviates from the planned route. UAV navigation experiments using simulated terrain shading images and remote sensing images have demonstrated a robust high performance of the proposed PC based localisation algorithm under very different illumination conditions resulted from solar motion. The superiority of the algorithm, in comparison with two other widely used image matching algorithms, MI (Mutual Information) and NCC (Normalised Correlation Coefficient), is significant for its high matching accuracy and fast processing speed.
2007-12-20
shoe was that? The use of computerised image database to assist in identification”. Forensic Science International , 82(1):7–20, 9/15 1996. 3. Bay...biometric systems”. Forensic science international , 155(2-3):126–140, 2005. 7. Haibin Ling; Jacobs, D.W. “Deformation invariant image matching”. Computer...Image match- ing algorithms for breech face marks and firing pins in a database of spent car- tridge cases of firearms”. Forensic science international , 2001
Visual odometry based on structural matching of local invariant features using stereo camera sensor.
Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio
2011-01-01
This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields.
Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor
Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio
2011-01-01
This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016
NASA Astrophysics Data System (ADS)
Wang, Sha-Wei; Yau, Hon-Fai; Yueh, OuYang; Lee, Hsiao-Yi
1992-10-01
A simple way to synthesize a shift, fully rotational and limited size invariant composite matched spatial filter for a coherent optical correlator is proposed. We use circular harmonic components of the same order of a reference pattern in different sizes as the training images instead of using the whole reference pattern in different orientations and different sizes as is reported by other workers. This saves much labor and time in the synthesis of the filter. In this article, we have synthesized a simple filter containing four second order circular harmonic components of the alphabetic letter `E' in four relative sizes 1, 1.17, 1.33, and 1.5. Results of computer simulation have shown that this filter is shift, fully rotational and limited size invariant over the size range from 1 to 1.5. Computer simulation has also shown that this filter possesses discriminating ability.
NASA Astrophysics Data System (ADS)
Stumpf, André; Malet, Jean-Philippe; Allemand, Pascal; Skupinski, Grzegorz; Deseilligny, Marc-Pierrot
2013-04-01
Multi-view stereo surface reconstruction from dense terrestrial photographs is being increasingly applied for geoscience applications such as quantitative geomorphology, and a number of different software solution and processing streamlines have been suggested. For image matching, camera self-calibration and bundle block adjustment, most approaches make use of scale-invariant feature transform (SIFT) to identify homologous points in multiple images. SIFT-like point matching is robust to apparent translation, rotation, and scaling of objects in multiple viewing geometries but the number of correctly identified matching points typically declines drastically with increasing angles between the viewpoints. For the application of multi-view stereo of complex landslide scenes, the viewing geometry is often constrained by the local topography and barriers such as rocks and vegetation occluding the target. Under such conditions it is not uncommon to encounter view angle differences of > 30% that hinder the image matching and eventually prohibit the joint estimation of the camera parameters from all views. Recently an affine invariant extension of the SIFT detector (ASIFT) has been demonstrated to provide more robust matches when large view-angle differences become an issue. In this study the ASIFT detector was adopted to detect homologous points in terrestrial photographs preceding 3D reconstruction of different parts (main scarp, toe) of the Super-Sauze landslide (Southern French Alps). 3D surface models for different time periods and different parts of the landslide were derived using the multi-view stereo framework implemented in MicMac (©IGN). The obtained 3D models were compared with reconstructions using the traditional SIFT detectors as well as alternative structure-from-motion implementations. An estimate of the absolute accuracy of the photogrammetric models was obtained through co-registration and comparison with high-resolution terrestrial LiDAR scans.
Robust estimation of albedo for illumination-invariant matching and shape recovery.
Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama
2009-05-01
We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions.
NASA Astrophysics Data System (ADS)
Swathanthira Kumar, M. M.; Sullivan, John M., Jr.
2007-03-01
Medical research is dominated by animal models, especially rats and mice. Within a species most laboratory subjects exhibit little variation in brain anatomy. This uniformity of features is used to crop regions of interest based upon a known, cropped brain atlas. For any study involving N subjects, image registration or alignment to an atlas is required to construct a composite result. A highly resolved stack of T2 weighted MRI anatomy images of a Sprague-Dawley rat was registered and cropped to a known segmented atlas. This registered MRI volume was used as the reference atlas. A Pulse Coupled Neural Network (PCNN) was used to separate brain tissue from surrounding structures, such as cranium and muscle. Each iteration of the PCNN produces binary images of increasing area as the intensity spectrum is increased. A rapid filtering algorithm is applied that breaks narrow passages connecting larger segmented areas. A Generalized Invariant Hough Transform is applied subsequently to each PCNN segmented area to identify which segmented reference slice it matches. This process is repeated for multiple slices within each subject. Since we have apriori knowledge of the image ordering and fields of view this information provides initial estimates for subsequent registration codes. This process of subject slice extraction to PCNN mask creations and GIHT matching with known atlas locations is fully automatic.
NASA Astrophysics Data System (ADS)
Morstad, D.; Doelling, D. R.; Scarino, B.; Gopalan, A.; Bhatt, R.; Minnis, P.
2010-12-01
The Advanced Very High Resolution Radiometer (AVHRR) record spans over 30 years and provides a unique opportunity for long-term climate studies. The precision of these climate studies is largely reliant on the consistent absolute calibration of the AVHRR visible data. Currently, AVHRR visible sensors lack onboard calibration and must be vicariously monitored to assure stability over time. AVHRR onboard the NOAA satellites are on a degrading sun-synchronous orbit where the solar zenith angle continuously increases through time. The ray-matching technique can be used to transfer the calibration of a well-calibrated sensor, such as MODIS that employs a solar diffuser, to an un-calibrated sensor, such as AVHRR. In order to transfer the MODIS calibration to AVHRR, existing GEO satellites will be used as a transfer medium. Successive GEO to AVHRR transfers and AVHRR to GEO transfers will be used to maintain a consistent absolute calibration throughout the AVHRR record. To ensure the absolute calibration is accurately transferred, differences in the spectral response functions between each sensor can be removed using ENVISAT Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) hyperspectral data and spectral band adjustment factors. The temporal trends in the absolute calibration of AVHRR and GEO can be validated using pseudo-invariant test sites as well as deep convective cloud targets. This presentation will show examples of ray-matching, spectral band adjustment, DCC, and desert trending techniques and highlight the initial results for lifetime calibration of AVHRR onboard NOAA 16 and NOAA18.
Similarity invariant partial shape matching using coarse-to-fine strategy
NASA Astrophysics Data System (ADS)
Zhang, Xinfeng
2014-09-01
The matching between an open contour and a closed contour is a basis for the alignment of their common part and a similarity measure. We propose a coarse-to-fine method for partial shape matching, which does not need to scan the target shape, construct a codebook of model contour fragments, or depend on background support domains. For this purpose, a linearization algorithm for partial shapes is introduced to extract the initial shape segments from the closed contour those possibly match with the open contour. The next refining procedure of the coarse matching eliminates significantly dissimilar shape segments to reduce the further processing of fine matching. We propose a shape similarity description to finely describe the similarity between the open contour and the remaining shape segments. Finally, an order-preserving point injection between the open contour and the closed contour is established. Valuations of the proposed method on a benchmark dataset and real images demonstrate that the overall and component performances are excellent and robust to various disturbances and similarity transformations. Last, a gesture recognition application is implemented.
A new template matching method based on contour information
NASA Astrophysics Data System (ADS)
Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong
2014-11-01
Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process
NASA Astrophysics Data System (ADS)
Xing, Jing; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
This paper reports an efficient method for line matching, which utilizes local intensity gradient information and neighboring geometric attributes. Lines are detected in a multi-scale way to make the method robust to scale changes. A descriptor based on local appearance is built to generate candidate matching pairs. The key idea is to accumulate intensity gradient information into histograms based on their intensity orders to overcome the fragmentation problem of lines. Besides, local coordinate system is built for each line to achieve rotation invariance. For each line segment in candidate matching pairs, a histogram is built by aggregating geometric attributes of neighboring line segments. The final matching measure derives from the distance between normalized geometric attributes histograms. Experiments show that the proposed method is robust to large illumination changes and is rotation invariant.
A novel eye localization method with rotation invariance.
Ren, Yan; Wang, Shuang; Hou, Biao; Ma, Jingjing
2014-01-01
This paper presents a novel learning method for precise eye localization, a challenge to be solved in order to improve the performance of face processing algorithms. Few existing approaches can directly detect and localize eyes with arbitrary angels in predicted eye regions, face images, and original portraits at the same time. To preserve rotation invariant property throughout the entire eye localization framework, a codebook of invariant local features is proposed for the representation of eye patterns. A heat map is then generated by integrating a 2-class sparse representation classifier with a pyramid-like detecting and locating strategy to fulfill the task of discriminative classification and precise localization. Furthermore, a series of prior information is adopted to improve the localization precision and accuracy. Experimental results on three different databases show that our method is capable of effectively locating eyes in arbitrary rotation situations (360° in plane).
Invariant relations for kirchhoff equations and the Kowalewski method
NASA Astrophysics Data System (ADS)
Denisova, N. V.
2017-01-01
The Kowalewski exponents in the problem on the motion of a solid under the Chaplygin condition are calculated (when there is a velocity-linear invariant relation). The method of calculation uses the generalizing Ioshida theorems on the Kowalewski exponents found by V.V. Kozlov. It is shown that the general solution of the equations of motion branches out in the complex time plane under the Chaplygin conditions.
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Abanin, Dmitry; Demler, Eugene
2013-05-01
Recently experiments with ultracold atoms started to explore topological phases in 1D optical lattices. While transport measurements are challenging in these systems, ways to directly measure topological quantum numbers using a combination of Bloch oscillations and Ramsey interferometry have been explored (Atala et al., arXiv:1212.0572). In this talk I will present ways to measure the Z2 topological quantum numbers of two and three dimensional time-reversal invariant (TR) topological insulators. In this case non-Abelian Bloch oscillations can be combined with Ramsey interferometry to map out the topological properties of a given band-structure. Our method is very general and works even in the presence of accidental degeneracies. The applicability of the scheme is discussed for different theoretically proposed implementations of TR topological insulators using ultracold atoms. F. G. is grateful to Harvard University for hospitality and acknowledges financial support from Graduate School Materials Science in Mainz (MAINZ).
Systems and methods for measuring component matching
NASA Technical Reports Server (NTRS)
Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)
2006-01-01
Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.
Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching
NASA Astrophysics Data System (ADS)
Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi
2017-03-01
Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].
NASA Astrophysics Data System (ADS)
Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina
2017-02-01
Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.
Hydrograph matching method for measuring model performance
NASA Astrophysics Data System (ADS)
Ewen, John
2011-09-01
SummaryDespite all the progress made over the years on developing automatic methods for analysing hydrographs and measuring the performance of rainfall-runoff models, automatic methods cannot yet match the power and flexibility of the human eye and brain. Very simple approaches are therefore being developed that mimic the way hydrologists inspect and interpret hydrographs, including the way that patterns are recognised, links are made by eye, and hydrological responses and errors are studied and remembered. In this paper, a dynamic programming algorithm originally designed for use in data mining is customised for use with hydrographs. It generates sets of "rays" that are analogous to the visual links made by the hydrologist's eye when linking features or times in one hydrograph to the corresponding features or times in another hydrograph. One outcome from this work is a new family of performance measures called "visual" performance measures. These can measure differences in amplitude and timing, including the timing errors between simulated and observed hydrographs in model calibration. To demonstrate this, two visual performance measures, one based on the Nash-Sutcliffe Efficiency and the other on the mean absolute error, are used in a total of 34 split-sample calibration-validation tests for two rainfall-runoff models applied to the Hodder catchment, northwest England. The customised algorithm, called the Hydrograph Matching Algorithm, is very simple to apply; it is given in a few lines of pseudocode.
NASA Astrophysics Data System (ADS)
Rodrigues, Marco Túlio A. N.; Balbino de Mesquita, Daniel; Nascimento, Erickson R.; Schwartz, William Robson
2016-01-01
In several image processing applications, discovering regions that have changed in a set of images acquired from a scene at different times and possibly from different viewpoints plays a very important role. Remote sensing, visual surveillance, medical diagnosis, civil infrastructure, and underwater sensing are examples of such applications that operate in dynamic environments. We propose an approach to detect such changes automatically by using image analysis techniques and segmentation based on superpixels in two stages: (1) the tuning stage, which is focused on adjusting the parameters; and (2) the unsupervised stage that is executed in real scenarios without an appropriate ground truth. Unlike most common approaches, which are pixel-based, our approach combines superpixel extraction, hierarchical clustering, and segment matching. Experimental results demonstrate the effectiveness of the proposed approach compared to a remote sensing technique and a background subtraction technique, demonstrating the robustness of our algorithm against illumination variations.
A novel method for rotation invariant palm print image stitching
NASA Astrophysics Data System (ADS)
Rao, Shishir Paramathma; Panetta, Karen; Agaian, Sos S.
2017-05-01
Although not as popular as fingerprint biometrics, palm prints have garnered interest in scientific community for the rich amount of distinctive information available on the palm. In this paper, a novel method for touchless palm print stitching to increase the effective area is presented. The method is not only rotation invariant but also able to robustly handle many distortions of touchless systems like illumination variations, pose variations etc. The proposed method also can handle partial palmprints, which have a high chance of occurrence in a scene of crime, by stitching them together to produce a much larger-to-full size palmprint for authentication purpose. Experiment results are shown for IIT-D palmprint database, from which pseudo partial palmprints were generated by cropping and randomly rotating them. Furthermore, the quality of stitching algorithm is determined by extensive computer simulations and visual analysis of the stitched image. Experimental results also show that the stitching significantly increases the area of palm image for feature point detection and hence provides a way to increase the accuracy and reliability of detection.
Quantification of organ motion based on an adaptive image-based scale invariant feature method
Paganelli, Chiara; Peroni, Marta
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT
An image matching method based on closed edges incorporated with vertex angles
NASA Astrophysics Data System (ADS)
Zhang, Baoming; Chen, Xiaowei; Lu, Jun; Gong, Zhihui; Guo, Haitao
2015-10-01
An image matching method based on closed edges incorporated with vertex angles is proposed in this paper. Based on edge detection results by Edison operator, invariant moments of closed edges and angles between the two branches for edge vertexes are used as matching entities to determine conjugate features candidates. The transformation relationship between images is approximated by similarity transformation model, and a set of transformation parameters can be determined by each pair of conjugate features after combining conjugate feature candidates in pair-wise. Furthermore, considering that the difference among transformation parameters which calculated by real conjugate features are minor, K-d tree method and K-means Spatial clustering method are used in succession to eliminate pairs which contain mismatching features. Therefore, conjugate features can be obtained from the similarity transformation parameters. Experimental results turn out that this method shows a stable performance and presents a satisfactory matching result.
Longitudinal Invariance of Self-Esteem and Method Effects Associated with Negatively Worded Items.
ERIC Educational Resources Information Center
Motl, Robert W.; DiStefano, Christine
2002-01-01
Examined the longitudinal invariance of method effects associated with negatively worded items on a self-report measure of global self-esteem. Data from the National Educational Longitudinal Study for 3,950 junior high school and high school students show that the method effects associated with negatively worded items exhibit invariance across…
A Method for Matching Leadership Mentors and Proteges.
ERIC Educational Resources Information Center
Daresh, John C.; Playko, Marsha A.
A method for matching leadership mentors with beginning teachers is described in this paper, with emphasis on personality types and psychosocial characteristics. A review of literature on guide matching concludes that research is inconclusive and that matching is often based on availability. Five fundamental assumptions of the personnel matching…
PIPI: PTM-Invariant Peptide Identification Using Coding Method.
Yu, Fengchao; Li, Ning; Yu, Weichuan
2016-12-02
In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and Protein
Feature matching method with multigeometric constraints
NASA Astrophysics Data System (ADS)
Xu, Dong; Huang, Qian; Liu, Wenyong; Bessaih, Hadjar; Li, Chidong
2016-11-01
Feature correspondence is one of the essential difficulties in image processing, given that it is applied within a wide range in computer vision. Even though it has been studied for many years, feature correspondence is still far from being ideal. This paper proposes a multigeometric-constraint algorithm for finding correspondences between two sets of features. It does so by considering interior angles and edge lengths of triangles formed by third-order tuples of points. Multigeometric-constraints are formulated using matrices representing triangle similarities. The experimental evaluation showed that the multigeometric-constraint algorithm can significantly improve the matching precision and is robust to most geometric and photometric transformations including rotation, scale change, blur, viewpoint change, and JPEG compression as well as illumination change. The multigeometric-constraint algorithm was applied to object recognition which includes extraprocessing and affine transformation. The results showed that this approach works well for this recognition.
Robust polygon recognition method with similarity invariants applied to star identification
NASA Astrophysics Data System (ADS)
Hernández, E. Antonio; Alonso, Miguel A.; Chávez, Edgar; Covarrubias, David H.; Conte, Roberto
2017-02-01
In the star identification process the goal is to recognize a star by using the celestial bodies in its vicinity as context. An additional requirement is to avoid having to perform an exhaustive scan of the star database. In this paper we present a novel approach to star identification using similarity invariants. More specifically, the proposed algorithm defines a polygon for each star, using the neighboring celestial bodies in the field of view as vertices. The mapping is insensitive to similarity transformation; that is, the image of the polygon under the transformation is not affected by rotation, scaling or translations. Each polygon is associated with an essentially unique complex number. We perform an exhaustive experimental validation of the proposed algorithm using synthetic data generated from the star catalog with uniformly-distributed positional noise introduced to each star. The star identification method that we present is proven to be robust, achieving a recognition rate of 99.68% when noise levels of up to ± 424 μ radians are introduced to the location of the stars. In our tests the proposed algorithm proves that if a polygon match is found, it always corresponds to the star under analysis; no mismatches are found. In its present form our method cannot identify polygons in cases where there exist missing or false stars in the analyzed images, in those situations it only indicates that no match was found.
Hipp, Jason D.; Cheng, Jerome Y.; Toner, Mehmet; Tompkins, Ronald G.; Balis, Ulysses J.
2011-01-01
Introduction: Historically, effective clinical utilization of image analysis and pattern recognition algorithms in pathology has been hampered by two critical limitations: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. Results: In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. Conclusion: With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their
Bayesian Stereo Matching Method Based on Edge Constraints.
Li, Jie; Shi, Wenxuan; Deng, Dexiang; Jia, Wenyan; Sun, Mingui
2012-12-01
A new global stereo matching method is presented that focuses on the handling of disparity, discontinuity and occlusion. The Bayesian approach is utilized for dense stereo matching problem formulated as a maximum a posteriori Markov Random Field (MAP-MRF) problem. In order to improve stereo matching performance, edges are incorporated into the Bayesian model as a soft constraint. Accelerated belief propagation is applied to obtain the maximum a posteriori estimates in the Markov random field. The proposed algorithm is evaluated using the Middlebury stereo benchmark. Our experimental results comparing with some state-of-the-art stereo matching methods demonstrate that the proposed method provides superior disparity maps with a subpixel precision.
A quantitative method for measuring the quality of history matches
Shaw, T.S.; Knapp, R.M.
1997-08-01
History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.
NASA Astrophysics Data System (ADS)
Kurnyavko, O. L.; Shirokov, I. V.
2016-07-01
We offer a method for constructing invariants of the coadjoint representation of Lie groups that reduces this problem to known problems of linear algebra. This method is based on passing to symplectic coordinates on the coadjoint representation orbits, which play the role of local coordinates on those orbits. The corresponding transition functions are their parametric equations. Eliminating the symplectic coordinates from the transition functions, we can obtain the complete set of invariants. The proposed method allows solving the problem of constructing invariants of the coadjoint representation for Lie groups with an arbitrary dimension and structure.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong
2016-11-01
To improve the denoising effect of the glucose photoacoustic signals, a modified wavelet thresholding combined shift-invariance algorithm was used in this paper. In addition, the shift-invariance method was added into the improved algorithm. To verify the feasibility of modified wavelet shift-invariance threshold denoising algorithm, the simulation experiments were performed. Results show that the denoising effect of modified wavelet shift-invariance thresholding algorithm is better than that of others because its signal-to-noise ratio is largest and the root-mean-square error is lest. Finally, the modified wavelet shift-invariance threshold denoising was used to remove the noises of the photoacoustic signals of glucose aqueous solutions.
Method of stereo matching based on genetic algorithm
NASA Astrophysics Data System (ADS)
Lu, Chaohui; An, Ping; Zhang, Zhaoyang
2003-09-01
A new stereo matching scheme based on image edge and genetic algorithm (GA) is presented to improve the conventional stereo matching method in this paper. In order to extract robust edge feature for stereo matching, infinite symmetric exponential filter (ISEF) is firstly applied to remove the noise of image, and nonlinear Laplace operator together with local variance of intensity are then used to detect edges. Apart from the detected edge, the polarity of edge pixels is also obtained. As an efficient search method, genetic algorithm is applied to find the best matching pair. For this purpose, some new ideas are developed for applying genetic algorithm to stereo matching. Experimental results show that the proposed methods are effective and can obtain good results.
A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method †
Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke
2015-01-01
The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy. PMID:26703609
A TSR Visual Servoing System Based on a Novel Dynamic Template Matching Method.
Cai, Jia; Huang, Panfeng; Zhang, Bin; Wang, Dongke
2015-12-21
The so-called Tethered Space Robot (TSR) is a novel active space debris removal system. To solve its problem of non-cooperative target recognition during short-distance rendezvous events, this paper presents a framework for a real-time visual servoing system using non-calibrated monocular-CMOS (Complementary Metal Oxide Semiconductor). When a small template is used for matching with a large scene, it always leads to mismatches, so a novel template matching algorithm to solve the problem is presented. Firstly, the novel matching algorithm uses a hollow annulus structure according to a FAST (Features from Accelerated Segment) algorithm and makes the method be rotation-invariant. Furthermore, the accumulative deviation can be decreased by the hollow structure. The matching function is composed of grey and gradient differences between template and object image, which help it reduce the effects of illumination and noises. Then, a dynamic template update strategy is designed to avoid tracking failures brought about by wrong matching or occlusion. Finally, the system synthesizes the least square integrated predictor, realizing tracking online in complex circumstances. The results of ground experiments show that the proposed algorithm can decrease the need for sophisticated computation and improves matching accuracy.
Improved Artificial Bee Colony Algorithm Based Gravity Matching Navigation Method
Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang
2014-01-01
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position. PMID:25046019
Improved artificial bee colony algorithm based gravity matching navigation method.
Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang
2014-07-18
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.
New Matching Method for Accelerometers in Gravity Gradiometer
Wei, Hongwei; Wu, Meiping; Cao, Juliang
2017-01-01
The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584
Matching reference materials with AOAC International methods of analysis.
Wolf, W R; DeVries, J; Ikins, W
2001-10-01
Proper implementation and use of validated analytical methodology with use of appropriate reference materials (RM) is a preferred means of helping to ensure equivalent analytical method performance in diverse laboratories. Choice of an appropriate RM that not only matches the analyte and matrix of the required determination, but also has been demonstrated to be within the applicability of a specific analytical method, are key factors. In response to numerous requests since its founding in 1993, the Technical Division on Reference Materials (TDRM), AOAC International is implementing a program for recognizing the matching of specific reference materials to specific AOAC methods of analysis. This recognition is accomplished by means of a thorough peer-reviewed selection system, under the auspices of the AOAC official methods board and the executive committee of the TDRM. Potential RM/method matching (RM/MM) proposals will be submitted to an RM/MM committee. After technical review of the suitability of the proposed RM by the RM/MM committee, acceptable matches are recommended for review by the current AOAC process responsible for review and recognition of new methods and modifications to existing AOAC methods of analysis. Several trial matches have been used to develop and test this system. The end product of this effort will ultimately be made available as either a stand-alone document, a section of the AOAC Official Methods of Analysis, or a site within the AOAC web site listing recognized matches.
A method for matching Chinese place-name data
NASA Astrophysics Data System (ADS)
Liao, Yilan; Wang, Jinfeng
2009-10-01
Conversion and sharing of spatial data from different departments is an essential part of information construction in China. The first step of the solution is to match place-name data. However, there are administrative changes in some places with the development of urbanization process. It undoubtedly increases the difficulty to match place-name data. In the daily work, the data are artificially matched with available place-name database and materials such as graphs and record cards. Although it is easy to put in practice, this method may cost a lot of time and labor to keep the accuracy. The algorithms for matching strings can be used to solve the problem. But most of them focus on solving the English strings match problems and less refer to Chinese. In the paper, BPM-BM (Bit-Parallel Matrix -Boyer Moore) algorithm, the most efficient filter method for approximate string matching of Chinese text, is proposed to match place-names between the national surveillance sites of infectious diseases and the 1:1, 000, 000 scale township map of China in 2000. The study indicated that the proposed method decreased artificial process greatly and the accuracy which achieved 94.2% was higher than the SQL commands method.
Joint motion model for local stereo video-matching method
NASA Astrophysics Data System (ADS)
Zhang, Jinglin; Bai, Cong; Nezan, Jean-Francois; Cousin, Jean-Gabriel
2015-12-01
As one branch of stereo matching, video stereo matching becomes more and more significant in computer vision applications. The conventional stereo matching methods for static images would cause flicker-frames and worse matching results. We propose a joint motion-based square step (JMSS) method for stereo video matching. The motion vector is introduced as one component in the support region building for the raw cost aggregation. Then we aggregate the raw cost along two directions in the support region. Finally, the winner-take-all strategy determines the best disparity under our hypothesis. Experimental results show that the JMSS method not only outperforms other state-of-the-art stereo matching methods on test sequences with abundant movements, but also performs well in some real-world scenes with fixed and moving stereo cameras, respectively, in particular under some extreme conditions of real stereo visions. Additionally, the proposed JMSS method can be implemented in real time, which is superior to other state-of-the-art methods. The time efficiency is also a very important consideration in our algorithm design.
Feature matching method in shaped light mode VFD defect detection
NASA Astrophysics Data System (ADS)
Jin, Xuanhong; Dai, Shuguang; Mu, Pingan
2010-08-01
In recent years, Vacuum Fluorescent Display (VFD) module in the car audio panel has been widely used. However, due to process reasons, VFD display production process will produce defects, not only affect the appearance, but also affect the display correctly. So building a car VFD display panel defect detection system is of great significance. Machine vision technology is introduced into the automotive VFD display defect detection in order to achieve fast and accurate detection of defects. Shaped light mode is a typical flaw detection mode which is based on characteristics of vehicle VFD panel. According to the image features, learning of the gray matching and feature matching method, we integrated use of feature matching method and the gray level matching method to achieve defect detection.
Method and apparatus for measuring flow velocity using matched filters
Raptis, Apostolos C.
1983-01-01
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.
Method and apparatus for measuring flow velocity using matched filters
Raptis, A.C.
1983-09-06
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.
Invariant measures of smooth dynamical systems, generalized functions and summation methods
NASA Astrophysics Data System (ADS)
Kozlov, V. V.
2016-04-01
We discuss conditions for the existence of invariant measures of smooth dynamical systems on compact manifolds. If there is an invariant measure with continuously differentiable density, then the divergence of the vector field along every solution tends to zero in the Cesàro sense as time increases unboundedly. Here the Cesàro convergence may be replaced, for example, by any Riesz summation method, which can be arbitrarily close to ordinary convergence (but does not coincide with it). We give an example of a system whose divergence tends to zero in the ordinary sense but none of its invariant measures is absolutely continuous with respect to the `standard' Lebesgue measure (generated by some Riemannian metric) on the phase space. We give examples of analytic systems of differential equations on analytic phase spaces admitting invariant measures of any prescribed smoothness (including a measure with integrable density), but having no invariant measures with positive continuous densities. We give a new proof of the classical Bogolyubov-Krylov theorem using generalized functions and the Hahn-Banach theorem. The properties of signed invariant measures are also discussed.
A new gauge-invariant method for diagnosing eddy diffusivities
NASA Astrophysics Data System (ADS)
Mak, J.; Maddison, J. R.; Marshall, D. P.
2016-08-01
Coarse resolution numerical ocean models must typically include a parameterisation for mesoscale turbulence. A common recipe for such parameterisations is to invoke mixing of some tracer quantity, such as potential vorticity or buoyancy. However, it is well known that eddy fluxes include large rotational components which necessarily do not lead to any mixing; eddy diffusivities diagnosed from unfiltered fluxes are thus contaminated by the presence of these rotational components. Here a new methodology is applied whereby eddy diffusivities are diagnosed directly from the eddy force function. The eddy force function depends only upon flux divergences, is independent of any rotational flux components, and is inherently non-local and smooth. A one-shot inversion procedure is applied, minimising the mis-match between parameterised force functions and force functions derived from eddy resolving calculations. This enables diffusivities associated with the eddy potential vorticity and Gent-McWilliams coefficients associated with eddy buoyancy fluxes to be diagnosed. This methodology is applied to multi-layer quasi-geostrophic ocean gyre simulations. It is found that: (i) a strictly down-gradient scheme for mixing potential vorticity and quasi-geostrophic buoyancy has limited success in reducing the mis-match compared to one with no sign constraint on the eddy diffusivity or Gent-McWilliams coefficient, with prevalent negative signals around the time-mean jet; (ii) the diagnostic is successful away from the jet region and wind-forced top layer; (iii) the locations of closed mean stream lines correlate with signals of positive eddy potential vorticity diffusivity; (iv) there is indication that the magnitude of the eddy potential vorticity diffusivity correlates well with the eddy energy. Implications for parameterisation are discussed in light of these diagnostic results.
Areal Feature Matching Based on Similarity Using Critic Method
NASA Astrophysics Data System (ADS)
Kim, J.; Yu, K.
2015-10-01
In this paper, we propose an areal feature matching method that can be applied for many-to-many matching, which involves matching a simple entity with an aggregate of several polygons or two aggregates of several polygons with fewer user intervention. To this end, an affine transformation is applied to two datasets by using polygon pairs for which the building name is the same. Then, two datasets are overlaid with intersected polygon pairs that are selected as candidate matching pairs. If many polygons intersect at this time, we calculate the inclusion function between such polygons. When the value is more than 0.4, many of the polygons are aggregated as single polygons by using a convex hull. Finally, the shape similarity is calculated between the candidate pairs according to the linear sum of the weights computed in CRITIC method and the position similarity, shape ratio similarity, and overlap similarity. The candidate pairs for which the value of the shape similarity is more than 0.7 are determined as matching pairs. We applied the method to two geospatial datasets: the digital topographic map and the KAIS map in South Korea. As a result, the visual evaluation showed two polygons that had been well detected by using the proposed method. The statistical evaluation indicates that the proposed method is accurate when using our test dataset with a high F-measure of 0.91.
The Vector Matching Method in Geomagnetic Aiding Navigation.
Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli
2016-07-20
In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line's variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm.
The Vector Matching Method in Geomagnetic Aiding Navigation
Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli
2016-01-01
In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line’s variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm. PMID:27447645
Calibration of weather radar using region probability matching method (RPMM)
NASA Astrophysics Data System (ADS)
Ayat, Hooman; Reza Kavianpour, M.; Moazami, Saber; Hong, Yang; Ghaemi, Esmail
2017-09-01
This research aims to develop a novel method named region probability matching method (RPMM) for calibrating the Amir-Abad weather radar located in the north of Iran. This approach also can overcome the limitations of probability matching method (PMM), window probability matching method (WPMM), and window correlation matching method (WCMM). The employing of these methods for calibrating the radars in light precipitation is associated with many errors. Additionally, in developing countries like Iran where ground stations have low temporal resolution, these methods cannot be benefited from. In these circumstances, RPMM by utilizing 18 synoptic stations with a temporal resolution of 6 h and radar data with a temporal resolution of 15 min has indicated an accurate estimation of cumulative precipitation over the entire study area in a specific period. Through a comparison of the two methods (RPMM and traditional matching method (TMM)) on March 22, 2014, the obtained correlation coefficients for TMM and RPMM were 0.13 and 0.95, respectively. It is noted that the cumulative precipitation of the whole rain gauges and the calibrated radar precipitation at the same pixels were 38.5 and 36.9 mm, respectively. Therefore, the obtained results prove the inefficiency of TMM and the capability of RPMM in the calibration process of the Amir-Abad weather radar. Besides, in determining the uncertainty associated with the calculated values of A and B in the Z e -R relation, a sensitivity analysis method was employed during the estimation of cumulative light precipitation for the period from 2014 to 2015. The results expressed that in the worst conditions, 69% of radar data are converted to R values by a maximum error less than 30%.
Development of a Matched Runs Method for VERITAS
NASA Astrophysics Data System (ADS)
Flinders, Andrew; VERITAS Collaboration
2016-03-01
VERITAS is an array of four Imaging Air Cherenkov Telescopes located in southern Arizona. It has been successful in detecting Very High Energy (VHE) radiation from a variety of sources including pulsars, Pulsar Wind Nebulae, Blazars, and High Mass X-Ray Binary systems. Each of these detections been accomplished using either the standard Ring Background Method or the Reflected Region Method in order to determine the appropriate background for the source region. For highly extended sources (>1 degree) these background estimation methods become unsuitable due to the possibility of source contamination in the background regions. A new method, called the matched background method, has been implemented for potentially highly extended sources observed by VERITAS. It provides and algorithm for identifying a suitable gamma-ray background estimation from a different field of view than the source region. By carefully matching cosmic-ray event rates between the source and the background sky observations, a suitable gamma-ray background matched data set can be identified. We will describe the matched background method and give examples of its use for several sources including the Crab Nebula and IC443. This research is supported by Grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada.
Comparing dynamical systems by a graph matching method
NASA Astrophysics Data System (ADS)
Zheng, Jiongxuan; Skufca, Joseph D.; Bollt, Erik M.
2013-07-01
In this paper, we consider comparing dynamical systems by using a method of graph matching, either between the graphs representing the underlying symbolic dynamics, or between the graphs approximating the action of the systems on a fine but otherwise non-generating partition. For conjugate systems, the graphs are isomorphic and we show that the permutation matrices that relate the adjacency matrices coincide with the solution of Monge’s mass transport problem. We use the underlying earth mover’s distance (EMD) to generate the “approximate” matching matrix to illustrate the association of graphs which are derived from equal-distance partitioning of the phase spaces of systems. In addition, for one system which embeds into the other, we show that the comparison of these two systems by our method is an issue of subgraph matching.
Almeida, Leandro G.; Sturm, Christian
2010-09-01
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients of the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.
Computing the Casimir energy using the point-matching method
Lombardo, F. C.; Mazzitelli, F. D.; Vazquez, M.; Villar, P. I.
