Quantum mechanics from invariance principles
NASA Astrophysics Data System (ADS)
Moldoveanu, Florin
2015-07-01
Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.
Gauge invariance and reciprocity in quantum mechanics
Leung, P. T.; Young, K.
2010-03-15
Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.
Wall-crossing invariants: from quantum mechanics to knots
Galakhov, D. E-mail: galakhov@physics.rutgers.edu; Mironov, A. Morozov, A.
2015-03-15
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.
Connection between quantum-mechanical and classical time evolution via a dynamical invariant
Schuch, Dieter; Moshinsky, Marcos
2006-06-15
The time evolution of a quantum system with at most quadratic Hamiltonian is described with the help of different methods, namely the time-dependent Schroedinger equation, the time propagator or Feynman kernel, and the Wigner function. It is shown that all three methods are connected via a dynamical invariant, the so-called Ermakov invariant. This invariant introduces explicitly the quantum aspect via the position uncertainty and its possible time dependence. The importance of this aspect, also for the difference between classical and quantum dynamics, and in particular the role of the initial position uncertainty is investigated.
Zhang, Hou-Dao; Yan, YiJing
2015-12-01
The issue of efficient hierarchy truncation is related to many approximate theories. In this paper, we revisit this issue from both the numerical efficiency and quantum mechanics prescription invariance aspects. The latter requires that the truncation approximation made in Schrödinger picture, such as the quantum master equations and their self-consistent-Born-approximation improvements, should be transferable to their Heisenberg-picture correspondences, without further approximations. We address this issue with the dissipaton equation of motion (DEOM), which is a unique theory for the dynamics of not only reduced systems but also hybrid bath environments. We also highlight the DEOM theory is not only about how its dynamical variables evolve in time, but also the underlying dissipaton algebra. We demonstrate this unique feature of DEOM with model systems and report some intriguing nonlinear Fano interferences characteristics that are experimentally measurable.
Zhang, Hou-Dao; Yan, YiJing
2015-12-01
The issue of efficient hierarchy truncation is related to many approximate theories. In this paper, we revisit this issue from both the numerical efficiency and quantum mechanics prescription invariance aspects. The latter requires that the truncation approximation made in Schrödinger picture, such as the quantum master equations and their self-consistent-Born-approximation improvements, should be transferable to their Heisenberg-picture correspondences, without further approximations. We address this issue with the dissipaton equation of motion (DEOM), which is a unique theory for the dynamics of not only reduced systems but also hybrid bath environments. We also highlight the DEOM theory is not only about how its dynamical variables evolve in time, but also the underlying dissipaton algebra. We demonstrate this unique feature of DEOM with model systems and report some intriguing nonlinear Fano interferences characteristics that are experimentally measurable. PMID:26646874
Zhang, Hou-Dao; Yan, YiJing
2015-12-07
The issue of efficient hierarchy truncation is related to many approximate theories. In this paper, we revisit this issue from both the numerical efficiency and quantum mechanics prescription invariance aspects. The latter requires that the truncation approximation made in Schrödinger picture, such as the quantum master equations and their self–consistent–Born–approximation improvements, should be transferable to their Heisenberg–picture correspondences, without further approximations. We address this issue with the dissipaton equation of motion (DEOM), which is a unique theory for the dynamics of not only reduced systems but also hybrid bath environments. We also highlight the DEOM theory is not only about how its dynamical variables evolve in time, but also the underlying dissipaton algebra. We demonstrate this unique feature of DEOM with model systems and report some intriguing nonlinear Fano interferences characteristics that are experimentally measurable.
Gauge invariant quantum cosmology
NASA Technical Reports Server (NTRS)
Berger, Beverly K.
1987-01-01
The study of boundary conditions, the Hamiltonian constraint, reparameterization-invariance, and quantum dynamics, is presently approached by means of the path-integral quantization of minisuperspace models. The separation of the wave functions for expansion and contraction by the Feynman boundary conditions is such that there can be no interference between them. This is implemented by the choice of a contour in the complex plane, in order to define the phase of the square-root Arnowitt, Deser, and Misner (1960) Hamiltonian for expansion, collapse, and the classically forbidden region.
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2014-08-01
We consider the minimal bosonization realization of supersymmetric shape-invariant systems where generalized supercharge operators are constructed using the partner supersymmetric operators, the parameter potential translation formalism and the reflection operator. We obtain the solution of the eigenvalue equation and study the quantum dynamics of the supersymmetric system including terms in the Hamiltonian which are constructed using the combination of the bosonized supercharge operators. The connections between the bosonized supersymmetric formalism, the Bose-Fermi transformation and the generalization of the R-deformed Heisenberg algebra are discussed. As an illustration, we apply the generalized formalism for the case of the trigonometric Rosen-Morse potential.
Quantum Weyl invariance and cosmology
NASA Astrophysics Data System (ADS)
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
NASA Astrophysics Data System (ADS)
Auletta, Gennaro; Fortunato, Mauro; Parisi, Giorgio
2014-01-01
Introduction; Part I. Basic Features of Quantum Mechanics: 1. From classical mechanics to quantum mechanics; 2. Quantum observable and states; 3. Quantum dynamics; 4. Examples of quantum dynamics; 5. Density matrix; Part II. More Advanced Topics: 6. Angular momentum and spin; 7. Identical particles; 8. Symmetries and conservation laws; 9. The measurement problem; Part III. Matter and Light: 10. Perturbations and approximation methods; 11. Hydrogen and helium atoms; 12. Hydrogen molecular ion; 13. Quantum optics; Part IV. Quantum Information: State and Correlations: 14. Quantum theory of open systems; 15. State measurement in quantum mechanics; 16. Entanglement: non-separability; 17. Entanglement: quantum information; References; Index.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Galilean invariance at quantum Hall edge
NASA Astrophysics Data System (ADS)
Moroz, Sergej; Hoyos, Carlos; Radzihovsky, Leo
2015-05-01
We construct the theory of a chiral Luttinger liquid that lives on the boundary of a Galilean invariant quantum Hall fluid. In contrast to previous studies, Galilean invariance of the total (bulk plus edge) theory is guaranteed. We consider electromagnetic response at the edge and calculate momentum- and frequency-dependent electric conductivity and argue that its experimental measurement can provide a new means to determine the "shift" and bulk Hall viscosity.
Supersymmetry in quantum mechanics
Khare, Avinash
2004-12-23
An elementary introduction is given to the subject of supersymmetry in quantum mechanics which can be understood and appreciated by any one who has taken a first course in quantum mechanics. We demonstrate with explicit examples that given a solvable problem in quantum mechanics with n bound states, one can construct n new exactly solvable Hamiltonians having n - 1, n - 2,..., 0 bound states. The relationship between the eigenvalues, eigenfunctions and scattering matrix of the supersymmetric partner potentials is derived and a class of reflectionless potentials are explicitly constructed. We extend the operator method of solving the one-dimensional harmonic oscillator problem to a class of potentials called shape-invariant potentials. It is worth emphasizing that this class includes almost all the solvable problems that are found in the standard text books on quantum mechanics. Further, we show that given any potential with at least one bound state, one can very easily construct one continuous parameter family of potentials having same eigenvalues and s-matrix. The supersymmetry inspired WKB approximation (SWKB) is also discussed and it is shown that unlike the usual WKB, the lowest order SWKB approximation is exact for the shape-invariant potentials and further, this approximation is not only exact for large quantum numbers but by construction, it is also exact for the ground state. Finally, we also construct new exactly solvable periodic potentials by using the machinery of supersymmetric quantum mechanics.
Breaking scale invariance with quantum gravity
Amendola, L.; Occhionero, F.; Saez, D. )
1990-02-01
It is argued that the closed, nonsingular cosmological model of Starobinsky (1980) allows a self-consistent, albeit schematic, description of the history of the universe from its beginning to now and even provides, given a suitable scenario, the possibility of breaking in a natural way the scale invariance of the perturbation spectrum. A double inflationary scenario is specified in detail to explain the anomalous power observed in the large-scale astronomical structures by assuming that the first inflation is driven by quantum gravity and that the second inflation is driven by the usual inflation. An example of a power spectrum where the scale invariance has been broken and extra power is put above 10 Mpc is presented. The model is now compatible with the observed upper limits from the large angular scale isotropy of the microwave background. 52 refs.
NASA Astrophysics Data System (ADS)
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.
2013-01-01
-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390
Bulk-Boundary Duality, Gauge Invariance, and Quantum Error Corrections
NASA Astrophysics Data System (ADS)
Mintun, Eric; Polchinski, Joseph; Rosenhaus, Vladimir
2015-10-01
Recently, Almheiri, Dong, and Harlow have argued that the localization of bulk information in a boundary dual should be understood in terms of quantum error correction. We show that this structure appears naturally when the gauge invariance of the boundary theory is incorporated. This provides a new understanding of the nonuniqueness of the bulk fields (precursors). It suggests a close connection between gauge invariance and the emergence of spacetime.
Gate fidelity fluctuations and quantum process invariants
Magesan, Easwar; Emerson, Joseph; Blume-Kohout, Robin
2011-07-15
We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.
Diffeomorphism invariant cosmological symmetry in full quantum gravity
NASA Astrophysics Data System (ADS)
Beetle, Christopher; Engle, Jonathan S.; Hogan, Matthew E.; Mendonça, Phillip
2016-06-01
This paper summarizes a new proposal to define rigorously a sector of loop quantum gravity at the diffeomorphism invariant level corresponding to homogeneous and isotropic cosmologies, thereby enabling a detailed comparison of results in loop quantum gravity and loop quantum cosmology. The key technical steps we have completed are (a) to formulate conditions for homogeneity and isotropy in a diffeomorphism covariant way on the classical phase-space of general relativity, and (b) to translate these conditions consistently using well-understood techniques to loop quantum gravity. Some additional steps, such as constructing a specific embedding of the Hilbert space of loop quantum cosmology into a space of (distributional) states in the full theory, remain incomplete. However, we also describe, as a proof of concept, a complete analysis of an analogous embedding of homogeneous and isotropic loop quantum cosmology into the quantum Bianchi I model of Ashtekar and Wilson-Ewing. Details will appear in a pair of forthcoming papers.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...
PT quantum mechanics - Recent results
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2012-09-01
Most quantum physicists believe that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under matrix transposition and complex conjugation) to be sure that the energy eigenvalues are real and that time evolution is unitary. However, the non-Dirac-hermitian Hamiltonian H = p2+ix3 has a real positive discrete spectrum and generates unitary time evolution and defines a fully consistent and physical quantum theory. Evidently, Dirac Hermiticity is too restrictive. While H = p2+ix3 is not Dirac Hermitian, it is PT symmetric (invariant under combined space reflection P and time reversal T). Another PT-symmetric Hamiltonian whose energy levels are real, positive and discrete is H = p2-x4, which contains an upside-down potential. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics and quantum field theory are extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years some of these properties have been verified in laboratory experiments. Here, we first discuss PT-symmetric Hamiltonians at a simple intuitive level and explain why the energy levels of such Hamiltonians may be real, positive, and discrete. Second, we describe a recent experiment in which the PT phase transition was observed. Third, we briefly mention that PT-symmetric theories can be useful at a fundamental level. While the double-scaling limit of an O(N)-symmetric gφ4 quantum field theory appears to be inconsistent because the critical value of g is negative, this limit is in fact not inconsistent because the critical theory is PT symmetric.
Invariant Connections in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Hanusch, Maximilian
2016-04-01
Given a group {G}, and an abelian {C^*}-algebra {A}, the antihomomorphisms {Θ\\colon G→ {Aut}(A)} are in one-to-one with those left actions {Φ\\colon G× {Spec}(A)→ {Spec}(A)} whose translation maps {Φ_g} are continuous; whereby continuities of {Θ} and {Φ} turn out to be equivalent if {A} is unital. In particular, a left action {φ\\colon G × X→ X} can be uniquely extended to the spectrum of a {C^*}-subalgebra {A} of the bounded functions on {X} if {φ_g^*(A)subseteq A} holds for each {gin G}. In the present paper, we apply this to the framework of loop quantum gravity. We show that, on the level of the configuration spaces, quantization and reduction in general do not commute, i.e., that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized configuration space of the reduced classical theory. Here, the quantum-reduced space has the advantage to be completely characterized by a simple algebraic relation, whereby the quantized reduced classical space is usually hard to compute.
Manifestly scale-invariant regularization and quantum effective operators
NASA Astrophysics Data System (ADS)
Ghilencea, D. M.
2016-05-01
Scale-invariant theories are often used to address the hierarchy problem. However the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which breaks this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale-invariant regularization in (classical) scale-invariant theories. We use a dilaton-dependent subtraction function μ (σ ) which, after spontaneous breaking of the scale symmetry, generates the usual dimensional regularization subtraction scale μ (⟨σ ⟩) . One consequence is that "evanescent" interactions generated by scale invariance of the action in d =4 -2 ɛ (but vanishing in d =4 ) give rise to new, finite quantum corrections. We find a (finite) correction Δ U (ϕ ,σ ) to the one-loop scalar potential for ϕ and σ , beyond the Coleman-Weinberg term. Δ U is due to an evanescent correction (∝ɛ ) to the field-dependent masses (of the states in the loop) which multiplies the pole (∝1 /ɛ ) of the momentum integral to give a finite quantum result. Δ U contains a nonpolynomial operator ˜ϕ6/σ2 of known coefficient and is independent of the subtraction dimensionless parameter. A more general μ (ϕ ,σ ) is ruled out since, in their classical decoupling limit, the visible sector (of the Higgs ϕ ) and hidden sector (dilaton σ ) still interact at the quantum level; thus, the subtraction function must depend on the dilaton only, μ ˜σ . The method is useful in models where preserving scale symmetry at quantum level is important.
Breaking of de Sitter invariance in quantum cosmological gravity
NASA Astrophysics Data System (ADS)
Kleppe, Gary
1993-11-01
The effects of de Sitter transformations on linearized quantum gravity in a de Sitter space background are worked out explicitly. It is shown that the linearized solutions are closed under the transformations of the de Sitter group. To do this it is necessary to use a compensating gauge transformation to return the transformed solution to the original gauge. It is then shown that the form of the graviton propagator in this background, as found by Tsamis and Woodard, is not de Sitter invariant, and no suitable invariant propagator exists, even when gauge transformations which compensate for the noninvariant gauge choice are introduced. This leads us to conclude that the vacuum is not invariant. Address after 1 August 1993: Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA.
Lorentz invariance and quantum gravity: an additional fine-tuning problem?
Collins, John; Perez, Alejandro; Sudarsky, Daniel; Urrutia, Luis; Vucetich, Héctor
2004-11-01
Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual structure of space time at around the Planck length, 1.6x10(-35) m, with possible violations of Lorentz invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high precision searches for Lorentz violation. Here, we explain that combining known elementary particle interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level, some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory are unnaturally strongly fine tuned. Therefore an important task is not just the improvement of the precision of searches for violations of Lorentz invariance, but also the search for theoretical mechanisms for automatically preserving Lorentz invariance.
Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm
NASA Astrophysics Data System (ADS)
Dimofte, Tudor Dan
In this thesis, we consider two main subjects: the refined BPS invariants of Calabi-Yau threefolds, and three-dimensional Chern-Simons theory with complex gauge group. We study the wall-crossing behavior of refined BPS invariants using a variety of techniques, including a four-dimensional supergravity analysis, statistical-mechanical melting crystal models, and relations to new mathematical invariants. We conjecture an equivalence between refined invariants and the motivic Donaldson-Thomas invariants of Kontsevich and Soibelman. We then consider perturbative Chern-Simons theory with complex gauge group, combining traditional and novel approaches to the theory (including a new state integral model) to obtain exact results for perturbative partition functions. We thus obtain a new class of topological invariants, which are not of finite type, defined in the background of genuinely nonabelian flat connections. The two main topics, BPS invariants and Chern-Simons theory, are connected at both a formal and (we believe) deeper conceptual level by the striking central role that the quantum dilogarithm function plays in each.
Principles of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Quantum Gravity and Lorentz Invariance Violation in the Standard Model
Alfaro, Jorge
2005-06-10
The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter {alpha} that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be vertical bar {alpha} vertical bar <{approx}10{sup -22}-10{sup -23}.
Quantum gravity and Lorentz invariance violation in the standard model.
Alfaro, Jorge
2005-06-10
The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter alpha that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be |alpha|< approximately 10(-22)-10(-23).
Covariant effective action for a Galilean invariant quantum Hall system
NASA Astrophysics Data System (ADS)
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2016-09-01
We construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son's improvement terms to arbitrary order in m.
Matrix product states for su(2) invariant quantum spin chains
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas
2016-08-01
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
Facing quantum mechanical reality.
Rohrlich, F
1983-09-23
Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.
A Quantum Simulation on the Emergence of Lorentz Invariance
NASA Astrophysics Data System (ADS)
Zueco, David; Quijandría, Fernando; Blas, Diego; Pujòlas, Oriol
2014-03-01
Lorentz invariance (LI) is one of the best tested symmetries of Nature. It is natural to think that LI is a fundamental property. However, this does not need to be so. In fact, it could be an emergent symmetry in the low energy world. One motivation on Lorentz-violating theories may come from consistent non-relativistic models of gravity, where LI appears at low energies. The basic approach is by taking two interacting quantum fields. The bare (uncoupled fields) have different light velocities, say v1 and v2. The coupling tends to ``synchronize'' those velocities providing a common light velocity: the LI emergence. So far, only perturbative calculations are available. In this perturbative regime the emergence of LI is too slow. Therefore it is mandatory going beyond perturbative calculations. In this talk I will discuss that such models for emergent Lorentz Invariance can be simulated in an analog quantum simulator. In 1+1 dimensions two transmission lines coupled trough Josephson Junctions do the job. We show that the emergence can be checked by measuring photon correlations. Everything within the state of the art in circuit QED. We show that our proposal can provide a definite answer about the LI emergence hypothesis in the strong coupling regime.
Lewis-Riesenfeld invariants and transitionless quantum driving
Chen Xi; Torrontegui, E.; Muga, J. G.
2011-06-15
Different methods have been recently put forward and implemented experimentally to inverse engineer the time-dependent Hamiltonian of a quantum system and accelerate slow adiabatic processes via nonadiabatic shortcuts. In the ''transitionless quantum driving'' proposed by Berry, shortcut Hamiltonians are designed so that the system follows exactly, in an arbitrarily short time, the approximate adiabatic path defined by a reference Hamiltonian. A different approach is based on first designing a Lewis-Riesenfeld invariant to carry the eigenstates of a Hamiltonian from specified initial to final configurations, again in an arbitrary time, and then constructing from the invariant the transient Hamiltonian that connects these boundary configurations. We show that the two approaches, apparently quite different in form and so far in results, are, in fact, strongly related and potentially equivalent, so that the inverse-engineering operations in one of them can be reinterpreted and understood in terms of the concepts and operations of the other one. We study, as explicit examples, expansions of time-dependent harmonic traps and the state preparation of two-level systems.
Free-space quantum key distribution by rotation-invariant twisted photons.
Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo
2014-08-01
"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.