2009-09-15
We use a point-matching approach to numerically compute the Casimir interaction energy for a two perfect-conductor waveguide of arbitrary section. We present the method and describe the procedure used to obtain the numerical results. At first, our technique is tested for geometries with known solutions, such as concentric and eccentric cylinders. Then, we apply the point-matching technique to compute the Casimir interaction energy for new geometries such as concentric corrugated cylinders and cylinders inside conductors with focal lines.
Method and apparatus for measuring flow velocity using matched filters
Raptis, A.C.
1981-07-17
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow is disclosed. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.
Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method
NASA Astrophysics Data System (ADS)
Fukui, H.; Miura, K.; Hirai, A.
A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.
A Finger Vein Identification Method Based on Template Matching
NASA Astrophysics Data System (ADS)
Zou, Hui; Zhang, Bing; Tao, Zhigang; Wang, Xiaoping
2016-01-01
New methods for extracting vein features from finger vein image and generating templates for matching are proposed. In the algorithm for generating templates, we proposed a parameter-templates quality factor (TQF) - to measure the quality of generated templates. So that we can use fewer finger vein samples to generate templates that meet the quality requirement of identification. The recognition accuracy of using proposed methods of finger vein feature extraction and template generation strategy for identification is 97.14%.
Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods
ERIC Educational Resources Information Center
Merkle, Edgar C.; Zeileis, Achim
2013-01-01
The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…
Al-Osaimi, Faisal R
2016-02-01
In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
NASA Astrophysics Data System (ADS)
Xiao, Huachao; Zhou, Quan; Li, Li
2015-10-01
Image information onboard processing is one o f important technology to rapidly achieve intelligence for remote sensing satellites. As a typical target, aircraft onboard detection has been getting more attention. In this paper, we propose an efficient method of aircraft detection for remote sensing satellite onboard processing. According to the feature of aircraft performance in remote sensing image, the detection algorithm consists of two steps: First Salient Object Detection (SOD) is employed to reduce the amount of calculation on large remote sensing image. SOD uses Gabor filtering and a simple binary test between pixels in a filtered image. White points are connected as regions. Plane candidate regions are screened from white regions by area, length and width of connected region. Next a new algorithm, called Circumferential Information Matching method, is used to detect aircraft on candidate regions. The results of tests show circumference curve around the plane center is stable shape, so the candidate region can be accurately detecting with this feature. In order to rotation invariant, we use circle matched filter to detect target. And discrete fast Fourier transform (DFFT) is used to accelerate and reduce calculation. Experiments show the detection accuracy rate of proposed algorithm is 90% with less than 0.5s processing time. In addition, the calculation of the proposed method through quantitative anglicized is very small. Experimental results and theoretical analysis show that the proposed method is reasonable and highly-efficient.
A vector matching method for analysing logic Petri nets
NASA Astrophysics Data System (ADS)
Du, YuYue; Qi, Liang; Zhou, MengChu
2011-11-01
Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
Efficient evaluation of Casimir force in z-invariant geometries by integral equation methods
Xiong, Jie L.; Chew, Weng Cho
2009-10-12
We introduce an efficient and accurate way to evaluate the Casimir force [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between arbitrary z-invariant structures using integral equation method. It casts the evaluation of mean Maxwell stress tensor to a series of traditional two-dimensional electromagnetic scattering problems. The number of times that the scattering problem needs to be solved is independent of the number of unknowns.
Quick matching of binary images
NASA Astrophysics Data System (ADS)
Mustafa, Adnan A. Y.
2015-09-01
Matching images is a fundamental problem in image processing. The most common technique used to compare binary images is to calculate the correlation between two images or simply to subtract them. Both of these methods -as well as other matching methods- require some type of similarity operation to be applied to the whole image, and hence they are image size dependent. This implies that as image size increases, more processing time is required. However, with image sizes already exceeding 20 mega-pixels and standard image sizes doubling approximately every five years, the need to find a size invariant image matching method is becoming crucial. In this paper, we present a quick way to compare and match binary images based on the Probabilistic Matching Model (PMM). We present two simple image size invariant methods based on PMM: one for fast detection of dissimilar binary images and another for matching binary images. For detecting dissimilar binary images we introduce the Dissimilar Detection via Mapping method (DDM). We compare DDM to other popular matching methods used in the image processing arena and show that DDM is magnitudes faster than any other method. For binary image matching, we use DDM as a preprocessor for other popular methods to speed up their matching speed. In particular, we use DDM with cross correlation to speed it up. Test results are presented for real images varying in size from 16 kilo-pixel images to 10 mega-pixel images to show the method's size invariance.
An Illumination Invariant Bimodal Method Employing Discriminant Features for Face Recognition
NASA Astrophysics Data System (ADS)
Wu, Jiying; Ruan, Qiuqi; An, Gaoyun
A novel bimodal method for face recognition under low-level lighting conditions is proposed. It fuses an enhanced gray level imageand an illumination-invariant geometric image at the feature-level. To further improve the recognition performance under large variations in attributions such as poses and expressions, discriminant features are extracted from source images using the wavelet transform-based method. Features are adaptively fused to reconstruct the final face sample. Then FLD is used to generate a supervised discriminant space for the classification task. Experiments show that the bimodal method outperforms conventional methods under complex conditions.
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Jing; Zhang, Song; Chen, Heping; Guan, Yong; Chen, Ken
2017-01-01
The accuracy of structured light measurement depends on delicate offline calibration. However, in some practical applications, the system is supposed to be reconfigured so frequently to track the target that an online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration method. For the proposed method, first, the rotation matrix and the normalized translation vector are attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant registration such that the actual translation vector is obtained. Experiments have been conducted to verify the effectiveness of our proposed method and the results indicate a high degree of accuracy.
Restricted surface matching: a new registration method for medical images
NASA Astrophysics Data System (ADS)
Gong, JianXing; Zamorano, Lucia J.; Jiang, Zhaowei; Nolte, Lutz P.; Diaz, Fernando
1998-06-01
Since its introduction to neurological surgery in the early 1980's, computer assisted surgery (CAS) with and without robotics navigation has been applied to several medical fields. The common issue all CAS systems is registration between two pre-operative 3D image modalities (for example, CT/MRI/PET et al) and the 3D image references of the patient in the operative room. In Wayne State University, a new way is introduced for medical image registration, which is different from traditional fiducial point registration and surface registration. We call it restricted surface matching (RSM). The method fast, convenient, accurate and robust. It combines the advantages from two registration methods mentioned before. Because of a penalty function introduced in its cost function, it is called `RSM'. The surface of a 3D image modality is pre-operatively extracted using segmentation techniques, and a distance map is created from such surface. The surface of another 3D reference is presented by a cloud of 3D points. At least three rough landmarks are used to restrict a registration not far away from global minimum. The local minimum issue is solved by use of a restriction for in the cost function and larger number of random starting points. The accuracy of matching is achieved by gradually releasing the restriction and limiting the influence of outliers. It only needs about half a minute to find the global minimum (for 256 X 256 X 56 images) in a SunSparc 10 station.
Template matching method for the analysis of interstellar cloud structure
NASA Astrophysics Data System (ADS)
Juvela, M.
2016-09-01
Context. The structure of interstellar medium can be characterised at large scales in terms of its global statistics (e.g. power spectra) and at small scales by the properties of individual cores. Interest has been increasing in structures at intermediate scales, resulting in a number of methods being developed for the analysis of filamentary structures. Aims: We describe the application of the generic template-matching (TM) method to the analysis of maps. Our aim is to show that it provides a fast and still relatively robust way to identify elongated structures or other image features. Methods: We present the implementation of a TM algorithm for map analysis. The results are compared against rolling Hough transform (RHT), one of the methods previously used to identify filamentary structures. We illustrate the method by applying it to Herschel surface brightness data. Results: The performance of the TM method is found to be comparable to that of RHT but TM appears to be more robust regarding the input parameters, for example, those related to the selected spatial scales. Small modifications of TM enable one to target structures at different size and intensity levels. In addition to elongated features, we demonstrate the possibility of using TM to also identify other types of structures. Conclusions: The TM method is a viable tool for data quality control, exploratory data analysis, and even quantitative analysis of structures in image data.
An Invariant-Preserving ALE Method for Solids under Extreme Conditions
Sambasivan, Shiv Kumar; Christon, Mark A
2012-07-17
We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore
Becht, Andrik I; Branje, Susan J T; Vollebergh, Wilma A M; Maciejewski, Dominique F; van Lier, Pol A C; Koot, Hans M; Denissen, Jaap J A; Meeus, Wim H J
2016-06-01
The aim of this study was to assess measurement invariance of adolescents' daily reports on identity across time and sex. Adolescents (N = 497; mean age = 13.32 years at Time 1, 56.7% boys) from the general population reported on their identity commitments, exploration in depth and reconsideration on a daily basis for 3 weeks within 1 year across 5 years. We used the single-item version of the Utrecht Management of Identity Commitments Scale (UMICS; Klimstra et al., 2010), a broad measure of identity-formation processes covering both interpersonal and educational identity domains. This study tested configural, metric, scalar, and strict measurement invariance across days within weeks, across sex, across weeks within years, and across years. Results indicated that daily diary reports show strict measurement invariance across days, across weeks within years, across years, and across boys and girls. These results support the use of daily diary methods to assess identity at various time intervals ranging from days to years and across sex. Results are discussed with regard to future implications to study identity processes, both on smaller and larger time intervals. (PsycINFO Database Record
Multiscale molecular dynamics using the matched interface and boundary method
Geng Weihua; Wei, G.W.
2011-01-20
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.
Multiscale molecular dynamics using the matched interface and boundary method
Geng, Weihua; Wei, G.W.
2010-01-01
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems. PMID:21088761
A Critical Appraisal of NLO+PS Matching Methods
Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Siegert, Frank; /Freiburg U.
2012-03-19
In this publication, uncertainties in and differences between the MC{at}NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA are employed to assess the impact on a representative selection of observables. In the MC{at}NLO approach a phase space restriction has been added to subtraction and parton shower, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W{sup {+-}} and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.
1988-01-01
The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.
1988-01-01
The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.
A sorting-to-matching method to teach compound matching to sample.
Farber, Rachel S; Dube, William V; Dickson, Chata A
2016-06-01
Individuals with developmental disabilities may fail to attend to multiple features in compound stimuli (e.g., arrays of pictures, letters within words) with detrimental effects on learning. Participants were 5 children with autism spectrum disorder who had low to intermediate accuracy scores (35% to 84%) on a computer-presented compound matching task. Sample stimuli were pairs of icons (e.g., chair-tree), the correct comparison was identical to the sample, and each incorrect comparison had one icon in common with the sample (e.g., chair-sun, airplane-tree). A 5-step tabletop sorting-to-matching training procedure was used to teach compound matching. The first step was sorting 3 single pictures; subsequent steps gradually changed the task to compound matching. If progress stalled, tasks were modified temporarily to prompt observing behavior. After tabletop training, participants were retested on the compound matching task; accuracy improved to at least 95% for all children. This procedure illustrates one way to improve attending to multiple features of compound stimuli.
Holographic fluorescence mapping using space-division matching method
NASA Astrophysics Data System (ADS)
Abe, Ryosuke; Hayasaki, Yoshio
2017-10-01
Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.
Fox, Mark C; Mitchum, Ainsley L
2014-01-01
The trend of rising scores on intelligence tests raises important questions about the comparability of variation within and between time periods. Descriptions of the processes that mediate selection of item responses provide meaningful psychological criteria upon which to base such comparisons. In a recent paper, Fox and Mitchum presented and tested a cognitive theory of rising scores on analogical and inductive reasoning tests that is specific enough to make novel predictions about cohort differences in patterns of item responses for tests such as the Raven's Matrices. In this paper we extend the same proposal in two important ways by (1) testing it against a dataset that enables the effects of cohort to be isolated from those of age, and (2) applying it to two other inductive reasoning tests that exhibit large Flynn effects: Letter Series and Word Series. Following specification and testing of a confirmatory item response model, predicted violations of measurement invariance are observed between two age-matched cohorts that are separated by only 20 years, as members of the later cohort are found to map objects at higher levels of abstraction than members of the earlier cohort who possess the same overall level of ability. Results have implications for the Flynn effect and cognitive aging while underscoring the value of establishing psychological criteria for equating members of distinct groups who achieve the same scores.
On the NP-completeness of the Hartree-Fock method for translationally invariant systems
Whitfield, James Daniel; Zimborás, Zoltán
2014-12-21
The self-consistent field method utilized for solving the Hartree-Fock (HF) problem and the closely related Kohn-Sham problem is typically thought of as one of the cheapest methods available to quantum chemists. This intuition has been developed from the numerous applications of the self-consistent field method to a large variety of molecular systems. However, as characterized by its worst-case behavior, the HF problem is NP-complete. In this work, we map out boundaries of the NP-completeness by investigating restricted instances of HF. We have constructed two new NP-complete variants of the problem. The first is a set of Hamiltonians whose translationally invariant Hartree-Fock solutions are trivial, but whose broken symmetry solutions are NP-complete. Second, we demonstrate how to embed instances of spin glasses into translationally invariant Hartree-Fock instances and provide a numerical example. These findings are the first steps towards understanding in which cases the self-consistent field method is computationally feasible and when it is not.
Matching wind turbine rotors and loads: Computational methods for designers
NASA Astrophysics Data System (ADS)
Seale, J. B.
1983-04-01
A comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications was reported. A method was developed to convert the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) it is decided how turbine power is to be governed to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics are used to predict longterm energy output. Most systems are approximated by a graph and calculator approach. The method leads to energy predictions, and to insight into modeled processes. A computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out with in depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps; including three different load compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.
Matched Interface and Boundary Method for Elasticity Interface Problems
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439
Matched Interface and Boundary Method for Elasticity Interface Problems.
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-09-01
Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé's parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms.
Gauge-free cluster variational method by maximal messages and moment matching
NASA Astrophysics Data System (ADS)
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
Gauge-free cluster variational method by maximal messages and moment matching.
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
NASA Astrophysics Data System (ADS)
Rogovtsov, Nikolai N.; Borovik, Felix
2016-11-01
A brief analysis of different properties and principles of invariance to solve a number of classical problems of the radiation transport theory is presented. The main ideas, constructions, and assertions used in the general invariance relations reduction method are described in outline. The most important distinctive features of this general method of solving a wide enough range of problems of the radiation transport theory and mathematical physics are listed. To illustrate the potential of this method, a number of problems of the scalar radiative transfer theory have been solved rigorously in the article. The main stages of rigorous derivations of asymptotical formulas for the smallest in modulo elements of the discrete spectrum and the eigenfunctions, corresponding to them, of the characteristic equation for the case of an arbitrary phase function and almost conservative scattering are described. Formulas of the same type for the azimuthal averaged reflection function, the plane and spherical albedos have been obtained rigorously. New analytical representations for the reflection function, the plane and spherical albedos have been obtained, and effective algorithms for calculating these values have been offered for the case of a practically arbitrary phase function satisfying the Hölder condition. New analytical representation of the «surface» Green function of the scalar radiative transfer equation for a semi-infinite plane-parallel conservatively scattering medium has been found. The deep regime asymptotics of the "volume" Green function has been obtained for the case of a turbid medium of cylindrical form.
Li, Jin; Liu, Zilong
2017-07-24
Remote sensing cameras in the visible/near infrared range are essential tools in Earth-observation, deep-space exploration, and celestial navigation. Their imaging performance, i.e. image quality here, directly determines the target-observation performance of a spacecraft, and even the successful completion of a space mission. Unfortunately, the camera itself, such as a optical system, a image sensor, and a electronic system, limits the on-orbit imaging performance. Here, we demonstrate an on-orbit high-resolution imaging method based on the invariable modulation transfer function (IMTF) of cameras. The IMTF, which is stable and invariable to the changing of ground targets, atmosphere, and environment on orbit or on the ground, depending on the camera itself, is extracted using a pixel optical focal-plane (PFP). The PFP produces multiple spatial frequency targets, which are used to calculate the IMTF at different frequencies. The resulting IMTF in combination with a constrained least-squares filter compensates for the IMTF, which represents the removal of the imaging effects limited by the camera itself. This method is experimentally confirmed. Experiments on an on-orbit panchromatic camera indicate that the proposed method increases 6.5 times of the average gradient, 3.3 times of the edge intensity, and 1.56 times of the MTF value compared to the case when IMTF is not used. This opens a door to push the limitation of a camera itself, enabling high-resolution on-orbit optical imaging.
Binocular stereo matching method based on structure tensor
NASA Astrophysics Data System (ADS)
Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei
2016-10-01
In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.
NASA Astrophysics Data System (ADS)
Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.
2006-03-01
This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism
Ren, Zhuyin; Pope, Stephen B; Vladimirsky, Alexander; Guckenheimer, John M
2006-03-21
This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism
The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant weights
NASA Astrophysics Data System (ADS)
Kaymak, Vural; Kieburg, Mario; Guhr, Thomas
2014-07-01
In the past few years, the supersymmetry method has been generalized to real symmetric, Hermitian, and Hermitian self-dual random matrices drawn from ensembles invariant under the orthogonal, unitary, and unitary symplectic groups, respectively. We extend this supersymmetry approach to chiral random matrix theory invariant under the three chiral unitary groups in a unifying way. Thereby we generalize a projection formula providing a direct link and, hence, a ‘short cut’ between the probability density in ordinary space and that in superspace. We emphasize that this point was one of the main problems and shortcomings of the supersymmetry method, since only implicit dualities between ordinary space and superspace were known before. To provide examples, we apply this approach to the calculation of the supersymmetric analogue of a Lorentzian (Cauchy) ensemble and an ensemble with a quartic potential. Moreover, we consider the partially quenched partition function of the three chiral Gaussian ensembles corresponding to four-dimensional continuum quantum chromodynamics. We identify a natural splitting of the chiral Lagrangian in its lowest order into a part for the physical mesons and a part associated with source terms generating the observables, e.g. the level density of the Dirac operator.
Matching wind turbine rotors and loads: computational methods for designers
Seale, J.B.
1983-04-01
This report provides a comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications. The user must supply: (1) turbine aerodynamic efficiency as a function of tipspeed ratio; (2) mechanical load torque as a function of rotation speed; (3) useful delivered power as a function of incoming mechanical power; (4) site average windspeed and, for maximum accuracy, distribution data. The description of the data includes governing limits consistent with the capacities of components. The report develops, a step-by-step method for converting the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) a decision is made how turbine power is to be governed (it may self-govern) to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics come into play to predict longterm energy output. Most systems can be approximated by a graph-and-calculator approach: Computer-generated families of coefficient curves provide data for algebraic scaling formulas. The method leads not only to energy predictions, but also to insight into the processes being modeled. Direct use of a computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out witn in-depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps, including three different load-compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.
NASA Astrophysics Data System (ADS)
Le Bihan, B.; Masdemont, J. J.; Gómez, G.; Lizy-Destrez, S.
2017-08-01
The parameterization method (pm) has been used to compute high-order parameterizations of invariant manifolds of vector fields at fixed points. This paper extends such approach to invariant manifolds of periodically-perturbed vector fields about a periodic orbit with the same frequency, with a direct application on the libration points of the Sun-Earth-Moon system. The Sun-Earth-Moon environment is modeled by the so-called quasi-bicircular model (qbcp), which is a coherent restricted four-body model that describes the motion of a spacecraft under the simultaneous gravitational influences of the Earth, the Moon, and the Sun. The pm is adapted to account for the explicit time-dependency of the corresponding vector field. This new procedure yields high-order periodic semi-analytical approximations of the center manifolds about the libration points L1, 2 of the periodically-perturbed Sun-(Earth + Moon) and Earth-Moon systems. These approximations are then used to initialize the computation of Poincaré maps, which allow to get a qualitative description of the non-autonomous dynamics near the equilibrium points. It is shown that, with this new approach, the semi-analytical description of the center manifolds in a coherent four-body environment is valid in a neighborhood significant enough to be used in practice. In particular, the well-known Halo orbit bifurcation is recovered in all cases.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2017-01-01
In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2017-01-01
In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.
Modification of the adiabatic invariants method in the studies of resonant dissipative systems.
Tokman, Mikhail; Erukhimova, Maria
2011-11-01
We study the system of equations for the canonically conjugate variables p and q specified by the one-dimensional Hamiltonian H=H(p,q,Λ(1),...,Λ(N)) dependent on Nself-consistent slightly changing parameters obeying the equations: Λ(n)=εf(n)(Λ(1),...,Λ(N),p,q). A broad range of oscillatory and wave processes with weak dissipation is described by analogous systems. The general method of adiabatic invariant construction for this system is proposed. Self-consistent averaged equations for the evolution of the action integral and the parameters Λ(n) are obtained. The constructed theory is applied to a generalized model of the nonlinear resonance. The autoresonance (phase locking) regime of decay parametric instability in a dissipative medium is revealed.
Explicit Krawtchouk moment invariants for invariant image recognition
NASA Astrophysics Data System (ADS)
Xiao, Bin; Zhang, Yanhong; Li, Linping; Li, Weisheng; Wang, Guoyin
2016-03-01
The existing Krawtchouk moment invariants are derived by a linear combination of geometric moment invariants. This indirect method cannot achieve perfect performance in rotation, scale, and translation (RST) invariant image recognition since the derivation of these invariants are not built on Krawtchouk polynomials. A direct method to derive RST invariants from Krawtchouk moments, named explicit Krawtchouk moment invariants, is proposed. The proposed method drives Krawtchouk moment invariants by algebraically eliminating the distorted (i.e., rotated, scaled, and translated) factor contained in the Krawtchouk moments of distorted image. Experimental results show that, compared with the indirect methods, the proposed approach can significantly improve the performance in terms of recognition accuracy and noise robustness.
ERIC Educational Resources Information Center
Moses, Tim
2008-01-01
Equating functions are supposed to be population invariant, meaning that the choice of subpopulation used to compute the equating function should not matter. The extent to which equating functions are population invariant is typically assessed in terms of practical difference criteria that do not account for equating functions' sampling…
Lamb Waves Decomposition and Mode Identification Using Matching Pursuit Method
2009-01-01
an adaptive signal decomposition technique and can be applied to process Lamb waves, such as denoising , wave parameter estimation, and feature...transform (STFT), wavelet transform, Wigner-Ville distribution, matching pursuit decomposition, etc. 1 Report Documentation Page Form ApprovedOMB No...positions, but constant time widths. In contrast to the STFT, which uses a single analysis window, the wavelet transform offers a tradeoff between
Detection of copy-move forgery using a method based on blur moment invariants.
Mahdian, Babak; Saic, Stanislav
2007-09-13
In our society digital images are a powerful and widely used communication medium. They have an important impact on our life. In recent years, due to the advent of high-performance commodity hardware and improved human-computer interfaces, it has become relatively easy to create fake images. Modern, easy to use image processing software enables forgeries that are undetectable by the naked eye. In this work we propose a method to automatically detect and localize duplicated regions in digital images. The presence of duplicated regions in an image may signify a common type of forgery called copy-move forgery. The method is based on blur moment invariants, which allows successful detection of copy-move forgery, even when blur degradation, additional noise, or arbitrary contrast changes are present in the duplicated regions. These modifications are commonly used techniques to conceal traces of copy-move forgery. Our method works equally well for lossy format such as JPEG. We demonstrate our method on several images affected by copy-move forgery.
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Zhao, Jia; Wang, Qi
2017-03-01
The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg-Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the "Invariant Energy Quadratization" (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.
Scale Invariant Feature Transform Plus Hue Feature
NASA Astrophysics Data System (ADS)
Daneshvar, M. B.
2017-08-01
This paper presents an enhanced method for extracting invariant features from images based on Scale Invariant Feature Transform (SIFT). Although SIFT features are invariant to image scale and rotation, additive noise, and changes in illumination but we think this algorithm suffers from excess keypoints. Besides, by adding the hue feature, which is extracted from combination of hue and illumination values in HSI colour space version of the target image, the proposed algorithm can speed up the matching phase. Therefore, we proposed the Scale Invariant Feature Transform plus Hue (SIFTH) that can remove the excess keypoints based on their Euclidean distances and adding hue to feature vector to speed up the matching process which is the aim of feature extraction. In this paper we use the difference of hue features and the Mean Square Error (MSE) of orientation histograms to find the most similar keypoint to the under processing keypoint. The keypoint matching method can identify correct keypoint among clutter and occlusion robustly while achieving real-time performance and it will result a similarity factor of two keypoints. Moreover removing excess keypoint by SIFTH algorithm helps the matching algorithm to achieve this goal.
ERIC Educational Resources Information Center
Spilt, Jantine L.; Koomen, Helma M. Y.; Jak, Suzanne
2012-01-01
Although research consistently points to poorer teacher-student relationships for boys than girls, there are no studies that take into account the effects of teacher gender and control for possible measurement non-invariance across student and teacher gender. This study addressed both issues. The sample included 649 primary school teachers (182…
ERIC Educational Resources Information Center
Spilt, Jantine L.; Koomen, Helma M. Y.; Jak, Suzanne
2012-01-01
Although research consistently points to poorer teacher-student relationships for boys than girls, there are no studies that take into account the effects of teacher gender and control for possible measurement non-invariance across student and teacher gender. This study addressed both issues. The sample included 649 primary school teachers (182…
NASA Astrophysics Data System (ADS)
Bae, Joseph H.
2015-07-01
Applying the Jacobi method of second variation to the Bianchi IX system in Misner variables (α ,{β }+,{β }-), we specialize to the Taub space background ({β }-=0) and obtain the governing equations for linearized homogeneous perturbations ({α }\\prime ,{β }+\\prime ,{β }-\\prime ) thereabout. Employing a canonical transformation, we isolate two decoupled gauge-invariant linearized variables ({β }-\\prime and {Q}+\\prime ={p}+{α }\\prime +{p}α {β }+\\prime ), together with their conjugate momenta and linearized Hamiltonians. These two linearized Hamiltonians are of time-dependent harmonic oscillator form, and we quantize them to get time-dependent Schrödinger equations. For the case of {Q}+\\prime , we are able to solve for the discrete solutions and the exact quantum squeezed states.
NASA Astrophysics Data System (ADS)
Miroshnikov, Victor
2015-11-01
The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.
NASA Astrophysics Data System (ADS)
Granados, Albert
2017-08-01
Energy harvesting systems based on oscillators aim to capture energy from mechanical oscillations and convert it into electrical energy. Widely extended are those based on piezoelectric materials, whose dynamics are Hamiltonian submitted to different sources of dissipation: damping and coupling. These dissipations bring the system to low energy regimes, which is not desired in long term as it diminishes the absorbed energy. To avoid or to minimize such situations, we propose that the coupling of two oscillators could benefit from theory of Arnold diffusion. Such phenomenon studies O(1) energy variations in Hamiltonian systems and hence could be very useful in energy harvesting applications. This article is a first step towards this goal. We consider two piezoelectric beams submitted to a small forcing and coupled through an electric circuit. By considering the coupling, damping and forcing as perturbations, we prove that the unperturbed system possesses a 4-dimensional Normally Hyperbolic Invariant Manifold with 5 and 4-dimensional stable and unstable manifolds, respectively. These are locally unique after the perturbation. By means of the parameterization method, we numerically compute parameterizations of the perturbed manifold, its stable and unstable manifolds and study its inner dynamics. We show evidence of homoclinic connections when the perturbation is switched on.
NASA Astrophysics Data System (ADS)
Bazhenov, V. A.; Sakharov, A. S.; Maksimyuk, Yu. V.; Shkryl', A. A.
2016-03-01
Numerical experiments are performed to analyze the invariance and reliability of the results of evaluation of the J-integral by the modified method of reactions in problems of mixed fracture. Bodies with cracks undergoing elastoplastic deformation under static loading are considered. To demonstrate the universality of the method to finite-element schemes, prismatic bodies are considered. This allows using not only conventional finite-element schemes, but also the semi-analytical finite-element method
A Comparison of Propensity Score Matching Methods for Reducing Selection Bias
ERIC Educational Resources Information Center
Bai, Haiyan
2011-01-01
Propensity score matching (PSM) has become a popular approach for research studies when randomization is infeasible. However, there are significant differences in the effectiveness of selection bias reduction among the existing PSM methods and, therefore, it is challenging for researchers to select an appropriate matching method. This current…
A method to analyse measurement invariance under uncertainty in between-subjects design.
Martínez, José A; Ruiz Marin, Manuel; Vivo Molina, Maria del Carmen
2012-11-01
In this research we have introduced a new test (H-test) for analyzing scale invariance in between group designs, and considering uncertainty in individual responses, in order to study the adequacy of disparate rating and visual scales for measuring abstract concepts. The H-test is easy to compute and, as a nonparametric test, does not require any a priori distribution of the data nor conditions on the variances of the distributions to be tested. We apply this test to measure perceived service quality of consumers of a sports services. Results show that, without considering uncertainty, the 1-7 scale is invariant, in line with the related works regarding this topic. However, de 1-5 scale and the 1-7 scale are invariant when adding uncertainty to the analysis. Therefore, adding uncertainty importantly change the conclusions regarding invariance analysis. Both types of visual scales are not invariant in the uncertainty scenario. Implications for the use of rating scales are discussed.
Spilt, Jantine L; Koomen, Helma M Y; Jak, Suzanne
2012-06-01
Although research consistently points to poorer teacher-student relationships for boys than girls, there are no studies that take into account the effects of teacher gender and control for possible measurement non-invariance across student and teacher gender. This study addressed both issues. The sample included 649 primary school teachers (182 men) and 1493 students (685 boys). Teachers completed a slightly adapted version of the Student-Teacher Relationship Scale. The results indicated limited measurement non-invariance in teacher reports. Female teachers reported better (i.e., more close, less conflictual, and less dependent) relationships with students than male teachers. In addition, both male and female teachers reported more conflictual relationships with boys than with girls, and female teachers also reported less close relationships with boys than with girls. The findings challenge society's presumption that male teachers have better relationships with boys than women teachers.
Regularized discriminative spectral regression method for heterogeneous face matching.
Huang, Xiangsheng; Lei, Zhen; Fan, Mingyu; Wang, Xiao; Li, Stan Z
2013-01-01
Face recognition is confronted with situations in which face images are captured in various modalities, such as the visual modality, the near infrared modality, and the sketch modality. This is known as heterogeneous face recognition. To solve this problem, we propose a new method called discriminative spectral regression (DSR). The DSR maps heterogeneous face images into a common discriminative subspace in which robust classification can be achieved. In the proposed method, the subspace learning problem is transformed into a least squares problem. Different mappings should map heterogeneous images from the same class close to each other, while images from different classes should be separated as far as possible. To realize this, we introduce two novel regularization terms, which reflect the category relationships among data, into the least squares approach. Experiments conducted on two heterogeneous face databases validate the superiority of the proposed method over the previous methods.
NASA Technical Reports Server (NTRS)
Lallemand, Pierre; Luo, Li-Shi
2000-01-01
The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters which optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.
Lallemand; Luo
2000-06-01
The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyperviscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters that optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some two-dimensional LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long-wavelength limit (wave vector k=0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.
A simple and robust method for partially matched samples using the p-values pooling approach.
Kuan, Pei Fen; Huang, Bo
2013-08-30
This paper focuses on statistical analyses in scenarios where some samples from the matched pairs design are missing, resulting in partially matched samples. Motivated by the idea of meta-analysis, we recast the partially matched samples as coming from two experimental designs and propose a simple yet robust approach based on the weighted Z-test to integrate the p-values computed from these two designs. We show that the proposed approach achieves better operating characteristics in simulations and a case study, compared with existing methods for partially matched samples. Copyright © 2013 John Wiley & Sons, Ltd.
Matching methods for causal inference: A review and a look forward.
Stuart, Elizabeth A
2010-02-01
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970's, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine, and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods-or developing methods related to matching-do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.
Matching method of the vision image captured by the lunar rover exploring on lunar surface
NASA Astrophysics Data System (ADS)
Li, Lichun; Zhou, Jianliang; Sun, Jun; Shang, Desheng; Xu, Yinghui; Zhang, Wei; Wan, Wenhui
2014-11-01
Facing the lunar surface survey of the Lunar Exploring Engineering, the paper summarizes the environment sensing technology based on vision image. For the image matching is the most important step in the process of the lunar exploring images, the accuracy and speed of the matching method is the key problem of the lunar exploring, which play an important role in the rover auto navigating and tele-operating. To conquer difficult problem that there are significant illumination variation of the imaging, lack of image texture, and non-uniform distribution of the image texture, the huge change of the disparity for the prominent target in the scene, in the image process Engineering, the image matching method is proposed which divided the whole image into M×N regions, and each region employs the Forstner algorithm to extract features by which the semi-uniform distribution features of whole image and avoiding of the features gathering is achieved. According to the semi- uniform distribution features, the Sift and Least Square Matching method are used to realize accurate image matching. Guided by the matched features of the first step, the locale plane is detected to restrict dense image registering. The matching experiments show that the method is effective to deal with the image captured by the lunar exploring rover, that has large variation of illumination and lacking of image texture. The robustness and high accuracy of the method is also proved. The method satisfied the request of the lunar surface exploring.
Scale invariance vs conformal invariance
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2015-03-01
In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and
2004-05-01
change under the various nui- sances of image formation and viewing geometry was appealing; it held potential for application to recognition...Springer, 1990. 29. S. Z. Li. Shape matching based on invariants. In O. M. Omidvar (ed.), editor, Progress in Neural Networks : Shape Recognition, volume 6
Numerical optimization algorithm for rotationally invariant multi-orbital slave-boson method
NASA Astrophysics Data System (ADS)
Quan, Ya-Min; Wang, Qing-wei; Liu, Da-Yong; Yu, Xiang-Long; Zou, Liang-Jian
2015-06-01
We develop a generalized numerical optimization algorithm for the rotationally invariant multi-orbital slave boson approach, which is applicable for arbitrary boundary constraints of high-dimensional objective function by combining several classical optimization techniques. After constructing the calculation architecture of rotationally invariant multi-orbital slave boson model, we apply this optimization algorithm to find the stable ground state and magnetic configuration of two-orbital Hubbard models. The numerical results are consistent with available solutions, confirming the correctness and accuracy of our present algorithm. Furthermore, we utilize it to explore the effects of the transverse Hund's coupling terms on metal-insulator transition, orbital selective Mott phase and magnetism. These results show the quick convergency and robust stable character of our algorithm in searching the optimized solution of strongly correlated electron systems.
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
NASA Astrophysics Data System (ADS)
Wróbel, Jacek K.; Goodman, Roy H.
2013-07-01
An efficient and accurate numerical method is presented for computing invariant manifolds of maps which arise in the study of dynamical systems. A quasi-interpolation method due to Hering-Bertram et al. is used to decrease the number of points needed to compute a portion of the manifold. Bézier triangular patches are used in this construction, together with adaptivity conditions based on properties of these patches. Several numerical tests are performed, which show the method to compare favorably with previous approaches.
A new method for generating an invariant iris private key based on the fuzzy vault system.
Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie
2008-10-01
Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment.
Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R; Cheriet, Farida
2013-09-01
Existing methods for surface matching are limited by the tradeoff between precision and computational efficiency. Here, we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4 percent). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as an additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real-case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a submillimeter level) while performing at much greater speed than existing methods.
Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida
2013-01-01
Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776
Tong, Mingsi; Song, John; Chu, Wei; Thompson, Robert M
2014-01-01
The Congruent Matching Cells (CMC) method for ballistics identification was invented at the National Institute of Standards and Technology (NIST). The CMC method is based on the correlation of pairs of small correlation cells instead of the correlation of entire images. Four identification parameters – TCCF, Tθ, Tx and Ty are proposed for identifying correlated cell pairs originating from the same firearm. The correlation conclusion (matching or non-matching) is determined by whether the number of CMC is ≥ 6. This method has been previously validated using a set of 780 pair-wise 3D topography images. However, most ballistic images stored in current local and national databases are in an optical intensity (grayscale) format. As a result, the reliability of applying the CMC method on optical intensity images is an important issue. In this paper, optical intensity images of breech face impressions captured on the same set of 40 cartridge cases are correlated and analyzed for the validation test of CMC method using optical images. This includes correlations of 63 pairs of matching images and 717 pairs of non-matching images under top ring lighting. Tests of the method do not produce any false identification (false positive) or false exclusion (false negative) results, which support the CMC method and the proposed identification criterion, C = 6, for firearm breech face identifications using optical intensity images. PMID:26601045
A new stereo matching method based on threshold constrained minimum spanning tree
NASA Astrophysics Data System (ADS)
Cao, Hai; Ding, Yan; Du, Ming; Zhao, Liangjin; Yuan, Yating
2017-01-01
This paper proposes a novelty dense stereo matching method based on TC-MST (Threshold Constrained Minimum Spanning Tree), which aims to improve the accuracy of distance measuring. Due to the threshold has a great impact on the results of image segments, to select a better threshold, we adopt iteration threshold method. And then we uses MST to calculate the cost aggregation, and utilize the winner-take-all algorithm for the cost aggregation to obtain the disparity. Finally the method proposed is used in a distance measuring system. The experiment results show that this method improves the distance measuring accuracy compared with BM (block matching).
Experience with the matched filtered weighted-shift-and-add method
NASA Technical Reports Server (NTRS)
Hege, E. Keith; Strobel, Nicolas V.; Ribak, Erez; Christou, Julian C.
1987-01-01
It is presently demonstrated that while the matched filter formulated by Ribak (1986) for the extension of the weighted-shift-and-add (WSA) method successfully reduces photon statistics-dominated specklegrams, the iterative method originally proposed by Ribak does not converge in the case of photon-noisy specklegrams for objects having more than one maxima. Attention is accordingly given to methods for rendering the procedure more 'artificially intelligent'. An error matrix is defined that is useful in evaluating the validity of the results produced by the matched filter extension of the WSA method.
Magnetohydrodynamic mode identification from magnetic probe signals via a matched filter method
NASA Astrophysics Data System (ADS)
Edgell, Dana H.; Kim, Jin-Soo; Bogatu, Ioan N.; Humphreys, David A.; Turnbull, Alan D.
2002-04-01
A matched filter analysis has been developed to identify the amplitude and phase of magnetohydrodynamic modes in DIII-D tokamak plasmas using magnetic probe signals (δBp). As opposed to conventional Fourier spatial analysis of toroidally spaced probes, this analysis includes data from both toroidally and poloidally spaced magnetic probe arrays. Using additional probes both improves the statistics of the analysis and more importantly incorporates poloidal information into the mode analysis. The matched filter is a numeric filter that matches signals from the magnetic probes with numerically predicted signals for the mode. The numerical predictions are developed using EFIT equilibrium reconstruction data as input to the stability code GATO and the vacuum field code VACUUM. Changes is the plasma equilibrium that occur on the same time scale as the mode are taken into account by modeling simple matched filter vectors corresponding to changes in total plasma current, plus vertical and horizontal plasma shifts. The matched filter method works well when there is good understanding of a mode and good modeling of its structure. Matched filter analysis results for a fast growing ideal kink mode, where equilibrium change effects are minimal, show the effectiveness of this method. A slow growing resistive-wall mode (RWM) is also analyzed using the matched filter method. The method gives good results for identifying the amplitude and phase of the RWM but the simple equilibrium vectors are insufficient for complete elimination of equilibrium changes on this time scale. An analysis of the computational requirements of the scheme indicates that real-time application of the matched filter for RWM identification will be possible.
Akematsu, Yuji; Tsuji, Masatsugu
2012-12-01
This article examines the effect of telecare on medical expenditures for chronic diseases using survey data from Nishi-aizu Town, Fukushima Prefecture, Japan. The study uses the propensity score matching (PSM) method, a rigorous analytical method that overcomes sample selection bias, a common problem when using survey data. One hundred ninety-nine users (treatment) of telecare and 209 nonusers (control) were selected from residents, and their medical expenditures were obtained from the National Health Insurance scheme for comparison. Individual characteristics of the two groups, including age, sex, income, and health conditions, were compared, and variables that contained biases were specified by a t test. After calculation of their propensity scores and elimination of biases, the effect of telecare on medical expenditures was estimated. To obtain robust results, four different matching methods were applied: caliper matching, single nearest-neighbor matching, Epanechnikov kernel matching, and biweight kernel matching. No independent variable showed significant differences between the two groups after matching, indicating that selection biases were successfully eliminated using PSM. Using PSM, we saw a decrease in medical expenditures in Japanese yen of 25,538-39,936 (USD 319.23-499.20) per year per user and a decrease in the number of treatment days of 2.6-4.0 days. In comparison, our previous analyses using the same data underestimated the effects of telecare. PSM provides greater effects by reducing bias. Using PSM to compare subjects in two groups with similar characteristics except for their use or nonuse of telecare, we demonstrated that the treatment group has lower medical expenditures for chronic diseases than the control group. Proper matching is important in evaluating the impact of telecare interventions. Limitations of PSM include its requirement for a large number of samples and the limited ability to explain why and how telemedicine produces these
Lacour, André; Schüller, Vitalia; Drichel, Dmitriy; Herold, Christine; Jessen, Frank; Leber, Markus; Maier, Wolfgang; Noethen, Markus M; Ramirez, Alfredo; Vaitsiakhovich, Tatsiana; Becker, Tim
2015-03-14
A usually confronted problem in association studies is the occurrence of population stratification. In this work, we propose a novel framework to consider population matchings in the contexts of genome-wide and sequencing association studies. We employ pairwise and groupwise optimal case-control matchings and present an agglomerative hierarchical clustering, both based on a genetic similarity score matrix. In order to ensure that the resulting matches obtained from the matching algorithm capture correctly the population structure, we propose and discuss two stratum validation methods. We also invent a decisive extension to the Cochran-Armitage Trend test to explicitly take into account the particular population structure. We assess our framework by simulations of genotype data under the null hypothesis, to affirm that it correctly controls for the type-1 error rate. By a power study we evaluate that structured association testing using our framework displays reasonable power. We compare our result with those obtained from a logistic regression model with principal component covariates. Using the principal components approaches we also find a possible false-positive association to Alzheimer's disease, which is neither supported by our new methods, nor by the results of a most recent large meta analysis or by a mixed model approach. Matching methods provide an alternative handling of confounding due to population stratification for statistical tests for which covariates are hard to model. As a benchmark, we show that our matching framework performs equally well to state of the art models on common variants.
Line segment confidence region-based string matching method for map conflation
NASA Astrophysics Data System (ADS)
Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong
2013-04-01
In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.
NASA Astrophysics Data System (ADS)
Ryeol Choi, Jeong
2006-02-01
We investigated coherent and squeezed states of light in linear media whose parameters are explicitly dependent on time by making use of the Lewis Riesenfeld invariant operator method. Not only the field strengths but also the fluctuations of the fields both in coherent and in squeezed states are decayed with time. The relative noise of the field strengths are calculated in coherent state. Quantum statistical properties of the chaotic field are investigated. We applied our theory to a phenomenological model of the biophoton system and compared the corresponding result of the uncertainty product with that obtained from a previous report.
On the invariant method for the time-dependent non-Hermitian Hamiltonians
NASA Astrophysics Data System (ADS)
Khantoul, B.; Bounames, A.; Maamache, M.
2017-06-01
We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H( t) that generate a real phase in their time evolution. This involves the use of invariant operators I_{PH}(t) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H( t) is generally not quasi-Hermitian and does not define an observable of the system but I_{PH}(t) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.
Proton-decaying, light nuclei accessed via the invariant-mass method
NASA Astrophysics Data System (ADS)
Brown, Kyle
2017-01-01
Two-nucleon decay is the most recently discovered nuclear decay mode. For proton-rich nuclei, the majority of multi-proton decays occur via sequential steps of one-proton emission. Direct two-proton (2p) decay was believed to occur only in even-Z nuclei beyond the proton drip line where one-proton decay is energy forbidden. This has been observed for the ground states of around a dozen nuclei including 6Be, the lightest case, and 54Zn, the heaviest case. Direct 2p decay has also recently been observed for isobaric analog states where all possible 1p intermediates are either isospin allowed and energy forbidden, or energy-allowed and isospin forbidden. For light proton emitters, the lifetimes are short enough that the invariant-mass technique is ideal for measuring the decay energy, intrinsic width and, for multi-proton decays, the momentum correlations between the fragments. I will describe recent measurements of proton emitters using the invariant-mass technique with the High Resolution Array (HiRA). I will present a new, high-statistics measurement on the sequential 2p decay of excited states in 17Ne. Measuring the momentum correlations between the decay fragments allow us to determine the 1p intermediate state through which the decay proceeds. I will present data on the isobaric-analog pair 8C and 8BIAS, which highlight the two known types of direct 2p decay. I will also present the first observation of 17Na, which is unbound with respect to three-proton emission. Finally I will present a new measurement on the width of the first-excited state of 9C and compare to recent theoretical calculations.
NASA Astrophysics Data System (ADS)
Heid, T.; Kääb, A.
2011-12-01
Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier
An Iterative Pixel-Level Image Matching Method for Mars Mapping Using Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Lan, C. Z.; Xing, S.
2017-07-01
Mars mapping is essential to the scientific research of the red planet. The special terrain characteristics of Martian surface can be used to develop the targeted image matching method. In this paper, in order to generate high resolution Mars DEM, a pixel-level image matching method for Mars orbital pushbroom images is proposed. The main strategies of our method include: (1) image matching on approximate orthophotos; (2) estimating approximate value of conjugate points by using ground point coordinates of orthophotos; (3) hierarchical image matching; (4) generating DEM and approximate orthophotos at each pyramid level; (5) fast transformation from ground points to image points for pushbroom images. The derived DEM at each pyramid level is used as reference data for the generation of approximate orthophotos at the next pyramid level. With iterative processing, the generated DEM becomes more and more accurate and a very small search window is precise enough for the determination of conjugate points. The images acquired by High Resolution Stereo Camera (HRSC) on European Mars Express were used to verify our method's feasibility. Experiment results demonstrate that accurate DEM data can be derived with an acceptable time cost by pixel-level image matching.
Gearbox coupling modulation separation method based on match pursuit and correlation filtering
NASA Astrophysics Data System (ADS)
He, Guolin; Ding, Kang; Lin, Huibin
2016-01-01
The vibration signal of faulty gearbox commonly involves complex coupling modulation components. The method of sparse representation has been successfully used for gearbox fault diagnosis, but most of the literatures only focus on the extraction of impact modulation and always neglect the steady modulation representing the distributed faults. This paper presents a new method for separating coupling modulation from vibration signal of gearbox based on match pursuit and correlation filtering. To separate the steady modulation caused by distributed fault and the impact modulation caused by impact fault, two sub-dictionaries are specially designed according to the gearbox operating and structural parameters and the characteristics of vibration signal. The new dictionaries have clear physical meaning and good adaptability. In addition, an amplitude recovery step is conducted to improve the matching accuracy in the match pursuit. Simulation and experimental results show that the proposed method can separate the coupling components of gearbox vibration signal effectively under intensive background noise.
NASA Astrophysics Data System (ADS)
Huang, Jingzhi; Sun, Tao; Gu, Wei; Wen, Zhongpu; Guo, Tenghui
2015-02-01
With the fast development of the advanced equipment manufacturing toward precision and ultra-precision trend, especially with the continuously improving of the aviation engine's performance, the problem of high displacement resolution for the large-load two-dimension adjusting and positioning worktable used for the aeroengine assembling become evident. A method was proposed which is based on the invariable restoring force, and the adjusting and positioning physical model was established. The experiment results indicate that under the occasion of a load with 508 kilogram, the worktable has got a displacement resolution of 0.3μm after using the improved method compared to 1.4μm of the traditional method. The improved method could meet the requirements of aviation engine assembling worktable.
An efficient photogrammetric stereo matching method for high-resolution images
NASA Astrophysics Data System (ADS)
Li, Yingsong; Zheng, Shunyi; Wang, Xiaonan; Ma, Hao
2016-12-01
Stereo matching of high-resolution images is a great challenge in photogrammetry. The main difficulty is the enormous processing workload that involves substantial computing time and memory consumption. In recent years, the semi-global matching (SGM) method has been a promising approach for solving stereo problems in different data sets. However, the time complexity and memory demand of SGM are proportional to the scale of the images involved, which leads to very high consumption when dealing with large images. To solve it, this paper presents an efficient hierarchical matching strategy based on the SGM algorithm using single instruction multiple data instructions and structured parallelism in the central processing unit. The proposed method can significantly reduce the computational time and memory required for large scale stereo matching. The three-dimensional (3D) surface is reconstructed by triangulating and fusing redundant reconstruction information from multi-view matching results. Finally, three high-resolution aerial date sets are used to evaluate our improvement. Furthermore, precise airborne laser scanner data of one data set is used to measure the accuracy of our reconstruction. Experimental results demonstrate that our method remarkably outperforms in terms of time and memory savings while maintaining the density and precision of the 3D cloud points derived.
A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching
Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi
2015-01-01
The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263
A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching.
Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi
2015-07-03
The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise.
A frequency response model matching method for PID controller design for processes with dead-time.
Anwar, Md Nishat; Pan, Somnath
2015-03-01
In this paper, a PID controller design method for the integrating processes based on frequency response matching is presented. Two approaches are proposed for the controller design. In the first approach, a double feedback loop configuration is considered where the inner loop is designed with a stabilizing gain. In the outer loop, the parameters of the PID controller are obtained by frequency response matching between the closed-loop system with the PID controller and a reference model with desired specifications. In the second approach, the design is directly carried out considering a desired load-disturbance rejection model of the system. In both the approaches, two low frequency points are considered for matching the frequency response, which yield linear algebraic equations, solution of which gives the controller parameters. Several examples are taken from the literature to demonstrate the effectiveness and to compare with some well known design methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Preliminary evaluation of a gel tube agglutination major cross-match method in dogs.
Villarnovo, Dania; Burton, Shelley A; Horney, Barbara S; MacKenzie, Allan L; Vanderstichel, Raphaël
2016-09-01
A major cross-match gel tube test is available for use in dogs yet has not been clinically evaluated. This study compared cross-match results obtained using the gel tube and the standard tube methods for canine samples. Study 1 included 107 canine sample donor-recipient pairings cross-match tested with the RapidVet-H method gel tube test and compared results with the standard tube method. Additionally, 120 pairings using pooled sera containing anti-canine erythrocyte antibody at various concentrations were tested with leftover blood from a hospital population to assess sensitivity and specificity of the gel tube method in comparison with the standard method. The gel tube method had a good relative specificity of 96.1% in detecting lack of agglutination (compatibility) compared to the standard tube method. Agreement between the 2 methods was moderate. Nine of 107 pairings showed agglutination/incompatibility on either test, too few to allow reliable calculation of relative sensitivity. Fifty percent of the gel tube method results were difficult to interpret due to sample spreading in the reaction and/or negative control tubes. The RapidVet-H method agreed with the standard cross-match method on compatible samples, but detected incompatibility in some sample pairs that were compatible with the standard method. Evaluation using larger numbers of incompatible pairings is needed to assess diagnostic utility. The gel tube method results were difficult to categorize due to sample spreading. Weak agglutination reactions or other factors such as centrifuge model may be responsible. © 2016 American Society for Veterinary Clinical Pathology.
OSRI: a rotationally invariant binary descriptor.
Xu, Xianwei; Tian, Lu; Feng, Jianjiang; Zhou, Jie
2014-07-01
Binary descriptors are becoming widely used in computer vision field because of their high matching efficiency and low memory requirements. Since conventional approaches, which first compute a floating-point descriptor then binarize it, are computationally expensive, some recent efforts have focused on directly computing binary descriptors from local image patches. Although these binary descriptors enable a significant speedup in processing time, their performances usually drop a lot due to orientation estimation errors and limited description abilities. To address these issues, we propose a novel binary descriptor based on the ordinal and spatial information of regional invariants (OSRIs) over a rotation invariant sampling pattern. Our main contributions are twofold: 1) each bit in OSRI is computed based on difference tests of regional invariants over pairwise sampling-regions instead of difference tests of pixel intensities commonly used in existing binary descriptors, which can significantly enhance the discriminative ability and 2) rotation and illumination changes are handled well by ordering pixels according to their intensities and gradient orientations, meanwhile, which is also more reliable than those methods that resort to a reference orientation for rotation invariance. Besides, a statistical analysis of discriminative abilities of different parts in the descriptor is conducted to design a cascade filter which can reject nonmatching descriptors at early stages by comparing just a small portion of the whole descriptor, further reducing the matching time. Extensive experiments on four challenging data sets (Oxford, 53 Objects, ZuBuD, and Kentucky) show that OSRI significantly outperforms two state-of-the-art binary descriptors (FREAK and ORB). The matching performance of OSRI with only 512 bits is also better than the well-known floating-point descriptor SIFT (4K bits) and is comparable with the state-of-the-art floating-point descriptor MROGH (6K bits
The use of suitable pseudo-invariant targets for MIVIS data calibration by the empirical line method
NASA Astrophysics Data System (ADS)
Mei, Alessandro; Bassani, Cristiana; Fontinovo, Giuliano; Salvatori, Rosamaria; Allegrini, Alessia
2016-04-01
The Empirical Line Method (ELM) enables the calibration of multi- and hyper-airborne/satellite image converting DN or radiance to reflectance values performed by using at ground data. High quality outcome can be reached with the selection of appropriate Pseudo-Invariant Targets (PIT). In this paper, spectral variability of ;usual; (asphalt and concrete) and ;unusual; (calcareous gravel, basaltic paving, concrete bricks, tartan paving and artificial turf) PITs is retrieved for ELM application. Such PITs are used to calibrate the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) airborne sensor in 12 different Runs. Firstly, processing of field spectral data enables the evaluation of pseudo-invariance of targets by studying their spectral changes in space and in time. Finally, these surfaces are used as Ground Calibration (GCT) and Validation Targets (GVT) in ELM. High calibration accuracy values are observed in Visible (VIS) range (98.9%) while a general decrease of accuracy in Near-InfraRed (NIR) (96.6%) and Middle-InfraRed (SWIR) (88.1%) are reached. Outcomes show that ;usual; surfaces as asphalt and concrete and ;unusual; surfaces such as tartan can be successfully used for MIVIS image calibration.
Frank, Steven A
2016-01-01
In nematodes, environmental or physiological perturbations alter death's scaling of time. In human cancer, genetic perturbations alter death's curvature of time. Those changes in scale and curvature follow the constraining contours of death's invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death's scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes.
Frank, Steven A.
2016-01-01
In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361
A seismic interpolation and denoising method with curvelet transform matching filter
NASA Astrophysics Data System (ADS)
Yang, Hongyuan; Long, Yun; Lin, Jun; Zhang, Fengjiao; Chen, Zubin
2017-09-01
A new seismic interpolation and denoising method with a curvelet transform matching filter, employing the fast iterative shrinkage thresholding algorithm (FISTA), is proposed. The approach treats the matching filter, seismic interpolation, and denoising all as the same inverse problem using an inversion iteration algorithm. The curvelet transform has a high sparseness and is useful for separating signal from noise, meaning that it can accurately solve the matching problem using FISTA. When applying the new method to a synthetic noisy data sets and a data sets with missing traces, the optimum matching result is obtained, noise is greatly suppressed, missing seismic data are filled by interpolation, and the waveform is highly consistent. We then verified the method by applying it to real data, yielding satisfactory results. The results show that the method can reconstruct missing traces in the case of low SNR (signal-to-noise ratio). The above three problems can be simultaneously solved via FISTA algorithm, and it will not only increase the processing efficiency but also improve SNR of the seismic data.
Propensity Scores: Method for Matching on Multiple Variables in Down Syndrome Research
ERIC Educational Resources Information Center
Blackford, Jennifer Urbano
2009-01-01
Confounding variables can affect the results from studies of children with Down syndrome and their families. Traditional methods for addressing confounders are often limited, providing control for only a few confounding variables. This study introduces propensity score matching to control for multiple confounding variables. Using Tennessee birth…
Propensity Scores: Method for Matching on Multiple Variables in Down Syndrome Research
ERIC Educational Resources Information Center
Blackford, Jennifer Urbano
2009-01-01
Confounding variables can affect the results from studies of children with Down syndrome and their families. Traditional methods for addressing confounders are often limited, providing control for only a few confounding variables. This study introduces propensity score matching to control for multiple confounding variables. Using Tennessee birth…
Good match exploration for infrared face recognition
NASA Astrophysics Data System (ADS)
Yang, Changcai; Zhou, Huabing; Sun, Sheng; Liu, Renfeng; Zhao, Ji; Ma, Jiayi
2014-11-01
Establishing good feature correspondence is a critical prerequisite and a challenging task for infrared (IR) face recognition. Recent studies revealed that the scale invariant feature transform (SIFT) descriptor outperforms other local descriptors for feature matching. However, it only uses local appearance information for matching, and hence inevitably leads to a number of false matches. To address this issue, this paper explores global structure information (GSI) among SIFT correspondences, and proposes a new method SIFT-GSI for good match exploration. This is achieved by fitting a smooth mapping function for the underlying correct matches, which involves softassign and deterministic annealing. Quantitative comparisons with state-of-the-art methods on a publicly available IR human face database demonstrate that SIFT-GSI significantly outperforms other methods for feature matching, and hence it is able to improve the reliability of IR face recognition systems.
ERIC Educational Resources Information Center
Wyse, Adam E.; Seo, Dong Gi
2014-01-01
This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…
ERIC Educational Resources Information Center
Wyse, Adam E.; Seo, Dong Gi
2014-01-01
This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…
NASA Astrophysics Data System (ADS)
Doko, Tomoko; Chen, Wenbo; Higuchi, Hiroyoshi
2016-06-01
Satellite tracking technology has been used to reveal the migration patterns and flyways of migratory birds. In general, bird migration can be classified according to migration status. These statuses include the wintering period, spring migration, breeding period, and autumn migration. To determine the migration status, periods of these statuses should be individually determined, but there is no objective method to define 'a threshold date' for when an individual bird changes its status. The research objective is to develop an effective and objective method to determine threshold dates of migration status based on satellite-tracked data. The developed method was named the "MATCHED (Migratory Analytical Time Change Easy Detection) method". In order to demonstrate the method, data acquired from satellite-tracked Tundra Swans were used. MATCHED method is composed by six steps: 1) dataset preparation, 2) time frame creation, 3) automatic identification, 4) visualization of change points, 5) interpretation, and 6) manual correction. Accuracy was tested. In general, MATCHED method was proved powerful to identify the change points between migration status as well as stopovers. Nevertheless, identifying "exact" threshold dates is still challenging. Limitation and application of this method was discussed.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhou, Hui; Chen, Hanming; Sheng, Shanbo; Yuan, Sanyi
2015-11-01
Traditionally, finite difference method is chosen as a fast and accurate solution method for numerical simulation of wave equation. However, finite difference method faces obstacles when surface topography and irregular interfaces exist. Boundary-conforming grids by the elliptic method provide an optimal choice for finite difference wavefield simulation in complicated domains containing not only surface topography but also irregular interfaces. By such grids, the calculations of spatial derivatives are transformed by a chain rule into those in the regular computational space, where traditional finite difference schemes are still applicable. Boundary-conforming grids are superior to other irregular grid methods, such as interpolation method, mapping method and unstructured grids, on the aspects of generality, in accuracy and stability. This paper comprehensively applies the elliptic method and acoustic wave equation simulation, reverse time migration, perfectly matched layers in such boundary-conforming grids. The two-dimensional acoustic wave equation is compactly reformulated in boundary-conforming grids by the elliptic method for forward modeling and reverse time migration, and the symmetric and compact form of perfectly matched layers expressed in curvilinear coordinate system are applied to suppress artificial reflections. A stable and explicit second order accuracy finite difference method is used for discretization. Two models are presented to evaluate the ability of boundary-conforming grids to deal with surface topography and complex interfaces, and to demonstrate the feasibility of wavefield propagation and reverse time migration. Comparisons between the numerical simulations with and without the perfectly matched layers are performed to show the effect of the reformulated perfectly matched layer.
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
The Effect of Image Enhancement Methods during Feature Detection and Matching of Thermal Images
NASA Astrophysics Data System (ADS)
Akcay, O.; Avsar, E. O.
2017-05-01
A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER) and Speeded Up Robust Features (SURF) algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.
A layered modulation method for pixel matching in online phase measuring profilometry
NASA Astrophysics Data System (ADS)
Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand
2016-10-01
An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.
Match rate and positional accuracy of two geocoding methods for epidemiologic research.
Zhan, F Benjamin; Brender, Jean D; De Lima, Ionara; Suarez, Lucina; Langlois, Peter H
2006-11-01
This study compares the match rate and positional accuracy of two geocoding methods: the popular geocoding tool in ArcGIS 9.1 and the Centrus GeoCoder for ArcGIS. We first geocoded 11,016 Texas addresses in a case-control study using both methods and obtained the match rate of each method. We then randomly selected 200 addresses from those geocoded by using both methods and obtained geographic coordinates of the 200 addresses by using a global positioning system (GPS) device. Of the 200 addresses, 110 were case maternal residence addresses and 90 were control maternal residence addresses. These GPS-surveyed coordinates were used as the "true" coordinates to calculate positional errors of geocoded locations. We used Wilcoxon signed rank test to evaluate whether differences in positional errors from the two methods were statistically significantly different from zero. In addition, we calculated the sensitivity and specificity of the two methods for classifying maternal addresses within 1500 m of toxic release inventory facilities when distance is used as a proxy of exposure. The match rate of the Centrus GeoCoder was more than 10% greater than that of the geocoding tool in ArcGIS 9.1. Positional errors with the Centrus GeoCoder were less than those of the geocoding tool in ArcGIS 9.1, and this difference was statistically significant. Sensitivity and specificity of the two methods are similar. Centrus GeoCoder for ArcGIS for geocoding gives greater match rates than the geocoding tool in ArcGIS 9.1. Although the Centrus GeoCoder has better positional accuracy, both methods give similar results in classifying maternal addresses within 1500 m of toxic release inventory facilities when distance is used as a proxy of exposure.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2014-08-01
In the paper, we show that the nonlinear spatial non-linear equivalency functions on the basis of continuous logic equivalence (nonequivalence) operations have better discriminatory properties for comparing images. Further, using the equivalent model of multiport neural networks and associative memory, (including matrix-matrix and matrix-tensor with adaptive-weighted correlation, multi-port neural-net auto-associative and hetero-associative memory (MP NN AAM and HAM ) and the proposed architecture based on them, we show how we can modify these models and architectures for space-invariant associative recognition and clustering (high performance parallel clustering processing) images. We consider possible implementations of 2D image classifiers, devices for partitioning image fragments into clusters and their architectures. The main base unit of such architectures is a matrix-matrix or matrix-tensor equivalentor, which can be implemented on the basis of two traditional correlators. We show that the classifiers based on the equivalency paradigm and optoelectronic architectures with space-time integration and parallel-serial 2D images processing have advantages such as increased memory capacity (more than ten times of the number of neurons!), High performance in different modes . We present the results of associative significant dimension (128x128, 610x340) image recognition - renewal modeling. It will be shown that these models are capable to recognize images with a significant percentage (20- 30%) damaged pixels. The experimental results show that such models can be successfully used for auto-and heteroassociative pattern recognition. We show simulation results of using these modifications for clustering and learning models and algorithms for cluster analysis of specific images and divide them into categories of the array. Show example of a cluster division of image fragments, letters and graphics for clusters with simultaneous formation of the outputweighted spatial
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
A new method for matched field localization based on two-hydrophone
NASA Astrophysics Data System (ADS)
Li, Kun; Fang, Shi-liang
2015-03-01
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.
A new fast matching method for adaptive compression of stereoscopic images
NASA Astrophysics Data System (ADS)
Ortis, A.; Battiato, S.
2015-03-01
In the last few years, due to the growing use of stereoscopic images, much effort has been spent by the scientific community to develop algorithms for stereoscopic image compression. Stereo images represent the same scene from two different views, and therefore they typically contain a high degree of redundancy. It is then possible to implement some compression strategies devoted to exploit the intrinsic characteristics of the two involved images that are typically embedded in a MPO (Multi Picture Object) data format. MPO files represents a stereoscopic image by building a list of JPEG images. Our previous work introduced a simple block-matching approach to compute local residual useful to reconstruct during the decoding phase, stereoscopic images that maintain high perceptual quality; this allows to the encoder to force high level of compression at least for one of the two involved images. On the other hand the matching approach, based only on the similarity of the blocks, results rather inefficient. Starting from this point, the main contribution of this paper focuses on the improvement of both matching step effectiveness and its computational cost. Such alternative approach aims to greatly enhance matching step by exploiting the geometric properties of a pair of stereoscopic images. In this way we significantly reduce the complexity of the method without affecting results in terms of quality.
Najafi-Yazdi, A.; Mongeau, L.
2012-01-01
The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050
NASA Astrophysics Data System (ADS)
Ke, Xianhua; Jiang, Hao; Lv, Wen; Liu, Shiyuan
2016-03-01
Triple patterning (TP) lithography becomes a feasible technology for manufacturing as the feature size further scale down to sub 14/10 nm. In TP, a layout is decomposed into three masks followed with exposures and etches/freezing processes respectively. Previous works mostly focus on layout decomposition with minimal conflicts and stitches simultaneously. However, since any existence of native conflict will result in layout re-design/modification and reperforming the time-consuming decomposition, the effective method that can be aware of native conflicts (NCs) in layout is desirable. In this paper, a bin-based library matching method is proposed for NCs detection and layout decomposition. First, a layout is divided into bins and the corresponding conflict graph in each bin is constructed. Then, we match the conflict graph in a prebuilt colored library, and as a result the NCs can be located and highlighted quickly.
A shape based rotation invariant method for ultrasound-MR image registration: A phantom study.
Abdolghaffar, M; Ahmadian, A; Ayoobi, N; Farnia, P; Shabanian, T; Shafiei, N; Alirezaie, J
2014-01-01
In this work, a new shape based method to improve the accuracy of Brain Ultrasound-MRI image registration is proposed. The method is based on modified Shape Context (SC) descriptor in combination with CPD algorithm. An extensive experiment was carried out to evaluate the robustness of this method against different initialization conditions. As the results prove, the overall performance of the proposed algorithm outperforms both SC and CPD methods. In order to have control over the registration procedure, we simulated the deformations, missing points and outliers according to our Phantom MRI images.
[Prediction of the GVHD after allo-HSCT by sequence similar matching method].
Zhao, Dan-Dan; Liu, Zhou-Yang; Cao, Yong-Bin; Jiang, Shuang; DA, Wan-Ming; Wu, Xiao-Xiong
2010-06-01
This study was aimed to investigate the role of sequence similar matching (SSM) method in prediction of GVHD after HLA unmatched allogeneic hematopoietic stem cell transplantation (allo-HSCT). The data from 23 patients undergoing HLA unmatched allo-HSCT were analyzed and calculated by SSM method. The results showed that the incidence of acute and severe GVHD were significantly less in the allo-HSCT cases with total SSM value less than 55. In conclusion, the SSM method can be used to predict GVHD in the HLA-unmatched allogeneic hematopoietic stem cell transplantation.
2010-01-01
principle’s application to many common devices from jar wrenches to rock-climbing cams. 1 Introduction What principles should guide the design of...this paper we explore the possible role of the fingers in adapting to variations in object shape and pose. One common design approach is to adapt to...several fingers, the job of gracefully adapting to shape and pose variations may fall on the finger form. This work explores grasp invariance over shape and
Use of the invariant method of speech analysis to discern the emotional state of announcers.
Simonov, P V; Frolov, M V; Taubkin, V L
1975-08-01
An improved method of discerning emotional colouring of speech on the frequency of main tone and average number of intersections at zero level within the range of first formant frequencies is described. Vowels from words pronounced by announcers in different emotional states served as material for experiments. The method elaborated in the experiments with actors and drama school undergraduates was then tested in natural conditions on amateur parachute jumpers.
Li, Yun; Schaubel, Douglas E.; He, Kevin
2013-01-01
In observational studies of survival time featuring a binary time-dependent treatment, the hazard ratio (an instantaneous measure) is often used to represent the treatment effect. However, investigators are often more interested in the difference in survival functions. We propose semiparametric methods to estimate the causal effect of treatment among the treated with respect to survival probability. The objective is to compare post-treatment survival with the survival function that would have been observed in the absence of treatment. For each patient, we compute a prognostic score (based on the pre-treatment death hazard) and a propensity score (based on the treatment hazard). Each treated patient is then matched with an alive, uncensored and not-yet-treated patient with similar prognostic and/or propensity scores. The experience of each treated and matched patient is weighted using a variant of Inverse Probability of Censoring Weighting to account for the impact of censoring. We propose estimators of the treatment-specific survival functions (and their difference), computed through weighted Nelson-Aalen estimators. Closed-form variance estimators are proposed which take into consideration the potential replication of subjects across matched sets. The proposed methods are evaluated through simulation, then applied to estimate the effect of kidney transplantation on survival among end-stage renal disease patients using data from a national organ failure registry. PMID:25309633
Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors
NASA Technical Reports Server (NTRS)
Thipphavong, David P.
2016-01-01
The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.
Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors
Thipphavong, David P.