NASA Astrophysics Data System (ADS)
Kapustin, Anton
2013-06-01
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Kapustin, Anton
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Axiomatics of Galileo-invariant quantum field theory
Dadashev, L.A.
1986-03-01
The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms.
Time in classical and in quantum mechanics
NASA Astrophysics Data System (ADS)
Elçi, A.
2010-07-01
This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.
Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
Alagic, Gorjan; Reichardt, Ben W.; Jordan, Stephen P.; Koenig, Robert
2010-10-15
The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-dimensional topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem for quantum computation. This establishes a relation between the task of distinguishing nonhomeomorphic 3-manifolds and the power of a general quantum computer.
Comment on "Galilean invariance at quantum Hall edge"
NASA Astrophysics Data System (ADS)
Höller, J.; Read, N.
2016-05-01
In a recent paper by S. Moroz, C. Hoyos, and L. Radzihovsky [Phys. Rev. B 91, 195409 (2015), 10.1103/PhysRevB.91.195409], it is claimed that the conductivity at low frequency ω and small wave vector q along the edge of a quantum Hall system (that possesses Galilean invariance along the edge) contains a universal contribution of order q2 that is determined by the orbital spin per particle in the bulk of the system, or alternatively by the shift of the ground state. (These quantities are known to be related to the Hall viscosity of the bulk.) In this Comment we calculate the real part of the conductivity, integrated over ω , in this regime for the edge of a system of noninteracting electrons filling either the lowest, or the lowest ν (ν =1 ,2 ,... ), Landau level(s), and show that the q2 term is nonuniversal and depends on details of the confining potential at the edge. In the special case of a linear potential, a form similar to the prediction is obtained; it is possible that this corrected form of the prediction may also hold for fractional quantum Hall states in systems with special forms of interactions between electrons.
NASA Astrophysics Data System (ADS)
Błaszak, Maciej; Domański, Ziemowit
2012-02-01
This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic
Amplitude and phase representation of quantum invariants for the time-dependent harmonic oscillator
Fernandez Guasti, M.; Moya-Cessa, H.
2003-06-01
The correspondence between classical and quantum invariants is established. The Ermakov-Lewis quantum invariant of the time-dependent harmonic oscillator is translated from the coordinate and momentum operators into amplitude and phase operators. In doing so, Turski's phase operator as well as Susskind-Glogower operators are generalized to the time-dependent harmonic-oscillator case. A quantum derivation of the Manley-Rowe relations is shown as an example.
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
NASA Astrophysics Data System (ADS)
Blencowe, Miles
The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF
The quantum mechanics of cosmology.
NASA Astrophysics Data System (ADS)
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Scale-Invariant Hydrodynamics and Quantum Viscosity in Fermi Gases
NASA Astrophysics Data System (ADS)
Thomas, John
2015-05-01
An optically-trapped gas of spin 1/2-up and spin 1/2-down 6Li atoms, tuned near a collisional (Feshbach) resonance, provides a unique paradigm for testing predictions that cross interdisciplinary boundaries, from high temperature superconductors to nuclear matter. At resonance, the dilute atomic cloud becomes the most strongly interacting, non-relativistic fluid known: Shock waves are produced when two clouds collide. We observe scale-invariant hydrodynamic expansion of a resonantly interacting gas and determine the quantum shear viscosity η = α ℏn , with n the density, as a function of interaction strength and temperature, from nearly the ground state through the superfluid phase transition. We extract the local shear viscosity coefficient α from cloud-averaged data, using iterative methods borrowed from image processing, and observe previously hidden features, which are compared to recent predictions. In collaboration with Ethan Elliott and James Joseph, Physics Department, North Carolina State University. Supported by NSF, DOE, ARO, AFOSR.
NASA Astrophysics Data System (ADS)
Wu, Yue-Liang
2016-01-01
Treating the gravitational force on the same footing as the electroweak and strong forces, we present a quantum field theory of gravity based on spin and scaling gauge symmetries. A biframe spacetime is initiated to describe such a quantum gravity theory. The gravifield sided on both locally flat noncoordinate spacetime and globally flat Minkowski spacetime is an essential ingredient for gauging global spin and scaling symmetries. The locally flat gravifield spacetime spanned by the gravifield is associated with a noncommutative geometry characterized by a gauge-type field strength of the gravifield. A coordinate-independent and gauge-invariant action for the quantum gravity is built in the gravifield basis. In the coordinate basis, we derive equations of motion for all quantum fields including the gravitational effect and obtain basic conservation laws for all symmetries. The equation of motion for the gravifield tensor is deduced in connection directly with the total energy-momentum tensor. When the spin and scaling gauge symmetries are broken down to a background structure that possesses the global Lorentz and scaling symmetries, we obtain exact solutions by solving equations of motion for the background fields in a unitary basis. The massless graviton and massive spinon result as physical quantum degrees of freedom. The resulting Lorentz-invariant and conformally flat background gravifield spacetime is characterized by a cosmic vector with a nonzero cosmological mass scale. The evolving Universe is, in general, not isotropic in terms of conformal proper time. The conformal size of the Universe becomes singular at the cosmological horizon and turns out to be inflationary in light of cosmic proper time. A mechanism for quantum scalinon inflation is demonstrated such that it is the quantum effect that causes the breaking of global scaling symmetry and generates the inflation of the early Universe, which is ended when the evolving vacuum expectation value of the
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra
Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )
1992-12-10
In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.
Invariants and the evolution of nonstationary quantum system
Markov, M.A.
1989-01-01
This book presents a detailed review of some new results in quantum mechanics and statistics obtained during the last decade and a half. The main point of principle on which the studies in the paper are based is the concept of time-dependent integrals of motion of a quantum system (in the Schroedinger picture). This concepts is significant for the problem of supersensitive measurements, e.g., for gravitational wave experiments.A new concept of correlated coherent states of a harmonic oscillator is introduced in connection with the generalized version of this relation. One paper is devoted mainly to a detailed investigation of this concept, as well as its contact with so-called squeezed states. The concepts of new classes of states of physical quantized fields (correlated light and sound) are also discussed.
Gauge invariant description of heavy quark bound states in quantum chromodynamics
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A/sub 0/ = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577
Błaszak, Maciej Domański, Ziemowit
2013-12-15
In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.
Sequential mechanisms underlying concentration invariance in biological olfaction
Cleland, Thomas A.; Chen, Szu-Yu T.; Hozer, Katarzyna W.; Ukatu, Hope N.; Wong, Kevin J.; Zheng, Fangfei
2011-01-01
Concentration invariance—the capacity to recognize a given odorant (analyte) across a range of concentrations—is an unusually difficult problem in the olfactory modality. Nevertheless, humans and other animals are able to recognize known odors across substantial concentration ranges, and this concentration invariance is a highly desirable property for artificial systems as well. Several properties of olfactory systems have been proposed to contribute to concentration invariance, but none of these alone can plausibly achieve full concentration invariance. We here propose that the mammalian olfactory system uses at least six computational mechanisms in series to reduce the concentration-dependent variance in odor representations to a level at which different concentrations of odors evoke reasonably similar representations, while preserving variance arising from differences in odor quality. We suggest that the residual variance then is treated like any other source of stimulus variance, and categorized appropriately into “odors” via perceptual learning. We further show that naïve mice respond to different concentrations of an odorant just as if they were differences in quality, suggesting that, prior to odor categorization, the learning-independent compensatory mechanisms are limited in their capacity to achieve concentration invariance. PMID:22287949
Emergence of stringlike physics from Lorentz invariance in loop quantum gravity
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; Pullin, Jorge
2014-11-01
We consider a quantum field theory on a spherically symmetric quantum spacetime described by loop quantum gravity. The spin network description of spacetime in such a theory leads to equations for the quantum field that are discrete. We show that to avoid significant violations of Lorentz invariance, one needs to consider specific nonlocal interactions in the quantum field theory similar to those that appear in string theory. This is the first sign that loop quantum gravity places restrictions on the type of matter considered, and points to a connection with string theory physics.
NASA Astrophysics Data System (ADS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank
1986-06-01
Beginning students of quantum mechanics frequently experience difficulties separating essential underlying principles from the specific examples to which these principles have been historically applied. Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.
Feynman's simple quantum mechanics
NASA Astrophysics Data System (ADS)
Taylor, Edwin F.
1997-03-01
This sample class presents an alternative to the conventional introduction to quantum mechanics and describes its current use in a credit course. This alternative introduction rests on theory presented in professional and popular writings by Richard Feynman. Feynman showed that Nature gives a simple command to the electron: "Explore all paths." All of nonrelativistic quantum mechanics, among other fundamental results, comes from this command. With a desktop computer the student points and clicks to tell a modeled electron which paths to follow. The computer then shows the results, which embody the elemental strangeness and paradoxical behaviors of the world of the very small. Feynman's approach requires few equations and provides a largely non-mathematical introduction to the wave function of conventional quantum mechanics. Draft software and materials already used for two semesters in an e-mail computer conference credit university course show that Feynman's approach works well with a variety of students. The sample class explores computer and written material and describes the next steps in its development.
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Supersymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
David, J.; Fernández, C.
2010-10-01
Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Pöschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.
Classical Mechanics as Nonlinear Quantum Mechanics
Nikolic, Hrvoje
2007-12-03
All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics.
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Many-Body Generalization of the Z2 Topological Invariant for the Quantum Spin Hall Effect
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik; Ryu, Shinsei
2008-05-01
We propose a many-body generalization of the Z2 topological invariant for the quantum spin Hall insulator, which does not rely on single-particle band structures. The invariant is derived as a topological obstruction that distinguishes topologically distinct many-body ground states on a torus. It is also expressed as a Wilson loop of the SU(2) Berry gauge field, which is quantized due to time-reversal symmetry.
NASA Astrophysics Data System (ADS)
Jones, Robert
2011-03-01
I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.
The Möbius symmetry of quantum mechanics
NASA Astrophysics Data System (ADS)
Faraggi, Alon E.; Matone, Marco
2015-07-01
The equivalence postulate approach to quantum mechanics aims to formulate quantum mechanics from a fundamental geometrical principle. Underlying the formulation there exists a basic cocycle condition which is invariant under D-dimensional Mobius transformations with respect to the Euclidean or Minkowski metrics. The invariance under global Mobius transformations implies that spatial space is compact. Furthermore, it implies energy quantisation and undefinability of quantum trajectories without assuming any prior interpretation of the wave function. The approach may be viewed as conventional quantum mechanics with the caveat that spatial space is compact, as dictated by the Möbius symmetry, with the classical limit corresponding to the decompactification limit. Correspondingly, there exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme. Evidence for the compactness of space may exist in the cosmic microwave background radiation.
Evidence for color and luminance invariance of global form mechanisms.
Rentzeperis, Ilias; Kiper, Daniel C
2010-01-01
Human visual cortex contains mechanisms that pool local orientation information over large areas of visual space to support percepts of global form. Initial studies concluded that some of these mechanisms are cue invariant, in that they yield form percepts irrespective of whether the visual signals contain luminance or chromatic information. Later studies reported that these mechanisms are chromatically selective, albeit with a broad tuning in color space. We used Glass patterns and the phenomenon of adaptation to determine whether Glass pattern perception is mediated by mechanisms that are color and/or luminance selective, or not. Subjects were adapted to either a radial or concentric Glass pattern of a given color or luminance polarity. We measured the effect of adaptation on subsequent detection of Glass patterns with the same or different visual attributes. Our results show that adapting to a concentric or radial pattern significantly elevates threshold for the subsequent detection of patterns of the same form, irrespective of their color or luminance polarity, but that adaptation to luminance leads to higher threshold elevations than adaptation to color. We conclude that Glass pattern perception is mediated by perceptual mechanisms that are color invariant but not totally insensitive to the difference between color and luminance information.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
U(N) invariant dynamics for a simplified loop quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2011-09-01
The implementation of the dynamics in Loop Quantum Gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We use the recently introduced U(N) framework in order to construct SU(2) invariant operators and define a global U(N) symmetry that will select the homogeneous/isotropic states. Finally, we propose a Hamiltonian operator invariant under area-preserving deformations of the boundary surface and we identify possible connections of this model with Loop Quantum Cosmology.
Decoherence in quantum mechanics and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Conformal dilaton gravity: Classical noninvariance gives rise to quantum invariance
NASA Astrophysics Data System (ADS)
Álvarez, Enrique; González-Martín, Sergio; Martín, Carmelo P.
2016-03-01
When quantizing conformal dilaton gravity, there is a conformal anomaly which starts at two-loop order. This anomaly stems from evanescent operators on the divergent parts of the effective action. The general form of the finite counterterm, which is necessary in order to insure cancellation of the Weyl anomaly to every order in perturbation theory, has been determined using only conformal invariance. Those finite counterterms do not have any inverse power of any mass scale in front of them (precisely because of conformal invariance), and then they are not negligible in the low-energy deep infrared limit. The general form of the ensuing modifications to the scalar field equation of motion has been determined, and some physical consequences have been extracted.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Probability Interpretation of Quantum Mechanics.
ERIC Educational Resources Information Center
Newton, Roger G.
1980-01-01
This paper draws attention to the frequency meaning of the probability concept and its implications for quantum mechanics. It emphasizes that the very meaning of probability implies the ensemble interpretation of both pure and mixed states. As a result some of the "paradoxical" aspects of quantum mechanics lose their counterintuitive character.…
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Two-Dimensional Quantum Hamiltonians with Shape Invariance Symmetry
NASA Astrophysics Data System (ADS)
Panahi, H.
2008-10-01
It is shown that the Casimir operator associated with the U(1) Lie derivative defined on the S 2= SU(2)/ U(1) base manifold, can be interpreted as Hamiltonians of a pair of scalar particle and scalar anti-particle with opposite charges over the S 2 manifold in the presence of a magnetic monopole located at its origin and an external electric field. Using the SU(2) representation, the spectra of these Hamiltonians have been obtained. It is also proved that these Hamiltonians are isospectral and having the shape invariance symmetry, i.e. they are supersymmetric partner of each other. Also the Dirac’s quantization of magnetic charge comes very naturally from the finiteness of the SU(2) representation.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
NASA Astrophysics Data System (ADS)
Singh, Parampreet
2012-05-01
We investigate the effects of the underlying quantum geometry in loop quantum cosmology on spacetime curvature invariants and the extendibility of geodesics in the Bianchi-I model for matter with a vanishing anisotropic stress. Using the effective Hamiltonian approach, we find that even though quantum geometric effects bound the energy density and expansion and shear scalars, divergences of curvature invariants are potentially possible under special conditions. However, as in the isotropic models in LQC, these do not necessarily imply a physical singularity. Analysis of geodesics and strength of such singular events, point towards a general resolution of all known types of strong singularities. We illustrate these results for the case of a perfect fluid with an arbitrary finite equation of state w>-1, and show that curvature invariants turn out to be bounded, leading to the absence of strong singularities. Unlike classical theory, geodesic evolution does not break down. We also discuss possible generalizations of sudden singularities which may arise at a nonvanishing volume, causing a divergence in curvature invariants. Such finite volume singularities are shown to be weak and harmless.
Chiral scale and conformal invariance in 2D quantum field theory.
Hofman, Diego M; Strominger, Andrew
2011-10-14
It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is still implied, while right translations are enhanced either to a right conformal symmetry or a left U(1) Kac-Moody symmetry.
Quantum Mechanics in Insulators
Aeppli, G.
2009-08-20
Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).
Emergent quantum mechanics without wavefunctions
NASA Astrophysics Data System (ADS)
Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.
2016-03-01
We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.
Quantum mechanics with coordinate dependent noncommutativity
Kupriyanov, V. G.
2013-11-15
Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
This paper is an exposition of the relationship between Witten's Chern-Simons functional integral and the theory of Vassiliev invariants of knots and links in three-dimensional space. We conceptualize the functional integral in terms of equivalence classes of functionals of gauge fields and we do not use measure theory. This approach makes it possible to discuss the mathematics intrinsic to the functional integral rigorously and without functional integration. Applications to loop quantum gravity are discussed.
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
2015-12-01
This paper is an exposition of the relationship between Witten’s Chern-Simons functional integral and the theory of Vassiliev invariants of knots and links in three-dimensional space. We conceptualize the functional integral in terms of equivalence classes of functionals of gauge fields and we do not use measure theory. This approach makes it possible to discuss the mathematics intrinsic to the functional integral rigorously and without functional integration. Applications to loop quantum gravity are discussed.
Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds
NASA Astrophysics Data System (ADS)
Zois, I. P.
2016-08-01
We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry.
Quantum Mechanics and Narratability
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Evidence for broken Galilean invariance at the quantum spin Hall edge
NASA Astrophysics Data System (ADS)
Geissler, Florian; Crépin, François; Trauzettel, Björn
2015-12-01
We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.
Self-Referential Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mitchell, Mark Kenneth
1993-01-01
A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for
Quantum mechanics of a generalised rigid body
NASA Astrophysics Data System (ADS)
Gripaios, Ben; Sutherland, Dave
2016-05-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Minkowski Space and Quantum Mechanics
NASA Astrophysics Data System (ADS)
O'Hara, Paul
A paradigm shift distinguishes general relativity from classical mechanics. In general relativity the energy-momentum tensor is the effective cause of the ontological space-time curvature and vice-versa, while in classical physics, the structure of space-time is treated as an accidental cause, serving only as a backdrop against which the laws of physics unfold. This split in turn is inherited by quantum mechanics, which is usually developed by changing classical (including special relativity) Hamiltonians into quantum wave equations.
Engineering SU(2) invariant spin models to mimic quantum dimer physics on the square lattice
NASA Astrophysics Data System (ADS)
Mambrini, M.; Capponi, S.; Alet, F.
2015-10-01
We consider the spin-1 /2 Hamiltonians proposed by Cano and Fendley [Phys. Rev. Lett. 105, 067205 (2010), 10.1103/PhysRevLett.105.067205], which were built to promote the well-known Rokshar-Kivelson (RK) point of quantum dimer models to spin-1 /2 wave functions. We first show that these models, besides the exact degeneracy of RK point, support gapless spinless excitations as well as a spin gap in the thermodynamic limit, signatures of an unusual spin liquid. We then extend the original construction to create a continuous family of SU(2) invariant spin models that reproduces the phase diagram of the quantum dimer model and, in particular, show explicit evidences for existence of columnar and staggered phases. The original models thus appear as multicritical points in an extended phase diagram. Our results are based on the use of a combination of numerical exact simulations and analytical mapping to effective generalized quantum dimer models.
Effective equations for the quantum pendulum from momentous quantum mechanics
Hernandez, Hector H.; Chacon-Acosta, Guillermo
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2011-01-01
High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.
Hermeneutics, Underdetermination and Quantum Mechanics.
ERIC Educational Resources Information Center
Cushing, James T.