2017-01-01
The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%. PMID:28684883
Bi, Lei; Yang, Ping
2013-05-01
The invariant imbedding T-matrix method (II-TM) is employed to simulate the optical properties of normal biconcave and deformed red blood cells (RBCs). The phase matrix elements of a RBC model computed with the II-TM are compared with their counterparts computed with the discrete-dipole approximation (DDA) method. As expected, the DDA results approach the II-TM results with an increase in the number of dipoles per incident wavelength. Computationally, the II-TM is faster than the DDA when multiple RBC orientations are considered. For a single orientation, the DDA is comparable with or even faster than the II-TM because the DDA efficiently converges for optically soft particles; however, the DDA method demands significantly more computer memory than the II-TM. After the applicability of the II-TM is numerically confirmed, a comparison is conducted of the optical properties of oxygenated and deoxygenated RBCs and of normal and deformed RBCs. The spectral variations of RBCs' optical properties are investigated in the wavelength range from 0.25 to 1.0 μm. Furthermore, the statistically averaged phase matrix of spheres and biconcave RBCs are compared. Conducted numerical simulations suggest the applicability of the II-TM for the inverse light scattering analysis and radiative transfer simulations in blood.
A hybrid method in combining treatment effects from matched and unmatched studies.
Byun, Jinyoung; Lai, Dejian; Luo, Sheng; Risser, Jan; Tung, Betty; Hardy, Robert J
2013-12-10
The most common data structures in the biomedical studies have been matched or unmatched designs. Data structures resulting from a hybrid of the two may create challenges for statistical inferences. The question may arise whether to use parametric or nonparametric methods on the hybrid data structure. The Early Treatment for Retinopathy of Prematurity study was a multicenter clinical trial sponsored by the National Eye Institute. The design produced data requiring a statistical method of a hybrid nature. An infant in this multicenter randomized clinical trial had high-risk prethreshold retinopathy of prematurity that was eligible for treatment in one or both eyes at entry into the trial. During follow-up, recognition visual acuity was accessed for both eyes. Data from both eyes (matched) and from only one eye (unmatched) were eligible to be used in the trial. The new hybrid nonparametric method is a meta-analysis based on combining the Hodges-Lehmann estimates of treatment effects from the Wilcoxon signed rank and rank sum tests. To compare the new method, we used the classic meta-analysis with the t-test method to combine estimates of treatment effects from the paired and two sample t-tests. We used simulations to calculate the empirical size and power of the test statistics, as well as the bias, mean square and confidence interval width of the corresponding estimators. The proposed method provides an effective tool to evaluate data from clinical trials and similar comparative studies.
Alam, S Kaisar; Mamou, Jonathan; Feleppa, Ernest J; Kalisz, Andrew; Ramachandran, Sarayu
2011-11-01
Brachytherapy using small implanted radioactive seeds is becoming an increasingly popular method for treating prostate cancer, in which a radiation oncologist implants seeds in the prostate transperineally under ultrasound guidance. Dosimetry software determines the optimal placement of seeds for achieving the prescribed dose based on ultrasonic determination of the gland boundaries. However, because of prostate movement and distortion during the implantation procedure, some seeds may not be placed in the desired locations; this causes the delivered dose to differ from the prescribed dose. Current ultrasonic imaging methods generally cannot depict the implanted seeds accurately. We are investigating new ultrasonic imaging methods that show promise for enhancing the visibility of seeds and thereby enabling real-time detection and correction of seed-placement errors during the implantation procedure. Real-time correction of seed-placement errors will improve the therapeutic radiation dose delivered to target tissues. In this work, we compare the potential performance of a template-matching method and a previously published method based on singular spectrum analysis for imaging seeds. In particular, we evaluated how changes in seed angle and position relative to the ultrasound beam affect seed detection. The conclusion of the present study is that singular spectrum analysis has better sensitivity but template matching is more resistant to false positives; both perform well enough to make seed detection clinically feasible over a relevant range of angles and positions. Combining the information provided by the two methods may further reduce ambiguities in determining where seeds are located.
Localization of incipient tip vortex cavitation using ray based matched field inversion method
NASA Astrophysics Data System (ADS)
Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon
2015-10-01
Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.
Tractors, mass, and Weyl invariance
NASA Astrophysics Data System (ADS)
Gover, A. R.; Shaukat, A.; Waldron, A.
2009-05-01
Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus—a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. Breitenlohner-Freedman stability bounds for Anti-de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories—which rely on the interplay between mass and gauge invariance—are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s⩽2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s⩾2 we give tractor equations of motion unifying massive, massless, and partially massless theories.
ERIC Educational Resources Information Center
DiStefano, Christine; Motl, Robert W.
2009-01-01
The Rosenberg Self-Esteem scale (RSE) has been widely used in examinations of sex differences in global self-esteem. However, previous examinations of sex differences have not accounted for method effects associated with item wording, which have consistently been reported by researchers using the RSE. Accordingly, this study examined the…
ERIC Educational Resources Information Center
DiStefano, Christine; Motl, Robert W.
2009-01-01
The Rosenberg Self-Esteem scale (RSE) has been widely used in examinations of sex differences in global self-esteem. However, previous examinations of sex differences have not accounted for method effects associated with item wording, which have consistently been reported by researchers using the RSE. Accordingly, this study examined the…
Goodman, Richard E
2006-07-01
A bioinformatics comparison of proteins introduced into food crops through genetic engineering provides a mechanism to identify those proteins that may present an increased risk of allergic reactions for individuals with existing allergies. The goal is to identify proteins that are known to be allergens or are so similar to an allergen that they may induce allergic cross-reactions. Three comparative approaches have traditionally been used, or considered for safety evaluations. One identifies any short (6-8) amino acid segment of the protein that exactly matches a known allergen sequence. The second is an overall primary sequence comparison using Basic Local Alignment Search Tool (BLAST) or FASTA to find matches of greater than 35% identity over 80 amino acids. The third is based on 3-D prediction programs to identify 3-D similarities that might predict potential cross-reactivity. The utility of each of these approaches was debated in the bioinformatics workshop. The consensus agreement from the expert workshop participants was that the short-segment match (e. g., 6-8 amino acids) provides an unacceptably high rate of false positive matches and an uncertain rate of true positive matches, and was not particularly useful for an allergenicity evaluation performed in the context of comprehensive safety evaluation. There was no consensus regarding the most appropriate bioinformatics method, an acceptable scoring criteria for triggering closer examination subsequent to a positive match, or an acceptable scoring mechanism for ranking the utility of the various 3-D approaches that were discussed during the workshop. However, the general consensus was that the most practical approach at this time is to evaluate primary sequence identities to known allergens using either FASTA or BLAST. While there was good agreement that identities of greater than 35% over 80 or more amino acids (recommended by Codex in 2003) is quite conservative, the conclusion was that additional data or
Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method
Tanner, David J.; /Manchester U.
2007-04-06
The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.
Tropospheric ozone retrieval by using SCIAMACHY Limb-Nadir-Matching method
NASA Astrophysics Data System (ADS)
Jia, Jia; Ladstätter-Weissenmayer, Annette; Ebojie, Felix; Rozanov, Alexei; Burrows, John
2014-05-01
Tropospheric ozone is photochemically produced during pollution events and transported from the stratosphere towards the troposphere. It is the third most important green house gases and the main component of summer smog. Global covered satellite measurements are well suitable to investigate sources, sinks, and transport mechanisms of tropospheric ozone in a global view, and to study a characteristic behaviour of the tropospheric ozone in regions. However, the usage of satellite data is associated to a large uncertainty as 90% ozone is located in the stratosphere and only the remaining part of 10% can be observed in the troposphere. The limb-nadir matching (LNM) technique is one of the methods suitable to retrieve tropospheric ozone distributions from space borne observations of the scattered solar light in the UV-visible spectral range. In this study we apply the LNM approach to alternating limb and nadir measurements performed by the SCIAMACHY instrument. A precise tropopause height is used to subtract the stratospheric ozone from the total ozone amount for each matching point. The focus of this work is to reduce the uncertainty of the resulting tropospheric ozone distributions by analysing possible error sources, refining both limb and nadir retrievals and the matching technique.
NASA Technical Reports Server (NTRS)
Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.
2016-01-01
The perfectly matched layer (PML) technique is developed in the context of a high- order spectral-element Discontinuous-Galerkin (DG) method. The technique is applied to a range of test cases and is shown to be superior compared to other approaches, such as those based on using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries of computational domains. In general, the PML technique improves the quality of the numerical results for simulations of practical flow configurations, but it also exhibits some instabilities for large perturbations. A preliminary analysis that attempts to understand the source of these instabilities is discussed.
Color matching of fabric blends: hybrid Kubelka-Munk + artificial neural network based method
NASA Astrophysics Data System (ADS)
Furferi, Rocco; Governi, Lapo; Volpe, Yary
2016-11-01
Color matching of fabric blends is a key issue for the textile industry, mainly due to the rising need to create high-quality products for the fashion market. The process of mixing together differently colored fibers to match a desired color is usually performed by using some historical recipes, skillfully managed by company colorists. More often than desired, the first attempt in creating a blend is not satisfactory, thus requiring the experts to spend efforts in changing the recipe with a trial-and-error process. To confront this issue, a number of computer-based methods have been proposed in the last decades, roughly classified into theoretical and artificial neural network (ANN)-based approaches. Inspired by the above literature, the present paper provides a method for accurate estimation of spectrophotometric response of a textile blend composed of differently colored fibers made of different materials. In particular, the performance of the Kubelka-Munk (K-M) theory is enhanced by introducing an artificial intelligence approach to determine a more consistent value of the nonlinear function relationship between the blend and its components. Therefore, a hybrid K-M+ANN-based method capable of modeling the color mixing mechanism is devised to predict the reflectance values of a blend.
[Using neural networks based template matching method to obtain redshifts of normal galaxies].
Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng
2005-06-01
Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
NASA Astrophysics Data System (ADS)
Connolly, Ryan; Nemiroff, R. J.; Holmes, J.
2012-01-01
High-energy photon data from the Fermi LAT provides an excellent source for constraining Lorentz invariance and limiting photon dispersion across the Universe. Photon groupings at the super-GeV level in Fermi gamma-ray bursts suggest upper limits on the time scales for dispersion over cosmological distances. A computational Monte Carlo approach allows us to find conservative limits on dispersion time scales at various levels of significance. By generating many random sets of "photons" with the same conditions as a chosen LAT data set, any number of small time scales can be tested and compared between the random bursts and the actual burst to observe the uniqueness of this burst within a desired tolerance or significance level. Similarly, applying a method of gap multiplication to both actual and Monte Carlo cases provides another quantitative evaluation of the overall bunching reminiscent of entropy. We have developed such algorithms using GRB 090510A as a focused case due to the presence of heavily bunched structure at energies above 1 GeV. Bunching time scales in GRB 090510A were calculated at a 3-sigma significance level with both numerical approaches and the resulting limits on dispersion and variance in photon travel speeds are the strongest to date. The application of such algorithms to many GRBs - above 1 GeV or otherwise - not only allows for a broader overview of photon dispersion time scales but also easily singles out unique cases with significant bunching at higher energies.
Measuring the complex orbital angular momentum spectrum of light with a mode-matching method.
Zhao, Peng; Li, Shikang; Feng, Xue; Cui, Kaiyu; Liu, Fang; Zhang, Wei; Huang, Yidong
2017-03-15
The relative phase shift among different components in the superposition of orbital angular momentum (OAM) states contains significant information. However, with existing methods of measuring the OAM spectrum, the phase term of the spectrum coefficient is hard to obtain. In this Letter, a mode-matching method is proposed to identify the complex OAM spectrum with a Mach-Zehnder interferometer and a charge-coupled device camera. It has the potential to extend the applications of OAM in scenarios sensitive to the phase factor, for instance, in imaging and quantum manipulation. The method is experimentally demonstrated with the superposition of two or three OAM states, while the maximum deviation of the energy ratio and the relative phase shift is 8.4% and 5.5% of 2π, respectively.
Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays
Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin
2016-01-01
In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301
Matching method with theory in person-oriented developmental psychopathology research.
Sterba, Sonya K; Bauer, Daniel J
2010-05-01
The person-oriented approach seeks to match theories and methods that portray development as a holistic, highly interactional, and individualized process. Over the past decade, this approach has gained popularity in developmental psychopathology research, particularly as model-based varieties of person-oriented methods have emerged. Although these methods allow some principles of person-oriented theory to be tested, little attention has been paid to the fact that these methods cannot test other principles, and may actually be inconsistent with certain principles. Lacking clarification regarding which aspects of person-oriented theory are testable under which person-oriented methods, assumptions of the methods have sometimes been presented as testable hypotheses or interpreted as affirming the theory. This general blurring of the line between person-oriented theory and method has even led to the occasional perception that the method is the theory and vice versa. We review assumptions, strengths, and limitations of model-based person-oriented methods, clarifying which theoretical principles they can test and the compromises and trade-offs required to do so.
Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.
Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei
2016-06-01
Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different
NASA Astrophysics Data System (ADS)
Cao, J.; Gu, H.
2015-12-01
Simultaneous source technology allows us to acquire seismic data in a much more efficient way and saves considerable acquisition time. However, it is necessary to separate these data into their conventionally acquired equivalent state. Luckily, we can simply treat the deblending problem as a noise attenuation problem because the blending noise has been performed to be incoherent in some domains such as common receiver, common offset domains. Multichannel matching pursuit (MCMP) is a lateral coherency based technique and has been widely used in a variety of seismic applications such as seismic trace decomposition and denoising seismic records. It decomposes the signals into a series of wavelets namely atoms, but the atom is just the best match to the average of multiple traces with the same scale factor, translation factor, frequency factor and phase parameter at each iteration, which is not in accord with the real seismic records. In this paper, we propose a new multichannel matching pursuit (MCMP) algorithm with directional features for simultaneous source separation in common receiver gathers. The new MCMP uses local lateral coherence as a constraint and utilizes the maximum semblance coefficient within a multidirectional window as the best direction at each iteration. To verify the effectiveness of this method, we use Ricker wavelet to synthetize a simultaneous source data set and sort the data to common receiver gathers. Comparing the deblending results with multidirectional vector median filter (MDVMF) method, the new MCMP preserves more useful seismic signals, but some individual useful signals are not reconstructed successfully probably because of the zero padding influence. The real data examples also prove that the new MCMP is effective in practice for deblending.
A star tracker on-orbit calibration method based on vector pattern match.
Li, Jian; Xiong, Kun; Wei, Xinguo; Zhang, Guangjun
2017-04-01
On-orbit calibration is aimed at revising the star trackers' measurement model parameters and maintaining its attitude accuracy. The performance of existing calibration methods is quite poor. Among all the model parameters, the estimation of the principal point location is very challenging due to its vulnerability against measurement errors, yet, that it is the only parameter depicting the optical axis' projecting position on the image plane makes it of great significance. Its estimation error adds fixed bias to the output attitudes. Based on the criterion of vector pattern match, an on-orbit calibration method is proposed. The principal point location is estimated according to the criterion first. The other model parameters are updated by maximum likelihood method, and measures of multiple succeeding frames optimization and star density weight are adopted in the method to guarantee the estimation of robustness. Simulation and night sky observation results proved the validity of the proposed method. In the simulation with a poor initial guess of the principal point location, novel method's result is better than the least square method and Samaan's method.
A star tracker on-orbit calibration method based on vector pattern match
NASA Astrophysics Data System (ADS)
Li, Jian; Xiong, Kun; Wei, Xinguo; Zhang, Guangjun
2017-04-01
On-orbit calibration is aimed at revising the star trackers' measurement model parameters and maintaining its attitude accuracy. The performance of existing calibration methods is quite poor. Among all the model parameters, the estimation of the principal point location is very challenging due to its vulnerability against measurement errors, yet, that it is the only parameter depicting the optical axis' projecting position on the image plane makes it of great significance. Its estimation error adds fixed bias to the output attitudes. Based on the criterion of vector pattern match, an on-orbit calibration method is proposed. The principal point location is estimated according to the criterion first. The other model parameters are updated by maximum likelihood method, and measures of multiple succeeding frames optimization and star density weight are adopted in the method to guarantee the estimation of robustness. Simulation and night sky observation results proved the validity of the proposed method. In the simulation with a poor initial guess of the principal point location, novel method's result is better than the least square method and Samaan's method.
Systems, methods and apparatus for pattern matching in procedure development and verification
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Rouff, Christopher A. (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which, in some embodiments, a formal specification is pattern-matched from scenarios, the formal specification is analyzed, and flaws in the formal specification are corrected. The systems, methods and apparatus may include pattern-matching an equivalent formal model from an informal specification. Such a model can be analyzed for contradictions, conflicts, use of resources before the resources are available, competition for resources, and so forth. From such a formal model, an implementation can be automatically generated in a variety of notations. The approach can improve the resulting implementation, which, in some embodiments, is provably equivalent to the procedures described at the outset, which in turn can improve confidence that the system reflects the requirements, and in turn reduces system development time and reduces the amount of testing required of a new system. Moreover, in some embodiments, two or more implementations can be "reversed" to appropriate formal models, the models can be combined, and the resulting combination checked for conflicts. Then, the combined, error-free model can be used to generate a new (single) implementation that combines the functionality of the original separate implementations, and may be more likely to be correct.
Low-quality fingerprint recognition using a limited ellipse-band-based matching method.
He, Zaixing; Zhao, Xinyue; Zhang, Shuyou
2015-06-01
Current fingerprint recognition technologies are based mostly on the minutia algorithms, which cannot recognize fingerprint images in low-quality conditions. This paper proposes a novel recognition algorithm using a limited ellipse-band-based matching method. It uses the Fourier-Mellin transformation method to improve the limitation of the original algorithm, which cannot resist rotation changes. Furthermore, an ellipse band on the frequency amplitude is used to suppress noise that is introduced by the high-frequency parts of images. Finally, the recognition result is obtained by considering both the contrast and position correlation peaks. The experimental results show that the proposed algorithm can increase the recognition accuracy, particularly of images in low-quality conditions.
New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.
2011-04-27
An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.
Extraction method of suitable matching regions in the gravity-aided inertial navigation
NASA Astrophysics Data System (ADS)
Yan, Li; Ma, Xudong; Shi, Juan; Shi, Yulong
2009-10-01
The data organization of gravitational field is based on a form of Grid, which is similar to the data structure of DEM in the terrain. So this paper proposes a method of gravitational field analysis for extracting features by adopting some spatial analysis means of topography. First of all, the gravity anomaly data is used to calculate the roughness features of gravitational field. after comparing and anglicizing the features, roughness features are selected as the feature factor of gravity. Then, the method of calculating contour lines is applied to calculate region segmentation of roughness features and extract the vector edge of the larger feature regions, and clustering analysis to these contour of the region. At last, the scope line for Convex Hull of the region is calculated by the Convex Hull algorithm, and so as to obtain a more prominent region (matching region) that have significant changes in gravity anomaly, which provide the necessary reference data for the gravity-aided inertial navigation.
Liu, Ying; Shi, Xiao-Wei; Liu, E-Hu; Sheng, Long-Sheng; Qi, Lian-Wen; Li, Ping
2012-09-07
Various analytical technologies have been developed for quantitative determination of marker compounds in herbal medicines (HMs). One important issue is matrix effects that must be addressed in method validation for different detections. Unlike biological fluids, blank matrix samples for calibration are usually unavailable for HMs. In this work, practical approaches for minimizing matrix effects in HMs analysis were proposed. The matrix effects in quantitative analysis of five saponins from Panax notoginseng were assessed using high-performance liquid chromatography (HPLC). Matrix components were found to interfere with the ionization of target analytes when mass spectrometry (MS) detection were employed. To compensate the matrix signal suppression/enhancement, two matrix-matched methods, standard addition method with the target-knockout extract and standard superposition method with a HM extract were developed and tested in this work. The results showed that the standard superposition method is simple and practical for overcoming matrix effects for quantitative analysis of HMs. Moreover, the interference components were observed to interfere with light scattering of target analytes when evaporative light scattering detection (ELSD) was utilized for quantitative analysis of HMs but was not indicated when Ultraviolet detection (UV) were employed. Thus, the issue of interference effects should be addressed and minimized for quantitative HPLC-ELSD and HPLC-MS methodologies for quality control of HMs. Copyright © 2012 Elsevier B.V. All rights reserved.
Wei, Jing; Ming, Yan-fang; Han, Liu-sheng; Ren, Zhong-liang; Guo, Ya-min
2015-10-01
The traditional mineral mapping methods with remote sensing data, based on spectral reflectance matching techniques, shows low accuracy, for obviously being affected by the image quality, atmospheric and other factors. A new mineral mapping method based on multiple types of spectral characteristic parameters is presented in this paper. Various spectral characteristic parameters are used together to enhanced the stability in the situation of atmosphere and environment background affecting. AVIRIS (Airborne Visible Infrared Imaging Spectrometer) data of Nevada Cuprite are selected to determine the mineral types with this method. Typical mineral spectral data are also obtained from USGS (United States Geological Survey) spectral library to calculate the spectral characteristic parameters. A mineral identification model based on multiple spectral characteristic parameters is built by analyzing the various characteristic parameters, and is applied in the mineral mapping experiment in Cuprite area. The mineral mapping result produced by Clark et al. in 1995 is used to evaluate the effect of this method, results show, that mineral mapping results with this method can obtain a high precision, the overall mineral identification accuracy is 78.96%.
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.
2012-01-01
Three terms, ''Waterman's T-matrix method'', ''extended boundary condition method (EBCM)'', and ''null field method'', have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIMþSOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIMþSOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIMþSOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIMþSOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging.
ERIC Educational Resources Information Center
Powers, Sonya Jean
2010-01-01
When test forms are administered to examinee groups that differ in proficiency, equating procedures are used to disentangle group differences from form differences. This dissertation investigates the extent to which equating results are population invariant, the impact of group differences on equating results, the impact of group differences on…
Using the Selection Variable for Matching or Equating.
ERIC Educational Resources Information Center
Wright, Nancy K.; Dorans, Neil J.
This paper studies whether equating results can be improved if the variable that accounts for all systematic differences between equating populations is identified and used as an anchor in anchor test design or as a variable on which to match equating samples. The sample invariant properties of four anchor test equating methods (Tucker and Levine…
Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek
2016-01-01
This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.
Application of the Sketch Match method in Sulina coastal study area within PEGASO project
NASA Astrophysics Data System (ADS)
Marin, Eugenia; Nichersu, Iuliana; Mierla, Marian; Trifanov, Cristian; Nichersu, Iulian
2013-04-01
The Sketch Match approach for Sulina pilot case was carried out in the frame of the project "People for Ecosystem Based Governance in Assessing Sustainable Development of Ocean and Coast" - PEGASO, funded by the Seventh Framework Programme. The PEGASO project has been designed to identify common threats and solutions in relation to the long-term sustainable development and environmental protection of coastal zones bordering the Mediterranean and Black Seas in ways relevant to the implementation of the Integrated Coastal Zone Management Protocol (ICZM) for the Mediterranean. PEGASO will use the model of the existing ICZM Protocol for the Mediterranean and adjust it to the needs of the Black Sea through innovative actions, one of them being Refine and develop efficient and easy to use tools for making sustainability assessments in the coastal zone tested through a number of relevant pilot sites. Thus, for the Romania case study, the Sketch Match approach was selected, being an interactive public participation planning method, developed by the Dutch Government, and applied for Sulina area in order to stimulate support and involvement from stakeholders regarding Integrated Coastal Zone Management Protocol by consulting and involving these people in the planning process and making use of a coherent package of interactive methods. Participants were representatives of a wide range of stakeholders, varying from local fisherman to representatives of the Local and County council and Danube Delta Biosphere Reserve Authority. They participated in a two-day design session, focused on problems and potentials of the area, with the aim to work out possible solutions for an integrated coastal spatial planning, focusing on the parallel enhance of the various local functions in the spatial design (coastal area protection next to industry, tourism, nature, recreation, and other activities).
The impacts of speed cameras on road accidents: an application of propensity score matching methods.
Li, Haojie; Graham, Daniel J; Majumdar, Arnab
2013-11-01
This paper aims to evaluate the impacts of speed limit enforcement cameras on reducing road accidents in the UK by accounting for both confounding factors and the selection of proper reference groups. The propensity score matching (PSM) method is employed to do this. A naïve before and after approach and the empirical Bayes (EB) method are compared with the PSM method. A total of 771 sites and 4787 sites for the treatment and the potential reference groups respectively are observed for a period of 9 years in England. Both the PSM and the EB methods show similar results that there are significant reductions in the number of accidents of all severities at speed camera sites. It is suggested that the propensity score can be used as the criteria for selecting the reference group in before-after control studies. Speed cameras were found to be most effective in reducing accidents up to 200 meters from camera sites and no evidence of accident migration was found.
An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications
Tong, Mingsi; Song, John; Chu, Wei
2015-01-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441
Murata, T; Akagi, K; Ostapenko, V V; Isoda, H; Nagata, K; Nasu, R; Shiga, T; Tanaka, Y; Yamamoto, I
1998-01-01
Capacitive heating is widely used in hyperthermic treatment of human malignancies. However, the pain on the body surface or thermoesthesia in the subcutaneous fatty layer may prevent an elevation of temperature in the tumors. Impedance matching is improved by a subtrap method entailing the application of two copper plates (10 x 850 x 0.06 mm) as a subtrap circuit to each of two capacitive electrodes. In a clinical trial the Tmax, Tave, Tmin for the subtrap method were all higher in comparison with those for the conventional technique (42.5 +/- 0.7 degrees C, 41.9 +/- 1.0 degrees C, 41.3 +/- 1.1 degrees C vs. 41.1 +/- 1.5 degrees C, 40.6 +/- 1.3 degrees C, 40.0 +/- 1.3 degrees C). Although the maximal radiofrequency (RF) power applied to patients was higher with the subtrap method (875 +/- 189 W vs. 763 +/- 200 W), the incidence of surface pain was reduced dramatically. It is concluded that the subtrap method substantially improves the RF capacitive heating of deep-seated tumors.
Guertin, Jason R; Rahme, Elham; Dormuth, Colin R; LeLorier, Jacques
2016-02-19
Comparative performance of the traditional propensity score (PS) and high-dimensional propensity score (hdPS) methods in the adjustment for confounding by indication remains unclear. We aimed to identify which method provided the best adjustment for confounding by indication within the context of the risk of diabetes among patients exposed to moderate versus high potency statins. A cohort of diabetes-free incident statins users was identified from the Quebec's publicly funded medico-administrative database (Full Cohort). We created two matched sub-cohorts by matching one patient initiated on a lower potency to one patient initiated on a high potency either on patients' PS or hdPS. Both methods' performance were compared by means of the absolute standardized differences (ASDD) regarding relevant characteristics and by means of the obtained measures of association. Eight out of the 18 examined characteristics were shown to be unbalanced within the Full Cohort. Although matching on either method achieved balance within all examined characteristic, matching on patients' hdPS created the most balanced sub-cohort. Measures of associations and confidence intervals obtained within the two matched sub-cohorts overlapped. Although ASDD suggest better matching with hdPS than with PS, measures of association were almost identical when adjusted for either method. Use of the hdPS method in adjusting for confounding by indication within future studies should be recommended due to its ability to identify confounding variables which may be unknown to the investigators.
Cost of diabetes: comparison of disease-attributable and matched cohort cost estimation methods.
Tunceli, Ozgur; Wade, Ron; Gu, Tao; Bouchard, Jonathan R; Aagren, Mark; Luo, Wenli
2010-08-01
To estimate and compare the annual direct healthcare cost among Type 1 (T1DM) and Type 2 (T2DM) diabetes patients using two cost estimation methods: (1) DM-attributable cost and (2) all cause case-control cost. An administrative claims cohort study using the HealthCore Integrated Research Database (HIRD(R)) identified T1DM and T2DM patients age >or=18 and <65 years between 1/1/2006 - 12/31/2006. DM patients (cases) were matched 1:1 with non-DM patients (controls) by age, gender, state, and commercial plan type (HMO, PPO, POS). All patients had continuous eligibility for calendar years 2006-07. DM-attributable cost was assessed by summing medical claims for DM (ICD-9-CM codes 250.xx) and pharmacy claims for anti-hyperglycemic agents, and all cause health care cost was assessed for cases and controls, for the calendar year 2007. A total of 12,096 T1DM and 256,245 T2DM cases and matched controls were identified. T1DM and T2DM cases had significantly higher average baseline comorbidities and Deyo-Charleson Comorbidity scores than controls (2.17 vs. 0.23 and 1.62 vs. 0.39, respectively, p < 0.0001 for both).While DM attributable cost estimation resulted in a mean annual cost of $6247 for T1DM and $3002 for T2DM in 2007, the mean annual (per patient) all-cause total cost estimation using the case-control method resulted in a difference of $10,837 ($14,060 for cases, vs. $3223 for controls) for T1DM; and $4217 ($8070 for cases, vs. $3853 for controls) for T2DM. The DM-attributable cost method underestimated costs by 42% for T1DM and 29% for T2DM compared to the case-control method. The difference was smaller but still significant (33% for T1DM and 14% for T2DM) when multivariate technique was used. Patients with DM may use a substantial amount of medical and pharmacy services not directly attributable to DM, and attributable cost method may underestimate the total cost of DM. This study has limitations inherent to the retrospective claims data analysis and
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.
2013-01-01
The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.
2016-06-01
Reports an error in "Assessment of Identity During Adolescence Using Daily Diary Methods: Measurement Invariance Across Time and Sex" by Andrik I. Becht, Susan J. T. Branje, Wilma A. M. Vollebergh, Dominique F. Maciejewski, Pol A. C. van Lier, Hans M. Koot, Jaap J. A. Denissen and Wim H. J. Meeus (Psychological Assessment, Advanced Online Publication, Aug 10, 2015, np). In the article the participants should have been reported as N = 494. No differences were found in the results upon reanalyzing the data with the correct number of participants. Additionally, the last sentence of the first full paragraph in the Invariance Across Boys and Girls subsection of the Method section should read "In the fourth model, strict invariance was examined, in which the residual variances were constrained to be equal for boys and girls." (The following abstract of the original article appeared in record 2015-36246-001.) The aim of this study was to assess measurement invariance of adolescents' daily reports on identity across time and sex. Adolescents (N = 497; mean age = 13.32 years at Time 1, 56.7% boys) from the general population reported on their identity commitments, exploration in depth and reconsideration on a daily basis for 3 weeks within 1 year across 5 years. We used the single-item version of the Utrecht Management of Identity Commitments Scale (UMICS; Klimstra et al., 2010), a broad measure of identity-formation processes covering both interpersonal and educational identity domains. This study tested configural, metric, scalar, and strict measurement invariance across days within weeks, across sex, across weeks within years, and across years. Results indicated that daily diary reports show strict measurement invariance across days, across weeks within years, across years, and across boys and girls. These results support the use of daily diary methods to assess identity at various time intervals ranging from days to years and across sex. Results are discussed with
NASA Astrophysics Data System (ADS)
Ding, Baiyuan; Wen, Gongjian; Zhong, Jinrong; Ma, Conghui; Yang, Xiaoliang
2016-01-01
This paper proposes a robust method for the matching of attributed scattering centers (ASCs) with application to synthetic aperture radar automatic target recognition (ATR). For the testing image to be classified, ASCs are extracted to match with the ones predicted by templates. First, Hungarian algorithm is employed to match those two ASC sets initially. Then, a precise matching is carried out through a threshold method. Point similarity and structure similarity are calculated, which are fused to evaluate the overall similarity of the two ASC sets based on the Dempster-Shafer theory of evidence. Finally, the target type is determined by such similarities between the testing image and various types of targets. Experiments on the moving and stationary target acquisition and recognition data verify the validity of the proposed method.
Reflection symmetry detection using locally affine invariant edge correspondence.
Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao
2015-04-01
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.
NASA Astrophysics Data System (ADS)
Calin, Mihaela Antonina; Coman, Toma; Parasca, Sorin Viorel; Bercaru, Nicolae; Savastru, Roxana; Manea, Dragos
2015-04-01
Hyperspectral imaging is a technology that is beginning to occupy an important place in medical research with good prospects in future clinical applications. We evaluated the role of hyperspectral imaging in association with a mixture-tuned matched filtering method in the characterization of open wounds. The methodology and the processing steps of the hyperspectral image that have been performed in order to obtain the most useful information about the wound are described in detail. Correlations between the hyperspectral image and clinical examination are described, leading to a pattern that permits relative evaluation of the square area of the wound and its different components in comparison with the surrounding normal skin. Our results showed that the described method can identify different types of tissues that are present in the wounded area and can objectively measure their respective abundance, which proves its value in wound characterization. In conclusion, the method that was described in this preliminary case presentation shows promising results, but needs further evaluation in order to become a reliable and useful tool.
Calin, Mihaela Antonina; Coman, Toma; Parasca, Sorin Viorel; Bercaru, Nicolae; Savastru, Roxana; Manea, Dragos
2015-04-01
Hyperspectral imaging is a technology that is beginning to occupy an important place in medical research with good prospects in future clinical applications. We evaluated the role of hyperspectral imaging in association with a mixture-tuned matched filtering method in the characterization of open wounds. The methodology and the processing steps of the hyperspectral image that have been performed in order to obtain the most useful information about the wound are described in detail. Correlations between the hyperspectral image and clinical examination are described, leading to a pattern that permits relative evaluation of the square area of the wound and its different components in comparison with the surrounding normal skin. Our results showed that the described method can identify different types of tissues that are present in the wounded area and can objectively measure their respective abundance, which proves its value in wound characterization. In conclusion, the method that was described in this preliminary case presentation shows promising results, but needs further evaluation in order to become a reliable and useful tool.
[A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].
Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng
2006-09-01
The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.
Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Zhang, Yaping
2016-01-01
In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor. PMID:27455272
Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Zhang, Yaping
2016-07-22
In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor.
Apparatus and methods for using achromatic phase matching at high orders of dispersion
Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin
2001-01-01
Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.
Iris recognition using possibilistic fuzzy matching on local features.
Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang
2012-02-01
In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.
NASA Astrophysics Data System (ADS)
Meng, Weijuan; Fu, Li-Yun
2017-08-01
The finite element method is a very important tool for modeling seismic wave propagation in complex media, but it usually consumes a large amount of memory which significantly decreases computational efficiency when solving large-scale seismic problems. Here, a modified finite element method (MFEM) is proposed to improve efficiency. Triangular elements are employed to mesh the topography and the discontinuous interface more flexibly. In the two-dimensional case, the Jacobian matrix is obtained by using three controlling points instead of all nodes in each element with MFEM, which separates the Jacobian matrix from the stiffness matrix. The kernel matrices of the stiffness matrix rather than the global matrix are stored, and memory requirements are thus reduced significantly. Meanwhile, the element-by-element scheme is adopted to spare large sparse matrices and make the program easily parallelized. A second-order perfectly matched layer (PML) is also implemented to eliminate artificial reflections. Finally, the accuracy and efficiency of our algorithm are validated by numerical tests.
NASA Astrophysics Data System (ADS)
Kypraios, Ioannis; Young, Rupert C. D.; Birch, Philip M.; Chatwin, Christopher R.
2003-08-01
The various types of synthetic discriminant function (sdf) filter result in a weighted linear superposition of the training set images. Neural network training procedures result in a non-linear superposition of the training set images or, effectively, a feature extraction process, which leads to better interpolation properties than achievable with the sdf filter. However, generally, shift invariance is lost since a data dependant non-linear weighting function is incorporated in the input data window. As a compromise, we train a non-linear superposition filter via neural network methods with the constraint of a linear input to allow for shift invariance. The filter can then be used in a frequency domain based optical correlator. Simulation results are presented that demonstrate the improved training set interpolation achieved by the non-linear filter as compared to a linear superposition filter.
Conley, Colleen M; Derby, K Mark; Roberts-Gwinn, Michelle; Weber, Kimberly P; McLaughlin, T E
2004-01-01
This study compared the copy, cover, and compare method to a picture-word matching method for teaching sight word recognition. Participants were 5 kindergarten students with less than preprimer sight word vocabularies who were enrolled in a public school in the Pacific Northwest. A multielement design was used to evaluate the effects of the two interventions. Outcomes suggested that sight words taught using the copy, cover, and compare method resulted in better maintenance of word recognition when compared to the picture-matching intervention. Benefits to students and the practicality of employing the word-level teaching methods are discussed. PMID:15529890
Wu, Yang; Zuo, Bin; Wen, Fangfang; Yan, Lei
2017-01-01
Using confirmatory factor analyses, this study examined the method effects on a Chinese version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965 ) in a sample of migrant and urban children in China. In all, 982 children completed the RSES, and 9 models and 9 corresponding variants were specified and tested. The results indicated that the method effects are associated with both positively and negatively worded items and that Item 8 should be treated as a positively worded item. Additionally, the method effects models were invariant across migrant and urban children in China.
NASA Astrophysics Data System (ADS)
Vollmer, Gerhard
2010-10-01
Scientific knowledge should not only be true, it should be as objective as possible. It should refer to a reality independent of any subject. What can we use as a criterion of objectivity? Intersubjectivity (i.e., intersubjective understandability and intersubjective testability) is necessary, but not sufficient. Other criteria are: independence of reference system, independence of method, non-conventionality. Is there some common trait? Yes, there is: invariance under some specified transformations. Thus, we say: A proposition is objective only if its truth is invariant against a change in the conditions under which it was formulated. We give illustrations from geometry, perception, neurobiology, relativity theory, and quantum theory. Such an objectivist position has many advantages.
NASA Astrophysics Data System (ADS)
Staufer, J.; Staehelin, J.; Stübi, R.; Peter, T.; Tummon, F.; Thouret, V.
2013-08-01
With the aim of improving ozonesonde observations in the upper troposphere/lower stratosphere (UTLS), we use three-dimensional forward and backward trajectories, driven by ERA-Interim wind fields to match and compare ozonesonde measurements at Payerne (Switzerland) with observations from the MOZAIC aircraft program from 1994-2009. The uncertainties associated with the sonde-MOZAIC match technique were assessed using "self-matches", i.e. matches of instruments of the same type, such as MOZAIC-MOZAIC. Despite strong vertical ozone gradients of ozone at the tropopause, which render the match approach difficult, the method provides excellent results, showing mean differences between different MOZAIC aircraft of ±2% (typically with a few hours between the up- and downstream match points). Matches between MOZAIC aircraft and Payerne ozonesondes show an agreement of ±5% for sondes equipped with electrochemical concentration cells (ECC) and between <5% (not scaled to total ozone) and <10% (scaled) for the Brewer-Mast (BM) sondes after 1998. Prior to 1998, BM sondes show an offset of around 20% (scaled). No break can be identified through the change from the BM to ECC sonde types in September 2002. A comparison of BM sondes with ozone measurements from the NOXAR B747 project for the period 1995-1996 show a smaller offset of around 15% (scaled), which may indicate a small drift in the MOZAIC calibration.
NASA Astrophysics Data System (ADS)
Staufer, J.; Staehelin, J.; Stübi, R.; Peter, T.; Tummon, F.; Thouret, V.
2013-12-01
With the aim of improving ozonesonde observations in the upper troposphere/lower stratosphere (UTLS), we use three-dimensional forward and backward trajectories, driven by ERA-Interim wind fields to match and compare ozonesonde measurements at Payerne (Switzerland) with observations from the MOZAIC aircraft program from 1994-2009. The uncertainties associated with the sonde-MOZAIC match technique were assessed using "self-matches", i.e. matches of instruments of the same type, such as MOZAIC-MOZAIC. Despite strong vertical gradients of ozone at the tropopause, which render the match approach difficult, the method provides excellent results, showing mean differences between different MOZAIC aircraft of ±2% (typically with a few hours between the up- and downstream match points). Matches between MOZAIC aircraft and Payerne ozonesondes show an agreement of ±5% for sondes equipped with electrochemical concentration cells (ECC) and between < 5% (not scaled to total ozone) and < 10% (scaled) for the Brewer-Mast (BM) sondes after 1998. Prior to 1998, BM sondes show an offset of around 20% (scaled). No break can be identified through the change from the BM to ECC sonde types in September 2002. A comparison of BM sondes with ozone measurements from the NOXAR B747 project for the period 1995-1996 show a smaller offset of around 15% (scaled), which may indicate a small drift in the MOZAIC calibration.
NASA Astrophysics Data System (ADS)
Albelda, J.; Denia, F. D.; Torres, M. I.; Fuenmayor, F. J.
2007-06-01
To carry out the acoustic analysis of dissipative silencers with uniform cross-section, the application of the mode matching method at the geometrical discontinuities is an attractive option from a computational point of view. The consideration of this methodology assumes, in general, that the modes associated with the transversal geometry of each element with uniform cross-section are known for the excitation frequencies considered in the analysis. The calculation of the transversal modes is not, however, a simple task when the acoustic system involves perforated elements and absorbent materials. The current work presents a modal approach to calculate the transversal modes and the corresponding axial wavenumbers for dissipative mufflers of uniform (but arbitrary) cross-section. The proposed technique is based on the division of the transversal section into subdomains and the subsequent use of a substructuring procedure with two sets of modes to improve the convergence. The former set of modes fulfils the condition of zero pressure at the common boundary between transversal subdomains while the latter satisfies the condition of zero derivative in the direction normal to the boundary. The approach leads to a versatile methodology with a moderate computational effort that can be applied to mufflers commonly found in real applications. To validate the procedure presented in this work, comparisons are provided with finite element predictions and results available in the literature, showing a good agreement. In addition, the procedure is applied to an example of practical interest.
Blur invariants constructed from arbitrary moments.
Kautsky, Jaroslav; Flusser, Jan
2011-12-01
This paper deals with moment invariants with respect to image blurring. It is mainly a reaction to the works of Zhang and Chen , recently published in these Transactions. We present a general method on how to construct blur invariants from arbitrary moments and show that it is no longer necessary to separately derive the invariants for each polynomial basis. We show how to discard dependent terms in blur invariants definition and discuss a proper implementation of the invariants in orthogonal bases using recurrent relations. An example for Legendre moments is given. © 2011 IEEE
Myers, S; Larsen, S; Wagoner, J; Henderer, B; McCallen, D; Trebes, J; Harben, P; Harris, D
2003-10-29
Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D) finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site
Parameswaran, Vidhya; Anilkumar, S.; Lylajam, S.; Rajesh, C.; Narayan, Vivek
2016-01-01
Background and Objectives: This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. Methods: In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results: Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. Conclusion: This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome. PMID:27746599
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Kanemasu, Edward T.; Asrar, Ghassem
1988-01-01
A finite element discrete ordinates method for solving the radiative transfer equation in nonrotationally invariant scattering media has been applied to the lead-canopy problem, and results are presented on the cross sections and the reflection functions. The method is based on a unique implementation of the Galerkin integral law formulation of the transport equation. For both near-normal and grazing incidences, the transfer functions of leaf canopies are found to be strongly anisotropic, with relatively more scattered flux in the vertical directions. It is suggested that the assumption of isotropic scattering in leaf canopies is not valid.
View Invariant Gait Recognition
NASA Astrophysics Data System (ADS)
Seely, Richard D.; Goffredo, Michela; Carter, John N.; Nixon, Mark S.
Recognition by gait is of particular interest since it is the biometric that is available at the lowest resolution, or when other biometrics are (intentionally) obscured. Gait as a biometric has now shown increasing recognition capability. There are many approaches and these show that recognition can achieve excellent performance on current large databases. The majority of these approaches are planar 2D, largely since the early large databases featured subjects walking in a plane normal to the camera view. To extend deployment capability, we need viewpoint invariant gait biometrics. We describe approaches where viewpoint invariance is achieved by 3D approaches or in 2D. In the first group, the identification relies on parameters extracted from the 3D body deformation during walking. These methods use several video cameras and the 3D reconstruction is achieved after a camera calibration process. On the other hand, the 2D gait biometric approaches use a single camera, usually positioned perpendicular to the subject’s walking direction. Because in real surveillance scenarios a system that operates in an unconstrained environment is necessary, many of the recent gait analysis approaches are orientated toward view-invariant gait recognition.
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
NASA Astrophysics Data System (ADS)
Hagenmuller, Pascal; Pilloix, Thibault
2016-05-01
Hardness has long been recognized as a good predictor of snow mechanical properties and therefore as an indicator of snowpack stability at the measured point. Portable digital penetrometers enable the amassing of a large number of snow stratigraphic hardness profiles. Numerous probings can be performed to assess the snowpack spatial variability and to compensate for measurement errors. On a decameter scale, continuous internal layers are typically present in the snowpack. The variability in stratigraphic features observed in the measurement set mainly originates from the measured variations in internal layer thickness due to either a real heterogeneity in the snowpack or to errors in depth measurement. For the purpose of real time analysis of snowpack stability, a great amount of data collected by digital penetrometers must be quickly synthesized into a characterization representative of the test site. This paper presents a method with which to match and combine several hardness profiles by automatically adjusting their layer thicknesses. The objectives are to synthesize the information collected by several profiles into one representative profile of the measurement set, disentangle information about hardness and depth variabilities, and quantitatively compare hardness profiles measured by different penetrometers. The method was tested by using co-located hardness profiles measured with three different penetrometers --- the snow micropenetrometer (SMP), the Avatech SP1 and the ramsonde --- during the winter 2014-2015 at two sites in the French Alps. When applied to the SMP profiles of both sites, the method reveals a low spatial variability of hardness properties, which is usually masked by depth variations. The developed algorithm is further used to evaluate the new portable penetrometer SP1. The hardness measured with this instrument is shown to be in good agreement with the SMP measurements, but errors in the recovered depth are notable, with a standard
NASA Astrophysics Data System (ADS)
Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.
2016-05-01
This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.
Combined invariants to similarity transformation and to blur using orthogonal Zernike moments
Beijing, Chen; Shu, Huazhong; Zhang, Hui; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2011-01-01
The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a set of invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the proposed descriptors is evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental results show that the proposed descriptors perform on the overall better. PMID:20679028
The method of x-ray image intensifies pixel matching and noise suppression based on the CCD
NASA Astrophysics Data System (ADS)
Yu, Shengtao; Qin, Xulei; Li, Ye
2016-11-01
In the proximity of X-ray imaging systems based on X-ray image intensifier, pixel matching and noise suppression are important methods to improve image quality. This paper analyzes CCD parameters' impact on imaging quality and the relations with, proposes pixel matching degree is a critical factor to restrict the performance of imaging system, and verified by experiments, the CCD refrigeration can effectively suppress the image noise, which adopts the extension of integration time method and obtains favorable signal-to-noise ratio, it also provides a simple and low cost solution for high quality X-ray real-time imaging of static objects.
NASA Astrophysics Data System (ADS)
Farafonov, V. G.; Ustimov, V. I.; Tulegenov, A. R.
2016-08-01
An integral modification of the generalized point-matching method (GPMMi) in the electrostatic problem for axisymmetric particles is developed. Scalar potentials that determine electric fields are represented as expansions in terms of eigenfunctions of the Laplace operator in the spherical coordinate system. Unknown expansion coefficients are determined from infinite systems of linear algebraic equations (ISLAEs), which are obtained from the requirement of a minimum of the integrated residual in the boundary conditions on the particle surface. Matrix elements of ISLAEs and expansion coefficients of the "scattered" field at large index values are analyzed analytically and numerically. It is shown analytically that the applicability condition of the GPMMi coincides with that for the extended boundary conditions method (EBCM). As model particles, oblate pseudospheroids r( θ ) = a√ {1 - {^2}{{cos}^2}θ } ,{^2} = 1 - {b^2} {a_2} ≥ 0 with semiaxes a = 1 and b ≤ 1 are considered, which are obtained as a result of the inversion of prolate spheroids with the same semiaxes with respect to the coordinate origin. For pseudospheroids, the range of applicability of the considered methods is determined by the condition {a b} < √ 2 + 1. Numerical calculations show that, as a rule, the EBCM yields considerably more accurate results in this range, with the time consumption being substantially shorter. Beyond the EBCM range of applicability, the GPMMi approach can yield reasonable results for the calculation of the polarizability, which should be considered as approximate and which should be verified with other approaches. For oblate nonconvex pseudospheroids (i.e., at {a b} ≥slant √ 2 ), it is shown that the spheroidal model works well if pseudospheroids are replaced with ordinary "effective" oblate spheroids. Semiaxes a ef and b ef of the effective spheroids are determined from the requirement of the particle volumes, as well as from the equality of the maximal
Performance comparison of optical flow and block matching methods in shearing and rotating models
NASA Astrophysics Data System (ADS)
Liu, Zhi; Luo, Jianwen
2017-03-01
Accurate estimation of myocardial motion based on ultrasound imaging is of great value for evaluation of cardiac function. Typically, myocardium undergoes complex motion and deformation including shear deformation and rotation. Thus a compression model is insufficient for investigating the performance of different algorithms. In this study, simulated shearing and rotating models are used to study the performance of optical flow (OF) and block matching (BM) methods based on ultrasound radio-frequency (RF) data. A deforming model was simulated with applied axial shear strains of 2- 6%, respectively. In addition, a rotating model was simulated with rotation angles of 0.5°-4°, respectively. Axial strains of 0%, 1% and 2% were also applied to these two models to study the influence of applied strain on the estimation of axial shear strain and rotation. To quantify the estimation performance, the root mean square error (RMSE) was used as the evaluation criterion. The results show that OF has lower RMSEs of the estimated displacement, strain and rotation angle than BM, especially at large axial shear strains and rotation angles. For the shearing model, the RMSEs of axial strains, lateral strains, and axial shear strains are reduced by up to 95.5%, 70.3% and 90.0%, respectively. For the rotating model, the RMSEs of axial strains, lateral strains, and rotation angles are reduced by up to 96.9%, 93.4% and 89.7%, respectively. OF is proved to outperform BM and thus is recommended to be used for shear strain and rotation estimation. The validations of phantom and in-vivo experiments are still required.
Wheel-rail profile matching based on finite element method for Beijing metro
NASA Astrophysics Data System (ADS)
Liu, Jia-huan; Zhang, Jun; Liu, Xiao-dong; Zhu, Huang-shi; Zhang, Lin; Shang, Weipeng
2017-09-01
An instrument that measures wheel-rail appearance is used to measure the size of the wheel and rail in the section of the Baishiqiao South Station of Beijing Metro Line 6 to develop a finite element entity. Different working conditions such as axle load and traction are considered. The results show that: Under axle load, the matching performance of wheel I/rail II is improved, its contact area is the largest, and its equivalent stress and contact force are minimal; Under traction force, the matching performance of wheel I/rail II is improved, and the shear stress and equivalent stress are minimal, and thus is ideal.
Galilei invariant technique for quantum system description
Kamuntavičius, Gintautas P.
2014-04-15
Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.
Marin, Diego; Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Bravo, José Manuel
2011-01-01
This paper presents a new supervised method for blood vessel detection in digital retinal images. This method uses a neural network (NN) scheme for pixel classification and computes a 7-D vector composed of gray-level and moment invariants-based features for pixel representation. The method was evaluated on the publicly available DRIVE and STARE databases, widely used for this purpose, since they contain retinal images where the vascular structure has been precisely marked by experts. Method performance on both sets of test images is better than other existing solutions in literature. The method proves especially accurate for vessel detection in STARE images. Its application to this database (even when the NN was trained on the DRIVE database) outperforms all analyzed segmentation approaches. Its effectiveness and robustness with different image conditions, together with its simplicity and fast implementation, make this blood vessel segmentation proposal suitable for retinal image computer analyses such as automated screening for early diabetic retinopathy detection.
A new model for bed load sampler calibration to replace the probability-matching method
Robert B. Thomas; Jack Lewis
1993-01-01
In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the University of Minnesota. Because sampler data cannot be collected at the same time and place as ""true"" trap measurements, the ""probability-matching...
Re-evaluation of a Programmed Method To Teach Generalized Identity Matching to Sample.
ERIC Educational Resources Information Center
Dube, William V.; Serna, Richard W.
1998-01-01
Programmed identity-matching training was given to five participants with severe mental retardation and histories of failures in assessments and training attempts. When an intermediate goal of establishing one-trial discrimination learning was eliminated, four participants completed the program and passed tests for generalized identity matching…
ERIC Educational Resources Information Center
Rapp, John T.
2006-01-01
The effects of noncontingent matched stimulation (NMS) and response blocking on a boy's stereotypic behavior were evaluated using a multiple schedule that contained three 15-min components (preintervention, intervention, and postintervention). Results showed that stereotypy was always higher after response blocking than before response blocking…
Rotation invariant pattern recognition with a volume holographic wavelet correlation processor
NASA Astrophysics Data System (ADS)
Tan, Wenzhao; Xue, Qingzeng; Yan, Yingbai; Jin, Guofan
2003-02-01
A volume holographic wavelet correlation processor for performing rotation invariant pattern recognition is suggested. It uses wavelet transform to get the digital edge extraction of the original object and a single circular harmonic component is used as the matched filter to get good rotation invariance. The new filter used in this method is called wavelet circular harmonic component filter (WCHCF). Simulation results validate the theory and the experiment to recognize human faces with any rotation angle shows the utility of the newly proposed method.
ERIC Educational Resources Information Center
Moses, Tim
2006-01-01
Population invariance is an important requirement of test equating. An equating function is said to be population invariant when the choice of (sub)population used to compute the equating function does not matter. In recent studies, the extent to which equating functions are population invariant is typically addressed in terms of practical…
Generalizing twisted gauge invariance
Duenas-Vidal, Alvaro; Vazquez-Mozo, Miguel A.
2009-05-01
We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.
Image mosaicking based on feature points using color-invariant values
NASA Astrophysics Data System (ADS)
Lee, Dong-Chang; Kwon, Oh-Seol; Ko, Kyung-Woo; Lee, Ho-Young; Ha, Yeong-Ho
2008-02-01
In the field of computer vision, image mosaicking is achieved using image features, such as textures, colors, and shapes between corresponding images, or local descriptors representing neighborhoods of feature points extracted from corresponding images. However, image mosaicking based on feature points has attracted more recent attention due to the simplicity of the geometric transformation, regardless of distortion and differences in intensity generated by camera motion in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a real digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.
An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method
NASA Astrophysics Data System (ADS)
Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John
2015-04-01
Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.
NASA Astrophysics Data System (ADS)
Apaya, Robert P.; Lucchese, Baldo; Price, Sarah L.; Vinter, J. G.
1995-02-01
Ligands which bind to a specific protein binding site are often expected to have a similar electrostatic environment which complements that of the binding site. One method of assessing molecular electrostatic similarity is to examine the possible overlay of the maxima and minima in the electrostatic potential outside the molecules and thereby match the regions where strong electrostatic interactions, including hydrogen bonds, with the residues of the binding site may be possible. This approach is validated with accurate calculations of the electrostatic potential, derived from a distributed multipole analysis of an ab initio charge density of the molecule, so that the effects of lone pair and π-electron density are correctly included. We have applied this method to the phosphodiesterase (PDE) III substrate adenosine-3',5'-cyclic monophosphate (cAMP) and a range of nonspecific and specific PDE III inhibitors. Despite the structural variation between cAMP and the inhibitors, it is possible to match three or four extrema to produce relative orientations in which the inhibitors are sufficiently sterically and electrostatically similar to the natural substrate to account for their affinity for PDE III. This matching of extrema is more apparent using the accurate electrostatic models than it was when this approach was first applied, using semiempirical point charge models. These results reinforce the hypothesis of electrostatic similarity and give weight to the technique of extrema matching as a useful tool in drug design.
Robertson, Sam; Gupta, Ritu; McIntosh, Sam
2016-10-01
This study developed a method to determine whether the distribution of individual player performances can be modelled to explain match outcome in team sports, using Australian Rules football as an example. Player-recorded values (converted to a percentage of team total) in 11 commonly reported performance indicators were obtained for all regular season matches played during the 2014 Australian Football League season, with team totals also recorded. Multiple features relating to heuristically determined percentiles for each performance indicator were then extracted for each team and match, along with the outcome (win/loss). A generalised estimating equation model comprising eight key features was developed, explaining match outcome at a median accuracy of 63.9% under 10-fold cross-validation. Lower 75th, 90th and 95th percentile values for team goals and higher 25th and 50th percentile values for disposals were linked with winning. Lower 95th and higher 25th percentile values for Inside 50s and Marks, respectively, were also important contributors. These results provide evidence supporting team strategies which aim to obtain an even spread of goal scorers in Australian Rules football. The method developed in this investigation could be used to quantify the importance of individual contributions to overall team performance in team sports.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1994-01-01
NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.
NASA Astrophysics Data System (ADS)
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
NASA Astrophysics Data System (ADS)
Bueeler, M.; Donitzky, Ch.; Mrochen, M.
2006-02-01
The effectiveness of the corneal ablation process in refractive surgery is mostly evaluated by indirect measures of vision or optical quality such as post-operative refraction or wavefront aberrometry. Yet, the effective amount of corneal tissue removed in the treatment can only be determined by correctly overlapping a pre- and a post-operative topography measurement. However such an overlap is not trivial due to the discrepancy in the centration axes used in the measurement and the treatment, as well as due to the shift of ocular axes through the treatment or tilt between the two surfaces. We therefore present two methods for overlapping pre- and post-operative topographies for the purpose of extracting an effective corneal ablation profile. Method one uses a 3-dimensional profile matching algorithm and cross-correlation analysis on surface rings outside the optical zone of the topographies. Method two employs a surface normal matching routine to align the two surfaces along their common ablation axis. The profile matching method implies the problem that it requires measurement data outside of the optical zone which was found to be uncertain with placido-disk-based topographers. Method number two is more simple and implies the advantage of using measurement data within the optical zone. For regular profiles the extracted ablation profiles showed a very good match with the planned ones. Surprisingly, even for highly irregular profiles of topography-guided laser treatments the method delivered reasonable overlaps when being compared to the planned profiles. Analysis of the effective tissue removal yields valuable information on the quality of the ablation process.
[Improving hyperspectral matching method through feature-selection/weighting based on SVM].
Wang, Yuan-Yuan; Chen, Yun-Hao; Li, Jing
2009-03-01
In the present article, feature selection/weighting based on SVM was employed to improve the algorithm of choosing reference spectrum through a multi-objective optimization approach proposed in reference. Based on the sensitive analysis, half of features having low weights in SVM classification model were eliminated iteratively. Two criteria, matching accuracy and classification confidence, were used to select the best-performing feature subset. Three scenarios were designed: (1) only feature subset selected by SVM was used; (2) both feature subset and global weights were used, in which global weights were the coefficients of selected features in the SVM classification model; (3) both feature subset and local weights, which changed with the distance of a sample point to the SVM separation plan, were used. Experiment executed on the popular Indiana AVIRIS data set indicate that under all the three scenarios, spectral matching accuracies were increased by 13%-17% compared to the situation without feature selection. The result obtained under scenario 3 is the most accurate and the most stable, which can be primarily attributed to the ability of local weights to accurately describe local distribution of spectra from the same class in feature space. Moreover, scenario 3 can be regarded as the extension of scenario 2 because when spectra far away from the separation plane are selected as reference spectrums for matching, the features' weights will not be considered. The results obtained under scenario 1 and 2 are very similar, indicating that considering global weights is not necessary. The research presented in this paper advanced the spectrum analysis using SVM to a higher level.
NASA Technical Reports Server (NTRS)
Garai, Anirban; Murman, Scott M.; Madavan, Nateri K.
2016-01-01
used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The
Guse, Jennifer; Schweigert, Eva; Kulms, Gerhild; Heinen, Ines; Martens, Claudia; Guse, Andreas H.
2016-01-01
Objectives Choosing the right mentor is crucial for effective mentorship. Yet, many medical students have difficulties finding a suitable mentor. Thus we developed mentoring speed dating (MSD) as a promising matching tool to connect students and faculty mentors successfully. The purpose of this study was to explore mentees’ and mentors’ experience with MSD and investigate the impact of MSD on the perceived mentorship quality and continuance of the mentoring relationship. Methods The authors completed a mixed methods study at the University Medical Center Hamburg-Eppendorf, Germany, between June 2011 and March 2014. They conducted four focus groups with mentees and mentors who participated in a mentoring speed dating event and analyzed transcripts using conventional content analysis with inductive categorizing. In addition, three mentoring cohorts (two matched via MSD, one matched via conventional online profiles) were surveyed on mentorship satisfaction and the 1-year continuance of their mentorship was monitored. Fifteen mentees and fifteen mentors participated in the focus groups. The authors identified several themes such as short and long term benefits of MSD and fulfillment of expectations. Benefits included finding out about the personal connection, matching expectations, providing an efficient overview of candidates. The survey was completed by 93 students (n = 29 without MSD; n = 64 with MSD). Independent t-tests and multivariate analysis of variance were used to analyze the impact of MSD on student’s mentorship satisfaction. Results There were significant differences in responses to the items “Commitment of mentor” (p = .019) and “Constructive feedback” (p = .038) among the students who attended MSD and the students without MSD. After one year far more mentoring relationships existed among those mentees who participated in MSD in comparison to the “no MSD group”. Conclusion MSD is a valuable matching tool with beneficial effects on the
Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V. E-mail: candler@aem.umn.edu; Truhlar, Donald G. E-mail: candler@aem.umn.edu
2014-02-07
Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with a review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.
A New Impedance Matching Method for an Ultra-Wide Band and Dual Circularly Polarised Feed
NASA Astrophysics Data System (ADS)
Li, Sha; Yan, Yi Hua; Wang, Wei; Chen, Zhi Jun; Liu, Dong Hao; Zhang, Fu Shun; Jeffrey, Natasha
2016-12-01
In traditional antenna design, metal components are not placed in the central part of the antenna as they change the characteristics of near field radiation. However, we show that placing a metal ring in the centre of the strip lines, which connect the ends of folded high-frequency dipoles, does not damage the performance of the feed. Instead it significantly improves the voltage standing wave ratio of the feed whilst other performance indicators are not compromised. Thus, our findings show an excellent way of improving the wide band feed. Based on this foundation, a new circularly polarised feed for operation between 0.4 to 2 GHz is introduced for the Chinese Spectral Radioheliograph in this paper. The issue of a feed impedance matching network is investigated. By optimising the impedance matching, the performance of the feed is enhanced with respect to the previous realisations of the Eleven feed. The simulation and experimental results show that the gain of the feed is about 10 dBi, and the VSWR is less than 2:1. In addition, the feed has a low axial ratio, fixed phase centre location, and constant beam width in the range of 0.4 to 2 GHz.
Line segment matching and reconstruction via exploiting coplanar cues
NASA Astrophysics Data System (ADS)
Li, Kai; Yao, Jian
2017-03-01
This paper introduces a new system for reconstructing 3D scenes from Line Segments (LS) on images. A new LS matching algorithm and a novel 3D LS reconstruction algorithm are incorporated into the system. Two coplanar cues that indicates image LSs are coplanar in physical (3D) space are extensively exploited in both algorithms: (1) adjacent image LSs are coplanar in space in a high possibility; (2) the projections of coplanar 3D LSs in two images are related by the same planar homography. Based on these two cues, we efficiently match LSs from two images firstly in pairs through matching the V-junctions formed by adjacent LSs, and secondly in individuals by exploiting local homographies. We extract for each V-junction a scale and affine invariant local region to match V-junctions from two images. The local homographies estimated from V-junction matches are used to match LSs in individuals. To get 3D LSs from the obtained LS matches, we propose to first estimate space planes from clustered LS matches and then back-project image LSs onto the space planes. Markov Random Field (MRF) is introduced to help more reliable LS match clustering. Experiments shows our LS matching algorithm significantly improves the efficiency of state-of-the-art methods while achieves comparable matching performance, and our 3D LS reconstruction algorithm generates more complete and detailed 3D scene models using much fewer images.
Entanglement, Invariants, and Phylogenetics
NASA Astrophysics Data System (ADS)
Sumner, J. G.
2007-10-01
This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.
Austin, Peter C
2008-09-01
Propensity-score matching is frequently used in the cardiology literature. Recent systematic reviews have found that this method is, in general, poorly implemented in the medical literature. The study objective was to examine the quality of the implementation of propensity-score matching in the general cardiology literature. A total of 44 articles published in the American Heart Journal, the American Journal of Cardiology, Circulation, the European Heart Journal, Heart, the International Journal of Cardiology, and the Journal of the American College of Cardiology between January 1, 2004, and December 31, 2006, were examined. Twenty of the 44 studies did not provide adequate information on how the propensity-score-matched pairs were formed. Fourteen studies did not report whether matching on the propensity score balanced baseline characteristics between treated and untreated subjects in the matched sample. Only 4 studies explicitly used statistical methods appropriate for matched studies to compare baseline characteristics between treated and untreated subjects. Only 11 (25%) of the 44 studies explicitly used statistical methods appropriate for the analysis of matched data when estimating the effect of treatment on the outcomes. Only 2 studies described the matching method used, assessed balance in baseline covariates by appropriate methods, and used appropriate statistical methods to estimate the treatment effect and its significance. Application of propensity-score matching was poor in the cardiology literature. Suggestions for improving the reporting and analysis of studies that use propensity-score matching are provided.
Invariance concepts in spectral analysis
NASA Astrophysics Data System (ADS)
Schaum, Alan
2017-05-01
Methods are developed for insuring robust discrimination performance in detection problems with epistemic unknowns. The problem is first solved for the class of problems exhibiting some symmetry, as expressed by invariances to some group of feature space transformations. The determination of whether a problem admits a uniformly most powerful invariant (UMPI) solution (and how to derive it) is solved with a new and simple procedure. This motivates an approach for solving problems where a symmetry is gracefully broken, which leads in turn to a general approach for producing robust detectors. This introduces a new category of detector, the UMPIC (UMPI constrained). Finally, principles of UMPIC construction are shown to apply to problems exhibiting no invariances.
Two dimensional template matching method for buried object discrimination in GPR data
NASA Astrophysics Data System (ADS)
Sezgin, Mehmet
2009-05-01
In this study discrimination of two different metallic object classes were studied, utilizing Ground Penetrating Radar (GPR). Feature sets of both classes have almost the same information for both Metal Detector (MD) and GPR data. There were no evident features those are easily discriminate classes. Background removal has been applied to original B-Scan data and then a normalization process was performed. Image thresholding was applied to segment B-Scan GPR images. So, main hyperbolic shape of buried object reflection was extracted and then a morphological process was performed optionally. Templates of each class representatives have been obtained and they were searched whether they match with true class or not. Two data sets were examined experimentally. Actually they were obtained in different time and burial for the same objects. Considerably high discrimination performance was obtained which was not possible by using individual Metal Detector data.
Matches, Mismatches, and Methods: Multiple-View Workflows for Energy Portfolio Analysis.
Brehmer, Matthew; Ng, Jocelyn; Tate, Kevin; Munzner, Tamara
2016-01-01
The energy performance of large building portfolios is challenging to analyze and monitor, as current analysis tools are not scalable or they present derived and aggregated data at too coarse of a level. We conducted a visualization design study, beginning with a thorough work domain analysis and a characterization of data and task abstractions. We describe generalizable visual encoding design choices for time-oriented data framed in terms of matches and mismatches, as well as considerations for workflow design. Our designs address several research questions pertaining to scalability, view coordination, and the inappropriateness of line charts for derived and aggregated data due to a combination of data semantics and domain convention. We also present guidelines relating to familiarity and trust, as well as methodological considerations for visualization design studies. Our designs were adopted by our collaborators and incorporated into the design of an energy analysis software application that will be deployed to tens of thousands of energy workers in their client base.
Haber, Michael; Gao, Jingjing; Barnhart, Huiman X
2009-01-01
Summary We propose a simple method for evaluating agreement between methods of measurement when the measured variable is continuous and the data consists of matched repeated observations made with the same method under different conditions. The conditions may represent different time points, raters, laboratories, treatments, etc. Our approach allows the values of the measured variable and the magnitude of disagreement to vary across the conditions. The coefficient of individual agreement (CIA), which is based on the comparison of the between and within-methods mean squared deviation (MSD) is used to quantify the magnitude of agreement between measurement methods. The new approach is illustrated via two examples from studies designed to compare (a) methods of evaluating carotid stenosis and (b) methods of measuring percent body fat. PMID:20664753
Boatner, L.A.
2008-06-24
This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.