1995-01-01
States that the existence of an essential underdetermination in the interpretation of the formalism of quantum mechanics, in spite of the widespread belief that logic and empirical considerations alone demand an indeterministic world view in physics, legitimizes the analysis of hermeneutics in science education. (LZ)
Anisotropic Quantum Hall Liquid States with No Translational Invariance in the Lowest Landau Level
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2016-05-01
Strongly correlated two-dimensional electron systems in a high perpendicular magnetic field have displayed remarkable new physics leading to the discovery of phenomena such as the integer and the fractional quantum Hall effect, to mention a few. Laughlin's theoretical model and the composite fermion's (CFs) approach provide a good description of the liquid electronic phases in the lowest Landau level (LLL) at relatively large filling factors. Other electronic phases at smaller filling factors of the LLL likely represent electronic Wigner solid states. It is believed that no other phases with intermediate order stabilize at the liquid-solid transition region. The current study deals with filling factor 1/6 in the LLL, a state which is very close to the critical filling factor where the liquid-solid transition takes place. With the assumption that the underlying signs of crystalline order are starting to appear at this transitional regime, we focus our attention and study the properties of a hybrid electronic phase that lacks translational invariance. To describe such a state, we consider a wave function that lies entirely in the LLL but, unlike a typical quantum Hall liquid phase, does not possess translational invariance. Although inspired by Laughlin's approach, the wave function we introduce differs from Laughlin's or CFs wave functions that describe translationally invariant uniform electronic phases. We perform quantum Monte Carlo simulations in a standard disk geometry to gain a better understanding of the properties of this wave function that may be considered as a precursor to the more conventional Wigner crystal phase.
Improving student understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2015-04-01
Learning quantum mechanics is challenging for many students. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Support from the National Science Foundation is gratefully acknowledged.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Zhu, Guangtian
2010-02-01
Learning quantum mechanics is challenging. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Supported by the National Science Foundation. )
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Jarzynski, Christopher; del Campo, Adolfo
2014-04-01
A shortcut to adiabaticity is a driving protocol that reproduces in a short time the same final state that would result from an adiabatic, infinitely slow process. A powerful technique to engineer such shortcuts relies on the use of auxiliary counterdiabatic fields. Determining the explicit form of the required fields has generally proven to be complicated. We present explicit counterdiabatic driving protocols for scale-invariant dynamical processes, which describe, for instance, expansion and transport. To this end, we use the formalism of generating functions and unify previous approaches independently developed in classical and quantum studies. The resulting framework is applied to the design of shortcuts to adiabaticity for a large class of classical and quantum, single-particle, nonlinear, and many-body systems.
Effects of Conformally Invariant Quantum Fields on Future Singularities - Part II
NASA Astrophysics Data System (ADS)
Lundeen, Andrew J.; Einhorn, John R.; Carlson, Eric D.; Anderson, Paul R.
2014-03-01
The effects of conformally invariant quantum fields on universes with future singularities are numerically investigated. It is assumed that these singularities are caused by dark energy in the form of a perfect fluid with a known equation of state. Comparison is made between the behaviors of the universe for a purely classical analysis, an order reduced quantum analysis, and a fully self-consistent semiclassical backreaction analysis. Numerical results for big rip (type I) and little rip cosmologies are presented. It is found, consistent with theory, that for one sign of the coefficient of □ R term in the trace of the semi-classical backreaction equations, the future singularity is always avoided, and the universe achieves a maximum size before recontracting, while for the other sign the universe is inevitably driven to expand forever, driving it to the singularity. Supported in part by the National Science Foundation under grant Nos. PHY-0856050 and PHY-1308325.
Foundations of a spacetime path formalism for relativistic quantum mechanics
Seidewitz, Ed
2006-11-15
Quantum field theory is the traditional solution to the problems inherent in melding quantum mechanics with special relativity. However, it has also long been known that an alternative first-quantized formulation can be given for relativistic quantum mechanics, based on the parametrized paths of particles in spacetime. Because time is treated similarly to the three space coordinates, rather than as an evolution parameter, such a spacetime approach has proved particularly useful in the study of quantum gravity and cosmology. This paper shows how a spacetime path formalism can be considered to arise naturally from the fundamental principles of the Born probability rule, superposition, and Poincare invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches in the literature, relating, in particular, 'off-shell' theories to traditional on-shell quantum field theory. It reproduces the results of perturbative quantum field theory for free and interacting particles, but provides intriguing possibilities for a natural program for regularization and renormalization. Further, an important consequence of the formalism is that a clear probabilistic interpretation can be maintained throughout, with a natural reduction to nonrelativistic quantum mechanics.
Three-space from quantum mechanics
Chew, G.F.; Stapp, H.P.
1988-08-01
We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically.
A many-body generalization of the Z2 topological invariant for the quantum spin Hall effect
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik; Ryu, Shinsei
2008-03-01
We propose a many-body generalization of the Z2 topological invariant for the quantum spin Hall insulator, which does not rely on single-particle band structures. The invariant is derived as a topological obstruction that distinguishes topologically distinct many-body ground states on a torus. It is also expressed as a Wilson-loop of the SU(2) Berry gauge field, which is quantized due to the time-reversal symmetry.
Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo
2014-03-01
All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).
Scale invariance vs conformal invariance
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2015-03-01
In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and
Faster than Hermitian Quantum Mechanics
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-26
Given an initial quantum state vertical bar {psi}{sub I}> and a final quantum state vertical bar {psi}{sub F}>, there exist Hamiltonians H under which vertical bar {psi}{sub I}> evolves into vertical bar {psi}{sub F}>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time {tau}? For Hermitian Hamiltonians {tau} has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, {tau} can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar {psi}{sub I}> to vertical bar {psi}{sub F}> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.
Facets of contextual realism in quantum mechanics
Pan, Alok Kumar; Home, Dipankar
2011-09-23
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics.
Wang, Guang-Lei; Ying, Lei; Lai, Ying-Cheng; Grebogi, Celso
2013-05-01
Quantum chaotic scattering is referred to as the study of quantum behaviors of open Hamiltonian systems that exhibit transient chaos in the classical limit. Traditionally a central issue in this field is how the elements of the scattering matrix or their functions fluctuate as a system parameter, e.g., the electron Fermi energy, is changed. A tacit hypothesis underlying previous works was that the underlying classical phase-space structure remains invariant as the parameter varies, so semiclassical theory can be used to explain various phenomena in quantum chaotic scattering. There are, however, experimental situations where the corresponding classical chaotic dynamics can change characteristically with some physical parameter. Multiple-terminal quantum dots are one such example where, when a magnetic field is present, the classical chaotic-scattering dynamics can change between being nonhyperbolic and being hyperbolic as the Fermi energy is changed continuously. For such systems semiclassical theory is inadequate to account for the characteristics of conductance fluctuations with the Fermi energy. To develop a general framework for quantum chaotic scattering associated with variable classical dynamics, we use multi-terminal graphene quantum-dot systems as a prototypical model. We find that significant conductance fluctuations occur with the Fermi energy even for fixed magnetic field strength, and the characteristics of the fluctuation patterns depend on the energy. We propose and validate that the statistical behaviors of the conductance-fluctuation patterns can be understood by the complex eigenvalue spectrum of the generalized, complex Hamiltonian of the system which includes self-energies resulted from the interactions between the device and the semi-infinite leads. As the Fermi energy is increased, complex eigenvalues with extremely smaller imaginary parts emerge, leading to sharp resonances in the conductance.
Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics
NASA Astrophysics Data System (ADS)
Wang, Guang-Lei; Ying, Lei; Lai, Ying-Cheng; Grebogi, Celso
2013-05-01
Quantum chaotic scattering is referred to as the study of quantum behaviors of open Hamiltonian systems that exhibit transient chaos in the classical limit. Traditionally a central issue in this field is how the elements of the scattering matrix or their functions fluctuate as a system parameter, e.g., the electron Fermi energy, is changed. A tacit hypothesis underlying previous works was that the underlying classical phase-space structure remains invariant as the parameter varies, so semiclassical theory can be used to explain various phenomena in quantum chaotic scattering. There are, however, experimental situations where the corresponding classical chaotic dynamics can change characteristically with some physical parameter. Multiple-terminal quantum dots are one such example where, when a magnetic field is present, the classical chaotic-scattering dynamics can change between being nonhyperbolic and being hyperbolic as the Fermi energy is changed continuously. For such systems semiclassical theory is inadequate to account for the characteristics of conductance fluctuations with the Fermi energy. To develop a general framework for quantum chaotic scattering associated with variable classical dynamics, we use multi-terminal graphene quantum-dot systems as a prototypical model. We find that significant conductance fluctuations occur with the Fermi energy even for fixed magnetic field strength, and the characteristics of the fluctuation patterns depend on the energy. We propose and validate that the statistical behaviors of the conductance-fluctuation patterns can be understood by the complex eigenvalue spectrum of the generalized, complex Hamiltonian of the system which includes self-energies resulted from the interactions between the device and the semi-infinite leads. As the Fermi energy is increased, complex eigenvalues with extremely smaller imaginary parts emerge, leading to sharp resonances in the conductance.
Treating time travel quantum mechanically
NASA Astrophysics Data System (ADS)
Allen, John-Mark A.
2014-10-01
The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.
Deformation of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan
2016-09-01
In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Teaching Quantum Mechanics on an Introductory Level.
ERIC Educational Resources Information Center
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Propagators in polymer quantum mechanics
Flores-González, Ernesto Morales-Técotl, Hugo A. Reyes, Juan D.
2013-09-15
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green’s function character. Furthermore they are also shown to reduce to the usual Schrödinger propagators in the limit of small parameter μ{sub 0}, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity. -- Highlights: •Formulas for propagators of free and particle in a box in polymer quantum mechanics. •Initial conditions, composition and Green’s function character is checked. •Propagators reduce to corresponding Schrödinger ones in an appropriately defined limit. •Results show overall consistency of the polymer framework. •For the particle in a box results are also verified using formula from method of images.
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Conducting fixed points for inhomogeneous quantum wires: A conformally invariant boundary theory
NASA Astrophysics Data System (ADS)
Sedlmayr, N.; Morath, D.; Sirker, J.; Eggert, S.; Affleck, I.
2014-01-01
Inhomogeneities and junctions in wires are natural sources of scattering, and hence resistance. A conducting fixed point usually requires an adiabatically smooth system. One notable exception is "healing," which has been predicted in systems with special symmetries, where the system is driven to the homogeneous fixed point. Here we present theoretical results for a different type of conducting fixed point which occurs in inhomogeneous wires with an abrupt jump in hopping and interaction strength. We show that it is always possible to tune the system to an unstable conducting fixed point which does not correspond to translational invariance. We analyze the temperature scaling of correlation functions at and near this fixed point and show that two distinct boundary exponents appear, which correspond to different effective Luttinger liquid parameters. Even though the system consists of two separate interacting parts, the fixed point is described by a single conformally invariant boundary theory. We present details of the general effective bosonic field theory including the mode expansion and the finite size spectrum. The results are confirmed by numerical quantum Monte Carlo simulations on spinless fermions. We predict characteristic experimental signatures of the local density of states near junctions.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, F. W.
2011-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.
High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2012-01-01
High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum mechanical light harvesting mechanisms in photosynthesis
NASA Astrophysics Data System (ADS)
Scholes, Gregory
2012-02-01
More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).
Quantum mechanics without state vectors
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2014-10-01
Because the state vectors of isolated systems can be changed in entangled states by processes in other isolated systems, keeping only the density matrix fixed, it is proposed to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying only on density matrices. The density matrix is defined here by the formula giving the mean values of physical quantities, which implies the same properties as the usual definition in terms of state vectors and their probabilities. This change in the description of physical states opens up a large variety of new ways that the density matrix may transform under various symmetries, different from the unitary transformations of ordinary quantum mechanics. Such new transformation properties have been explored before, but so far only for the symmetry of time translations into the future, treated as a semigroup. Here, new transformation properties are studied for general symmetry transformations forming groups, not just semigroups. Arguments that such symmetries should act on the density matrix as in ordinary quantum mechanics are presented, but all of these arguments are found to be inconclusive.
Bridging classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.
2016-10-01
Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.
Tips and Tools for Teaching Quantum Mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian; Singh, Chandralekha
2009-03-01
Learning quantum mechanics is challenging -- students usually struggle to master the basic concepts, even though they may perform well on solving quantitative problems. Our group is investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are designing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the tutorials employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties, share the material we have developed and evaluated to make the quantum mechanics class engaging and useful, and show ways to bridge the gap between quantitative and conceptual aspects of quantum mechanics.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
NASA Astrophysics Data System (ADS)
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems
NASA Astrophysics Data System (ADS)
Müller, Markus P.; Adlam, Emily; Masanes, Lluís; Wiebe, Nathan
2015-12-01
It has previously been suggested that small subsystems of closed quantum systems thermalize under some assumptions; however, this has been rigorously shown so far only for systems with very weak interaction between subsystems. In this work, we give rigorous analytic results on thermalization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary strength, in all cases where there is a unique equilibrium state at the corresponding temperature. We clarify the physical picture by showing that subsystems relax towards the reduction of the global Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and certain non-degeneracy conditions on the spectrumare satisfied.Moreover,we showthat almost all pure states with support on a small energy window are locally thermal in the sense of canonical typicality. We derive our results from a statement on equivalence of ensembles, generalizing earlier results by Lima, and give numerical and analytic finite size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is valid regardless of the integrability of the model.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
NASA Astrophysics Data System (ADS)
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
New type of N = 4 supersymmetric quantum mechanics
Ivanov, Evgeny; Sidorov, Stepan
2014-07-23
We overview a new type of supersymmetric quantum mechanics models based on the worldline realizations of the supergroup SU(2|1). Our main focus is on the models associated with the chiral multiplets (2,4,2). Considering two nonequivalent deformations of the standard N = 4, d = 1 superspace, we define the relevant chiral superfields and construct their SU(2|1) invariant actions. We give off- and on-shell descriptions of these models and perform their quantization. The basic peculiarities of such models and interrelations between them are briefly discussed.
Point form relativistic quantum mechanics and relativistic SU(6)
NASA Technical Reports Server (NTRS)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Quantum mechanics without potential function
Alhaidari, A. D.; Ismail, M. E. H.
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Shape invariant potentials in higher dimensions
Sandhya, R.; Sree Ranjani, S.; Kapoor, A.K.
2015-08-15
In this paper we investigate the shape invariance property of a potential in one dimension. We show that a simple ansatz allows us to reconstruct all the known shape invariant potentials in one dimension. This ansatz can be easily extended to arrive at a large class of new shape invariant potentials in arbitrary dimensions. A reformulation of the shape invariance property and possible generalizations are proposed. These may lead to an important extension of the shape invariance property to Hamiltonians that are related to standard potential problems via space time transformations, which are found useful in path integral formulation of quantum mechanics.
Kindergarten Quantum Mechanics: Lecture Notes
Coecke, Bob
2006-01-04
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.
Thermodynamic integration from classical to quantum mechanics
Habershon, Scott; Manolopoulos, David E.
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum Mechanics with a Little Less Mystery
ERIC Educational Resources Information Center
Cropper, William H.
1969-01-01
Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics
NASA Astrophysics Data System (ADS)
Holster, A. T.
2003-10-01
Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.
Classical and quantum mechanics of the nonrelativistic Snyder model
NASA Astrophysics Data System (ADS)
Mignemi, S.
2011-07-01
The Snyder model is an example of noncommutative spacetime admitting a fundamental length scale β and invariant under Lorentz transformations, that can be interpreted as a realization of the doubly special relativity axioms. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to three-dimensional Euclidean space. We discuss the classical and the quantum mechanics of a free particle in this framework, and show that they strongly depend on the sign of a coupling constant λ, appearing in the fundamental commutators and proportional to β2. For example, if λ is negative, momenta are bounded. On the contrary, for positive λ, positions and areas are quantized. We also give the exact solution of the harmonic oscillator equations both in the classical and the quantum case, and show that its frequency is energy dependent.
Black hole thermodynamics from near-horizon conformal quantum mechanics
Camblong, Horacio E.; Ordonez, Carlos R.
2005-05-15
The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.
Born rule in quantum and classical mechanics
Brumer, Paul; Gong Jiangbin
2006-05-15
Considerable effort has been devoted to deriving the Born rule [i.e., that {psi}(x){sup 2}dx is the probability of finding a system, described by {psi}, between x and x+dx] in quantum mechanics. Here we show that the Born rule is not solely quantum mechanical; rather, it arises naturally in the Hilbert-space formulation of classical mechanics as well. These results provide insights into the nature of the Born rule, and impact on its understanding in the framework of quantum mechanics.
Quantum Mechanical Methods for Enzyme Kinetics
NASA Astrophysics Data System (ADS)
Gao, Jiali; Truhlar, Donald G.
2002-10-01
This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational motions quantum mechanically, either in an instantaneous harmonic approximation, or by path integrals, or by a three-dimensional wave function coupled to classical nuclear motion; (c) incorporation of multidimensional tunneling approximations into reaction rate calculations.
Causal structure in categorical quantum mechanics
NASA Astrophysics Data System (ADS)
Lal, Raymond Ashwin
Categorical quantum mechanics is a way of formalising the structural features of quantum theory using category theory. It uses compound systems as the primitive notion, which is formalised by using symmetric monoidal categories. This leads to an elegant formalism for describing quantum protocols such as quantum teleportation. In particular, categorical quantum mechanics provides a graphical calculus that exposes the information flow of such protocols in an intuitive way. However, the graphical calculus also reveals surprising features of these protocols; for example, in the quantum teleportation protocol, information appears to flow `backwards-in-time'. This leads to question of how causal structure can be described within categorical quantum mechanics, and how this might lead to insight regarding the structural compatibility between quantum theory and relativity. This thesis is concerned with the project of formalising causal structure in categorical quantum mechanics. We begin by studying an abstract view of Bell-type experiments, as described by `no-signalling boxes', and we show that under time-reversal no-signalling boxes generically become signalling. This conflicts with the underlying symmetry of relativistic causal structure. This leads us to consider the framework of categorical quantum mechanics from the perspective of relativistic causal structure. We derive the properties that a symmetric monoidal category must satisfy in order to describe systems in such a background causal structure. We use these properties to define a new type of category, and this provides a formal framework for describing protocols in spacetime. We explore this new structure, showing how it leads to an understanding of the counter-intuitive information flow of protocols in categorical quantum mechanics. We then find that the formal properties of our new structure are naturally related to axioms for reconstructing quantum theory, and we show how a reconstruction scheme based on
Kendal, Wayne S
2007-03-21
The local density of gene structures and single nucleotide polymorphisms (SNPs) along human chromosomes appears inhomogeneous. In chromosome 1, the density patterns from both these elements are shown here to exhibit similar scale invariant clustering, as well as long-ranged and scale invariant auto- and cross-correlations. The local densities of these elements sites can be accurately represented by the scale invariant exponential dispersion models, a group of stochastic models that act as limiting distributions for a wide range of generalized linear models. The scale invariant Poisson-gamma (PG) distribution is the most applicable of these models, since it describes the above findings and it lends itself to a stochastic mechanism for the accumulation of segmental chromosomal changes. This PG model describes the summation of neutral chromosomal mutations, deletions, rearrangements and recombinations, within chromosomal segments that are distinguished by their evolutionary genealogies. Scale invariance is a necessary property if such a description is to remain valid at different measurement scales. The observed density patterns, and proposed model, presumably represent the convergent summation of multiple stochastic processes within the evolutionary history of the chromosome. PMID:17137602
Strange Bedfellows: Quantum Mechanics and Data Mining
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Consecutive Measurements in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Glick, Jennifer R.; Adami, Christoph
The physics of quantum measurement still continues to puzzle with no resolution in sight between competing interpretations, in particular because no interpretation has so far produced predictions that would be falsifiable via experiment. Here we present an analysis of consecutive projective measurements performed on a quantum state using quantum information theory, where the entanglement between the quantum system and a measuring device is explicitly taken into account, and where the consecutive measurements increase the joint Hilbert space while the wavefunction of the joint system never collapses. Using this relative-state formalism we rederive well-known results for the pairwise correlation between any two measurement devices, but show that considering the joint as well as conditional entropy of three devices reveals a difference between the collapse and no-collapse pictures of quantum measurement that is experimentally testable. This research was funded by a Michigan State University Enrichment Fellowship.