Guse, Jennifer; Schweigert, Eva; Kulms, Gerhild; Heinen, Ines; Martens, Claudia; Guse, Andreas H
2016-01-01
Choosing the right mentor is crucial for effective mentorship. Yet, many medical students have difficulties finding a suitable mentor. Thus we developed mentoring speed dating (MSD) as a promising matching tool to connect students and faculty mentors successfully. The purpose of this study was to explore mentees' and mentors' experience with MSD and investigate the impact of MSD on the perceived mentorship quality and continuance of the mentoring relationship. The authors completed a mixed methods study at the University Medical Center Hamburg-Eppendorf, Germany, between June 2011 and March 2014. They conducted four focus groups with mentees and mentors who participated in a mentoring speed dating event and analyzed transcripts using conventional content analysis with inductive categorizing. In addition, three mentoring cohorts (two matched via MSD, one matched via conventional online profiles) were surveyed on mentorship satisfaction and the 1-year continuance of their mentorship was monitored. Fifteen mentees and fifteen mentors participated in the focus groups. The authors identified several themes such as short and long term benefits of MSD and fulfillment of expectations. Benefits included finding out about the personal connection, matching expectations, providing an efficient overview of candidates. The survey was completed by 93 students (n = 29 without MSD; n = 64 with MSD). Independent t-tests and multivariate analysis of variance were used to analyze the impact of MSD on student's mentorship satisfaction. There were significant differences in responses to the items "Commitment of mentor" (p = .019) and "Constructive feedback" (p = .038) among the students who attended MSD and the students without MSD. After one year far more mentoring relationships existed among those mentees who participated in MSD in comparison to the "no MSD group". MSD is a valuable matching tool with beneficial effects on the mentorship quality. It enhances essential factors in the
Similarity, invariance, and musical variation.
McAdams, S; Matzkin, D
2001-06-01
Perceptual similarity underlies a number of important psychological properties of musical materials, including perceptual invariance under transformation, categorization, recognition, and the sense of familiarity. Mental processes involved in the perception of musical similarity may be an integral part of the functional logic of music composition and thus underly important aspects of musical experience. How much and in what ways can musical materials be varied and still be considered as perceptually related or as belonging to the same category? The notions of musical material, musical variation, perceptual similarity and invariance, and form-bearing dimensions are considered in this light. Recent work on similarity perception has demonstrated that the transformation space for a given musical material is limited by several factors ranging from degree of match of the values of auditory attributes of the events composing the sequences to their relations of various levels of abstraction and to the degree that the transformation respects the grammar of the musical system within which the material was composed. These notions and results are considered in the light of future directions of research, particularly concerning the role of similarity and invariance in the understanding of musical form during listening.
NASA Astrophysics Data System (ADS)
Lowry, Thomas; Li, Shu-Guang
2005-02-01
Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.
D'Ambra, P.; Vassilevski, P. S.
2014-05-30
Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. In this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.
Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J
2004-05-01
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Qiao, Zijian; Xu, Xuefang; Lin, Jing; Niu, Shantao
2017-09-01
Most traditional overdamped monostable, bistable and even tristable stochastic resonance (SR) methods have three shortcomings in weak characteristic extraction: (1) their potential structures characterized by single stable-state type are insufficient to match with the complicated and diverse mechanical vibration signals; (2) they vulnerably suffer the interference from multiscale noise and largely depend on the help of highpass filters whose parameters are selected subjectively, probably resulting in false detection; and (3) their rescaling factors are fixed as constants generally, thereby ignoring the synergistic effect among vibration signals, potential structures and rescaling factors. These three shortcomings have limited the enhancement ability of SR. To explore the SR potential, this paper initially investigates the SR in a multistable system by calculating its output spectral amplification, further analyzes its output frequency response numerically, then examines the effect of both damping and rescaling factors on output responses and finally presents a promising underdamped SR method with stable-state matching for incipient bearing fault diagnosis. This method has three advantages: (1) the diversity of stable-state types in a multistable potential makes it easy to match with various vibration signals; (2) the underdamped multistable SR, equivalent to a moving nonlinear bandpass filter that is dependent on the rescaling factors, is able to suppress the multiscale noise; and (3) the synergistic effect among vibration signals, potential structures and rescaling and damping factors is achieved using quantum genetic algorithms whose fitness functions are new weighted signal-to-noise ratio (WSNR) instead of SNR. Therefore, the proposed method is expected to possess good enhancement ability. Simulated and experimental data of rolling element bearings demonstrate its effectiveness. The comparison results show that the proposed method is able to obtain higher
NASA Astrophysics Data System (ADS)
Ben-Arie, Jezekiel; Wang, Zhiqian; Rao, Raghunath K.
1996-02-01
This paper describes an approach for affine-invariant object recognition by iconic recognition of image patches that correspond to object surfaces that are roughly planar. Each surface is recognized separately invariant to its 3D pose, employing novel affine-invariant spectral signatures (AISSs). The 3D-pose invariant recognition is achieved by convolving the image with a novel configuration of Gaussian kernels and extracting local spectral signatures. The local spectral signature of each image patch is then matched against a set of iconic models using multi-dimensional indexing (MDI) in the frequency domain. Affine-invariance of the signatures is achieved by a new configuration of Gaussian kernels with modulation in two orthogonal axes. The proposed configuration of kernels is Cartesian with varying aspect ratios in two orthogonal directions. The kernels are organized in subsets where each subset has a distinct orientation. Each subset spans the entire frequency domain and provides invariance to slant, scale and limited translation. The union of differently oriented subsets is utilized to achieve invariance in two additional degrees of freedom, i.e. rotation and tilt. Hence, complete affine-invariance is achieved by the proposed set of kernels. The indexing method provides robustness in partial distortion, background clutter, noise, illumination effects and lower image resolution. The localized nature of the Gaussian kernels allows independent recognition of adjacent shapes that correspond to object parts which could have different poses. The method has yielded high recognition rates in experiments over a wide range of slant, scale, rotation, and tilt with a library of 26 gray-level and infra-red models, in the presence of noise, clutter and other degradations.
NASA Astrophysics Data System (ADS)
Wei, Dongshan; Song, Yang; Wang, Feng
2011-05-01
A simple molecular mechanics force field for graphene (PPBE-G) was created by force matching the density functional theory Perdew-Burke-Ernzerhof forces using the adaptive force matching method recently developed in our group. The PPBE-G potential was found to provide significantly more accurate forces than other existing force fields. Several properties of graphene, such as Young's modulus, bending rigidity, and thermal conductivity, have been studied with our potential. The calculated properties are in good agreement with corresponding density functional theory and experimental values. The thermal conductivity calculated with reverse non-equilibrium molecular dynamics depends sensitively on graphene size thus requiring the simulation of large sheets for convergence. Since the PPBE-G potential only contains simple additive energy expressions, it is very computationally efficient and is capable of modeling large graphene sheets in the μm length scale.
New point matching algorithm for panoramic reflectance images
NASA Astrophysics Data System (ADS)
Kang, Zhizhong; Zlatanova, Sisi
2007-11-01
Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. The most important part of registration is finding correspondence. The panoramic reflectance images are generated according to the angular coordinates and reflectance value of each 3D point of 360° full scans. Since it is similar to a black and white photo, it is possible to implement image matching on this kind of images. Therefore, this paper reports a new corresponding point matching algorithm for panoramic reflectance images. Firstly SIFT (Scale Invariant Feature Transform) method is employed for extracting distinctive invariant features from panoramic images that can be used to perform reliable matching between different views of an object or scene. The correspondences are identified by finding the nearest neighbors of each keypoint form the first image among those in the second image afterwards. The rigid geometric invariance derived from point cloud is used to prune false correspondences. Finally, an iterative process is employed to include more new matches for transformation parameters computation until the computation accuracy reaches predefined accuracy threshold. The approach is tested with panoramic reflectance images (indoor and outdoor scenes) acquired by the laser scanner FARO LS 880. 1
Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2007-01-01
The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.
Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang
2016-01-01
Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.
ERIC Educational Resources Information Center
Weil, Joyce
2015-01-01
As Baby Boomers reach 65 years of age and methods of studying older populations are becoming increasingly varied (e.g., including mixed methods designs, on-line surveys, and video-based environments), there is renewed interest in evaluating methodologies used to collect data with older persons. The goal of this article is to examine…
Robust spatiotemporal matching of electronic slides to presentation videos.
Fan, Quanfu; Barnard, Kobus; Amir, Arnon; Efrat, Alon
2011-08-01
We describe a robust and efficient method for automatically matching and time-aligning electronic slides to videos of corresponding presentations. Matching electronic slides to videos provides new methods for indexing, searching, and browsing videos in distance-learning applications. However, robust automatic matching is challenging due to varied frame composition, slide distortion, camera movement, low-quality video capture, and arbitrary slides sequence. Our fully automatic approach combines image-based matching of slide to video frames with a temporal model for slide changes and camera events. To address these challenges, we begin by extracting scale-invariant feature-transformation (SIFT) keypoints from both slides and video frames, and matching them subject to a consistent projective transformation (homography) by using random sample consensus (RANSAC). We use the initial set of matches to construct a background model and a binary classifier for separating video frames showing slides from those without. We then introduce a new matching scheme for exploiting less distinctive SIFT keypoints that enables us to tackle more difficult images. Finally, we improve upon the matching based on visual information by using estimated matching probabilities as part of a hidden Markov model (HMM) that integrates temporal information and detected camera operations. Detailed quantitative experiments characterize each part of our approach and demonstrate an average accuracy of over 95% in 13 presentation videos.
Conformal differential invariants
NASA Astrophysics Data System (ADS)
Kruglikov, Boris
2017-03-01
We compute the Hilbert polynomial and the Poincaré function counting the number of fixed jet-order differential invariants of conformal metric structures modulo local diffeomorphisms, and we describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action. This resolves the local recognition problem for conformal structures.
Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.
2016-01-01
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639
Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt
2013-01-01
The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for RSES; and to quantify and predict the method effects. This sample involves two waves (N=2513 ninth-grade and 2370 tenth-grade students) from five waves of a school-based longitudinal study. RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style, and found that being a girl and having higher number of depressive symptoms were associated with both low self-esteem and negative response style measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents. PMID:24061931
Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt
2014-06-01
The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for the RSES and to quantify and predict the method effects. This sample involves two waves (N =2,513 9th-grade and 2,370 10th-grade students) from five waves of a school-based longitudinal study. The RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained a large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style and found that being a girl and having a higher number of depressive symptoms were associated with both low self-esteem and negative response style, as measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents.
Illumination invariant face recognition using near-infrared images.
Li, Stan Z; Chu, Rufeng; Liao, Shengcai; Zhang, Lun
2007-04-01
Most current face recognition systems are designed for indoor, cooperative-user applications. However, even in thus-constrained applications, most existing systems, academic and commercial, are compromised in accuracy by changes in environmental illumination. In this paper, we present a novel solution for illumination invariant face recognition for indoor, cooperative-user applications. First, we present an active near infrared (NIR) imaging system that is able to produce face images of good condition regardless of visible lights in the environment. Second, we show that the resulting face images encode intrinsic information of the face, subject only to a monotonic transform in the gray tone; based on this, we use local binary pattern (LBP) features to compensate for the monotonic transform, thus deriving an illumination invariant face representation. Then, we present methods for face recognition using NIR images; statistical learning algorithms are used to extract most discriminative features from a large pool of invariant LBP features and construct a highly accurate face matching engine. Finally, we present a system that is able to achieve accurate and fast face recognition in practice, in which a method is provided to deal with specular reflections of active NIR lights on eyeglasses, a critical issue in active NIR image-based face recognition. Extensive, comparative results are provided to evaluate the imaging hardware, the face and eye detection algorithms, and the face recognition algorithms and systems, with respect to various factors, including illumination, eyeglasses, time lapse, and ethnic groups.
New invariants of weighted graphs for calculating the critical properties of freons
NASA Astrophysics Data System (ADS)
Kruglyak, Yu. A.; Peredunova, I. V.
2015-12-01
A new approach to structure-property problems using new invariants of fully weighted graphs to provide a quantitative description of the critical properties of freons is proposed. A general principle for constructing topological invariants of fully weighted graphs for structure-property correlations is formulated. Two new invariants are proposed and used to calculate critical properties of freons of the methane, ethane, and propane series. It is shown that unlike all other known incremental methods, the proposed approach does not require the use of experimental data or calibrations to calculate critical properties. It ensures a statistically reliable linear dependence of all critical properties of freons on the value of the matching index for our corresponding molecular graph. Over 2.5 thousand previously unknown values of the critical properties of lower freons are calculated.
NASA Astrophysics Data System (ADS)
Herwig, H.
Theoretical investigations of stationary incompressible two-dimensional laminar flows with finite regions of catastrophic separation, applying the method of matched asymptotic expansions, are presented. The difficulties associated with the Goldstein singularity are attacked in two ways, corresponding to the limiting values of a complex parameter kappa. Each case is applied to a unified model geometry using triple-deck equations. The flow model of Batchelor (1955) is shown not to fulfill the asymptotic-expansion assumptions; the model of Kirchhoff (1869), actually a degenerate version of the Batchelor model for the case omega-0 = 0, is found to be the uniquely valid one under these conditions.
Silva, E. Costa Gusmão, L. A. P.; Barbosa, C. R. Hall; Leipner, Y.; Fortaleza, L. G. S.; Monteiro, E. Costa
2014-08-15
Recently, our research group at PUC-Rio discovered that magnetic transducers based on the impedance phase characteristics of GMI sensors have the potential to multiply by one hundred the sensitivity values when compared to magnitude-based GMI transducers. Those GMI sensors can be employed in the measurement of ultra-weak magnetic fields, which intensities are even lower than the environmental magnetic noise. A traditional solution for cancelling the electromagnetic noise and interference makes use of gradiometric configurations, but the performance is strongly tied to the homogeneity of the sensing elements. This paper presents a new method that uses electronic circuits to modify the equivalent impedance of the GMI samples, aiming at homogenizing their phase characteristics and, consequently, improving the performance of gradiometric configurations based on GMI samples. It is also shown a performance comparison between this new method and another homogenization method previously developed.
DNA barcoding of recently diverged species: relative performance of matching methods.
van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T
2012-01-01
Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.
DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods
van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.
2012-01-01
Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356
A Method of Designing Practical Examinations to Match What Is Taught in Laboratory Activities.
ERIC Educational Resources Information Center
Stensvold, Mark S.; Wilson, John T.
1993-01-01
Proposes methods by which laboratory practical exams may be structured to assess outcomes from laboratory instruction. Presents eight general considerations for writing and using practical exams. Describes four example laboratory exams involving a box camera, circuit boxes, floating objects, and light. (MDH)
Matching Learning Style Preferences with Suitable Delivery Methods on Textile Design Programmes
ERIC Educational Resources Information Center
Sayer, Kate; Studd, Rachel
2006-01-01
Textile design is a subject that encompasses both design and technology; aesthetically pleasing patterns and forms must be set within technical parameters to create successful fabrics. When considering education methods in design programmes, identifying the most relevant learning approach is key to creating future successes. Yet are the most…
NASA Astrophysics Data System (ADS)
Kerzhakov, B. V.; Kulinich, V. V.
2016-08-01
We use the field matching method to solve the inverse problem of estimating the geoacoustic parameters of a stratified sea bed using the objective function based on the norm of difference between the experimental and simulated vertical angular spectra of the acoustic field and combination of the rapid-annealing method with direct search methods for localization of the global minimum of the objective function. To reduce the influence of the ravine effects of the objective function, we use regularization on the basis of mutual correlations of the experimental and simulated vertical angular spectra of the acoustic field. The numerical experiment has been performed to retrieve the parameters of the model waveguide, e.g., the thickness of the water layer and the layer of sediments, the velocity and attenuation coefficients of longitudinal waves, and the density of the sediment layer and the subjacent half-space in the presence of noise interference of different intensity levels.
NASA Astrophysics Data System (ADS)
Niri, Mohammad Emami; Lumley, David E.
2017-10-01
Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.
A Template-Matching Method For Measuring Energy Depositions In TES Films
NASA Astrophysics Data System (ADS)
Shank, Benjamin; Yen, Jeffrey; Cabrera, Blas; Kreikebaum, John Mark; Moffatt, Robert; Redl, Peter; Young, Betty; Brink, Paul; Cherry, Matthew; Tomada, Astrid
2014-03-01
Transition edge sensors (TES) have a wide variety of applications in particle ∖astrophysics for detecting incoming particles with high energy resolution. In TES design, the need for sufficient heat capacity to avoid saturation limits the ultimate energy resolution. Building on the TES model developed for SuperCDMS by Yen et al. for tungsten TESs deposited next to aluminum collection fins, we outline a time-domain non-linear optimal filter method for reconstructing energy depositions in TES films. This allows us to operate devices into their saturation region while taking into account changing noise performance and loss of energy collection. We show how this method has improved our understanding of quasiparticle diffusion and energy collection in our superconducting sensors.
Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections
NASA Technical Reports Server (NTRS)
Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.
1945-01-01
A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.
A fuzzy pattern matching method based on graph kernel for lithography hotspot detection
NASA Astrophysics Data System (ADS)
Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji
2017-03-01
In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.
NASA Astrophysics Data System (ADS)
Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.
2015-04-01
Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that
Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.
2015-04-21
Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that
Multigroup Confirmatory Factor Analysis: Locating the Invariant Referent Sets
ERIC Educational Resources Information Center
French, Brian F.; Finch, W. Holmes
2008-01-01
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Burden, Anne; Roche, Nicolas; Miglio, Cristiana; Hillyer, Elizabeth V; Postma, Dirkje S; Herings, Ron MC; Overbeek, Jetty A; Khalid, Javaria Mona; van Eickels, Daniela; Price, David B
2017-01-01
Background Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre–post historical database study to investigate asthma-related outcomes by treatment. Methods We drew on longitudinal medical record data in the PHARMO database for asthma patients prescribed the treatments to be compared (ciclesonide and fine-particle inhaled corticosteroid [ICS]). Propensity score methods that we evaluated were propensity score matching (PSM) using two different algorithms, the inverse probability of treatment weighting (IPTW), covariate adjustment using the propensity score, and propensity score stratification. We defined balance, using standardized differences, as differences of <10% between cohorts. Results Of 4064 eligible patients, 1382 (34%) were prescribed ciclesonide and 2682 (66%) fine-particle ICS. The IPTW and propensity score-based methods retained more patients (96%–100%) than exact matching (90%); exact matching selected less severe patients. Standardized differences were >10% for four variables in the exact-matched dataset and <10% for both PSM algorithms and the weighted pseudo-dataset used in the IPTW method. With all methods, ciclesonide was associated with better 1-year asthma-related outcomes, at one-third the prescribed dose, than fine-particle ICS; results varied slightly by method, but direction and statistical significance remained the same. Conclusion We found that each method has its particular strengths, and we recommend at least two methods be applied for each matched cohort study to evaluate the robustness of the findings. Balance diagnostics should be applied with all methods to check the balance of confounders between treatment cohorts. If exact matching is used, the calculation of a propensity score could be useful to identify variables that require
Advances in Rotation-Invariant Texture Analysis
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris
Robust rotation invariance has been a matter of great interest in many applications which use low-level features such as textures. In this paper, we propose a method to analyze and capture visual patterns from textures regardless their orientation. In order to achieve rotation invariance, visual texture patterns are locally described as one-dimensional patterns by appropriately steering the Cartesian Hermite coefficients. Experiments with two datasets from the Brodatz album were performed to evaluate orientation invariance. High average precision and recall rates were achieved by the proposed method.
Macdonald, Benn; Husmeier, Dirk
2015-01-01
Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimized, so as to minimize some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data.
Macdonald, Benn; Husmeier, Dirk
2015-01-01
Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimized, so as to minimize some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data. PMID:26636071
System and method for knowledge based matching of users in a network
Verspoor, Cornelia Maria [Santa Fe, NM; Sims, Benjamin Hayden [Los Alamos, NM; Ambrosiano, John Joseph [Los Alamos, NM; Cleland, Timothy James [Los Alamos, NM
2011-04-26
A knowledge-based system and methods to matchmaking and social network extension are disclosed. The system is configured to allow users to specify knowledge profiles, which are collections of concepts that indicate a certain topic or area of interest selected from an. The system utilizes the knowledge model as the semantic space within which to compare similarities in user interests. The knowledge model is hierarchical so that indications of interest in specific concepts automatically imply interest in more general concept. Similarity measures between profiles may then be calculated based on suitable distance formulas within this space.
Madej, M Gregor
2015-01-01
The major facilitator superfamily (MFS) is a diverse group of secondary transporters with members found in all kingdoms of life. The paradigm for MFS is the lactose permease (LacY) of Escherichia coli, which has been the test bed for the development of many methods applied for the analysis of transport proteins. X-ray structures of an inward-facing conformation and the most recent structure of an almost occluded conformation confirm many conclusions from previous studies. One fundamentally important problem for understanding the mechanism of secondary active transport is the identification and physical localization of residues involved in substrate and H(+) binding. This information is exceptionally difficult to obtain with the MFS because of the broad sequence diversity among the members. The increasing number of solved MFS structures has led to the recognition of a common feature: inverted structure-repeat, formed by fused triple-helix domains with opposite orientation in the membrane. The presented method here exploits this feature to predict functionally homologous positions of known relevant positions in LacY. The triple-helix motifs are aligned in combinatorial fashion so as to detect substrate and H(+)-binding sites in symporters that transport substrates, ranging from simple ions like phosphate to more complex disaccharides.
Rotation invariants of vector fields from orthogonal moments
Yang, Bo; Kostková, Jitka; Flusser, Jan; ...
2017-09-11
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Underwater image bidirectional matching for localization based on SIFT
NASA Astrophysics Data System (ADS)
Lin, Yan; Liu, Bo
2014-06-01
For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional image registration strategy and mosaicing technique based on the scale invariant feature transform (SIFT) algorithm. The proposed method can help us observe the stern with a great visual angle for analyzing the performance of the control fins of the SWATH. SIFT is one of the most effective local features of the scale, rotation and illumination invariant. However, there are a few false match rates in this algorithm. In terms of underwater machine vision, only by acquiring an accurate match rate can we find an underwater robot rapidly and identify the location of the object. Therefore, firstly, the selection of the match ratio principle is put forward in this paper; secondly, some advantages of the bidirectional registration algorithm are concluded by analyzing the characteristics of the unidirectional matching method. Finally, an automatic underwater image splicing method is proposed on the basis of fixed dimension, and then the edge of the image's overlapping section is merged by the principal components analysis algorithm. The experimental results achieve a better registration and smooth mosaicing effect, demonstrating that the proposed method is effective.
Burden, Anne; Roche, Nicolas; Miglio, Cristiana; Hillyer, Elizabeth V; Postma, Dirkje S; Herings, Ron Mc; Overbeek, Jetty A; Khalid, Javaria Mona; van Eickels, Daniela; Price, David B
2017-01-01
Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre-post historical database study to investigate asthma-related outcomes by treatment. We drew on longitudinal medical record data in the PHARMO database for asthma patients prescribed the treatments to be compared (ciclesonide and fine-particle inhaled corticosteroid [ICS]). Propensity score methods that we evaluated were propensity score matching (PSM) using two different algorithms, the inverse probability of treatment weighting (IPTW), covariate adjustment using the propensity score, and propensity score stratification. We defined balance, using standardized differences, as differences of <10% between cohorts. Of 4064 eligible patients, 1382 (34%) were prescribed ciclesonide and 2682 (66%) fine-particle ICS. The IPTW and propensity score-based methods retained more patients (96%-100%) than exact matching (90%); exact matching selected less severe patients. Standardized differences were >10% for four variables in the exact-matched dataset and <10% for both PSM algorithms and the weighted pseudo-dataset used in the IPTW method. With all methods, ciclesonide was associated with better 1-year asthma-related outcomes, at one-third the prescribed dose, than fine-particle ICS; results varied slightly by method, but direction and statistical significance remained the same. We found that each method has its particular strengths, and we recommend at least two methods be applied for each matched cohort study to evaluate the robustness of the findings. Balance diagnostics should be applied with all methods to check the balance of confounders between treatment cohorts. If exact matching is used, the calculation of a propensity score could be useful to identify variables that require balancing, thereby informing the choice of
Numerical considerations in computing invariant subspaces
Dongarra, J.J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Hammarling, S. ); Wilkinson, J.H. )
1990-11-01
This paper describes two methods for computing the invariant subspace of a matrix. The first involves using transformations to interchange the eigenvalues; the second involves direct computation of the vectors. 10 refs.
NASA Astrophysics Data System (ADS)
Wong, S. K.; Chan, V. S.; Hinton, F. L.
2001-10-01
The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.
Cosmological disformal invariance
Domènech, Guillem; Sasaki, Misao; Naruko, Atsushi E-mail: naruko@th.phys.titech.ac.jp
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Cosmological disformal invariance
NASA Astrophysics Data System (ADS)
Domènech, Guillem; Naruko, Atsushi; Sasaki, Misao
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Invariants of polarization transformations.
Sadjadi, Firooz A
2007-05-20
The use of polarization-sensitive sensors is being explored in a variety of applications. Polarization diversity has been shown to improve the performance of the automatic target detection and recognition in a significant way. However, it also brings out the problems associated with processing and storing more data and the problem of polarization distortion during transmission. We present a technique for extracting attributes that are invariant under polarization transformations. The polarimetric signatures are represented in terms of the components of the Stokes vectors. Invariant algebra is then used to extract a set of signature-related attributes that are invariant under linear transformation of the Stokes vectors. Experimental results using polarimetric infrared signatures of a number of manmade and natural objects undergoing systematic linear transformations support the invariancy of these attributes.
Exposing region duplication through local geometrical color invariant features
NASA Astrophysics Data System (ADS)
Gong, Jiachang; Guo, Jichang
2015-05-01
Many advanced image-processing softwares are available for tampering images. How to determine the authenticity of an image has become an urgent problem. Copy-move is one of the most common image forgery operations. Many methods have been proposed for copy-move forgery detection (CMFD). However, most of these methods are designed for grayscale images without any color information used. They are usually not suitable when the duplicated regions have little structure or have undergone various transforms. We propose a CMFD method using local geometrical color invariant features to detect duplicated regions. The method starts by calculating the color gradient of the inspected image. Then, we directly take the color gradient as the input for scale invariant features transform (SIFT) to extract color-SIFT descriptors. Finally, keypoints are matched and clustered before their geometrical relationship is estimated to expose the duplicated regions. We evaluate the detection performance and computational complexity of the proposed method together with several popular CMFD methods on a public database. Experimental results demonstrate the efficacy of the proposed method in detecting duplicated regions with various transforms and poor structure.
Ta2O5-memristor synaptic array with winner-take-all method for neuromorphic pattern matching
NASA Astrophysics Data System (ADS)
Truong, Son Ngoc; Van Pham, Khoa; Yang, Wonsun; Min, Kyeong-Sik; Abbas, Yawar; Kang, Chi Jung; Shin, Sangho; Pedrotti, Ken
2016-08-01
Pattern matching or pattern recognition is one of the elemental components that constitute the very complicated recalling and remembering process in human's brain. To realize this neuromorphic pattern matching, we fabricated and tested a 3 × 3 memristor synaptic array with the winner-take-all method in this research. In the measurement, first, the 3 × 3 Ta2O5 memristor array is programmed to store [LLL], [LHH], and [HLH], where L is a low-resistance state and H is a high-resistance state, at the 1st, 2nd, and 3rd columns, respectively. After the programming, three input patterns, [111], [100], and [010], are applied to the memristor synaptic array. From the measurement results, we confirm that all three input patterns can be recognized well by using a twin memristor crossbar with synaptic arrays. This measurement can be thought of as the first real verification of the twin memristor crossbar with memristive synaptic arrays for neuromorphic pattern recognition.
Tang, Nian-Sheng; Li, Hui-Qiong; Tang, Man-Lai
2010-01-15
A stratified matched-pair study is often designed for adjusting a confounding effect or effect of different trails/centers/ groups in modern medical studies. The relative risk is one of the most frequently used indices in comparing efficiency of two treatments in clinical trials. In this paper, we propose seven confidence interval estimators for the common relative risk and three simultaneous confidence interval estimators for the relative risks in stratified matched-pair designs. The performance of the proposed methods is evaluated with respect to their type I error rates, powers, coverage probabilities, and expected widths. Our empirical results show that the percentile bootstrap confidence interval and bootstrap-resampling-based Bonferroni simultaneous confidence interval behave satisfactorily for small to large sample sizes in the sense that (i) their empirical coverage probabilities can be well controlled around the pre-specified nominal confidence level with reasonably shorter confidence widths; and (ii) the empirical type I error rates of their associated test statistics are generally closer to the pre-specified nominal level with larger powers. They are hence recommended. Two real examples from clinical laboratory studies are used to illustrate the proposed methodologies.
Scope and applications of translation invariant wavelets to image registration
NASA Technical Reports Server (NTRS)
Chettri, Samir; LeMoigne, Jacqueline; Campbell, William
1997-01-01
The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.
Aad, G.; Abbott, B.; Abdinov, O.; ...
2016-11-28
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb–1 of proton–proton collision data at √s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d~. The mean values and distributions ofmore » CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d~ is constrained to the interval (–0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d~=0.« less
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2012-01-01
The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.
Aad, G; Abbott, B; Abdinov, O; Abdallah, J; Abeloos, B; Aben, R; Abolins, M; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Andrade Filho, L Manhaes de; Ramos, J Manjarres; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Murrone, A; Musheghyan, H; Muskinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L
2016-01-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of [Formula: see text] leptons and is based on 20.3 [Formula: see text] of proton-proton collision data at [Formula: see text] = 8 [Formula: see text] collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter [Formula: see text]. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter [Formula: see text] is constrained to the interval [Formula: see text] at 68% confidence level, consistent with the Standard Model expectation of [Formula: see text].
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdinov, O.; Abdallah, J.; Abeloos, B.; Aben, R.; Abolins, M.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Andrade Filho, L. Manhaes de; Ramos, J. Manjarres; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Murrone, A.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.
2016-12-01
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb^{-1} of proton-proton collision data at √{s} = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter tilde{d} is constrained to the interval (-0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of tilde{d}=0.
Invariance kernel of biological regulatory networks.
Ahmad, Jamil; Roux, Olivier
2010-01-01
The analysis of Biological Regulatory Network (BRN) leads to the computing of the set of the possible behaviours of the biological components. These behaviours are seen as trajectories and we are specifically interested in cyclic trajectories since they stand for stability. The set of cycles is given by the so-called invariance kernel of a BRN. This paper presents a method for deriving symbolic formulae for the length, volume and diameter of a cylindrical invariance kernel. These formulae are expressed in terms of delay parameters expressions and give the existence of an invariance kernel and a hint of the number of cyclic trajectories.
Rotationally Invariant Holographic Tracking System
NASA Astrophysics Data System (ADS)
Lambert, James L.; Chao, Tien-Hsin; Gheen, Gregory; Johnston, Alan R.; Liu, Hua-Kuang
1989-06-01
A multi-channel holographic correlator has been constructed which can identify and track objects of a given shape across the input field independent of their in-plane rotation. This system, derived from the classic Vander Lugt correlator, incorporates a hololens to store an array of matched spatial filters (MSFs) on thermoplastic film. Each member of the MSF array is generated from a different incrementally rotated version of the training object. Rotational invariant tracking is achieved through superposition of the corresponding array of the correlations in the output plane. Real time tracking is accomplished by utilizing a liquid crystal light valve (LCLV) illuminated with a CRT to process video input signals. The system can be programmed to recognize different objects by recording the MSF array on re-usable thermoplastic film. Discussion of the system architecture and laboratory results are presented.
NASA Astrophysics Data System (ADS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2013-06-01
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem.
Maier, Christopher A; Zhang, Kang; Manhein, Mary H; Li, Xin
2015-09-01
In the past, assessing ancestry relied on the naked eye and observer experience; however, replicability has become an important aspect of such analysis through the application of metric techniques. This study examines palate shape and assesses ancestry quantitatively using a 3D digitizer and shape-matching and machine learning methods. Palate curves and depths were recorded, processed, and tested for 376 individuals. Palate shape was an accurate indicator of ancestry in 58% of cases. Cluster analysis revealed that the parabolic, hyperbolic, and elliptical shapes are discrete from one another. Preliminary results indicate that palate depth in Hispanic individuals is greatest. Palate shape appears to be a useful indicator of ancestry, particularly when assessed by a computer. However, these data suggest that palate shape is not useful for assessing ancestry in Hispanic individuals. Although ancestry may be determined from palate shape, the use of multiple features is recommended and more reliable.
Björklund, J A; Sellström, U; de Wit, C A; Aune, M; Lignell, S; Darnerud, P O
2012-08-01
Household dust from 19 Swedish homes was collected using two different sampling methods: from the occupant's own home vacuum cleaner after insertion of a new bag and using a researcher-collected method where settled house dust was collected from surfaces above floor level. The samples were analyzed for 16 polybrominated diphenyl ether (PBDE) congeners and total hexabromocyclododecane (HBCD). Significant correlations (r = 0.60-0.65, Spearman r = 0.47-0.54, P < 0.05) were found between matched dust samples collected with the two sampling methods for ∑OctaBDE and ∑DecaBDE but not for ∑PentaBDE or HBCD. Statistically significantly higher concentrations of all PBDE congeners were found in the researcher-collected dust than in the home vacuum cleaner bag dust (VCBD). For HBCD, however, the concentrations were significantly higher in the home VCBD samples. Analysis of the bags themselves indicated no or very low levels of PBDEs and HBCD. This indicates that there may be specific HBCD sources to the floor and/or that it may be present in the vacuum cleaners themselves. The BDE-47 concentrations in matched pairs of VCBD and breast milk samples were significantly correlated (r = 0.514, P = 0.029), indicating that one possible exposure route for this congener may be via dust ingestion. The statistically significant correlations found for several individual polybrominated diphenyl ether (PBDE) congeners, ∑OctaBDE and ∑DecaBDE between the two dust sampling methods in this study indicate that the same indoor sources contaminate both types of dust or that common processes govern the distribution of these compounds in the indoor environment. Therefore, either method is adequate for screening ∑OctaBDE and ∑DecaBDE in dust. The high variability seen between dust samples confirms results seen in other studies. For hexabromocyclododecane (HBCD), divergent results in the two dust types indicate differences in contamination sources to the floor than to above-floor surfaces
Conformal invariance for Wilson actions
NASA Astrophysics Data System (ADS)
Sonoda, H.
2017-08-01
We discuss the realization of conformal invariance for Wilson actions using the formalism of the exact renormalization group. This subject has been studied extensively in the recent works of O. J. Rosten. The main purpose of this paper is to reformulate Rosten's formulas for conformal transformations using a method developed earlier for the realization of any continuous symmetry in the exact renormalization group formalism. The merit of the reformulation is simplicity and transparency via the consistent use of equation-of-motion operators. We derive equations that imply the invariance of the Wilson action under infinitesimal conformal transformations which are non-linearly realized but form a closed conformal algebra. The best effort has been made to make the paper self-contained; ample background on the formalism is provided.
NASA Astrophysics Data System (ADS)
Gereben, Orsolya; Pusztai, László
2011-08-01
The invariant environment refinement technique, as applied to reverse Monte Carlo modelling [invariant environment refinement technique + reverse Monte Carlo (INVERT + RMC); M. J. Cliffe, M. T. Dove, D. A. Drabold, and A. L. Goodwin, Phys. Rev. Lett. 104, 125501 (2010), 10.1103/PhysRevLett.104.125501], is extended so that it is now applicable for interpreting the structure factor (instead of the pair distribution function). The new algorithm, called the local invariance calculation, is presented by the examples of amorphous silicon, phosphorus, and liquid argon. As a measure of the effectiveness of the new algorithm, the ratio of exactly fourfold coordinated Si atoms was larger than obtained previously by the INVERT-RMC scheme.
NASA Astrophysics Data System (ADS)
Li, Youning; Han, Muxin; Grassl, Markus; Zeng, Bei
2017-06-01
Invariant tensors are states in the SU(2) tensor product representation that are invariant under SU(2) action. They play an important role in the study of loop quantum gravity. On the other hand, perfect tensors are highly entangled many-body quantum states with local density matrices maximally mixed. Recently, the notion of perfect tensors has attracted a lot of attention in the fields of quantum information theory, condensed matter theory, and quantum gravity. In this work, we introduce the concept of an invariant perfect tensor (IPT), which is an n-valent tensor that is both invariant and perfect. We discuss the existence and construction of IPTs. For bivalent tensors, the IPT is the unique singlet state for each local dimension. The trivalent IPT also exists and is uniquely given by Wigner’s 3j symbol. However, we show that, surprisingly, 4-valent IPTs do not exist for any identical local dimension d. On the contrary, when the dimension is large, almost all invariant tensors are asymptotically perfect, which is a consequence of the phenomenon of the concentration of measure for multipartite quantum states.
Yan, Xiao-Hai; Clemente-Colon, P.
1997-06-01
In this study, the Maximum Similarity in Shape Matching (MSSM) method was applied to a pair of airborne SAR images and two pairs of spaceborne SAR images in order to observe the small scale features of oil spill. The Gulf Stream front and the coast of Wales, UK, were chosen as the test sites. For the coast of Wales, spaceborne RADARSAT, ERS-1 and ERS-2 SAR images detected the persistence of slick features associated with the Sea Empress tanker massive oil spill, and showed the evolution of these features from February 22 to February 26, 1996. Drift speeds calculated using SAR images and MSSM method were as high as 11 cm/s. Deformation of the slick features was also evident throughout the five day period. The result of the investigation revealed the trajectory of this particular oil spill, and also demonstrated the possible future application of this method to analysis of SAR imagery, in general, and to oil spill monitoring, in particular.
Matching using estimated propensity scores: relating theory to practice.
Rubin, D B; Thomas, N
1996-03-01
Matched sampling is a standard technique in the evaluation of treatments in observational studies. Matching on estimated propensity scores comprises an important class of procedures when there are numerous matching variables. Recent theoretical work (Rubin, D. B. and Thomas, N., 1992, The Annals of Statistics 20, 1079-1093) on affinely invariant matching methods with ellipsoidal distributions provides a general framework for evaluating the operating characteristics of such methods. Moreover, Rubin and Thomas (1992, Biometrika 79, 797-809) uses this framework to derive several analytic approximations under normality for the distribution of the first two moments of the matching variables in samples obtained by matching on estimated linear propensity scores. Here we provide a bridge between these theoretical approximations and actual practice. First, we complete and refine the nomal-based analytic approximations, thereby making it possible to apply these results to practice. Second, we perform Monte Carlo evaluations of the analytic results under normal and nonnormal ellipsoidal distributions, which confirm the accuracy of the analytic approximations, and demonstrate the predictable ways in which the approximations deviate from simulation results when normal assumptions are violated within the ellipsoidal family. Third, we apply the analytic approximations to real data with clearly nonellipsoidal distributions, and show that the theoretical expressions, although derived under artificial distributional conditions, produce useful guidance for practice. Our results delineate the wide range of settings in which matching on estimated linear propensity scores performs well, thereby providing useful information for the design of matching studies. When matching with a particular data set, our theoretical approximations provide benchmarks for expected performance under favorable conditions, thereby identifying matching variables requiring special treatment. After matching is
Funabashi, Masatoshi
2015-05-01
This study applies information geometry of normal distribution to model Japanese vowels on the basis of the first and second formants. The distribution of Kullback-Leibler (KL) divergence and its decomposed components were investigated to reveal the statistical invariance in the vowel system. The results suggest that although significant variability exists in individual KL divergence distributions, the population distribution tends to converge into a specific log-normal distribution. This distribution can be considered as an invariant distribution for the standard-Japanese speaking population. Furthermore, it was revealed that the mean and variance components of KL divergence are linearly related in the population distribution. The significance of these invariant features is discussed.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Reparametrization invariant collinear operators
Marcantonini, Claudio; Stewart, Iain W.
2009-03-15
In constructing collinear operators, which describe the production of energetic jets or energetic hadrons, important constraints are provided by reparametrization invariance (RPI). RPI encodes Lorentz invariance in a power expansion about a collinear direction, and connects the Wilson coefficients of operators at different orders in this expansion to all orders in {alpha}{sub s}. We construct reparametrization invariant collinear objects. The expansion of operators built from these objects provides an efficient way of deriving RPI relations and finding a minimal basis of operators, particularly when one has an observable with multiple collinear directions and/or soft particles. Complete basis of operators is constructed for pure glue currents at twist-4, and for operators with multiple collinear directions, including those appearing in e{sup +}e{sup -}{yields}3 jets, and for pp{yields}2 jets initiated via gluon fusion.
Scale Invariant Gabor Descriptor-Based Noncooperative Iris Recognition
NASA Astrophysics Data System (ADS)
Du, Yingzi; Belcher, Craig; Zhou, Zhi
2010-12-01
A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT) for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.
Rebouças Filho, Pedro Pedrosa; Moreira, Francisco Diego Lima; Xavier, Francisco Geilson de Lima; Gomes, Samuel Luz; dos Santos, José Ciro; Freitas, Francisco Nélio Costa; Freitas, Rodrigo Guimarães
2015-01-01
expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT), and the second using features extractor Speeded Up Robust Features (SURF). Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images. PMID:28793412
Filho, Pedro Pedrosa Rebouças; Moreira, Francisco Diego Lima; Xavier, Francisco Geilson de Lima; Gomes, Samuel Luz; Santos, José Ciro Dos; Freitas, Francisco Nélio Costa; Freitas, Rodrigo Guimarães
2015-06-25
expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT), and the second using features extractor Speeded Up Robust Features (SURF). Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images.
Supersymmetric invariant theories
NASA Astrophysics Data System (ADS)
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Forgoston, Eric; Billings, Lora; Yecko, Philip; Schwartz, Ira B.
2011-01-01
We consider the problem of stochastic prediction and control in a time-dependent stochastic environment, such as the ocean, where escape from an almost invariant region occurs due to random fluctuations. We determine high-probability control-actuation sets by computing regions of uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of geometric and probabilistic methods allows us to design regions of control, which provide an increase in loitering time while minimizing the amount of control actuation. We show how the loitering time in almost invariant sets scales exponentially with respect to the control actuation, causing an exponential increase in loitering times with only small changes in actuation force. The result is that the control actuation makes almost invariant sets more invariant. PMID:21456830
Huang, Y.; Pepe, M. S.
2010-01-01
Summary To assess the value of a continuous marker in predicting the risk of a disease, a graphical tool called the predictiveness curve has been proposed. It characterizes the marker’s predictiveness, or capacity to risk stratify the population by displaying the distribution of risk endowed by the marker. Methods for making inference about the curve and for comparing curves in a general population have been developed. However, knowledge about a marker’s performance in the general population only is not enough. Since a marker’s effect on the risk model and its distribution can both differ across subpopulations, its predictiveness may vary when applied to different subpopulations. Moreover, information about the predictiveness of a marker conditional on baseline covariates is valuable for individual decision making about having the marker measured or not. Therefore, to fully realize the usefulness of a risk prediction marker, it is important to study its performance conditional on covariates. In this article, we propose semiparametric methods for estimating covariate-specific predictiveness curves for a continuous marker. Unmatched and matched case-control study designs are accommodated. We illustrate application of the methodology by evaluating serum creatinine as a predictor of risk of renal artery stenosis. PMID:21562626
NASA Astrophysics Data System (ADS)
Mohamed, Firdawati binti; Karim, Mohamad Faisal bin Abd
2015-10-01
Modelling physical problems in mathematical form yields the governing equations that may be linear or nonlinear for known and unknown boundaries. The exact solution for those equations may or may not be obtained easily. Hence we seek an analytical approximation solution in terms of asymptotic expansion. In this study, we focus on a singular perturbation in second order ordinary differential equations. Solutions to several perturbed ordinary differential equations are obtained in terms of asymptotic expansion. The aim of this work is to find an approximate analytical solution using the classical method of matched asymptotic expansion (MMAE). The Mathematica computer algebra system is used to perform the algebraic computations. The details procedures will be discussed and the underlying concepts and principles of the MMAE will be clarified. Perturbation problem for linear equation that occurs at one boundary and two boundary layers are discussed. Approximate analytical solution obtained for both cases are illustrated by graph using selected parameter by showing the outer, inner and composite solution separately. Then, the composite solution will be compare to the exact solution to show their accuracy by graph. By comparison, MMAE is found to be one of the best methods to solve singular perturbation problems in second order ordinary differential equation since the results obtained are very close to the exact solution.
An assembly method for micro parts jointing with given space angle based on projection matching
NASA Astrophysics Data System (ADS)
Bi, Lie; Wu, Wenrong; Zhang, Juan; Yang, Honggang
2017-02-01
It is difficult to assemble micro parts jointing with given space angle as the parts assembled are not on the same flat and the visual depth of microscopic vision is small, which can cause the images gathered by the microscopic vision unintelligible and feature extraction difficult. For the problem, this paper presents an assembly method of micro parts based on projection matching. It can assemble micro parts jointing with given space angle accurately. Firstly, an ideal assembly model is established as the size of the micro parts through the drawing software. Secondly, a graphics algorithm based on the primitive information from CAD is designed. Thirdly, according to the pixel value calibration and the graphics algorithm, the projection pictures are shown on the control interface. Lastly, the control method of micro parts is proposed to assemble them with given space angle. And we accomplished an assembly experiment of micro-tube and micro-column in this way, whose assembly deviation is 0.12∘. Experiment results indicate that the angle between two micro parts assembled can be controlled within the given deviation.
NASA Astrophysics Data System (ADS)
Lee, Seung-Cheol; Vouvakis, Marinos N.; Lee, Jin-Fa
2005-02-01
A non-overlapping domain decomposition method (DDM) is proposed herein to solve Maxwell equations in R3. In this work, the Maxwell equations are discretized using a vector finite element method with hierarchical H(curl) vector basis functions. There are two major ingredients in the proposed non-overlapping DDM: (a) A proper 1st order transmission condition to enforce field continuity across domain boundaries and (b) A cement technique to allow non-matching grids for neighboring domains. Moreover, a detail Fourier analysis of the transmission condition for a canonical half-space example is presented. The analysis provides significant insights into the convergence behavior of the proposed non-overlapping DDM for solving electromagnetic radiation problems, such as the large finite antenna arrays. Particularly for the antenna arrays, the proposed non-overlapping DDM is extremely efficient since the formulation can easily incorporate geometrical repetitions. Exponentially tapered notch (Vivaldi) antenna arrays with size up to 100 × 100 elements are solved on a common PC to validate the proposed non-overlapping DDM.
Orthogonal design for scale invariant feature transform optimization
NASA Astrophysics Data System (ADS)
Ding, Xintao; Luo, Yonglong; Yi, Yunyun; Jie, Biao; Wang, Taochun; Bian, Weixin
2016-09-01
To improve object recognition capabilities in applications, we used orthogonal design (OD) to choose a group of optimal parameters in the parameter space of scale invariant feature transform (SIFT). In the case of global optimization (GOP) and local optimization (LOP) objectives, our aim is to show the operation of OD on the SIFT method. The GOP aims to increase the number of correctly detected true matches (NoCDTM) and the ratio of NoCDTM to all matches. In contrast, the LOP mainly aims to increase the performance of recall-precision. In detail, we first abstracted the SIFT method to a 9-way fixed-effect model with an interaction. Second, we designed a mixed orthogonal array, MA(64,23420,2), and its header table to optimize the SIFT parameters. Finally, two groups of parameters were obtained for GOP and LOP after orthogonal experiments and statistical analyses were implemented. Our experiments on four groups of data demonstrate that compared with the state-of-the-art methods, GOP can access more correct matches and is more effective against object recognition. In addition, LOP is favorable in terms of the recall-precision.
NASA Astrophysics Data System (ADS)
Żmigrodzki, J.; Cygan, S.; Werys, K.; Leśniak-Plewińska, B.; Kowalski, M.; KałuŻyński, K.
2017-03-01
The cardiac elastography aims at identification of non-transmural infarctions. Two displacement estimation methods in such an application using synthetic ultrasonic data are studied. Reference was obtained from Finite Element Modelling. Models had the form of half of an ellipsoid with 15 mm wall thickness. The homogenous model, models with transmural and nontransmural inclusion were designed. Deformation of the models was simulated using Abaqus. Ultrasonic data of LAX and SAX views were generated using Field II. Radial (dR) and lateral (dL) displacements were estimated using a 2D correlation search with 2D stretching (2DCS) and B-spline (BS) method. Strains were estimated using least squares estimator. Mean Absolute Error (MAE) of the dR in the LAX view was approx. 6[μm] for 2DCS and 8[μm] for BS, that of the dL 30 and 24[μm] respectively. MAE of the second component of the principal strain (epsilon)2 was 0.10 and 0.14[%], respectively. Corresponding values for SAX view were 7, 10, 42, 52[μm] and 0.47 and 1.08[%]. In the LAX view both estimation methods result in the (epsilon)2 behavior coherent with the presence of the inclusion, with the 2DCS results closer to the reference. In the SAX view the BS approach results in high errors of the estimate. The (epsilon)2 profiles, LAX view, show minor discrepancies with respect to the reference and show the effect of the inclusion. The (epsilon)2 profiles, SAX view, obtained from displacements estimated using the BS method strongly deviate from the reference. Block matching performs better in application to the local strain estimation.
Syntactic Pattern Recognition Approach To Scene Matching
NASA Astrophysics Data System (ADS)
Gilmore, John F.
1983-03-01
This paper describes a technique for matching two images containing natural terrain and tactical objects using syntactic pattern recognition. A preprocessor analyzes each image to identify potential areas of interest. Points of interest in an image are classified and a graph possessing properties of invariance is created based on these points. Classification derived grammar strings are generated for each classified graph structure. A local match analysis is performed and the best global match is constructed. A probability-of-match metric is computed in order to evaluate the global match. Examples demonstrating these steps are provided and actual FLIR image results are shown.
Invariant Hough random ferns for RGB-D-based object detection
NASA Astrophysics Data System (ADS)
Lou, Xiaoping; Dong, Mingli; Wang, Jun; Sun, Peng; Lin, Yimin
2016-09-01
This paper studies the challenging problem of object detection using rich image and depth features. An invariant Hough random ferns framework for RGB-D images is proposed here, which primarily consists of a rotation-invariant RGB-D local binary feature, random ferns classifier training, Hough mapping and voting, searches for the maxima, and back projection. In comparison with traditional three-dimensional local feature extraction techniques, this method is effective in reducing the amount of computation required for feature extraction and matching. Moreover, the detection results showed that the proposed method is robust against rotation and scale variations, changes in illumination, and part-occlusions. The authors believe that this method will facilitate the use of perception in fields such as robotics.
On the use of INS to improve Feature Matching
NASA Astrophysics Data System (ADS)
Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.
2014-11-01
The continuous technological improvement of mobile devices opens the frontiers of Mobile Mapping systems to very compact systems, i.e. a smartphone or a tablet. This motivates the development of efficient 3D reconstruction techniques based on the sensors typically embedded in such devices, i.e. imaging sensors, GPS and Inertial Navigation System (INS). Such methods usually exploits photogrammetry techniques (structure from motion) to provide an estimation of the geometry of the scene. Actually, 3D reconstruction techniques (e.g. structure from motion) rely on use of features properly matched in different images to compute the 3D positions of objects by means of triangulation. Hence, correct feature matching is of fundamental importance to ensure good quality 3D reconstructions. Matching methods are based on the appearance of features, that can change as a consequence of variations of camera position and orientation, and environment illumination. For this reason, several methods have been developed in recent years in order to provide feature descriptors robust (ideally invariant) to such variations, e.g. Scale-Invariant Feature Transform (SIFT), Affine SIFT, Hessian affine and Harris affine detectors, Maximally Stable Extremal Regions (MSER). This work deals with the integration of information provided by the INS in the feature matching procedure: a previously developed navigation algorithm is used to constantly estimate the device position and orientation. Then, such information is exploited to estimate the transformation of feature regions between two camera views. This allows to compare regions from different images but associated to the same feature as seen by the same point of view, hence significantly easing the comparison of feature characteristics and, consequently, improving matching. SIFT-like descriptors are used in order to ensure good matching results in presence of illumination variations and to compensate the approximations related to the estimation
Pokhozhaev, Stanislav I
2011-06-30
The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-08
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Modular invariant gaugino condensation
Gaillard, M.K.
1991-05-09
The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko
2016-08-01
Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.
Idiographic Measurement Invariance?
ERIC Educational Resources Information Center
Willoughby, Michael T.; Sideris, John
2007-01-01
In this article, the authors comment on Nesselroade, Gerstorf, Hardy, and Ram's efforts (this issue) to grapple with the challenge of accommodating idiographic assessment as it pertains to measurement invariance (MI). Although the authors are in complete agreement with the motivation for Nesselroade et al.'s work, the authors have concerns about…
Cheng, Miranda C. N.; Duncan, John F. R.; Harrison, Sarah M.; Kachru, Shamit
2017-01-01
In this note, we describe a connection between the enumerative geometry of curves in K3 surfaces and the chiral ring of an auxiliary superconformal field theory. We consider the invariants calculated by Yau–Zaslow (capturing the Euler characters of the moduli spaces of D2-branes on curves of given genus), together with their refinements to carry additional quantum numbers by Katz–Klemm–Vafa (KKV), and Katz–Klemm–Pandharipande (KKP). We show that these invariants can be reproduced by studying the Ramond ground states of an auxiliary chiral superconformal field theory which has recently been observed to give rise to mock modular moonshine for a variety of sporadic simple groups that are subgroups of Conway’s group. We also study equivariant versions of these invariants. A K3 sigma model is specified by a choice of 4-plane in the K3 D-brane charge lattice. Symmetries of K3 sigma models are naturally identified with 4-plane preserving subgroups of the Conway group, according to the work of Gaberdiel–Hohenegger–Volpato, and one may consider corresponding equivariant refined K3 Gopakumar–Vafa invariants. The same symmetries naturally arise in the auxiliary CFT state space, affording a suggestive alternative view of the same computation. We comment on a lift of this story to the generating function of elliptic genera of symmetric products of K3 surfaces.
Cheng, Miranda C. N.; Duncan, John F. R.; Harrison, Sarah M.; ...
2017-01-01
In this note, we describe a connection between the enumerative geometry of curves in K3 surfaces and the chiral ring of an auxiliary superconformal field theory. We consider the invariants calculated by Yau–Zaslow (capturing the Euler characters of the moduli spaces of D2-branes on curves of given genus), together with their refinements to carry additional quantum numbers by Katz–Klemm–Vafa (KKV), and Katz–Klemm–Pandharipande (KKP). We show that these invariants can be reproduced by studying the Ramond ground states of an auxiliary chiral superconformal field theory which has recently been observed to give rise to mock modular moonshine for a variety ofmore » sporadic simple groups that are subgroups of Conway’s group. We also study equivariant versions of these invariants. A K3 sigma model is specified by a choice of 4-plane in the K3 D-brane charge lattice. Symmetries of K3 sigma models are naturally identified with 4-plane preserving subgroups of the Conway group, according to the work of Gaberdiel–Hohenegger–Volpato, and one may consider corresponding equivariant refined K3 Gopakumar–Vafa invariants. The same symmetries naturally arise in the auxiliary CFT state space, affording a suggestive alternative view of the same computation. We comment on a lift of this story to the generating function of elliptic genera of symmetric products of K3 surfaces.« less
NASA Astrophysics Data System (ADS)
Bumstead, M.; Arnold, B.; Turak, A.
2017-04-01
Monte Carlo and molecular dynamics simulations are the two main numerical approaches to modeling molecular self-assembly and ordering. Conceptually, however, each method explores different paths through the thermodynamic landscape. Molecular dynamics depends on the position and momentum terms. Monte Carlo is a static set, and thus the momentum term is replaced with an energy term that is dependent on the volume and entropy. Until now, it was unclear if a stochastic process of densifying particles would have the same internal structure as morphologies produced from classical mechanics. This paper provides a systematic (i.e., statistical) analysis of the outcomes of 4032 simulations for hard-core circular objects as a function of the number of molecules and the boundary conditions. Structural classification of the resultant ensembles (averaged pair correlation function, bond-order parameter, translational order parameter, and Voronoi diagrams) shows that stochastic and dynamic approaches do not alter the morphology of the steric molecules. We conclude that when the probability density of covering area fractions are matched, the ensembles produced from the two methods will show the same level of structural disorder and positional patterns. The resultant morphology from both models, therefore, is not a product of dynamic unrest, but that of the relaxation of entropic frustration from macromolecular crowding. Although statistically the two methods produce similar configurations, nuances arise from the static and dynamic nature of modeling. As a result, Monte Carlo is slightly better suited to modeling systems when the desired morphology is represented by a metastable state; molecular dynamics on the other hand is more suited to finding defects that can arise in morphologies. Regardless, a fixed density will result in similar morphologies from both techniques, driven by similar configurational entropy.
An Invariant Representation for Matching Trajectories Across Uncalibrated Video Streams
2005-05-01
Proc. of ACM Multimedia, 1997. 6. A. Efros, A. Berg, G. Mori and J. Malik . “Recognizing Action at a Distance”. Proc. of ICCV, 2003. 7. R. Fergus, P... Perona , and A. Zisserman. “A Visual Category Filter for Google Images”. Proc. of ECCV, 2004. 8. P. Gros. “How to Use the Cross Ratio to Compute Projective
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
Cheng, Jianlin; Saigo, Hiroto; Baldi, Pierre
2006-03-15
The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to predict whether a given protein chain contains intrachain disulphide bridges or not, and recursive neural networks to predict the bonding probabilities of each pair of cysteines in the chain. These probabilities in turn lead to an accurate estimation of the total number of disulphide bridges and to a weighted graph matching problem that can be addressed efficiently to infer the global disulphide bridge connectivity pattern. This approach can be applied both in situations where the bonded state of each cysteine is known, or in ab initio mode where the state is unknown. Furthermore, it can easily cope with chains containing an arbitrary number of disulphide bridges, overcoming one of the major limitations of previous approaches. It can classify individual cysteine residues as bonded or nonbonded with 87% specificity and 89% sensitivity. The estimate for the total number of bridges in each chain is correct 71% of the times, and within one from the true value over 94% of the times. The prediction of the overall disulphide connectivity pattern is exact in about 51% of the chains. In addition to using profiles in the input to leverage evolutionary information, including true (but not predicted) secondary structure and solvent accessibility information yields small but noticeable improvements. Finally, once the system is trained, predictions can be computed rapidly on a proteomic or protein-engineering scale. The disulphide bridge prediction server (DIpro), software, and datasets are available through www.igb.uci.edu/servers/psss.html. (c) 2005 Wiley-Liss, Inc.
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Making texture descriptors invariant to blur.
Gadermayr, Michael; Uhl, Andreas
Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we show that our method is not limited to ideal Gaussian blur.
Kitaura, Kazutaka; Shini, Tadasu; Matsutani, Takaji; Suzuki, Ryuji
2016-10-11
High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.
Markov invariants, plethysms, and phylogenetics.
Sumner, J G; Charleston, M A; Jermiin, L S; Jarvis, P D
2008-08-07
We explore model-based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log-Det distance measure. We take as our primary tool group representation theory, and show that it provides a general framework for analyzing Markov processes on trees. From this algebraic perspective, the inherent symmetries of these processes become apparent, and focusing on plethysms, we are able to define Markov invariants and give existence proofs. We give an explicit technique for constructing the invariants, valid for any number of character states and taxa. For phylogenetic trees with three and four leaves, we demonstrate that the corresponding Markov invariants can be fruitfully exploited in applied phylogenetic studies.
Homotopic image pseudo-invariants for openset object recognition and image retrieval.
Shinagawa, Yoshihisa
2008-11-01
This paper presents novel homotopic image pseudo-invariants for face recognition based on pixelwise analysis. An exemplar face and test images are matched, and the most similar image is determined first. The homotopic image pseudo-invariants are calculated next to judge whether the most similar image is the same person as the exemplar. The proposed method can be applied to openset recognition. Recognition task can be performed with or without face databases, while the recognition rate is higher when a database is available. This fact facilitates the recognition of faces and various other objects on the Internet. We benchmark the method using FERET as well as the images downloaded from the Internet.
NASA Astrophysics Data System (ADS)
Fontich, Ernest; de la Llave, Rafael; Sire, Yannick
2015-09-01
We construct quasi-periodic and almost periodic solutions for coupled Hamiltonian systems on an infinite lattice which is translation invariant. The couplings can be long range, provided that they decay moderately fast with respect to the distance. For the solutions we construct, most of the sites are moving in a neighborhood of a hyperbolic fixed point, but there are oscillating sites clustered around a sequence of nodes. The amplitude of these oscillations does not need to tend to zero. In particular, the almost periodic solutions do not decay at infinity. The main result is an a posteriori theorem. We formulate an invariance equation. Solutions of this equation are embeddings of an invariant torus on which the motion is conjugate to a rotation. We show that, if there is an approximate solution of the invariance equation that satisfies some non-degeneracy conditions, there is a true solution close by. This does not require that the system is close to integrable, hence it can be used to validate numerical calculations or formal expansions. The proof of this a posteriori theorem is based on a Nash-Moser iteration, which does not use transformation theory. Simpler versions of the scheme were developed in [28]. One technical tool, important for our purposes, is the use of weighted spaces that capture the idea that the maps under consideration are local interactions. Using these weighted spaces, the estimates of iterative steps are similar to those in finite dimensional spaces. In particular, the estimates are independent of the number of nodes that get excited. Using these techniques, given two breathers, we can place them apart and obtain an approximate solution, which leads to a true solution nearby. By repeating the process infinitely often, we can get solutions with infinitely many frequencies which do not tend to zero at infinity.
Lin, Yang; Lin, Zhouchen; Zha, Hongbin
2017-02-01
Mismatch removal is a key step in many computer vision problems. In this paper, we handle the mismatch removal problem by adopting shape interaction matrix (SIM). Given the homogeneous coordinates of the two corresponding point sets, we first compute the SIMs of the two point sets. Then, we detect the mismatches by picking out the most different entries between the two SIMs. Even under strong affine transformations, outliers, noises, and burstiness, our method can still work well. Actually, this paper is the first non-iterative mismatch removal method that achieves affine invariance. Extensive results on synthetic 2D points matching data sets and real image matching data sets verify the effectiveness, efficiency, and robustness of our method in removing mismatches. Moreover, when applied to partial-duplicate image search, our method reaches higher retrieval precisions with shorter time cost compared with the state-of-the-art geometric verification methods.
Estimating the Cost of Type 1 Diabetes in the U.S.: A Propensity Score Matching Method
Tao, Betty; Pietropaolo, Massimo; Atkinson, Mark; Schatz, Desmond; Taylor, David
2010-01-01
Background Diabetes costs represent a large burden to both patients and the health care system. However, few studies that examine the economic consequences of diabetes have distinguished between the two major forms, type 1 and type 2 diabetes, despite differences in underlying pathologies. Combining the two diseases implies that there is no difference between the costs of type 1 and type 2 diabetes to a patient. In this study, we examine the costs of type 1 diabetes, which is often overlooked due to the larger population of type 2 patients, and compare them to the estimated costs of diabetes reported in the literature. Methodology/Principal Findings Using a nationally representative dataset, we estimate yearly and lifetime medical and indirect costs of type 1 diabetes by implementing a matching method to compare a patient with type 1 diabetes to a similar individual without the disease. We find that each year type 1 diabetes costs this country $14.4 billion (11.5–17.3) in medical costs and lost income. In terms of lost income, type 1 patients incur a disproportionate share of type 1 and type 2 costs. Further, if the disease were eliminated by therapeutic intervention, an estimated $10.6 billion (7.2–14.0) incurred by a new cohort and $422.9 billion (327.2–519.4) incurred by the existing number of type 1 diabetic patients over their lifetime would be avoided. Conclusions/Significance We find that the costs attributed to type 1 diabetes are disproportionately higher than the number of type 1 patients compared with type 2 patients, suggesting that combining the two diseases when estimating costs is not appropriate. This study and another recent contribution provides a necessary first step in estimating the substantial costs of type 1 diabetes on the U.S. PMID:20634976
Wide baseline stereo matching based on double topological relationship consistency
NASA Astrophysics Data System (ADS)
Zou, Xiaohong; Liu, Bin; Song, Xiaoxue; Liu, Yang
2009-07-01
Stereo matching is one of the most important branches in computer vision. In this paper, an algorithm is proposed for wide-baseline stereo vision matching. Here, a novel scheme is presented called double topological relationship consistency (DCTR). The combination of double topological configuration includes the consistency of first topological relationship (CFTR) and the consistency of second topological relationship (CSTR). It not only sets up a more advanced model on matching, but discards mismatches by iteratively computing the fitness of the feature matches and overcomes many problems of traditional methods depending on the powerful invariance to changes in the scale, rotation or illumination across large view changes and even occlusions. Experimental examples are shown where the two cameras have been located in very different orientations. Also, epipolar geometry can be recovered using RANSAC by far the most widely method adopted possibly. By the method, we can obtain correspondences with high precision on wide baseline matching problems. Finally, the effectiveness and reliability of this method are demonstrated in wide-baseline experiments on the image pairs.
2010-12-02
evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in
Passive digital image authentication algorithm based on Tchebichef moment invariants
NASA Astrophysics Data System (ADS)
Li, Mei; Gu, Zongyun; Kan, Junling
2010-12-01
This paper presents a new passive image authenticate algorithm to check and measure the forged pictures and images in the regional copies and sticks. After reducing the image dimension by DWT (Discrete Wavelet Transform), the Tchebichef moment invariants is applied to the fixed sized overlapping blocks of a low-frequency image in the wavelet sub-band, and the eigenvectors are lexicographically sorted. Then, similar eigenvectors are matched by a certain threshold. Finally, the forgery part is identified by the threshold analysis. The experimental results show that proposed method can not only localize the copy forgery regions accurately, but also undergone some attacks like random noise contamination, lossy JPEG(Joint Photographic Experts Group) compression, rotation transformation etc. and reduce the amount of computation and improve the detection efficiency.
Passive digital image authentication algorithm based on Tchebichef moment invariants
NASA Astrophysics Data System (ADS)
Li, Mei; Gu, Zongyun; Kan, Junling
2011-05-01
This paper presents a new passive image authenticate algorithm to check and measure the forged pictures and images in the regional copies and sticks. After reducing the image dimension by DWT (Discrete Wavelet Transform), the Tchebichef moment invariants is applied to the fixed sized overlapping blocks of a low-frequency image in the wavelet sub-band, and the eigenvectors are lexicographically sorted. Then, similar eigenvectors are matched by a certain threshold. Finally, the forgery part is identified by the threshold analysis. The experimental results show that proposed method can not only localize the copy forgery regions accurately, but also undergone some attacks like random noise contamination, lossy JPEG(Joint Photographic Experts Group) compression, rotation transformation etc. and reduce the amount of computation and improve the detection efficiency.
Austin, Peter C
2011-05-20
Propensity-score matching allows one to reduce the effects of treatment-selection bias or confounding when estimating the effects of treatments when using observational data. Some authors have suggested that methods of inference appropriate for independent samples can be used for assessing the statistical significance of treatment effects when using propensity-score matching. Indeed, many authors in the applied medical literature use methods for independent samples when making inferences about treatment effects using propensity-score matched samples. Dichotomous outcomes are common in healthcare research. In this study, we used Monte Carlo simulations to examine the effect on inferences about risk differences (or absolute risk reductions) when statistical methods for independent samples are used compared with when statistical methods for paired samples are used in propensity-score matched samples. We found that compared with using methods for independent samples, the use of methods for paired samples resulted in: (i) empirical type I error rates that were closer to the advertised rate; (ii) empirical coverage rates of 95 per cent confidence intervals that were closer to the advertised rate; (iii) narrower 95 per cent confidence intervals; and (iv) estimated standard errors that more closely reflected the sampling variability of the estimated risk difference. Differences between the empirical and advertised performance of methods for independent samples were greater when the treatment-selection process was stronger compared with when treatment-selection process was weaker. We recommend using statistical methods for paired samples when using propensity-score matched samples for making inferences on the effect of treatment on the reduction in the probability of an event occurring.
Pevsner, A; Davis, B; Joshi, S; Hertanto, A; Mechalakos, J; Yorke, E; Rosenzweig, K; Nehmeh, S; Erdi, Y E; Humm, J L; Larson, S; Ling, C C; Mageras, G S
2006-02-01
We have evaluated an automated registration procedure for predicting tumor and lung deformation based on CT images of the thorax obtained at different respiration phases. The method uses a viscous fluid model of tissue deformation to map voxels from one CT dataset to another. To validate the deformable matching algorithm we used a respiration-correlated CT protocol to acquire images at different phases of the respiratory cycle for six patients with nonsmall cell lung carcinoma. The position and shape of the deformable gross tumor volumes (GTV) at the end-inhale (EI) phase predicted by the algorithm was compared to those drawn by four observers. To minimize interobserver differences, all observers used the contours drawn by a single observer at end-exhale (EE) phase as a guideline to outline GTV contours at EI. The differences between model-predicted and observer-drawn GTV surfaces at EI, as well as differences between structures delineated by observers at EI (interobserver variations) were evaluated using a contour comparison algorithm written for this purpose, which determined the distance between the two surfaces along different directions. The mean and 90% confidence interval for model-predicted versus observer-drawn GTV surface differences over all patients and all directions were 2.6 and 5.1 mm, respectively, whereas the mean and 90% confidence interval for interobserver differences were 2.1 and 3.7 mm. We have also evaluated the algorithm's ability to predict normal tissue deformations by examining the three-dimensional (3-D) vector displacement of 41 landmarks placed by each observer at bronchial and vascular branch points in the lung between the EE and EI image sets (mean and 90% confidence interval displacements of 11.7 and 25.1 mm, respectively). The mean and 90% confidence interval discrepancy between model-predicted and observer-determined landmark displacements over all patients were 2.9 and 7.3 mm, whereas interobserver discrepancies were 2.8 and 6
Image registration and object recognition using affine invariants and convex hulls.