NASA Astrophysics Data System (ADS)
Brizuela, David; Kiefer, Claus; Krämer, Manuel
2016-05-01
We present detailed calculations for quantum-gravitational corrections to the power spectra of gauge-invariant scalar and tensor perturbations during inflation. This is done by performing a semiclassical Born-Oppenheimer type of approximation to the Wheeler-DeWitt equation, from which we obtain a Schrödinger equation with quantum-gravitational correction terms. As a first step, we perform our calculation for a de Sitter universe and find that the correction terms lead to an enhancement of power on the largest scales.
Optimization of a relativistic quantum mechanical engine.
Peña, Francisco J; Ferré, Michel; Orellana, P A; Rojas, René G; Vargas, P
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Optimization of a relativistic quantum mechanical engine
NASA Astrophysics Data System (ADS)
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Optimization of a relativistic quantum mechanical engine.
Peña, Francisco J; Ferré, Michel; Orellana, P A; Rojas, René G; Vargas, P
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power. PMID:27627248
Quantum mechanics: The subtle pull of emptiness
Seife, C.
1997-01-10
Classic physics dictates that the vacuum is devoid not only of matter but also of energy. But quantum mechanics often seems to depart from common sense. A paper in the Physical Review Letters describes the first successful measurement of the ultimate quantum free lunch: the Casimir force, a pressure exerted by empty space. This paper describes the background and the experiment.
Quantum mechanics and the generalized uncertainty principle
Bang, Jang Young; Berger, Micheal S.
2006-12-15
The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
A Reconstruction of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kochen, Simon
2015-05-01
We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann-Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Quantum mechanical stabilization of Minkowski signature wormholes
Visser, M.
1989-05-19
When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
Quantum mechanics: Thought experiments made real
NASA Astrophysics Data System (ADS)
Martín, Fernando
2015-02-01
Elegant experiments performed with X-rays and a double slit formed from molecular oxygen have finally made it possible to realize and test a long-standing and famous gedanken experiment in quantum mechanics.
Quantum mechanical streamlines. I - Square potential barrier
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.
On the geometrization of quantum mechanics
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2016-08-01
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.
NASA Astrophysics Data System (ADS)
Ran, Shi-Ju
2016-05-01
In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising
Relativistic Bohmian interpretation of quantum mechanics
Nikolic, Hrvoje
2006-06-27
I present a relativistic covariant version of the Bohmian interpretation of quantum mechanics and discuss the corresponding measurable predictions. The covariance is incoded in the fact that the nonlocal quantum potential transforms as a scalar, which is a consequence of the fact that the nonlocal wave function transforms as a scalar. The measurable predictions that can be obtained with the deterministic Bohmian interpretation cannot be obtained with the conventional interpretation simply because the conventional probabilistic interpretation does not work in the case of relativistic quantum mechanics.
Form factors in quantum integrable models with GL(3)-invariant R-matrix
NASA Astrophysics Data System (ADS)
Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.
2014-04-01
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Quantum Probability Theory and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fröhlich, Jürg; Schubnel, Baptiste
By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop "quantum probability theory" into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the "foundations of quantum mechanics", using mathematical tools from "quantum probability theory" (such as the theory of operator algebras).
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2016-01-01
Recently, a novel three-dimensional entangled state called tree-type entanglement, which is likely to have applications for improving quantum communication security, was prepared via adiabatic passage by Song et al. Here we propose two schemes for fast generating tree-type three-dimensional entanglement among three spatially separated atoms via shortcuts to adiabatic passage. With the help of quantum Zeno dynamics, two kinds of different but equivalent methods, Lewis-Riesenfeld invariants and transitionless quantum driving, are applied to construct shortcuts to adiabatic passage. The comparisons between the two methods are discussed. The strict numerical simulations show that the tree-type three-dimensional entangled states can be fast prepared with quite high fidelities and the two schemes are both robust against the variations in the parameters, atomic spontaneous emissions and the cavity-fiber photon leakages. PMID:27667583
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Krishna, S.; Shukla, A.; Malik, R.P.
2014-12-15
Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Optimal guidance law in quantum mechanics
Yang, Ciann-Dong Cheng, Lieh-Lieh
2013-11-15
Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
Quantum mechanics as applied mathematical statistics
Skala, L.; Cizek, J.; Kapsa, V.
2011-05-15
Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.
Coherent states in noncommutative quantum mechanics
Ben Geloun, J.; Scholtz, F. G.
2009-04-15
Gazeau-Klauder coherent states in noncommutative quantum mechanics are considered. We find that these states share similar properties to those of ordinary canonical coherent states in the sense that they saturate the related position uncertainty relation, obey a Poisson distribution, and possess a flat geometry. Using the natural isometry between the quantum Hilbert space of Hilbert-Schmidt operators and the tensor product of the classical configuration space and its dual, we reveal the inherent vector feature of these states.
NASA Astrophysics Data System (ADS)
Edery, Ariel; Graham, Noah
2015-05-01
We consider a massless conformally (Weyl) invariant classical action consisting of a magnetic monopole coupled to gravity in an anti-de Sitter background spacetime. We implement quantum corrections and this breaks the conformal (Weyl) symmetry, introduces a length scale via the process of renormalization and leads to the trace anomaly. We calculate the one-loop effective potential and determine from it the vacuum expectation value (VEV). Spontaneous symmetry breaking is radiatively induced a la Coleman-Weinberg and the scalar coupling constant is exchanged for the dimensionful VEV via dimensional transmutation. An important result is that the Ricci scalar of the AdS background spacetimeis determined entirely by the value of the VEV.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2011-03-01
Learning quantum mechanics is especially challenging, in part due to the abstract nature of the subject. We have been conducting investigations of the difficulties that students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) as well as tools for peer-instruction. The goal of QuILTs and peer-instruction tools is to actively engage students in the learning process and to help them build links between the formalism and the conceptual aspects of quantum physics without compromising the technical content. They focus on helping students integrate qualitative and quantitative understanding, confront and resolve their misconceptions and difficulties, and discriminate between concepts that are often confused. In this talk, I will give examples from my research in physics education of how students' prior knowledge relevant for quantum mechanics can be assessed, and how learning tools can be designed to help students develop a robust knowledge structure and critical thinking skills. Supported by the National Science Foundation.
Analytic structure of the S-matrix for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.
2015-06-15
The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.
Introduction to Nonequilibrium Statistical Mechanics with Quantum Field Theory
NASA Astrophysics Data System (ADS)
Kita, T.
2010-04-01
microscopically with quantum field theory, including fluctuations. We also discuss a derivation of the quantum transport equations for electrons in electromagnetic fields based on the gauge-invariant Wigner transformation so that the Lorentz force is reproduced naturally. As for (iii), the Gibbs entropy of equilibrium statistical mechanics suffers from the flaw that it does not evolve in time. We show here that a microscopic expression of nonequilibrium dynamical entropy can be derived from the quantum transport equations so as to be compatible with the law of increase in entropy as well as equilibrium statistical mechanics.
Hilbert space for quantum mechanics on superspace
NASA Astrophysics Data System (ADS)
Coulembier, K.; De Bie, H.
2011-06-01
In superspace a realization of {sl}_2 is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the {sl}_2-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.
Hilbert space for quantum mechanics on superspace
Coulembier, K.; De Bie, H.
2011-06-15
In superspace a realization of sl{sub 2} is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the sl{sub 2}-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.
Gauge transformations and conserved quantities in classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Berche, Bertrand; Malterre, Daniel; Medina, Ernesto
2016-08-01
We are taught that gauge transformations in classical and quantum mechanics do not change the physics of the problem. Nevertheless, here we discuss three broad scenarios where under gauge transformations: (i) conservation laws are not preserved in the usual manner; (ii) non-gauge-invariant quantities can be associated with physical observables; and (iii) there are changes in the physical boundary conditions of the wave function that render it non-single-valued. We give worked examples that illustrate these points, in contrast to general opinions from classic texts. We also give a historical perspective on the development of Abelian gauge theory in relation to our particular points. Our aim is to provide a discussion of these issues at the graduate level.
Superstrings and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-05-01
It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum mechanics are usually categorically rejected, because of Bell's powerful observations, and indeed these apply here also, but we do emphasize that the models we arrive at are super-deterministic, which is exactly the case where Bell expressed his doubts. Strong correlations at space-like separations could explain the apparent contradictions.
Multichannel framework for singular quantum mechanics
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.
Quantum Mechanics of Palladium Nanostructures
NASA Astrophysics Data System (ADS)
Hira, Ajit; McKeough, James; Ortiz, Bridget; Diaz, Juan
We continue our interest in the chemisorption of different atomic and molecular species on small clusters of metallic elements, by examining the interactions of H, H2, Li and O adsorbates with Pdn clusters (n = 2 thru 20). The study of clusters can reveal the effects of substrate geometry on the behavior of adsorbates. Transition-metal clusters are especially suited for the study of quantum size effects and for formation of metallic states, and are ideal candidates for catalytic processes. Hybrid ab initio methods of quantum chemistry (particularly the DFT-B3LYP model) are used to derive optimal geometries for the clusters of interest. We compare calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps for the clusters. Of particular interest are the comparisons of binding strengths at the three important types of sites: edge (E), hollow (H), on-top (T), threefold sites and fourfold sites. Effects of crystal symmetries corresponding to the bulk structures are investigated. The capacity of Pd clusters to adsorb H atoms will be compared to Ni clusters. Admixture with Pt atoms will also be considered.
Space and time from quantum mechanics
NASA Astrophysics Data System (ADS)
Chew, G. F.
1992-09-01
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
Space and time from quantum mechanics
Chew, G.F.
1992-09-16
Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.
An Axiomatic Basis for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cassinelli, Gianni; Lahti, Pekka
2016-10-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
An Axiomatic Basis for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Cassinelli, Gianni; Lahti, Pekka
2016-06-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
Two basic Uncertainty Relations in Quantum Mechanics
Angelow, Andrey
2011-04-07
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
Two basic Uncertainty Relations in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Angelow, Andrey
2011-04-01
In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schrödinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.
A proof of von Neumann's postulate in Quantum Mechanics
Conte, Elio
2010-05-04
A Clifford algebraic analysis is explained. It gives proof of von Neumann's postulate on quantum measurement. It is of basic significance to explain the problem of quantum wave function reduction in quantum mechanics.
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
NASA Astrophysics Data System (ADS)
Quesne, C.
2016-10-01
The quantum oscillator and Kepler-Coulomb problems in d-dimensional spaces with constant curvature are analyzed from several viewpoints. In a deformed supersymmetric framework, the corresponding nonlinear potentials are shown to exhibit a deformed shape invariance property. By using the point canonical transformation method, the two deformed Schrödinger equations are mapped onto conventional ones corresponding to some shape-invariant potentials, whose rational extensions are well known. The inverse point canonical transformations then provide some rational extensions of the oscillator and Kepler-Coulomb potentials in curved space. The oscillator on the sphere and the Kepler-Coulomb potential in a hyperbolic space are studied in detail and their extensions are proved to be consistent with already known ones in Euclidean space. The partnership between nonextended and extended potentials is interpreted in a deformed supersymmetric framework. Those extended potentials that are isospectral to some nonextended ones are shown to display deformed shape invariance, which in the Kepler-Coulomb case is enlarged by also translating the degree of the polynomial arising in the rational part denominator.
Statistical mechanics based on fractional classical and quantum mechanics
Korichi, Z.; Meftah, M. T.
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
A new introductory quantum mechanics curriculum
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2014-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.
Low, Stephen G.
2014-02-15
A symmetry in quantum mechanics is described by the projective representations of a Lie symmetry group that transforms between physical quantum states such that the square of the modulus of the states is invariant. The Heisenberg commutation relations that are fundamental to quantum mechanics must be valid in all of these physical states. This paper shows that the maximal quantum symmetry group, whose projective representations preserve the Heisenberg commutation relations in this manner, is the inhomogeneous symplectic group. The projective representations are equivalent to the unitary representations of the central extension of the inhomogeneous symplectic group. This centrally extended group is the semidirect product of the cover of the symplectic group and the Weyl-Heisenberg group. Its unitary irreducible representations are computed explicitly using the Mackey representation theorems for semidirect product groups.
Quantum mechanics for applied physics and engineering
NASA Astrophysics Data System (ADS)
Fromhold, A. T., Jr.
An introduction to quantum mechanics is provided, taking into account wave-particle duality, classical wave motion, the wave nature of particles the development of the time-dependent and time-independent Schroedinger wave equations, the wave-packet solutions and the uncertainty relation, and the expectation values for quantum-mechanical operators. Many-particle systems and quantum statistics are considered along with a free-electron model and the Boltzmann equation, the Wentzel-Kramers-Brillouin approximation and electron tunneling, perturbation theory, diffraction of valence electrons, and the nearly-free-electron model. The periodicity of crystalline solids is examined, and Bloch's theorem and energy bands for a periodic potential are discussed, giving attention to the periodic potential characteristic of the perfect monocrystal, the Hamiltonian for an electron in a periodic potential, and energy bands from the viewpoint of the one-electron atomic levels.
Consistent interpretations of quantum mechanics
Omnes, R. )
1992-04-01
Within the last decade, significant progress has been made towards a consistent and complete reformulation of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and complete if it provides precise predictions for all experiments). The main steps involved decoherence (the transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the evolution of quantum properties, a convenient logical structure for dealing with histories, and also some progress in semiclassical physics, which was made possible by new methods. The main outcome is a theory of phenomena, viz., the classically meaningful properties of a macroscopic system. It shows in particular how and when determinism is valid. This theory can be used to give a deductive form to measurement theory, which now covers some cases that were initially devised as counterexamples against the Copenhagen interpretation. These theories are described, together with their applications to some key experiments and some of their consequences concerning epistemology.
Max Born's Statistical Interpretation of Quantum Mechanics.
Pais, A
1982-12-17
In the summer of 1926, a statistical element was introduced for the first time in the fundamental laws of physics in two papers by Born. After a brief account of Born's earlier involvements with quantum physics, including his bringing the new mechanics to the United States, the motivation for and contents of Born's two papers are discussed. The reaction of his colleagues is described.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Quantum Mechanics Studies of Cellobiose Conformations
Technology Transfer Automated Retrieval System (TEKTRAN)
Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...
Quantum mechanics is compatible with realism
Burgos, M.E.
1987-08-01
A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism.
Conditions for nondegeneracy in supersymmetric quantum mechanics
Imbo, T.D.; Sukhatme, U.P.
1986-05-15
It is shown that the positive ''bosonic'' and ''fermionic'' bound-state spectra in spherically symmetric supersymmetric (SUSY) quantum mechanics are degenerate if and only if the superpotential W(r) satisfies deltaequivalentlim/sub r/..-->..0rVertical BarW(r)Vertical Bar> or =0.5. Also, if delta<0.5, then SUSY is broken.
Subjective and objective probabilities in quantum mechanics
Srednicki, Mark
2005-05-15
We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.
Comparison of Classical and Quantum Mechanical Uncertainties.
ERIC Educational Resources Information Center
Peslak, John, Jr.
1979-01-01
Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)
Time and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Pashby, Thomas
Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.
The Compton effect: Transition to quantum mechanics
NASA Astrophysics Data System (ADS)
Stuewer, R. H.
2000-11-01
The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.
Can quantum mechanics fool the cosmic censor?
Matsas, G. E. A.; Silva, A. R. R. da; Richartz, M.; Saa, A.; Vanzella, D. A. T.
2009-05-15
We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the 'cosmic censor' may be oblivious to processes involving quantum effects.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Quantum mechanical studies of carbon structures
Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.
2015-10-01
Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
A Primer on Resonances in Quantum Mechanics
Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara
2008-11-13
After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.
Quantum mechanics of two relativistic bound fermions
Giachetti, R.; Sorace, E.
2006-11-15
This presentation shows how a joint use of symbolic and numerical programming makes it possible the construction of new quantum mechanical models and the explicit solution for their spectra. Similar methods can be used for investigating quantum systems of different nature with the highest accuracy, as it can be required by the development of new technologies. In particular we deal with the quantization of two relativistic fermions of arbitrary masses interacting by means of a radial potential. The numerical results are given for the Coulomb interaction.
Quantum mechanical coherence, resonance, and mind
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
``the Human BRAIN & Fractal quantum mechanics''
NASA Astrophysics Data System (ADS)
Rosary-Oyong, Se, Glory
In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
Four types of (super)conformal mechanics: D-module reps and invariant actions
NASA Astrophysics Data System (ADS)
Holanda, N. L.; Toppan, F.
2014-06-01
(Super)conformal mechanics in one dimension is induced by parabolic or hyperbolic/trigonometric transformations, either homogeneous (for a scaling dimension λ) or inhomogeneous (at λ = 0, with ρ an inhomogeneity parameter). Four types of (super)conformal actions are thus obtained. With the exclusion of the homogeneous parabolic case, dimensional constants are present. Both the inhomogeneity and the insertion of λ generalize the construction of Papadopoulos [Class. Quant. Grav. 30, 075018 (2013); e-print arXiv:1210.1719]. Inhomogeneous D-module reps are presented for the d = 1 superconformal algebras osp(1|2), sl(2|1), B(1, 1), and A(1, 1). For centerless superVirasoro algebras, D-module reps are presented (in the homogeneous case for N=1,2,3,4; in the inhomogeneous case for N=1,2,3). The four types of d = 1 superconformal actions are derived for N=1,2,4 systems. When N=4, the homogeneously induced actions are D(2, 1; α)-invariant (α is critically linked to λ); the inhomogeneously induced actions are A(1, 1)-invariant.
Measurement and Fundamental Processes in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2015-07-01
In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.
Hidden variables and nonlocality in quantum mechanics
NASA Astrophysics Data System (ADS)
Hemmick, Douglas Lloyd
1997-05-01
Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call
How to Teach the Postulates of Quantum Mechanics without Enigma.
ERIC Educational Resources Information Center
Teixeira-Dias, Jose J. C.
1983-01-01
Shows how a statistical approach can help students accept postulates of quantum mechanics. The approach, which also makes students aware of the philosophical/humanistic implications of quantum mechanics, involves the following sequence: (1) important experiments in quantum mechanics; (2) conventional statistical interpretation; (3) mathematical…
Quantum Mechanics, Gravity, and the Multiverse
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2012-04-01
The discovery of accelerating expansion of the universe has led us to take the dramatic view that our universe may be one of the many universes in which low energy physical laws take different forms: the multiverse. I explain why/how this view is supported both observationally and theoretically, especially by string theory and eternal inflation. I then describe how quantum mechanics plays a crucial role in understanding the multiverse, even at the largest distance scales. The resulting picture leads to a revolutionary change of our view of spacetime and gravity, and completely unifies the paradigm of the eternally inflating multiverse with the many worlds interpretation of quantum mechanics. The picture also provides a solution to a long-standing problem in eternal inflation, called the measure problem, which I briefly describe.
Beyond relativity and quantum mechanics: space physics
NASA Astrophysics Data System (ADS)
Lindner, Henry H.
2011-09-01
Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.
Quantum-mechanical and quantum-electrodynamic equations for spectroscopic transitions
NASA Astrophysics Data System (ADS)
Yearchuck, Dmitry; Yerchak, Yauhen; Dovlatova, Alla
2010-09-01
Transition operator method is developed for description of the dynamics of spectroscopic transitions. Quantum-mechanical and quantum-electrodynamic difference-differential equations in general discrete space case and differential equations in continuum limit have been derived for spectroscopic transitions in the system of periodical ferroelectrically (ferromagnetically) ordered chains, interacting with external electromagnetic field. It was shown, that given equations can be represented in the form of Landau-Lifshitz equation in continuum limit and its generalization in discrete space case. Landau-Lifshitz equation was represented in Lorentz invariant form by Hilbert space definition over the ring of quaternions. It has been shown, that spin vector can be considered to be quaternion vector of the state of the system studied. From comparison with pure optical experiments the value of spin S=1/2 for spin-Peierls solitons in carbon chains has been found and it has also been established, that given quasiparticles are dually charged. The ratio of magnetic to electric (imaginary to real) components of electromagnetic dual (complex) charge is evaluated for given centers to be ge ≈(1.1-1.3)10 in correspondence with Dirac theory of charge quantization. The given results seem to be obtained for the first time.
Covariant quantum mechanics applied to noncommutative geometry
NASA Astrophysics Data System (ADS)
Astuti, Valerio
2015-08-01
We here report a result obtained in collaboration with Giovanni Amelino-Camelia, first shown in the paper [1]. Applying the manifestly covariant formalism of quantum mechanics to the much studied Snyder spacetime [2] we show how it is trivial in every physical observables, this meaning that every measure in this spacetime gives the same results that would be obtained in the flat Minkowski spacetime.
A Philosopher's Understanding of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vermaas, Pieter E.
2005-07-01
1. Introduction; 2. Quantum mechanics; 3. Modal interpretations; Part I. Formalism: 4. The different versions; 5. The full property ascription; 6. Joint property ascriptions; 7. Discontinuities, instabilities and other bad behaviour; 8. Transition probabilities; 9. Dynamical autonomy and locality; Part II. Physics: 10. The measurement problem; 11. The Born rule; Part III. Philosophy: 12. Properties, states, measurement outcomes and effective states; 13. Holism versus reductionism; 14. Possibilities and impossibilities; 15. Conclusions.
A Philosopher's Understanding of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vermaas, Pieter E.
2000-02-01
1. Introduction; 2. Quantum mechanics; 3. Modal interpretations; Part I. Formalism: 4. The different versions; 5. The full property ascription; 6. Joint property ascriptions; 7. Discontinuities, instabilities and other bad behaviour; 8. Transition probabilities; 9. Dynamical autonomy and locality; Part II. Physics: 10. The measurement problem; 11. The Born rule; Part III. Philosophy: 12. Properties, states, measurement outcomes and effective states; 13. Holism versus reductionism; 14. Possibilities and impossibilities; 15. Conclusions.
Quantum mechanics lessons for standard cosmology
NASA Astrophysics Data System (ADS)
Reyes, Marco A.
2012-08-01
By recalling the relevance of the Sturm-Liouville theory has had on the solutions of quantum mechanics problems, here it is explored the possibility of getting some insight to the solutions for a standard cosmology model for inflation, from a time independent Schrödinger type equation derived from the equations of motion for a single scalar field in a flat space time with a FRW metric and a cosmological constant.
Collocation method for fractional quantum mechanics
Amore, Paolo; Hofmann, Christoph P.; Saenz, Ricardo A.; Fernandez, Francisco M.
2010-12-15
We show that it is possible to obtain numerical solutions to quantum mechanical problems involving a fractional Laplacian, using a collocation approach based on little sinc functions, which discretizes the Schroedinger equation on a uniform grid. The different boundary conditions are naturally implemented using sets of functions with the appropriate behavior. Good convergence properties are observed. A comparison with results based on a Wentzel-Kramers-Brillouin analysis is performed.
A Local Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2016-04-01
A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.
Time of arrival in quantum mechanics
Grot, N.; Rovelli, C.; Tate, R.S.
1996-12-01
We study the problem of computing the probability for the time of arrival of a quantum particle at a given spatial position. We consider a solution to this problem based on the spectral decomposition of the particle{close_quote}s (Heisenberg) state into the eigenstates of a suitable operator, which we denote as the {open_quote}{open_quote}time-of-arrival{close_quote}{close_quote} operator. We discuss the general properties of this operator. We construct the operator explicitly in the simple case of a free nonrelativistic particle and compare the probabilities it yields with the ones estimated indirectly in terms of the flux of the Schr{umlt o}dinger current. We derive a well-defined uncertainty relation between time of arrival and energy; this result shows that the well-known arguments against the existence of such a relation can be circumvented. Finally, we define a {open_quote}{open_quote}time representation{close_quote}{close_quote} of the quantum mechanics of a free particle, in which the time of arrival is diagonal. Our results suggest that, contrary to what is commonly assumed, quantum mechanics exhibits a hidden equivalence between independent (time) and dependent (position) variables, analogous to the one revealed by the parametrized formalism in classical mechanics. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Donets, E. E.; Pashnev, A.; Juan Rosales, J.; Tsulaia, M. M.
2000-02-01
The multidimensional N=4 supersymmetric (SUSY) quantum mechanics (QM) is constructed using the superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian is obtained. In the SUSY QM considered, both classical and quantum N=4 algebras include central charges, and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical models with one-quarter, one-half, and three-quarters of unbroken (broken) supersymmetries can exist in the framework of the multidimensional N=4 SUSY QM, while the one-dimensional N=4 SUSY QM, constructed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimensional generalization of the one-dimensional N=4 superconformal quantum-mechanical model. Some open questions and possible applications of the constructed multidimensional N=4 SUSY QM to the known exactly integrable systems and problems of quantum cosmology are briefly discussed.
An approach to nonstandard quantum mechanics
NASA Astrophysics Data System (ADS)
Raab, A.
2004-12-01
We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to nonrelativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the Mo/ller wave operators and the S-matrix.
Assis, Thiago A de; Dall'Agnol, Fernando F
2016-11-01
This work presents an accurate numerical study of the electrostatics of a system formed by individual nanostructures mounted on support substrate tips, which provides a theoretical prototype for applications in field electron emission or for the construction of tips in probe microscopy that requires high resolution. The aim is to describe the conditions to produce structures mechanically robust with desirable field enhancement factor (FEF). We modeled a substrate tip with a height h 1, radius r 1 and characteristic FEF [Formula: see text], and a top nanostructure with a height h 2, radius [Formula: see text] and FEF [Formula: see text], for both hemispheres on post-like structures. The nanostructure mounted on the support substrate tip then has a characteristic FEF, [Formula: see text]. Defining the relative difference [Formula: see text], where [Formula: see text] corresponds to the reference FEF for a hemisphere of the post structure with a radius [Formula: see text] and height [Formula: see text], our results show, from a numerical solution of Laplace's equation using a finite element scheme, a scaling [Formula: see text], where [Formula: see text] and [Formula: see text]. Given a characteristic variable u c, for [Formula: see text], we found a power law [Formula: see text], with [Formula: see text]. For [Formula: see text], [Formula: see text], which led to conditions where [Formula: see text]. As a consequence of scale invariance, it is possible to derive a simple expression for [Formula: see text] and to predict the conditions needed to produce related systems with a desirable FEF that are robust owing to the presence of the substrate tip. Finally, we discuss the validity of Schottky's conjecture (SC) for these systems, showing that, while to obey SC is indicative of scale invariance, the opposite is not necessarily true. This result suggests that a careful analysis must be performed before attributing SC as an origin of giant FEF in experiments. PMID
Assis, Thiago A de; Dall'Agnol, Fernando F
2016-11-01
This work presents an accurate numerical study of the electrostatics of a system formed by individual nanostructures mounted on support substrate tips, which provides a theoretical prototype for applications in field electron emission or for the construction of tips in probe microscopy that requires high resolution. The aim is to describe the conditions to produce structures mechanically robust with desirable field enhancement factor (FEF). We modeled a substrate tip with a height h 1, radius r 1 and characteristic FEF [Formula: see text], and a top nanostructure with a height h 2, radius [Formula: see text] and FEF [Formula: see text], for both hemispheres on post-like structures. The nanostructure mounted on the support substrate tip then has a characteristic FEF, [Formula: see text]. Defining the relative difference [Formula: see text], where [Formula: see text] corresponds to the reference FEF for a hemisphere of the post structure with a radius [Formula: see text] and height [Formula: see text], our results show, from a numerical solution of Laplace's equation using a finite element scheme, a scaling [Formula: see text], where [Formula: see text] and [Formula: see text]. Given a characteristic variable u c, for [Formula: see text], we found a power law [Formula: see text], with [Formula: see text]. For [Formula: see text], [Formula: see text], which led to conditions where [Formula: see text]. As a consequence of scale invariance, it is possible to derive a simple expression for [Formula: see text] and to predict the conditions needed to produce related systems with a desirable FEF that are robust owing to the presence of the substrate tip. Finally, we discuss the validity of Schottky's conjecture (SC) for these systems, showing that, while to obey SC is indicative of scale invariance, the opposite is not necessarily true. This result suggests that a careful analysis must be performed before attributing SC as an origin of giant FEF in experiments.
Retrocausal quantum mechanics: Maudlin's challenge revisited
NASA Astrophysics Data System (ADS)
Lewis, Peter J.
2013-11-01
In 1994, Maudlin proposed an objection to retrocausal approaches to quantum mechanics in general, and to the transactional interpretation (TI) in particular, involving an absorber that changes location depending on the trajectory of the particle. Maudlin considered this objection fatal. However, the TI did not die; rather, a number of responses were developed, some attempting to accommodate Maudlin's example within the existing TI, and others modifying the TI. I argue that none of these responses is fully adequate. The reason, I submit, is that there are two aspects to Maudlin's objection; the more readily soluble aspect has received all the attention, but the more problematic aspect has gone unnoticed. I consider the prospects for developing a successful retrocausal quantum theory in light of this second aspect of the objection.
Quantum mechanical Hamiltonian models of discrete processes
Benioff, P.
1981-03-01
Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement.
Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat M.; Nepomechie, Rafael I.
2016-08-01
For generic values of q, all the eigenvectors of the transfer matrix of the Uq sl (2)-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA) formalism of Sklyanin. However, when q is a root of unity (q =e iπ / p with integer p ≥ 2), the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings), and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized) eigenvectors for various values of p and N.
Coulomb problem in non-commutative quantum mechanics
Galikova, Veronika; Presnajder, Peter
2013-05-15
The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter {lambda} is to be regarded as a measure of the non-commutativity - setting {lambda}= 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space R{sub {lambda}}{sup 3}, an analog of the Coulomb problem configuration space (R{sup 3} with the origin excluded) is introduced. R{sub {lambda}}{sup 3} is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H{sub {lambda}}, a NC analog of the Hilbert space of the wave functions. We will refer to them as 'wave functions' also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H{sub {lambda}} is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in {lambda}) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in {lambda}). All the NC contributions to the known QM solutions either vanish or disappear in the limit {lambda}{yields} 0.
NASA Astrophysics Data System (ADS)
Parisen Toldin, Francesco; Hohenadler, Martin; Assaad, Fakher F.; Herbut, Igor F.
2015-04-01
We numerically investigate the critical behavior of the Hubbard model on the honeycomb and the π -flux lattice, which exhibits a direct transition from a Dirac semimetal to an antiferromagnetically ordered Mott insulator. We use projective auxiliary-field quantum Monte Carlo simulations and a careful finite-size scaling analysis that exploits approximately improved renormalization-group-invariant observables. This approach, which is successfully verified for the three-dimensional XY transition of the Kane-Mele-Hubbard model, allows us to extract estimates for the critical couplings and the critical exponents. The results confirm that the critical behavior for the semimetal to Mott insulator transition in the Hubbard model belongs to the Gross-Neveu-Heisenberg universality class on both lattices.
NASA Astrophysics Data System (ADS)
de Martini, Francesco; Santamato, Enrico
2016-04-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper [E. Santamato and F. D. De Martini, Found. Phys. 45 (2015) 858] we presented a complete proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics” (CQG). In this paper, by the same theory, the proof of the spin-statistics theorem (SST) is extended to the relativistic domain in the scenario of curved spacetime. No relativistic quantum field operators are used in the present proof and the particle exchange properties are drawn from rotational invariance rather than from Lorentz invariance. Our relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. As in the nonrelativistic case, we find once more that the “intrinsic helicity” of the elementary particles enters naturally into play. It is therefore this property, not considered in the standard quantum mechanics (SQM), which determines the correct spin-statistics connection observed in Nature.
Testing Quantum Mechanics on New Ground
NASA Astrophysics Data System (ADS)
Ghose, Partha
2006-11-01
Preface; Acknowledgements; 1. Wave-particle duality; 2. Cavity quantum electrodynamics; 3. Quantum nondemolition measurements; 4. Topological phases; 5. Macroscopic quantum coherence; 6. The quantum Zeno paradox; 7. Testing collapse; 8. Macroscopic quantum jumps; 9. Nonlocality; 10. Tunneling times; References; Indexes.
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Salerno, Mario
2013-06-01
In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Salerno, Mario
2012-11-01
In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.
Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C
2014-06-13
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model
NASA Astrophysics Data System (ADS)
Krishna, S.; Shukla, D.; Malik, R. P.
2016-07-01
In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.
Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model
NASA Astrophysics Data System (ADS)
Krishna, S.; Shukla, D.; Malik, R. P.
2016-07-01
In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.
QUANTUM MECHANICS: Enhanced: Schrodinger's Cat Is Out of the Hat.
Tesche, C
2000-10-27
In 1935, Erwin Schrödinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography.
Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas
Sakaguchi, Hidetsugu; Malomed, Boris A.
2011-01-15
The quantum-mechanical collapse (alias fall onto the center of particles attracted by potential -r{sup -2}) is a well-known issue in quantum theory. It is closely related to the quantum anomaly, i.e., breaking of the scaling invariance of the respective Hamiltonian by quantization. We demonstrate that the mean-field repulsive nonlinearity prevents the collapse and thus puts forward a solution to the quantum-anomaly problem that differs from that previously developed in the framework of the linear quantum-field theory. This solution may be realized in the 3D or 2D gas of dipolar bosons attracted by a central charge and in the 2D gas of magnetic dipoles attracted by a current filament. In the 3D setting, the dipole-dipole interactions are also taken into regard, in the mean-field approximation, resulting in a redefinition of the scattering length which accounts for the contact repulsion between the bosons. In lieu of the collapse, the cubic nonlinearity creates a 3D ground state (GS), which does not exist in the respective linear Schroedinger equation. The addition of the harmonic trap gives rise to a tristability, in the case when the Schroedinger equation still does not lead to the collapse. In the 2D setting, the cubic nonlinearity is not strong enough to prevent the collapse; however, the quintic term does it, creating the GS, as well as its counterparts carrying the angular momentum (vorticity). Counterintuitively, such self-trapped 2D modes exist even in the case of a weakly repulsive potential r{sup -2}. The 2D vortical modes avoid the phase singularity at the pivot (r=0) by having the amplitude diverging at r{yields}0 instead of the usual situation with the amplitude of the vortical mode vanishing at r{yields}0 (the norm of the mode converges despite of the singularity of the amplitude at r{yields}0). In the presence of the harmonic trap, the 2D quintic model with a weakly repulsive central potential r{sup -2} gives rise to three confined modes, the middle
Statistical Mechanics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Wadati, Miki; Kato, Go; Iida, Toshiaki
Recent developments in statistical mechanics of quantum integrable systems are reviewed. Those studies are fundamental and have a renewed interest related to newly developing fields such as atomic Bose-Einstein condensations, photonic crystals and quantum computations. After a brief summary of the basic concepts and methods, the following three topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-core Bose gas is exactly solved. The model includes fully the effect of excluded volume and is identified to be a c=1 conformal field theory. Second, the cluster expansion method based on the periodic boundary condition for the Bethe wave function, which we call the Bethe ansatz cluster expansion (BACE) method, is developed for a δ-function gas and the XXX Heisenberg chain. This directly proves the TBA and reveals intrinsic properties of quantum integrable systems. Third, for a δ-function gas, the integral equations for the distribution functions of the quasi-momentum and the quasi-particle energy are solved in the form of power series. In the weak coupling case, the results reproduce those of Bogoliubov theory.
Deformed Conformal and Supersymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Spiridonov, Vyacheslav
Within the standard quantum mechanics a q-deformation of the simplest N=2 supersymmetry algebra is suggested. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e., the spectrum of one can be obtained from another (with possible exception of the lowest level) by the q2-factor scaling. A special class of the self-similar potentials is shown to obey the dynamical conformal symmetry algebra suq(1,1). These potentials exhibit exponential spectra and corresponding raising and lowering operators satisfy the q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane.
Landau problem in noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Sayipjamal, Dulat; Li, Kang
2008-02-01
The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving the Schrödinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues. Supported by National Natural Science Foundation of China (10465004, 10665001, 10575026) and Abdus Salam ICTP, Trieste, Italy
Supersymmetric quantum mechanics and its applications
Sukumar, C.V.
2004-12-23
The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.
Multichannel framework for singular quantum mechanics
NASA Astrophysics Data System (ADS)
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.
2014-01-01
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant ("asymptotic") observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances.
Li, Jun; Guo, Hua E-mail: hguo@unm.edu; Chen, Jun; Zhang, Dong H. E-mail: hguo@unm.edu
2014-01-28
A permutationally invariant global potential energy surface for the HOCO system is reported by fitting a larger number of high-level ab initio points using the newly proposed permutation invariant polynomial-neural network method. The small fitting error (∼5 meV) indicates a faithful representation of the potential energy surface over a large configuration space. Full-dimensional quantum and quasi-classical trajectory studies of the title reaction were performed on this potential energy surface. While the results suggest that the differences between this and an earlier neural network fits are small, discrepancies with state-to-state experimental data remain significant.
Quantum Backaction Evading Measurement of Collective Mechanical Modes
NASA Astrophysics Data System (ADS)
Ockeloen-Korppi, C. F.; Damskägg, E.; Pirkkalainen, J.-M.; Clerk, A. A.; Woolley, M. J.; Sillanpää, M. A.