Yang, Z; Cohen, F S
1999-01-01
This paper is concerned with the problem of feature point registration and scene recognition from images under weak perspective transformations which are well approximated by affine transformations and under possible occlusion and/or appearance of new objects. It presents a set of local absolute affine invariants derived from the convex hull of scattered feature points (e.g., fiducial or marking points, corner points, inflection points, etc.) extracted from the image. The affine invariants are constructed from the areas of the triangles formed by connecting three vertices among a set of four consecutive vertices (quadruplets) of the convex hull, and hence do make direct use of the area invariance property associated with the affine transformation. Because they are locally constructed, they are very well suited to handle the occlusion and/or appearance of new objects. These invariants are used to establish the correspondences between the convex hull vertices of a test image with a reference image in order to undo the affine transformation between them. A point matching approach for recognition follows this. The time complexity for registering L feature points on the test image with N feature points of the reference image is of order O(N x L). The method has been tested on real indoor and outdoor images and performs well.
Galilean invariant resummation schemes of cosmological perturbations
NASA Astrophysics Data System (ADS)
Peloso, Marco; Pietroni, Massimo
2017-01-01
Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them in the so called Time-Flow, or TRG, equations.
Dimensional Analysis Using Toric Ideals: Primitive Invariants
Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774
NASA Astrophysics Data System (ADS)
Chen, Wei; Liang, Luming; Zhao, Yuelong; Chen, Shu
2017-05-01
Reconstructing three-dimensional (3-D) poses from matched feature correspondences is widely used in 3-D object tracking. The precision of correspondence matching plays a major role in the pose reconstruction. Without prior knowledge of the perspective camera model, state-of-the-art methods only deal with two-dimensional (2-D) planar affine transforms. An interest point's detector and descriptor [perspective scale invariant feature transform (SIFT)] is proposed to overcome the side effects of viewpoint changing, i.e., our detector is invariant to viewpoint changing. Perspective SIFT is detected by the SIFT approach, where the sample region is determined by projecting the original sample region to the image plane based on the established camera model. An iterative algorithm then modifies the pose of the tracked object and it generally converges to a 3-D perspective invariant point. The pose of the tracked object is finally estimated by the combination of template warping and perspective SIFT correspondences. Thorough evaluations are performed on two public databases, the Biwi Head Pose dataset and the Boston University dataset. Comparisons illustrate that the proposed keypoint's detector largely improves the tracking performance.
Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M
2015-06-21
The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
ERIC Educational Resources Information Center
Torbeyns, J.; Verschaffel, L.; Ghesquiere, P.
2005-01-01
This study investigated the strategy characteristics and development of children with mathematical disabilities (MD) in the domain of simple addition and subtraction, in terms of Lemaire and Siegler's model of strategic change, using the choice/no-choice method and the combined chronological-age (CA)/ability-level (AL)?match design. Four groups of…
Heinke, Wolfgang; Rotzoll, Daisy; Hempel, Gunther; Zupanic, Michaela; Stumpp, Patrick; Kaisers, Udo X; Fischer, Martin R
2013-10-07
Students can improve the learning process by developing their own multiple choice questions. If a similar effect occurred when creating OSCE (objective structured clinical examination) stations by themselves it could be beneficial to involve them in the development of OSCE stations. This study investigates the effect of students developing emergency medicine OSCE stations on their test performance. In the 2011/12 winter semester, an emergency medicine OSCE was held for the first time at the Faculty of Medicine at the University of Leipzig. When preparing for the OSCE, 13 students (the intervention group) developed and tested emergency medicine examination stations as a learning experience. Their subsequent OSCE performance was compared to that of 13 other students (the control group), who were parallelized in terms of age, gender, semester and level of previous knowledge using the matched-pair method. In addition, both groups were compared to 20 students who tested the OSCE prior to regular emergency medicine training (test OSCE group). There were no differences between the three groups regarding age (24.3 ± 2.6; 24.2 ± 3.4 and 24 ± 2.3 years) or previous knowledge (29.3 ± 3.4; 29.3 ± 3.2 and 28.9 ± 4.7 points in the multiple choice [MC] exam in emergency medicine). Merely the gender distribution differed (8 female and 5 male students in the intervention and control group vs. 3 males and 17 females in the test OSCE group).In the exam OSCE, participants in the intervention group scored 233.4 ± 6.3 points (mean ± SD) compared to 223.8 ± 9.2 points (p < 0.01) in the control group. Cohen's effect size was d = 1.24. The students of the test OSCE group scored 223.2 ± 13.4 points. Students who actively develop OSCE stations when preparing for an emergency medicine OSCE achieve better exam results.
Gauge invariance of quantum gravity in the causal approach
NASA Astrophysics Data System (ADS)
Schorn, Ivo
1997-03-01
We investigate gauge invariance of perturbative quantum gravity without matter fields in the causal Epstein - Glaser approach. This approach uses free fields only so that all objects of the theory are mathematically well defined. The first-order graviton self-couplings are obtained from the Einstein - Hilbert Lagrangian written in terms of Goldberg variables and expanded to lowest order on the flat Minkowski background metric (linearized Einstein theory). Similar to Yang - Mills theory, gauge invariance to first order requires an additional coupling to fermionic ghost fields. For second-order tree graphs, gauge invariance generates four-graviton normalization terms, which agree exactly with the next order of the expansion of the Einstein - Hilbert Lagrangian. Gauge invariance of the ghost sector is then examined in detail. It is stressed that, despite some formal similarities, the concept of operator gauge invariance used in the causal method is different from the conventional BRS-invariance commonly used in the literature.
Matching a Distribution by Matching Quantiles Estimation
Sgouropoulos, Nikolaos; Yao, Qiwei; Yastremiz, Claudia
2015-01-01
Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO. PMID:26692592
Matching a Distribution by Matching Quantiles Estimation.
Sgouropoulos, Nikolaos; Yao, Qiwei; Yastremiz, Claudia
2015-04-03
Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO.
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
2012-01-01
Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717
Perspective Projection Invariants,
1986-02-01
ORGANIZATION NAME ANC ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREA & WORK UNIT NUMBERSO 545 Technology Square dCambridge...AD-AI67 793 PERSPECTIVE PROJECTION INVARIANTS(U) MASSACHUSETTS INST 1/1~ OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB VERRI ET AL, FEB 86 AI-M-832...0R020I4 661 SEC R TVC PAGE fjSr .W IlIII UI A 8 gT@OFTNS21 07 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER
De Roover, Kim; Timmerman, Marieke E.; De Leersnyder, Jozefien; Mesquita, Batja; Ceulemans, Eva
2014-01-01
The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA framework, methods have been proposed to trace such non-invariant items, but these methods have some disadvantages in that they require researchers to run a multitude of analyses and in that they imply assumptions that are often questionable. In this paper, we propose an alternative strategy which builds on clusterwise simultaneous component analysis (SCA). Clusterwise SCA, being an exploratory technique, assigns the groups under study to a few clusters based on differences and similarities in the component structure of the items, and thus based on the covariance matrices. Non-invariant items can then be traced by comparing the cluster-specific component loadings via congruence coefficients, which is far more parsimonious than comparing the component structure of all separate groups. In this paper we present a heuristic for this procedure. Afterwards, one can return to the multigroup CFA framework and check whether removing the non-invariant items or removing some of the equality restrictions for these items, yields satisfactory invariance test results. An empirical application concerning cross-cultural emotion data is used to demonstrate that this novel approach is useful and can co-exist with the traditional CFA approaches. PMID:24999335
Defending the beauty of the Invariance Principle
NASA Astrophysics Data System (ADS)
Barkana, Itzhak
2014-01-01
Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.
Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F
2016-09-01
The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.
Affine Invariant Character Recognition by Progressive Removing
NASA Astrophysics Data System (ADS)
Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro
Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.
Rotationally invariant correlation filtering for multiple images
Schils, G.F.; Sweeney, D.W.
1986-07-01
A method is presented for designing translation-invariant optical correlation filters that have a specified rotational response for each of several input images. The correlation filter is postulated to have the form of an infinite linear combination of the angular Fourier harmonics of the input images. The corresponding response of the optical system too rotations of the multiple input images is described by a vector-matrix convolution equation. The solution of this equation for the unknown correlation filter is presented in terms of Fourier series. Use of one term in the Fourier series gives the multiple circular-harmonic filter that provides a specified rotationally invariant response for each of the multiple input images. Applications to rotationally invariant discrimination are described, and examples are given.
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J
2009-06-01
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
Factorial Invariance in Multiple Populations: A Multiple Testing Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.
2013-01-01
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Coordinate Projection-based Solver for ODE with Invariants
Serban, Radu
2008-04-08
CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.
Factorial Invariance in Multiple Populations: A Multiple Testing Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E.
2013-01-01
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Image Segmentation, Registration, Compression, and Matching
NASA Technical Reports Server (NTRS)
Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina
2011-01-01
A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity
Nelson, Andrew; Chomitz, Kenneth M.
2011-01-01
Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods. PMID:21857950
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-07
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Nelson, Andrew; Chomitz, Kenneth M
2011-01-01
Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods.
The scale invariant generator technique for quantifying anisotropic scale invariance
NASA Astrophysics Data System (ADS)
Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.
1999-11-01
Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.
Bifurcation from an invariant to a non-invariant attractor
NASA Astrophysics Data System (ADS)
Mandal, D.
2016-12-01
Switching dynamical systems are very common in many areas of physics and engineering. We consider a piecewise linear map that periodically switches between more than one different functional forms. We show that in such systems it is possible to have a border collision bifurcation where the system transits from an invariant attractor to a non-invariant attractor.
Furukawa, M.; Tokuda, S.
2012-10-15
A matching method using a finite-width inner region is extended for stability analysis of magnetohydrodynamic mode including diamagnetic drift effect. The inclusion of the diamagnetic drift effect is accomplished by a newly developed ordering scheme in the outer region. The ordering scheme enables us to derive a hierarchy of generalized Newcomb equations. Higher-order equations give us correction of outer solution due to the diamagnetic drift effect as well as inertia and resistivity. By this correction, the accuracy of the dispersion relation is improved. Several numerical results are presented to demonstrate good performance of the matching method. Dropping the diamagnetic drift effect in the outer region leads to less accurate results.
2014-01-01
Background Paired survival data are often used in clinical research to assess the prognostic effect of an exposure. Matching generates correlated censored data expecting that the paired subjects just differ from the exposure. Creating pairs when the exposure is an event occurring over time could be tricky. We applied a commonly used method, Method 1, which creates pairs a posteriori and propose an alternative method, Method 2, which creates pairs in “real-time”. We used two semi-parametric models devoted to correlated censored data to estimate the average effect of the exposure HR¯(t): the Holt and Prentice (HP), and the Lee Wei and Amato (LWA) models. Contrary to the HP, the LWA allowed adjustment for the matching covariates (LWA a ) and for an interaction (LWA i ) between exposure and covariates (assimilated to prognostic profiles). The aim of our study was to compare the performances of each model according to the two matching methods. Methods Extensive simulations were conducted. We simulated cohort data sets on which we applied the two matching methods, the HP and the LWA. We used our conclusions to assess the prognostic effect of subsequent pregnancy after treatment for breast cancer in a female cohort treated and followed up in eight french hospitals. Results In terms of bias and RMSE, Method 2 performed better than Method 1 in designing the pairs, and LWA a was the best model for all the situations except when there was an interaction between exposure and covariates, for which LWA i was more appropriate. On our real data set, we found opposite effects of pregnancy according to the six prognostic profiles, but none were statistically significant. We probably lacked statistical power or reached the limits of our approach. The pairs’ censoring options chosen for combination Method 2 - LWA had to be compared with others. Conclusions Correlated censored data designing by Method 2 seemed to be the most pertinent method to create pairs, when the criterion
Zeng, Huanhuan; Wang, Jin; Ye, Qing; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo
2014-01-01
In recent years, the tissue optical clearing (OC) technique in the biomedicine field has drawn lots of attention. Various physical and chemical methods have been introduced to improve the efficacy of OC. In this study, the effect of the combination of glycerol and ultrasound treatment on OC of in vitro porcine muscle tissues has been investigated. The refractive index (RI) matching mechanism of OC was directly observed based on the derivative total reflection method. A theoretical model was used to simulate the proportion of tissue fluid in the illuminated area. Moreover, the total transmittance spectra have been obtained by a spectrometer over the range from 450 nm to 700 nm. The administration of glycerol and ultrasound has led to an increase of the RI of background medium and a more RI matching environment was achieved. The experimental results support the validity of the ultrasound treatment for OC. The RI matching mechanism has been firstly quantitatively analyzed based on the derivative total reflection method. PMID:25360366
Matching-based fresh-slice method for generating two-color x-ray free-electron lasers
NASA Astrophysics Data System (ADS)
Qin, Weilun; Ding, Yuantao; Lutman, Alberto A.; Chao, Yu-Chiu
2017-09-01
Two-color high intensity x-ray free-electron lasers (FELs) provide powerful tools for probing ultrafast dynamic systems. A novel concept of realizing fresh-slice two-color lasing through slice-dependent transverse mismatch has been proposed by one of the authors [Y. Chao, SLAC Report No. SLAC-PUB-16935, 2016]. In this paper we present a feasible example following this concept based on the Linac Coherent Light Source parameters. Time-dependent mismatch along the bunch is generated by a passive dechirper module and controlled by downstream matching sections, enabling FEL lasing at different wavelength with a split undulator configuration. Simulations for soft x-ray FELs show that tens of gigawatts pulses with femtosecond duration can be generated.
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Invariant Measures for Cherry Flows
NASA Astrophysics Data System (ADS)
Saghin, Radu; Vargas, Edson
2013-01-01
We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.
Vision system for fast 3D obstacle detection via sterovision matching
NASA Astrophysics Data System (ADS)
Bouayed, Hichem A.; Pissaloux, Edwige E.; Abdallah, Samer M.
2001-10-01
Image matching is one of the fundamental problems of computer vision. Various approaches exist. They differ essentially by extracted primitives, by the best match search strategy, and by final applications. Feature based dense matching methods use such geometric primitives as raw pixels, edges, interest points, etc. Some of the correlation based matching methods involve a distance calculation. A time consuming operation. Its enhancement adds pixel complex photometric characteristics such as gradient direction, local curvature and luminosity local disparity, what increases the matching time, but they are usually very noisy. The matching method noise dependency and data volume can be reduced when improving the interest point robustness. This paper proposes to add to interest point primitive a set (vector) of simple characteristics (geometric and photometric), which are invariant to geometric plan transforms. A matching method based upon these enriched pixels and accumulation array concept is presented as well. These elements are useful for 3D obstacle detection in the ongoing project intelligent glasses, our final application. The intelligent glasses is a vision system for humanoid robot and for blind/visually impaired persons under joint development by Rouen University and Robotics Laboratory in Paris.
Use of satellite image for constructing the unmanned aerial vehicle image matching framework
NASA Astrophysics Data System (ADS)
Sun, Yanwei; Li, Hao; Sun, Li
2017-01-01
Although unmanned aerial vehicles (UAV) can provide images with high resolution in a portable and easy way, the matching algorithms such as scale-invariant feature transform and speeded-up robust features (SURF) are often time-consuming. To reduce the time of image matching processes, a fast and low-cost method is proposed for constructing the UAV image matching framework using a satellite image. In this context, the satellite image is used as the base map of UAV images. To find the matching points between UAV and satellite images, a simplified version of SURF is designed to detect interest points. The simplified version of the SURF method uses only one octave of scale spaces to build filter response maps, and each octave is subdivided into four levels of scale spaces. Meanwhile, template matching is used to remove incorrectly matched points. The experimental results show that the method of this paper is robust and can deal with images acquired by small-sized UAVs without a position and orientation system. The method can calculate the rough overlap regions, which are then employed to narrow down the searching space. This will improve the speed of matching greatly, especially for an unordered database of images.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III
1990-01-01
Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.
Zhen, X; Chen, H; Zhou, L; Yan, H; Jiang, S; Jia, X; Gu, X; Mell, L; Yashar, C; Cervino, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the random walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no
Physical Invariants of Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
NASA Astrophysics Data System (ADS)
Dionisi, D.; Keckhut, P.; Hoareau, C.; Montoux, N.; Congeduti, F.
2013-02-01
Cirrus ice particle sedimentation velocity (vs) is one of the critical variables for the parameterization of cirrus properties in a global climate model (GCM). In this study a methodology to estimate cirrus properties, such as crystal mean fall speed, through successive lidar measurements is evaluated. This "Match" technique has been applied on cirrus cloud observations and then tested with measurements from two ground-based lidars located in the Mediterranean area. These systems, with similar instrumental characteristics, are installed at the Observatory of Haute Provence (OHP, 43.9° N, 5.7° E) in France and at Rome Tor Vergata (RTV, 41.8° N, 12.6° E) in Italy. At a distance of approximately 600 km, the two lidar stations have provided systematic measurements for several years and are along a typical direction of an air path. A test case of an upper tropospheric cirrus, observed over both sites during the night between 13 and 14 March 2008, has been selected and the feasibility of the Match-cirrus approach investigated through this case. The analysis through lidar principal parameters (vertical location, geometrical thickness and optical depth) reveals a case of a thin sub-visible cirrus (SVC) located around the tropopause. A first range of values for vs (1.4-1.9 cm s-1, consistent with simple-shaped small crystals) has been retrieved with a simplified approach (adiabatic transport and "frozen" microphysical conditions inside the cirrus). The backward trajectory analysis suggests a type of cirrus formed by large-scale transport processes (adiabatic cooling of moist air masses coming from the subtropical area around Mexico gulf), which is characterized by a long atmospheric lifetime and horizontal extension of several hundred km. The analysis of this case study reveals that many uncertainties reduce the confidence of the retrieved estimates of the crystal fall velocity. However, this paper allows for assessing the technique feasibility by identifying the main
Yu, Chen-Chieh; Ho, Kuan-Hung; Chen, Hsuen-Li; Chuang, Shang-Yu; Tseng, Shao-Chin; Su, Wei-Fang
2012-03-15
In this study, we prepared metallic corrugated structures for use as highly sensitive plasmonic sensors. Relying on the direct nanoimprint-in-metal method, fabrication of this metallic corrugated structure was readily achieved in a single step. The metallic corrugated structures were capable of sensing both surface plasmon resonance (SPR) wavelengths and index-matching effects. The corrugated Au films exhibited high sensitivity (ca. 800 nm/RIU), comparable with or even higher than those of other reported SPR-based sensors. Because of the unique index-matching effect, refractometric sensing could also be performed by measuring the transmission intensity of the Au/substrate SPR mode-conveniently, without a spectrometer. In the last, we demonstrated the corrugated Au film was capable of sensing biomolecules, revealing the ability of the structure to be a highly sensitive biosensor.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou
2009-10-01
This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.
Shape Invariance in Deformation Quantization
NASA Astrophysics Data System (ADS)
Rasinariu, Constantin
2013-03-01
Shape invariance is a powerful solvability condition, that allows for complete knowledge of the energy spectrum, and eigenfunctions of a system. After a short introduction into the deformation quantization formalism, this work explores the implications of the supersymmetric quantum mechanics and shape invariance techniques to the phase space formalism. We show that shape invariance induces a new set of relations between the Wigner functions of the system, that allows for their direct calculation, once we know one of them. The simple harmonic oscillator and the Morse potential are presented as examples. I would like to acknowledge a sabbatical leave and grant from Columbia College Chicago that made this work possible.
Shape invariance through Crum transformation
Organista, Jose Orlando; Nowakowski, Marek; Rosu, H. C.
2006-12-15
We show in a rigorous way that Crum's result regarding the equal eigenvalue spectrum of Sturm-Liouville problems can be obtained iteratively by successive Darboux transformations. Furthermore, it can be shown that all neighboring Darboux-transformed potentials of higher order, u{sub k} and u{sub k+1}, satisfy the condition of shape invariance provided the original potential u does so. Based on this result, we prove that under the condition of shape invariance, the nth iteration of the original Sturm-Liouville problem defined solely through the shape invariance is equal to the nth Crum transformation.
Bayesian tests of measurement invariance.
Verhagen, A J; Fox, J P
2013-11-01
Random item effects models provide a natural framework for the exploration of violations of measurement invariance without the need for anchor items. Within the random item effects modelling framework, Bayesian tests (Bayes factor, deviance information criterion) are proposed which enable multiple marginal invariance hypotheses to be tested simultaneously. The performance of the tests is evaluated with a simulation study which shows that the tests have high power and low Type I error rate. Data from the European Social Survey are used to test for measurement invariance of attitude towards immigrant items and to show that background information can be used to explain cross-national variation in item functioning.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1992-01-01
This is a work-in-progress paper. It explores the similarity between the results from two different analysis methods - one deterministic, the other stochastic - for computing maximized and time-correlated gust loads for nonlinear aircraft. To date, numerical studies have been performed using two different nonlinear aircraft configurations. These studies demonstrate that results from the deterministic analysis method are realizable in the stochastic analysis method.
Static analysis of class invariants in Java programs
NASA Astrophysics Data System (ADS)
Bonilla-Quintero, Lidia Dionisia
2011-12-01
This paper presents a technique for the automatic inference of class invariants from Java bytecode. Class invariants are very important for both compiler optimization and as an aid to programmers in their efforts to reduce the number of software defects. We present the original DC-invariant analysis from Adam Webber, talk about its shortcomings and suggest several different ways to improve it. To apply the DC-invariant analysis to identify DC-invariant assertions, all that one needs is a monotonic method analysis function and a suitable assertion domain. The DC-invariant algorithm is very general; however, the method analysis can be highly tuned to the problem in hand. For example, one could choose shape analysis as the method analysis function and use the DC-invariant analysis to simply extend it to an analysis that would yield class-wide invariants describing the shapes of linked data structures. We have a prototype implementation: a system we refer to as "the analyzer" that infers DC-invariant unary and binary relations and provides them to the user in a human readable format. The analyzer uses those relations to identify unnecessary array bounds checks in Java programs and perform null-reference analysis. It uses Adam Webber's relational constraint technique for the class-invariant binary relations. Early results with the analyzer were very imprecise in the presence of "dirty-called" methods. A dirty-called method is one that is called, either directly or transitively, from any constructor of the class, or from any method of the class at a point at which a disciplined field has been altered. This result was unexpected and forced an extensive search for improved techniques. An important contribution of this paper is the suggestion of several ways to improve the results by changing the way dirty-called methods are handled. The new techniques expand the set of class invariants that can be inferred over Webber's original results. The technique that produces better
Quadratic Generalized Scale Invariance
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Schertzer, D.; Addor, J. B.
Nearly twenty years ago, two of us argued that in order to account for the scaling strat- ification of the atmosphere, that an anisotropic "unified scaling model" of the atmo- sphere was required with elliptical dimension 23/9=2.555... "in between" the standard 3-D (small scale) and 2-D large scale model. This model was based on the formal- ism of generalized scale invariance (GSI). Physically, GSI is justified by arguing that various conserved fluxes (energy, buoyancy force variance etc.) should define the ap- propriate notion of scale. In a recent large scale satellite cloud image analysis, we directly confirmed this model by studying the isotropic (angle averaged) horizontal cloud statistics. Mathematically, GSI is based on a a group of scale changing opera- tors and their generators but to date, both analyses (primarily of cloud images) and nu- merical (multifractal) simulations, have been limited to the special case of linear GSI. This has shown that cloud texture can plausibly be associated with local linearizations. However realistic morphologies involve spatially avarying textures; the full non linear GSI is clearly necessary. In this talk, we first show that the observed angle averaged (multi)scaling statistics only give a realtively weak constraint on the nonlinear gner- ator: that the latter can be expressed by self-similar (isotropic) part, and a deviatoric part described (in two dimensions) by an arbitrary scalar potential which contains all the information about the cloud morphology. We then show (using a theorem due to Poincaré) how to reduce nonlinear GSI to linear GSI plus a nonlinear coordinate trans- formation numerically, using this to take multifractal GSI modelling to the next level of approximation: quadratic GSI. We show many examples of the coresponding simu- lations which include transitions from various morphologies (including cyclones) and we discuss the results in relation to satellite cloud images.
Rotational Invariant Dimensionality Reduction Algorithms.
Lai, Zhihui; Xu, Yong; Yang, Jian; Shen, Linlin; Zhang, David
2016-06-30
A common intrinsic limitation of the traditional subspace learning methods is the sensitivity to the outliers and the image variations of the object since they use the L₂ norm as the metric. In this paper, a series of methods based on the L₂,₁-norm are proposed for linear dimensionality reduction. Since the L₂,₁-norm based objective function is robust to the image variations, the proposed algorithms can perform robust image feature extraction for classification. We use different ideas to design different algorithms and obtain a unified rotational invariant (RI) dimensionality reduction framework, which extends the well-known graph embedding algorithm framework to a more generalized form. We provide the comprehensive analyses to show the essential properties of the proposed algorithm framework. This paper indicates that the optimization problems have global optimal solutions when all the orthogonal projections of the data space are computed and used. Experimental results on popular image datasets indicate that the proposed RI dimensionality reduction algorithms can obtain competitive performance compared with the previous L₂ norm based subspace learning algorithms.
Dowling, N. Maritza; Hermann, Bruce; La Rue, Asenath; Sager, Mark A.
2010-01-01
Objective To examine the latent structure of a test battery currently being used in a longitudinal study of asymptomatic middle-aged adults with a parental history of Alzheimer’s disease (AD) and test the invariance of the factor solution across subgroups defined by selected demographic variables and known genetic risk factors for AD. Method An exploratory factor analysis (EFA) and a sequence of confirmatory factor analyses (CFA) were conducted on 24 neuropsychological measures selected to provide a comprehensive estimate of cognitive abilities most likely to be affected in preclinical AD. Once the underlying latent model was defined and the structural validity established through model comparisons, a multi-group confirmatory factor analysis model was used to test for factorial invariance across groups. Results The EFA solution revealed a factor structure consisting of 5 constructs: verbal ability, visuo-spatial ability, speed & executive function, working memory, and verbal learning & memory. The CFA models provided support for the hypothesized 5-factor structure. Results indicated factorial invariance of the model across all groups examined. Conclusions Collectively, the results suggested a relatively strong psychometric basis for using the factor structure in clinical samples that match the characteristics of this cohort. This confirmed an invariant factor structure should prove useful in research aimed to detect the earliest cognitive signature of preclinical AD in similar middle aged cohorts. PMID:21038965
NASA Astrophysics Data System (ADS)
Dionisi, D.; Kekchut, P.; Hoareau, C.; Montoux, N.; Congeduti, F.
2012-08-01
Cirrus ice particle sedimentation velocity (vr) is one of the critical variables for the parameterization of cirrus properties in a global climate model (GCM). In this study a methodology to estimate cirrus properties, such as crystal mean fall speed, through successive lidar measurements is evaluated. This "Match" technique has been applied on cirrus cloud observations and then tested with measurements from two ground-based lidars located in the Mediterranean Area. These systems have similar instrumental characteristics, and are operated manually respectively at the Observatory of Haute Provence (OHP, 43.9° N, 5.7° E) in France and at Rome Tor Vergata (RTV, 41.8° N, 12.6° E) in Italy at a distance of approximately 600 km providing systematic measurements since several years. The both sites are along a typical direction of an air path and a test case of an upper tropospheric cirrus, observed over both sites during the night between 13 and 14 of March 2008, has been identified and investigated. The analysis through lidar primarily parameters (cloud shape and vertical location) reveals a case of a thin sub-visible cirrus (SVC) located around the tropopause. The feasibility to estimate crystal fall velocity has been tested and values of 1.4-1.9 cm s-1, consistent with simple-shaped small crystals, have been retrieved. Despite several uncertainties that affect the single-wavelength lidar measurements, sedimentation could be a partial reason for the cirrus property changes (e.g. geometrical thickness and back-scattering profile distribution) observed from one site to the other. The backward trajectory analysis suggests a type of cirrus formed by large-scale transport processes (adiabatic cooling of moist air masses coming from the subtropical area around Mexico gulf), which is characterized by a long atmospheric lifetime and horizontal extension of several hundreds of km. This study shows that such approach can be improved in using closer locations, ancillary data
NASA Astrophysics Data System (ADS)
Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno
2015-01-01
Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.
Invariant measures in brain dynamics
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł
2006-10-01
This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.
Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng
2012-11-19
We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.
Vemer, Pepijn; Al, Maiwenn J.; Oppe, Mark; Rutten-van Mölken, Maureen P. M. H.
2017-01-01
Background Decision-analytic cost-effectiveness (CE) models combine many parameters, often obtained after meta-analysis. Aim We compared different methods of mixed-treatment comparison (MTC) to combine transition and event probabilities derived from several trials, especially with respect to health-economic (HE) outcomes like (quality adjusted) life years and costs. Methods Trials were drawn from a simulated reference population, comparing two of four fictitious interventions. The goal was to estimate the CE between two of these. The amount of heterogeneity between trials was varied in scenarios. Parameter estimates were combined using direct comparison, MTC methods proposed by Song and Puhan, and Bayesian generalized linear fixed effects (GLMFE) and random effects models (GLMRE). Parameters were entered into a Markov model. Parameters and HE outcomes were compared with the reference population using coverage, statistical power, bias and mean absolute deviation (MAD) as performance indicators. Each analytical step was repeated 1,000 times. Results The direct comparison was outperformed by the MTC methods on all indicators, Song’s method yielded low bias and MAD, but uncertainty was overestimated. Puhan’s method had low bias and MAD and did not overestimate uncertainty. GLMFE generally had the lowest bias and MAD, regardless of the amount of heterogeneity, but uncertainty was overestimated. GLMRE showed large bias and MAD and overestimated uncertainty. Song’s and Puhan’s methods lead to the least amount of uncertainty, reflected in the shape of the CE acceptability curve. GLMFE showed slightly more uncertainty. Conclusions Combining direct and indirect evidence is superior to using only direct evidence. Puhan’s method and GLMFE are preferred. PMID:28152099
NASA Astrophysics Data System (ADS)
Hutchison, A. A.; Ghosh, A.
2016-12-01
Very low frequency earthquakes (VLFEs) occur in transitional zones of faults, releasing seismic energy in the 0.02-0.05 Hz frequency band over a 90 s duration and typically have magntitudes within the range of Mw 3.0-4.0. VLFEs can occur down-dip of the seismogenic zone, where they can transfer stress up-dip potentially bringing the locked zone closer to a critical failure stress. VLFEs also occur up-dip of the seismogenic zone in a region along the plate interface that can rupture coseismically during large megathrust events, such as the 2011 Tohoku-Oki earthquake [Ide et al., 2011]. VLFEs were first detected in Cascadia during the 2011 episodic tremor and slip (ETS) event, occurring coincidentally with tremor [Ghosh et al., 2015]. However, during the 2014 ETS event, VLFEs were spatially and temporally asynchronous with tremor activity [Hutchison and Ghosh, 2016]. Such contrasting behaviors remind us that the mechanics behind such events remain elusive, yet they are responsible for the largest portion of the moment release during an ETS event. Here, we apply a match filter method using known VLFEs as template events to detect additional VLFEs. Using a grid-search centroid moment tensor inversion method, we invert stacks of the resulting match filter detections to ensure moment tensor solutions are similar to that of the respective template events. Our ability to successfully employ a match filter method to VLFE detection in Cascadia intrinsically indicates that these events can be repeating, implying that the same asperities are likely responsible for generating multiple VLFEs.
Orthosymplectically invariant functions in superspace
NASA Astrophysics Data System (ADS)
Coulembier, K.; De Bie, H.; Sommen, F.
2010-08-01
The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schrödinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally, the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.
Image Registration Through The Exploitation Of Perspective Invariant Graphs
NASA Astrophysics Data System (ADS)
Gilmore, John F.
1983-10-01
This paper describes two new techniques of image registration as applied to scenes consisting of natural terrain. The first technique is a syntactic pattern recognition approach which combines the spatial relationships of a point pattern with point classifications to accurately perform image registration. In this approach, a preprocessor analyzes each image in order to identify points of interest and to classify these points based on statistical features. A classified graph possessing perspective invariant properties is created and is converted into a classification-based grammar string. A local match analysis is performed and the best global match is con-structed. A probability-of-match metric is computed in order to evaluate match confidence. The second technique described is an isomorphic graph matching approach called Mean Neighbors (MN). A MN graph is constructed from a given point pattern taking into account the elliptical projections of real world scenes onto a two dimensional surface. This approach exploits the spatial relationships of the given points of interest but neglects the point classifications used in syntactic processing. A projective, perspective invariant graph is constructed for both the reference and sensed images and a mapping of the coincidence edges occurs. A probability of match metric is used to evaluate the confidence of the best mapping.
Vemer, Pepijn; Al, Maiwenn J; Oppe, Mark; Rutten-van Mölken, Maureen P M H
2017-01-01
Decision-analytic cost-effectiveness (CE) models combine many parameters, often obtained after meta-analysis. We compared different methods of mixed-treatment comparison (MTC) to combine transition and event probabilities derived from several trials, especially with respect to health-economic (HE) outcomes like (quality adjusted) life years and costs. Trials were drawn from a simulated reference population, comparing two of four fictitious interventions. The goal was to estimate the CE between two of these. The amount of heterogeneity between trials was varied in scenarios. Parameter estimates were combined using direct comparison, MTC methods proposed by Song and Puhan, and Bayesian generalized linear fixed effects (GLMFE) and random effects models (GLMRE). Parameters were entered into a Markov model. Parameters and HE outcomes were compared with the reference population using coverage, statistical power, bias and mean absolute deviation (MAD) as performance indicators. Each analytical step was repeated 1,000 times. The direct comparison was outperformed by the MTC methods on all indicators, Song's method yielded low bias and MAD, but uncertainty was overestimated. Puhan's method had low bias and MAD and did not overestimate uncertainty. GLMFE generally had the lowest bias and MAD, regardless of the amount of heterogeneity, but uncertainty was overestimated. GLMRE showed large bias and MAD and overestimated uncertainty. Song's and Puhan's methods lead to the least amount of uncertainty, reflected in the shape of the CE acceptability curve. GLMFE showed slightly more uncertainty. Combining direct and indirect evidence is superior to using only direct evidence. Puhan's method and GLMFE are preferred.
Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios; Antón Castro, Francesc; Mioc, Darka
2016-06-01
An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detected are invariant to image rotations, translations, scaling and also to changes in illumination, brightness and 3-dimensional viewpoint. Afterwards, each feature of the reference image is matched with one in the sensed image if, and only if, the distance between them multiplied by a threshold is shorter than the distances between the point and all the other po