2016-09-01
The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.
Comment on ``Arrival time in quantum mechanics'' and ``Time of arrival in quantum mechanics''
NASA Astrophysics Data System (ADS)
Kijowski, Jerzy
1999-01-01
Contrary to claims contained in papers by Grot, Rovelli, and Tate [Phys. Rev. A 54, 4676 1996)] and Delgado and Muga [Phys. Rev. A 56, 3425 (1997)], the ``time operator,'' which I have constructed [Rep. Math. Phys. 6, 361 (1974)] in an axiomatic way, is a self-adjoint operator existing in a usual Hilbert space of (nonrelativistic or relativistic) quantum mechanics.
From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance
NASA Astrophysics Data System (ADS)
Laperrousaz, B.; Drillon, G.; Berguiga, L.; Nicolini, F.; Audit, B.; Satta, V. Maguer; Arneodo, A.; Argoul, F.
2016-08-01
Soft materials such as polymer gels, synthetic biomaterials and living biological tissues are generally classified as viscoelastic or viscoplastic materials, because they behave neither as pure elastic solids, nor as pure viscous fluids. When stressed beyond their linear viscoelastic regime, cross-linked biopolymer gels can behave nonlinearly (inelastically) up to failure. In living cells, this type of behavior is more frequent because their cytoskeleton is basically made of cross-linked biopolymer chains with very different structural and flexibility properties. These networks have high sensitivity to stress and great propensity to local failure. But in contrast to synthetic passive gels, they can "afford" these failures because they have ATP driven reparation mechanisms which often allow the recovery of the original texture. A cell pressed in between two plates for a long period of time may recover its original shape if the culture medium brings all the nutrients for keeping it alive. When the failure events are too frequent or too strong, the reparation mechanisms may abort, leading to an irreversible loss of mechanical homeostasis and paving the way for chronic diseases such as cancer. To illustrate this discussion, we consider a model of immature cell transformation during cancer progression, the chronic myelogenous leukemia (CML), where the formation of the BCR-ABL oncogene results from a single chromosomal translocation t(9; 22). Within the assumption that the cell response to stress is scale invariant, we show that the power-law exponent that characterizes their mechanosensitivity can be retrieved from AFM force indentation curves. Comparing control and BCR-ABL transduced cells, we observe that in the later case, one month after transduction, a small percentage the cancer cells no longer follows the control cell power law, as an indication of disruption of the initial cytoskeleton network structure.
Super classical quantum mechanics: The best interpretation of nonrelativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Lamb, Willis E.
2001-04-01
It has been shown that Newtonian classical mechanics (NCM) suffers from several kinds of chaotic indeterminacies. That means, a large set of problems treated with NCM gives results which are in wild disagreement with observation. In the present paper, these shortcomings are repaired in a simple, obvious, and essentially unique manner. The NCM theory is thereby transformed into a new theory which is fully equivalent to the Heisenberg, Schrödinger, and Dirac nonrelativistic quantum mechanics, with the vital addition of Born's probabilistic interpretation of the wave function built in from the start. I call this new theory "super classical quantum mechanics" (SCQM). Using Ehrenfest's theorem of 1927, the classical limit of the new theory, SCQM, is seen to give exactly the results expected of the repaired Newtonian theory of classical mechanics.
Differentiability of correlations in realistic quantum mechanics
Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique; Tresser, Charles
2015-09-15
We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.
A quantum protective mechanism in photosynthesis
NASA Astrophysics Data System (ADS)
Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk
2015-03-01
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
NASA Astrophysics Data System (ADS)
de Assis, Thiago A.; Dall'Agnol, Fernando F.
2016-11-01
This work presents an accurate numerical study of the electrostatics of a system formed by individual nanostructures mounted on support substrate tips, which provides a theoretical prototype for applications in field electron emission or for the construction of tips in probe microscopy that requires high resolution. The aim is to describe the conditions to produce structures mechanically robust with desirable field enhancement factor (FEF). We modeled a substrate tip with a height h 1, radius r 1 and characteristic FEF {γ }1, and a top nanostructure with a height h 2, radius {r}2\\lt {r}1 and FEF {γ }2, for both hemispheres on post-like structures. The nanostructure mounted on the support substrate tip then has a characteristic FEF, {γ }{{C}}. Defining the relative difference {η }{{R}}=({γ }{{C}}-{γ }1)/({γ }3-{γ }1), where {γ }3 corresponds to the reference FEF for a hemisphere of the post structure with a radius {r}3={r}2 and height {h}3={h}1+{h}2, our results show, from a numerical solution of Laplace’s equation using a finite element scheme, a scaling {η }{{R}}=f(u\\equiv λ {θ }-1), where λ \\equiv {h}2/{h}1 and θ ={r}1/{r}2. Given a characteristic variable u c, for u\\ll {u}{{c}}, we found a power law {η }{{R}}˜ {u}κ , with κ ≈ 0.55. For u\\gg {u}{{c}}, {η }{{R}}\\to 1, which led to conditions where {γ }{{C}}\\to {γ }3. As a consequence of scale invariance, it is possible to derive a simple expression for {γ }{{C}} and to predict the conditions needed to produce related systems with a desirable FEF that are robust owing to the presence of the substrate tip. Finally, we discuss the validity of Schottky’s conjecture (SC) for these systems, showing that, while to obey SC is indicative of scale invariance, the opposite is not necessarily true. This result suggests that a careful analysis must be performed before attributing SC as an origin of giant FEF in experiments.
Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy
Grant, A.K.; Rosner, J.L. )
1994-05-01
The connection between supersymmetric quantum mechanics and the Korteweg--de Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction of the [tau] function by means of supersymmetric quantum mechanics is discussed.
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.
Sun, Qiming; Chan, Garnet Kin-Lic
2014-09-01
Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.
NASA Astrophysics Data System (ADS)
Mugur-Schächter, Mioara
1993-01-01
In previous works we have established that the spacetime probabilistic organization of the quantum theory is determined by the spacetime characteristics of the operations by which the observer produces the objects to be studied (“states” of microsystems) and obtains qualifications of these. Guided by this first conclusion, we have then built a “general syntax of relativized conceptualization” where any description is explicitly and systematically referred to the two basic epistemic operations by which the conceptor introduces the object to be qualified and then obtains qualifications of it. Inside this syntax there emerges a general typology of the relativized descriptions. Here we show that with respect to this typology the type of the predictive quantum mechanical descriptions acquires a precise definition. It appears that the quantum mechanical formalism has captured and has expressed directly in a mathematical language the most complex form in which can occur a first descriptional phase that lies universally at the bottom of any chain of conceptualization. The main features of the Hilbert-Dirac algorithms are decoded in terms of the general syntax of relativized conceptualization. This renders explicit the semantical contents of the quantum mechanical representations relating each one of these to its mathematical quantum mechanical expression. Basic insufficiencies are thus identified and, correlatively, false problems as well as answers to these, or guides toward answers. Globally the results obtained provide a basis for future attempts at a general mathematical representation of the processes of conceptualization. “Il pourrait, en effet, être dangereux pour l'avenir de la Physique qu'elle se contente trop facilement de purs formalismes, d'images floues et d'explications toutes verbales s'exprimant par des mots à signification imprécise”—Louis de Broglie, Certitudes et Incertitudes de la Science (Albin Michel, Paris, 1965).
Symmetry as a foundational concept in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2015-07-01
Symmetries are widely used in modeling quantum systems but they do not contribute in postulates of quantum mechanics. Here we argue that logical, mathematical, and observational evidence require that symmetry should be considered as a fundamental concept in the construction of physical systems. Based on this idea, we propose a series of postulates for describing quantum systems, and establish their relation and correspondence with axioms of standard quantum mechanics. Through some examples we show that this reformulation helps better understand some of ambiguities of standard description. Nonetheless its application is not limited to explaining confusing concept and it may be a necessary step toward a consistent model of quantum cosmology and gravity.
Three Attempts at Two Axioms for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Rohrlich, Daniel
The axioms of nonrelativistic quantum mechanics lack clear physical meaning. In particular, they say nothing about nonlocality. Yet quantum mechanics is not only nonlocal, it is twice nonlocal: there are nonlocal quantum correlations, and there is the Aharonov-Bohm effect, which implies that an electric or magnetic field here may act on an electron there. Can we invert the logical hierarchy? That is, can we adopt nonlocality as an axiom for quantum mechanics and derive quantum mechanics from this axiom and an additional axiom of causality? Three versions of these two axioms lead to three different theories, characterized by "maximal nonlocal correlations", "jamming" and "modular energy". Where is quantum mechanics in these theories?
Tampering detection system using quantum-mechanical systems
Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, such as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less
Causal localizations in relativistic quantum mechanics
Castrigiano, Domenico P. L. Leiseifer, Andreas D.
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Dynamical phase transitions in quantum mechanics
NASA Astrophysics Data System (ADS)
Rotter, Ingrid
2012-02-01
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Extending quantum mechanics entails extending special relativity
NASA Astrophysics Data System (ADS)
Aravinda, S.; Srikanth, R.
2016-05-01
The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.
Quantum mechanical calculations to chemical accuracy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.
Waveform information from quantum mechanical entropy
NASA Astrophysics Data System (ADS)
Funkhouser, Scott; Suski, William; Winn, Andrew
2016-06-01
Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.
Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert
2013-09-15
Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Categorical quantum mechanics II: Classical-quantum interaction
NASA Astrophysics Data System (ADS)
Coecke, Bob; Kissinger, Aleks
2016-08-01
This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.
Zhang, Xin; Wang, Fen; Wang, Lei; Lin, Ying; Zhu, Jianfeng
2016-08-31
Recently, structural colors have attracted great concentrations because the coloration is free from chemical- or photobleaching. However, the color saturation and mechanical robustness are generally competitive properties in the fabrication of PCs (photonic crystals) films. Besides, the structure of PCs and their derivatives are easy to be invaded by liquids and lead to band gap shifts due to the change of refractive index or periodicity. To solve those problems, we infiltrate polydimethylsiloxane (PDMS) into the intervals between regularly arrayed hollow SiO2 nanospheres, inspired by the cobbled road prepared by embedding stone in the bulk cement matrix. Consequently, the as-prepared PCs films show brilliant colors, invariable stop-bands, and excellent mechanical robustness. Moreover, the water contact angle even reached 166° after a sandpaper abrasion test. The combination of brilliant colors, invariable stop-bands, and excellent robustness is significant for potential application in paint and external decoration of architectures. PMID:27509171
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…
Quantum Mechanics from Periodic Dynamics: the bosonic case
Dolce, Donatello
2010-05-04
Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…
A comparative review of four formulations of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gouba, Laure
2016-07-01
Four formulations of quantum mechanics on noncommutative Moyal phase spaces are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. Although all these formulations represent quantum mechanics on a phase space with the same deformed Heisenberg algebra, there are mathematical and conceptual differences which we discuss.
Quantum mechanical features of optically pumped CW FIR lasers
NASA Technical Reports Server (NTRS)
Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.
1977-01-01
Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
In Defense of a Heuristic Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Healy, Eamonn F.
2010-01-01
Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…
Quartic quantum theory: an extension of the standard quantum mechanics
NASA Astrophysics Data System (ADS)
Życzkowski, Karol
2008-09-01
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher-dimensional convex body {\\cal M}_N^Q of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in the N-dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalization of the standard quantum theory for which K = N2. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K = N.
Chirality, quantum mechanics, and biological determinism
NASA Astrophysics Data System (ADS)
Davies, P. C. W.
2006-08-01
life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
Calendar effects in quantum mechanics in view of interactive holography
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2013-04-01
Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .
Some Novel Thought Experiments Involving Foundations of Quantum Mechanics and Quantum Information
NASA Astrophysics Data System (ADS)
Akhavan, Omid
2004-02-01
In this thesis, we have proposed some novel thought experiments involving foundations of quantum mechanics and quantum information theory, using quantum entanglement property. Concerning foundations of quantum mechanics, we have suggested some typical systems including two correlated particles which can distinguish between the two famous theories of quantum mechanics, i.e. the standard and Bohmian quantum mechanics, at the individual level of pair of particles. Meantime, the two theories present the same predictions at the ensemble level of particles. Regarding quantum information theory, two theoretical quantum communication schemes including quantum dense coding and quantum teleportation schemes have been proposed by using entangled spatial states of two EPR particles shared between two parties. It is shown that the rate of classical information gain in our dense coding scheme is greater than some previously proposed multi-qubit protocols by a logarithmic factor dependent on the dimension of Hilbert space. The proposed teleportation scheme can provide a complete wave function teleportation of an object having other degrees of freedom in our three-dimensional space, for the first time. All required unitary operators which are necessary in our state preparation and Bell state measurement processes are designed using symmetric normalized Hadamard matrix, some basic gates and one typical conditional gate, which are introduced here for the first time.
Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2016-03-01
Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.
New Formulation of Statistical Mechanics Using Thermal Pure Quantum States
NASA Astrophysics Data System (ADS)
Sugiura, Sho; Shimizu, Akira
2014-03-01
We formulate statistical mechanics based on a pure quantum state, which we call a "thermal pure quantum (TPQ) state". A single TPQ state gives not only equilibrium values of mechanical variables, such as magnetization and correlation functions, but also those of genuine thermodynamic variables and thermodynamic functions, such as entropy and free energy. Among many possible TPQ states, we discuss the canonical TPQ state, the TPQ state whose temperature is specified. In the TPQ formulation of statistical mechanics, thermal fluctuations are completely included in quantum-mechanical fluctuations. As a consequence, TPQ states have much larger quantum entanglement than the equilibrium density operators of the ensemble formulation. We also show that the TPQ formulation is very useful in practical computations, by applying the formulation to a frustrated two-dimensional quantum spin system.
Review of student difficulties in upper-level quantum mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Marshman, Emily
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.
Quantum mechanical studies of DNA and LNA.
Koch, Troels; Shim, Irene; Lindow, Morten; Ørum, Henrik; Bohr, Henrik G
2014-04-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs.
Quantum Mechanical Studies of DNA and LNA
Shim, Irene; Lindow, Morten; Ørum, Henrik
2014-01-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259
"Mysticism" in Quantum Mechanics: The Forgotten Controversy
ERIC Educational Resources Information Center
Marin, Juan Miguel
2009-01-01
This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…
A fast quantum mechanics based contour extraction algorithm
NASA Astrophysics Data System (ADS)
Lan, Tian; Sun, Yangguang; Ding, Mingyue
2009-02-01
A fast algorithm was proposed to decrease the computational cost of the contour extraction approach based on quantum mechanics. The contour extraction approach based on quantum mechanics is a novel method proposed recently by us, which will be presented on the same conference by another paper of us titled "a statistical approach to contour extraction based on quantum mechanics". In our approach, contour extraction was modeled as the locus of a moving particle described by quantum mechanics, which is obtained by the most probable locus of the particle simulated in a large number of iterations. In quantum mechanics, the probability that a particle appears at a point is equivalent to the square amplitude of the wave function. Furthermore, the expression of the wave function can be derived from digital images, making the probability of the locus of a particle available. We employed the Markov Chain Monte Carlo (MCMC) method to estimate the square amplitude of the wave function. Finally, our fast quantum mechanics based contour extraction algorithm (referred as our fast algorithm hereafter) was evaluated by a number of different images including synthetic and medical images. It was demonstrated that our fast algorithm can achieve significant improvements in accuracy and robustness compared with the well-known state-of-the-art contour extraction techniques and dramatic reduction of time complexity compared to the statistical approach to contour extraction based on quantum mechanics.
Philosophy and Quantum Mechanics in Science Teaching
NASA Astrophysics Data System (ADS)
Pospiech, Gesche
Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers - from the Antique, the Enlightenment and a quantum philosopher - discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.
Yang, C.-D. . E-mail: cdyang@mail.ncku.edu.tw
2006-12-15
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p {sup {yields}} p = -ih{nabla}, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate
Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.
Burger, Steven K; Schofield, Jeremy; Ayers, Paul W
2013-12-01
We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.
Ruling out multi-order interference in quantum mechanics.
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-23
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.
Predicting crystal structure by merging data mining with quantum mechanics.
Fischer, Christopher C; Tibbetts, Kevin J; Morgan, Dane; Ceder, Gerbrand
2006-08-01
Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted effectively with quantum mechanics if an algorithm to direct the search through the large space of possible structures is found. We present a new approach to the prediction of structure that rigorously mines correlations embodied within experimental data and uses them to direct quantum mechanical techniques efficiently towards the stable crystal structure of materials.
The actual content of quantum theoretical kinematics and mechanics
NASA Technical Reports Server (NTRS)
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Nonstationary Quantum Mechanics. III. Quantum Mechanics Does Not Incorporate Classical Physics
NASA Astrophysics Data System (ADS)
Todorov, Nickola Stefanov
1981-01-01
It is shown that disagreement between the prediction of classical and conventional quantum mechanics about momentum probabilities exists in the case of a quasiclassical motion. The discussion is based on the detailed consideration of two specific potentials: U( x)= x and the oscillatory potential U( x)= mω 2 x 2/2. The results of the present Part III represent a further development of the idea in Todorov (1980) about the possible inefficiency of conventional theory in the case of potentials swiftly varying with time.
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
NASA Astrophysics Data System (ADS)
Murase, M.
1996-01-01
with self-organization, has been thought to underlie `creative' aspects of biological phenomena such as the origin of life, adaptive evolution of viruses, immune recognition and brain function. It therefore must be surprising to find that the same principles will also underlie `non-creative' aspects, for example, the development of cancer and the aging of complex organisms. Although self-organization has extensively been studied in nonliving things such as chemical reactions and laser physics, it is undoubtedly true that the similar sources of the order are available to living things at different levels and scales. Several paradigm shifts are, however, required to realize how the general principles of natural selection can be extensible to non-DNA molecules which do not possess the intrinsic nature of self-reproduction. One of them is, from the traditional, genetic inheritance view that DNA (or RNA) molecules are the ultimate unit of heritable variations and natural selection at any organization level, to the epigenetic (nongenetic) inheritance view that any non-DNA molecule can be the target of heritable variations and molecular selection to accumulate in certain biochemical environment. Because they are all enriched with a β-sheet content, ready to mostly interact with one another, different denatured proteins like β-amyloid, PHF and prions can individually undergo self-templating or self-aggregating processes out of gene control. Other paradigm shifts requisite for a break-through in the etiology of neurodegenerative disorders will be discussed. As it is based on the scale-invariant principles, the present theory also predicts plausible mechanisms underlying quite different classes of disorders such as amyotrophic lateral sclerosis (ALS), atherosclerosis, senile cataract and many other symptoms of aging. The present theory, thus, provides the consistent and comprehensive account to the origin of aging by means of natural selection and self-organization.
Conservation of information and the foundations of quantum mechanics
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Scandolo, Carlo Maria
2015-05-01
We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory [1, 2]. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the Conservation of Information and captures the core of a vast number of protocols in quantum information. Purification is a highly non-classical feature and leads directly to the emergence of entanglement at the purely conceptual level, without any reference to the superposition principle. Supplemented by a few additional requirements, satisfied by classical and quantum theory, it provides a complete axiomatic characterization of quantum theory for finite dimensional systems.
Particles, Waves, and the Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Christoudouleas, N. D.
1975-01-01
Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)
Quantum Mechanics and the Social Sciences: After Hermeneutics.
ERIC Educational Resources Information Center
Heelan, Patrick A.
1995-01-01
An analysis of the hermeneutical aspect of quantum mechanical measurement reveals close analogs with the hermeneutical social/historical sciences. Suggests that the hermeneutical analysis of science requires the move from the epistemological attitude to an ontological view. (LZ)
Probabilistic Approach to Teaching the Principles of Quantum Mechanics
ERIC Educational Resources Information Center
Santos, Emilio
1976-01-01
Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Auffèves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Probability in the Many-Worlds Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Vaidman, Lev
It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.
Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.
Goldfarb, Yair; Degani, Ilan; Tannor, David J
2006-12-21
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.
$\\cN$-FOLD SUPERSYMMETRY IN QUANTUM MECHANICAL MATRIX MODELS
NASA Astrophysics Data System (ADS)
Tanaka, Toshiaki
2012-03-01
We formulate Ņ-fold supersymmetry in quantum mechanical matrix models. As an example, we construct general two-by-two Hermitian matrix two-fold supersymmetric quantum mechanical systems. We find that there are two inequivalent such systems, both of which are characterized by two arbitrary scalar functions, and one of which does not reduce to the scalar system. The obtained systems are all weakly quasi-solvable.
Scattering in the Euclidean formulation of relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Polyzou, Wayne
2013-10-01
Euclidean relativistic quantum mechanics is a formulation of relativistic quantum mechanics based on the Osterwalder-Schrader reconstruction theorem that exploits the logical independence of locality from the rest of the axioms of Euclidean field theory. I discuss the properties of Euclidean Green functions necessary for the existence of Møller wave operators and the construction of these wave operators in this formalism. Supported by the US Department of Energy, Grant - DE-AC02-81ER40038.
Interpreting Quantum Mechanics according to a Pragmatist Approach
NASA Astrophysics Data System (ADS)
Bächtold, Manuel
2008-09-01
The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
Scalable quantum mechanical simulation of large polymer systems
Goedecker, S.; Hoisie, A.; Kress, J.; Lubeck, O.; Wasserman, H.
1997-08-01
We describe a program for quantum mechanical calculations of very large hydrocarbon polymer systems. It is based on a new algorithmic approach to the quantum mechanical tight binding equations that naturally leads to a very efficient parallel implementation and that scales linearly with respect to the number of atoms. We get both very high single node performance as well as a significant parallel speedup on the SGI Origin 2000 parallel computer.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Inflationary cosmology as a probe of primordial quantum mechanics
Valentini, Antony
2010-09-15
We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with nonstandard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with nonrandom phases and intermode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early Universe.
An axiomatic formulation of the Montevideo interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; García-Pintos, Luis Pedro; Pullin, Jorge
We make a first attempt to axiomatically formulate the Montevideo interpretation of quantum mechanics. In this interpretation environmental decoherence is supplemented with loss of coherence due to the use of realistic clocks to measure time to solve the measurement problem. The resulting formulation is framed entirely in terms of quantum objects. Unlike in ordinary quantum mechanics, classical time only plays the role of an unobservable parameter. The formulation eliminates any privileged role of the measurement process giving an objective definition of when an event occurs in a system.
Quantum mechanical effects in plasmonic structures with subnanometre gaps
NASA Astrophysics Data System (ADS)
Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.
2016-06-01
Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions.
Quantum mechanical effects in plasmonic structures with subnanometre gaps
Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.
2016-01-01
Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions. PMID:27255556
On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
de Beauregard, O. Costa
1988-09-01
Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in spacetime or in the momentum-energy space, as V-shaped, A-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states |B> =
Electron exchange-correlation in quantum mechanics
Ritchie, B
2009-01-30
It is shown that Fermi-Dirac statistics is guaranteed by the Dirac current, from which spin-dependent quantum velocity fields and spin-dependent quantum trajectories can be inferred. Pauli's exclusion principle is demonstrated using the spin-dependent quantum trajectories. The Dirac current, unlike the Schroedinger current, is nonzero for stationary bound states due to the permanent magnetic moment of the electron. It is of order c{sup 0} in agreement with observation that Fermi-Dirac statistics is independent of electronic velocity. In summary the physical basis for exchange-correlation is found in Dirac's equation, although Schroedinger's equation may be used to evaluate the Dirac current in the nonrelativistic regime of electronic velocity.
Whitehead's Philosophy and Quantum Mechanics (QM)
NASA Astrophysics Data System (ADS)
Malin, Shimon
This paper is a tribute to Abner Shimony and a continuation of my discussions with him. In the first part some ofWhitehead's concepts, and, in particular, actual entities and atemporal processes, are introduced. These are shown to correspond to the objectivized aspects of the collapse of quantum states. Next we reconcile the entanglement of quantum states with the speed of light barrier for the transmission of information by modifying Whitehead's system: We suggest that events that take place far apart can be aspects if the same actual entity. We show that this takes care of Lovejoy's objection to Whitehead's system.
'Mysticism' in quantum mechanics: the forgotten controversy
NASA Astrophysics Data System (ADS)
Marin, Juan Miguel
2009-07-01
This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s—birth of quantum theory—and concluding with Erwin Schrödinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.
Multiple-event probability in general-relativistic quantum mechanics
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-04-15
We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.
proper versus improper mixtures: Toward a quaternionic quantum mechanics
NASA Astrophysics Data System (ADS)
Masillo, F.; Scolarici, G.; Sozzo, S.
2009-07-01
The density operators obtained by taking partial traces represent improper mixtures of subsystems of a compound physical system because the coefficients in the convex sums expressing them never bear the ignorance interpretation. Assigning states to these subsystems is consequently problematic in standard quantum mechanics (subentity problem). In the semantic realism interpretation of quantum mechanics, it is instead proposed to consider improper mixtures true nonpure states conceptually distinct from proper mixtures. Based on this proposal, we show that proper and improper mixtures can be represented by different density operators in the quaternionic formulation of quantum mechanics and can hence be distinguished even from a mathematical standpoint. We provide a simple example related to the quantum theory of measurement.
Optimal state discrimination and unstructured search in nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Childs, Andrew M.; Young, Joshua
2016-02-01
Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.
Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.
2016-06-01
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.
A quantum mechanical point of view to perturbative problems in classical mechanics
NASA Astrophysics Data System (ADS)
Dattoli, G.; Torre, A.
1993-11-01
In this article it is shown that perturbative methods currently exploited in quantum mechanics can be used to treat a classical Liouville problem describing the evolution of an ensemble of noncollisional particles. The method discussed is based on the concepts of an evolution operator and interaction picture, which can be introduced for a classical Hamiltonian in full analogy with quantum mechanics. The usefulness of the developed method to treat the quantum extension of the Liouville equation is also stressed.
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
Kim, Y. S.; Noz, M. E.
2011-03-28
The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious
Comments on continuous observation in quantum mechanics
NASA Astrophysics Data System (ADS)
Diósi, L.
1986-06-01
It is shown that in open quantum systems the so-called Zeno paradox is not valid. The equations of ideal continuous measurement for Markovian open systems are elaborated and applied to Pauli's simple open system, the actual energy level of which is shown to be monitorable by a continuous nondemolition measurement.
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
NASA Astrophysics Data System (ADS)
Tavakkoli, Marjan
2013-02-01
Shape invariance is an important factor of many exactly solvable quantum mechanics. Several examples of shape-invariant `discrete quantum mechanical systems' are introduced and discussed in some detail. We present the spectral properties of supersymmetric shape-invariant potentials (SIP). Here we are interested in some time-independent integrable systems which are exactly solvable owing to the existence of supersymmetric shape-invariant symmetry. In 1981 Witten proposed (0+1)-dimensional limit of supersymmetry (SUSY) quantum field theory, where the supercharges of SUSY quantum mechanics generate transformation between two orthogonal eigenstates of a given Hamiltonian wit degenerate eigenvaluesfor the non-SIP as very few lower eigenvalues can be known analytically, which are small to calculate spectral fluctuation.
Dynamical invariants in systems with and without broken time-reversal symmetry
Schuch, Dieter
2011-03-21
In the first part of the lectures dynamical invariants in classical mechanics and conventional quantum mechanics will be considered. In particular, we will begin with some remarks on classical mechanics and on quantization in order to establish the theory in the form that will be used later on. Starting from the time-dependent Schroedinger equation, the dynamics of Gaussian wave packets and Ermakov invariants, the time-dependent Green function/Feynman kernel, quantum-classical connections, energetics and Lagrange-Hamilton formalism for quantum uncertainties, momentum space representation and the relation between the Wigner function and the Ermakov invariant will be discussed. The representation of canonical transformations in time-independent and time-dependent quantum mechanics, factorization of the Ermakov invariant and generalized creation/annihilation operators will be studied. Subsequently, the time-independent Schroedinger equation, leading to nonlinear quantum mechanics related to Riccati/Ermakov systems as well as the occurrence of Riccati/Ermakov systems in the treatment of Bose-Einstein condensates via the so-called moment method will be analyzed.In part two, irreversible dynamics of dissipative systems, classical and quantum mechanical descriptions and corresponding invariants will be treated. After some general remarks on classical and quantum mechanics with unitary time-evolution and energy conservation, phenomenological Langevin and Fokker--Planck equations, master equations in classical and quantum mechanics and the system-plus-reservoir approach will be mentioned briefly. Then follows a more detailed discussion of modified Schroedinger equations and, particularly, of a nonlinear Schroedinger equation with complex logarithmic nonlinearity; its properties, solutions, invariants and energetics will be studied. Finally, a comparison with a classical description in expanding coordinates will lead to a non-unitary connection between the logarithmic
Jets and Metastability in Quantum Mechanics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
Farhi, David
I give a high level overview of the state of particle physics in the introduction, accessible without any background in the field. I discuss improvements of theoretical and statistical methods used for collider physics. These include telescoping jets, a statistical method which was claimed to allow jet searches to increase their sensitivity by considering several interpretations of each event. We find that indeed multiple interpretations extend the power of searches, for both simple counting experiments and powerful multivariate fitting experiments, at least for h → bb¯ at the LHC. Then I propose a method for automation of background calculations using SCET by appropriating the technology of Monte Carlo generators such as MadGraph. In the third chapter I change gears and discuss the future of the universe. It has long been known that our pocket of the standard model is unstable; there is a lower-energy configuration in a remote part of the configuration space, to which our universe will, eventually, decay. While the timescales involved are on the order of 10400 years (depending on how exactly one counts) and thus of no immediate worry, I discuss the shortcomings of the standard methods and propose a more physically motivated derivation for the decay rate. I then make various observations about the structure of decays in quantum field theory.
Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'
Stapp, H.P.
1999-04-14
A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.
Quantum Mechanics for Beginning Physics Students
NASA Astrophysics Data System (ADS)
Schneider, Mark B.
2010-10-01
The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For example, Halliday, Resnick, and Walker describe the origin of atomic quantum numbers as such: "The restrictions on the values of the quantum number for the hydrogen atom, as listed in Table 39-2, are not arbitrary but come out of the solution to Schrödinger's equation." They give no further justification, but do point out the values are in conflict with the predictions of the Bohr model.
A modified Lax-Phillips scattering theory for quantum mechanics
NASA Astrophysics Data System (ADS)
Strauss, Y.
2015-07-01
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
A modified Lax-Phillips scattering theory for quantum mechanics
Strauss, Y.
2015-07-15
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.
Randomness in quantum mechanics - nature's ultimate cryptogram?
NASA Astrophysics Data System (ADS)
Erber, T.; Putterman, S.
1985-11-01
The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.
Quantum mechanics from an equivalence principle
Faraggi, A.E.; Matone, M.
1997-05-15
The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.
Multiscale quantum mechanics/electromagnetics simulation for electronic devices.
Yam, ChiYung; Meng, Lingyi; Chen, GuanHua; Chen, Quan; Wong, Ngai
2011-08-28
The continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demonstration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system.
Models on the boundary between classical and quantum mechanics.
Hooft, Gerard 't
2015-08-01
Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened.
Some thoughts about consciousness: from a quantum mechanics perspective.
Gargiulo, Gerald J
2013-08-01
The article explores some of the basic findings of quantum physics and information theory and their possible usefulness in offering new vistas for understanding psychoanalysis and the patient-analyst interchange. Technical terms are explained and placed in context, and examples of applying quantum models to clinical experience are offered. Given the complexity of the findings of quantum mechanics and information theory, the article aims only to introduce some of the major concepts from these disciplines. Within this framework the article also briefly addresses the question of mind as well as the problematic of reducing the experience of consciousness to neurological brain functioning.
Models on the boundary between classical and quantum mechanics.
Hooft, Gerard 't
2015-08-01
Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246
Mathematical foundations of quantum mechanics: An advanced short course
NASA Astrophysics Data System (ADS)
Moretti, Valter
2016-08-01
This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C∗-) algebraic formulation of quantum theories.
Use of mathematical logical concepts in quantum mechanics: an example
NASA Astrophysics Data System (ADS)
Benioff, Paul
2002-07-01
The representation of numbers by product states in quantum mechanics can be extended to the representation of words and word sequences in languages by product states. This can be used to study quantum systems that generate text that has meaning. A simple example of such a system, based on an example described by Smullyan, is studied here. Based on a path interpretation for some word states, definitions of truth, validity, consistency and completeness are given and their properties studied. It is also shown that the relation between the potential meaning, if any, of word states and the quantum algorithmic complexity of the process generating the word states must be quite complex or nonexistent.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
Hidden invariance of the free classical particle
Garcia, S. )
1994-06-01
A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group [ital G] is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under [ital G] leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by [ital U](1) leads to quantum mechanics.
Generation of a complete set of additive shape-invariant potentials from an Euler equation.
Bougie, Jonathan; Gangopadhyaya, Asim; Mallow, Jeffry V
2010-11-19
In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape-invariant superpotentials that are independent of ℏ can be generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape-invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape-invariant superpotentials including those that depend on ℏ explicitly. PMID:21231274
Generation of a Complete Set of Additive Shape-Invariant Potentials from an Euler Equation
Bougie, Jonathan; Gangopadhyaya, Asim; Mallow, Jeffry V.
2010-11-19
In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape-invariant superpotentials that are independent of ({h_bar}/2{pi}) can be generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape-invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape-invariant superpotentials including those that depend on ({h_bar}/2{pi}) explicitly.
Generation of a complete set of additive shape-invariant potentials from an Euler equation.
Bougie, Jonathan; Gangopadhyaya, Asim; Mallow, Jeffry V
2010-11-19
In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape-invariant superpotentials that are independent of ℏ can be generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape-invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape-invariant superpotentials including those that depend on ℏ explicitly.
Investigations of fundamental phenomena in quantum mechanics with neutrons
NASA Astrophysics Data System (ADS)
Hasegawa, Yuji
2014-04-01
Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.
NASA Astrophysics Data System (ADS)
Zhang, Dan-Wei; Zhao, Y. X.; Liu, Rui-Bin; Xue, Zheng-Yuan; Zhu, Shi-Liang; Wang, Z. D.
2016-04-01
Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes a joint operation of space inversion P and time reversal T , it is important and intriguing to explore exotic PT -invariant topological metals and to physically realize them. Here we develop a theory for a different type of topological metals that are described by a two-band model of PT -invariant topological nodal loop states in a three-dimensional Brillouin zone, with the topological stability being revealed through the PT -symmetry-protected nontrivial Z2 topological charge even in the absence of both P and T symmetries. Moreover, the gapless boundary modes are demonstrated to originate from the nontrivial topological charge of the bulk nodal loop. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT -invariant topological nodal loop states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent three-dimensional optical lattice and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. It is shown that such a realistic cold-atom setup can yield topological nodal loop states, having a tunable band-touching ring with the twofold degeneracy in the bulk spectrum and nontrivial surface states. The nodal loop states are actually protected by the combined PT symmetry and are characterized by a Z2-type invariant (or topological charge), i.e., a quantized Berry phase. Remarkably, we demonstrate with numerical simulations that (i) the characteristic nodal ring can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological nodal loop states in cold-atom systems may provide a unique
Physical Invariants of Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
, the mechanism of decision-making is feedback from the mental dynamics to the motor dynamics, and this mechanism provides a quantum-like collapse of a random motion into an appropriate deterministic state, such that entropy undergoes a pronounced decrease. The existence of this mechanism is considered to be an invariant of intelligent behavior of living systems, regardless of the origins and material compositions of the systems.
Natural star-products on symplectic manifolds and related quantum mechanical operators
Błaszak, Maciej Domański, Ziemowit
2014-05-15
In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: •Invariant representations of natural star-products on symplectic manifolds are considered. •Star-products induced by flat and non-flat connections are investigated. •Operator representations in Hilbert space of considered star-algebras are constructed.
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-01
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.
Generalized coherent states under deformed quantum mechanics with maximum momentum
NASA Astrophysics Data System (ADS)
Ching, Chee Leong; Ng, Wei Khim
2013-10-01
Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.
Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2015-10-01
These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
A deformation quantization theory for noncommutative quantum mechanics
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-07-15
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
ERIC Educational Resources Information Center
Kingma, Idsart; van de Langenberg, Rolf; Beek, Peter J.
2004-01-01
It has been suggested that the inertia tensor governs many instances of haptic perception. However, the evidence is inconclusive because other candidate mechanical parameters (i.e., invariants) were not or were insufficiently controlled for in pertinent experiments. By independently varying all candidate mechanical parameters, the authors were…
Multilayered model in optics and quantum mechanics
NASA Astrophysics Data System (ADS)
Kovalev, M. D.
2009-08-01
Three types of dispersion equations are analyzed that describe the eigenvalues of the effective refractive index of a multilayer plane optical waveguide and the energy eigenvalues of a quantum particle placed in a piecewise constant potential field. The first equation (D1) is derived by setting to zero the determinant of the system of linear equations produced by matching the solutions in the layers. The second equation (D2) is obtained using the well-known method of characteristic matrices. The third equation has been obtained in the general case by the author and is known as a multilayer equation. Simple relations between the three equations are established. It is shown that the set of roots of D2 exactly coincides with the set of eigenvalues of the multilayer problem, while the roots of D1 and the multilayer equation contain those equal to the refractive index in the optical case (or to the potential in the quantum case) in internal layers of the system, which may be superfluous. Examples are presented.
Quantum mechanisms of density wave transport.
Miller, John H; Wijesinghe, Asanga I
2012-06-01
We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe(3) and TaS(3), as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979
Quantum mechanisms of density wave transport
Miller, John H.; Wijesinghe, Asanga I.
2012-01-01
We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979
New method for calculating binding energies in quantum mechanics and quantum field theories
Gat, G.; Rosenstein, B. Institute of Physics, Academia Sinica, Taipei, 11529 )
1993-01-04
We propose a systematic perturbative method for calculating the binding energy of threshold bound states---states which exist for arbitrary small coupling. The starting point is a (regularized) free theory. Explicit calculations are performed for quantum mechanics with arbitrary short-range potential in 1D and various (1+1)-dimensional quantum field theories. We check the method by comparing the results with exact formulas available in solvable models.
Reality in quantum mechanics, Extended Everett Concept, and consciousness
NASA Astrophysics Data System (ADS)
Mensky, M. B.
2007-09-01
Conceptual problems in quantum mechanics result from the specific quantum concept of reality and require, for their solution, including the observer’s consciousness into the quantum theory of measurements. Most naturally, this is achieved in the framework of Everett’s “many-world interpretation” of quantum mechanics. According to this interpretation, various classical alternatives are perceived by consciousness separately from each other. In the Extended Everett Concept (EEC) proposed by the present author, the separation of the alternatives is identified with the phenomenon of consciousness. This explains the classical character of the alternatives and unusual manifestations of consciousness arising “at the edge of consciousness” (i.e., in sleep or trance) when its access to “other alternative classical realities” (other Everett’s worlds) becomes feasible. Because of reversibility of quantum evolution in EEC, all time moments in the quantum world are equivalent, while the impression of flow of time appears only in consciousness. If it is assumed that consciousness may influence the probabilities of alternatives (which is consistent in case of infinitely many Everett’s worlds), EEC explains free will, “probabilistic miracles” (observing low-probability events), and decreasing entropy in the sphere of life.
Electron relaxation in quantum dot and quantum well systems by the ICD mechanism
NASA Astrophysics Data System (ADS)
Moiseyev, Nimrod
2014-05-01
Electron relaxation in quantum dot (QD) and quantum well (QW) systems has a significant impact on QD and QW optoelectronic devices such as lasers, photodetectors, and solar cells. Several different fundamental relaxation mechanisms are known. We focus here on inter-coulombic decay (ICD) mechanism. In 2011 we have shown that the electron relaxation in a quantum dot dimer due to the ICD mechanism is on a picoseconds timescale (PRB 83, 113303) and therefore IR QD detectors based on ICD seems to be feasible. Here we discuss the possibility to observe electron relaxation in QWs. In QWs the effective mass of the electron is not continuous, and can affect the lifetime of the ICD process. In order for the ICD to be the dominant decay mechanism, it must prevail over all other possible competitive decay processes. We have found in our setup that the ICD lifetime is on the timescale of picoseconds. An enhancement of the ICD process occurs when the ionized electron temporarily trapped in a shape-type resonance in the continuum. An experiment based on our findings is currently in progress. In this talk another possibility to observe the ICD phenomenon in two coupled QWs is proposed, by transferring an electron through a two coupled quantum wells structure populated by only one electron. An enhancement in the electron transmission would be obtained when the energy of the incoming electrons allows them to be temporarily trapped inside one of the two quantum wells via the ICD mechanism.
NASA Astrophysics Data System (ADS)
Sohrab, Siavash
2016-03-01
A scale-invariant model of statistical mechanics is applied to described modified forms of four laws of classical thermodynamics. Following de Broglie formula λrk = h /mkvrk , frequency of matter waves is defined as νrk = k /mkvrk leading to stochastic definitions of (Planck, Boltzmann) universal constants (h =mk <λrk > c , k =mk <νrk > c), λrkνrk = c , relating to spatiotemporal Casimir vacuum fluctuations. Invariant Mach number Maβ = v /vrβ is introduced leading to hierarchy of ``supersonic'' flow separated by shock front, viewed as ``event-horizon'' EHβ, from subsonic flow that terminates at surface of stagnant condensate of ``atoms'' defined as ``black-hole'' BHβ at scale β thus resulting in hierarchy of embedded ``black holes'' at molecular- atomic-, electron-, photon-, tachyon-. . . scales, ad infinitum. Classical black hole will correspond to solid phase photon or solid-light. It is argued that Bardeen-Carter-Hawking (1973) first law of black hole mechanics δM = (κ / 8 π) δA +ΩH δJ +ΦH δQ , instead of dE = TdS - PdV suggested by Bekenstein (1973), is analogous to first law of thermodynamics expressed as TdS = PdV + dE such that entropy of black hole, rather than to its horizon surface area, will be related to its total energy hence enthalpy H = TS leading to SBH = 4 kN in exact agreement with prediction of Major and Setter.
Quantum Magnetomechanics: Ultrahigh-Q-Levitated Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Cirio, M.; Brennen, G. K.; Twamley, J.
2012-10-01
Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motional Q one must work hard to remove all forms of motional noise and heating. We examine a magneto-meso-mechanical quantum system that consists of a 3D arrangement of miniature superconducting loops which is stably levitated in a static inhomogeneous magnetic field. The motional decoherence is predominantly due to loss from induced eddy currents in the magnetized sphere which provides the trapping field ultimately yielding Q˜109 with motional oscillation frequencies of several hundreds of kilohertz. By inductively coupling this levitating object to a nearby driven flux qubit one can cool its motion very close to the ground state and this may permit the generation of macroscopic entangled motional states of multiple clusters.
Quantum-mechanical treatment of an electron undergoing synchrotron radiation.
NASA Technical Reports Server (NTRS)
White, D.
1972-01-01
The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.
Spacetime alternatives in the quantum mechanics of a relativistic particle
Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )
1994-11-15
Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.
Study on a Possible Darwinian Origin of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Baladrón, C.
2011-03-01
A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.
The uncertainty principle determines the nonlocality of quantum mechanics.
Oppenheim, Jonathan; Wehner, Stephanie
2010-11-19
Two central concepts of quantum mechanics are Heisenberg's uncertainty principle and a subtle form of nonlocality that Einstein famously called "spooky action at a distance." These two fundamental features have thus far been distinct concepts. We show that they are inextricably and quantitatively linked: Quantum mechanics cannot be more nonlocal with measurements that respect the uncertainty principle. In fact, the link between uncertainty and nonlocality holds for all physical theories. More specifically, the degree of nonlocality of any theory is determined by two factors: the strength of the uncertainty principle and the strength of a property called "steering," which determines which states can be prepared at one location given a measurement at another.
Quantum mechanics concept assessment: Development and validation study
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra R.; Pollock, Steven J.
2015-06-01
As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum mechanics assessment tool (QMAT) to a multiple-choice (MC) format. Further question refinement, development of effective distractors, adding new questions, and robust statistical analysis has led to a 31-item quantum mechanics concept assessment (QMCA) test. The QMCA is used as post-test only to assess students' knowledge about five main topics of quantum measurement: the time-independent Schrödinger equation, wave functions and boundary conditions, time evolution, and probability density. During two years of testing and refinement, the QMCA has been given in alpha (N =61 ) and beta versions (N =263 ) to students in upper division quantum mechanics courses at 11 different institutions with an average post-test score of 54%. By allowing for comparisons of student learning across different populations and institutions, the QMCA provides instructors and researchers a more standard measure of effectiveness of different curricula or teaching strategies on student conceptual understanding of quantum mechanics. In this paper, we discuss the construction of effective distractors and the use of student interviews and expert feedback to revise and validate both questions and distractors. We include the results of common statistical tests of reliability and validity, which suggest the instrument is presently in a stable, usable, and promising form.
The SCOP-formalism: an Operational Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
D'Hooghe, Bart
2010-05-01
We present the SCOP-formalism, an operational approach to quantum mechanics. If a State—COntext—Property—System (SCOP) satisfies a specific set of `quantum axioms,] it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it. This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context. We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.
Quantum mechanical force field for water with explicit electronic polarization
Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali
2013-01-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across
Quantum mechanical force field for water with explicit electronic polarization.
Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali
2013-08-01
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across
To Quantum Mechanics Through Projection of Classical Statistical Mechanics on Prespace
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2005-10-01
We show that in opposite to a common opinion quantum mechanics can be represented as projection of classical statistical model on prequantum space -- prespace. All distinguishing features of the quantum probabilistic model (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present in a latent form in the classical Kolmogorov probability model. However, classical model should be considered as a contextual model (in the sense that all probabilities are determined by contexts - complexes of physical conditions). Moreover, the prequantum→quantum map is well defined only for two fundamental physical variables (in quantum mechanics these are position and momentum). Quantum mechanics is a projection of classical statistical model through these two "reference observables". Similarly, ordinary classical statistical mechanics on physical phase space is a projection of classical statistical mechanics on prespace, We also introduce a mental prespace and consider its quantum-like representation. Mental prespace describes subconsciousness and its quantum-like representation gives a model of consciousness.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
Is Quantum Mechanics Incompatible with Newton's First Law?
NASA Astrophysics Data System (ADS)
Rabinowitz, Mario
2008-04-01
Quantum mechanics (QM) clearly violates Newton’s First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the Schrödinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by Schrödinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.
The Deleuzian Concept of Structure and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christiaens, Wim A.
2014-03-01
Gilles Deleuze wanted a philosophy of nature in a pre-kantian almost archaic sense. A central concept in his philosophy is `multiplicity'. Although the concept is philosophical through and through, it has roots in the mathematical notion of manifold, specifically the state spaces for dynamical systems exhibiting non-linear behaviour. Deleuze was attracted to such mathematical structures because he believed they indicated a break with the dogmatic image of thought (the kind of thought that constrains itself into producing representations of reality conceived as particular things with strict borders, behaving and interacting according to invariant covering laws within space). However, even though it is true that a phase space representation of a physical entity is not a typical materialist picture of reality, it derives from a normal Euclidean representation, and can in principle be reduced to it. We want to argue that the real break happens with the quantum state space, and that Deleuze's typical description of a multiplicity fits even better with the quantum state space.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
Physics on the boundary between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-04-01
Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?
Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian
2016-01-01
It is congruous with the quantum nature of the world to view the spacetime geometry as an emergent structure that shows classical features only at some observational level. One can thus conceive the spacetime manifold as a purely theoretical arena, where quantum states are defined, with the additional freedom of changing coordinates like any other symmetry. Observables, including positions and distances, should then be described by suitable operators acting on such quantum states. In principle, the top-down (canonical) quantization of Einstein-Hilbert gravity falls right into this picture, but is notoriously very involved. The complication stems from allowing all the classical canonical variables that appear in the (presumably) fundamental action to become quantum observables acting on the “superspace” of all metrics, regardless of whether they play any role in the description of a specific physical system. On can instead revisit the more humble “minisuperspace” approach and choose the gravitational observables not simply by imposing some symmetry, but motivated by their proven relevance in the (classical) description of a given system. In particular, this review focuses on compact, spherically symmetric, quantum mechanical sources, in order to determine the probability that they are black holes (BHs) rather than regular particles. The gravitational radius is therefore lifted to the status of a quantum mechanical operator acting on the “horizon wave function (HWF),” the latter being determined by the quantum state of the source. This formalism is then applied to several sources with a mass around the fundamental scale, which are viewed as natural candidates of quantum BHs.
Elementary Quantum Mechanics in a High-Energy Process
ERIC Educational Resources Information Center
Denville, A.; And Others
1978-01-01
Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)
Testing Quantum Mechanics using a Triple slit experiment
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Sorkin, Rafael; Laflamme, Raymond; Weihs, Gregor
2010-03-01
As one of the postulates of quantum mechanics, Born's rule tells us how to get probabilities for experimental outcomes from the complex wavefunction of the system. It's quadratic nature entails that interference occurs in pairs of paths. An experiment is in progress in our laboratory that sets out to test the correctness of Born's rule by testing for the presence or absence of genuine three-path interference [1]. This is done using single photons and a three slit aperture. Although the Born rule has been indirectly verified to high accuracy in other experiments, the consequences of a detection of even a small three-way interference in the Quantum mechanical null prediction are tremendous. If a non-zero result were to be obtained, it would mean that Quantum Mechanics is only approximate, in the same way that the double slit experiment proves that classical physics is only an approximation to the true law of nature. This would give us an important hint on how to generalize Quantum Mechanics and open a new window to the world. Some preliminary observations have been reported in reference [2]. In this talk, I will show results that bound the possible violation of the second sum rule and will point out ways to obtain a tighter experimental bound. [1] R. D. Sorkin, Mod. Phys. Lett. A 9, 3119 (1994). [2] U. Sinha et al, in Foundations of Probability and Physics-5, A I P Conference Proceedings, Vol. 1101, pp. 200-207, New-York (2009)
Spin and Uncertainty in the Interpretation of Quantum Mechanics.
ERIC Educational Resources Information Center
Hestenes, David
1979-01-01
Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)
The History of Teaching Quantum Mechanics in Greece
ERIC Educational Resources Information Center
Tampakis, Constantin; Skordoulis, Constantin
2007-01-01
In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…
Philosophical and metamathematical considerations of quantum mechanical computers
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Shamir, Joseph
1990-07-01
We ask and give only very preliminary answers to two questions which must arise when we consider quantum mechanical computers with significant quantunt indeterminacy. First, how does this impact our belief in Church's thesis? Second, how does this impact our belief in freedom of thought?
A multiscale quantum mechanics/electromagnetics method for device simulations.
Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua
2015-04-01
Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.
Quantum Mechanics of the Einstein-Hopf Model.
ERIC Educational Resources Information Center
Milonni, P. W.
1981-01-01
The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, Alexander
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Taming the zoo of supersymmetric quantum mechanical models
NASA Astrophysics Data System (ADS)
Smilga, A. V.
2013-05-01
We show that in many cases nontrivial and complicated supersymmetric quantum mechanical (SQM) models can be obtained from the simple model describing free dynamics in flat complex space by two operations: (i) Hamiltonian reduction and (ii) similarity transformation of the complex supercharges. We conjecture that it is true for any SQM model.
Quantum Mechanics Concept Assessment: Development and Validation Study
ERIC Educational Resources Information Center
Sadaghiani, Homeyra R.; Pollock, Steven J.
2015-01-01
As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum…
Review of Student Difficulties in Upper-Level Quantum Mechanics
ERIC Educational Resources Information Center
Singh, Chandralekha; Marshman, Emily
2015-01-01
Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical…
Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator
ERIC Educational Resources Information Center
Quijas, P. C. Garcia; Aguilar, L. M. Arevalo
2007-01-01
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…
Quasi-Hermitian quantum mechanics in phase space
Curtright, Thomas; Veitia, Andrzej
2007-10-15
We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
ERIC Educational Resources Information Center
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, InstituteQuantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech
2016-06-01
We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption
Ruling Out Multi-Order Interference in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor
2010-07-01
Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born’s rule—one of the axioms of quantum mechanics—could be violated. Born’s rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10-2 of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born’s rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Superconvergent perturbation method in quantum mechanics
Scherer, W. )
1995-02-27
An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.
Quantum Mechanics for Everyone: Can it be done with Technology?
NASA Astrophysics Data System (ADS)
Zollman, Dean
2004-10-01
The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.
Quantum mechanical study of a generic quadratically coupled optomechanical system
NASA Astrophysics Data System (ADS)
Shi, H.; Bhattacharya, M.
2013-04-01
Typical optomechanical systems involving optical cavities and mechanical oscillators rely on a coupling that varies linearly with the oscillator displacement. However, recently a coupling varying instead as the square of the mechanical displacement has been realized, presenting new possibilities for nondemolition measurements and mechanical squeezing. In this article we present a quantum mechanical study of a generic quadratic-coupling optomechanical Hamiltonian. First, neglecting dissipation, we provide analytical results for the dressed states, spectrum, phonon statistics and entanglement. Subsequently, accounting for dissipation, we supply a numerical treatment using a master equation approach. We expect our results to be of use to optomechanical spectroscopy, state transfer, wave-function engineering, and entanglement generation.
Jarzynski Equality in PT-Symmetric Quantum Mechanics.
Deffner, Sebastian; Saxena, Avadh
2015-04-17
We show that the quantum Jarzynski equality generalizes to PT-symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the Jarzynski equality does not hold as also the CPT norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system-two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
Quantum mechanical calculation of Rydberg–Rydberg autoionization rates
NASA Astrophysics Data System (ADS)
Kiffner, Martin; Ceresoli, Davide; Li, Wenhui; Jaksch, Dieter
2016-10-01
We present quantum mechanical calculations of autoionization rates for two rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis of the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the autoionization rates. If the electron clouds overlap by more than one percent, the autoionization rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
A proposed optical test for Popper's challenge to quantum mechanics
NASA Astrophysics Data System (ADS)
Reintjes, J.; Bashkansky, Mark
2016-05-01
We describe an optical configuration that is predicted to exhibit the behavior described by Popper in his challenge to conventional quantum mechanics. Popper rejected this behavior on the grounds that it was unphysical because it relied on observer knowledge as a causative agent. We offer an interpretation in which the behavior arises simply out of the mode properties of an entangled system. In this interpretation the observer knowledge reveals in which mode an excitation occurs, but does not affect future behavior as asserted by Popper. We also discuss the relation of our system to the quantum eraser.
Quantum statistical mechanics of dense partially ionized hydrogen
NASA Technical Reports Server (NTRS)
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.
Jarzynski equality in PT-symmetric quantum mechanics
Deffner, Sebastian; Saxena, Avadh
2015-04-13
We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
NASA Astrophysics Data System (ADS)
McLenaghan, Raymond G.; Smirnov, Roman G.; The, Dennis
2004-03-01
We develop a new approach to the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvature that is ideologically close to the classical theory of invariants. The main idea, which provides the foundation of the new approach, is to treat a Killing tensor as an algebraic object determined by a set of parameters of the corresponding vector space of Killing tensors under the action of the isometry group. The spaces of group invariants and conformal group invariants of valence two Killing tensors defined in the Minkowski plane are described. The group invariants, which are the generators of the space of invariants, are applied to the problem of classification of orthogonally separable Hamiltonian systems defined in the Minkowski plane. Transformation formulas to separable coordinates expressed in terms of the parameters of the corresponding space of Killing tensors are presented. The results are applied to the problem of orthogonal separability of the Drach superintegrable potentials.
Quantum Mechanical Modeling of Ballistic MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)
2001-01-01
The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.
Thermalization and its mechanism for generic quantum isolated systems
NASA Astrophysics Data System (ADS)
Olshanii, Maxim; Dunjko, Vanja; Rigol, Marcos
2008-05-01
Time dynamics of isolated many-body quantum systems has long been an elusive subject, perhaps most urgently needed in the foundations of quantum statistical mechanics. In generic systems, one expects the nonequilibrium dynamics to lead to thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. The relaxation mechanism is not obvious, however; dynamical chaos cannot play the key role as it does in classical systems since quantum evolution is linear. Here we demonstrateootnotetextM. Rigol, V. Dunjko, and M. Olshanii, to appear in Nature (2008), using the results of an ab initio numerical experiment with 5 hard-core bosons moving in a 5x5 lattice, that in quantum systems thermalization happens not in course of time evolution but instead at the level of individual eigenstates, as first proposed by DeutschootnotetextJ. M. Deutsch, Phys.Rev. A 43, 2046 (1991) and SrednickiootnotetextM. Srednicki, Phys. Rev. E 50, 888 (1994).
A wave equation interpolating between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
A perspective on quantum mechanics calculations in ADMET predictions.
Bowen, J Phillip; Güner, Osman F
2013-01-01
Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.
Quantum mechanical reality according to Copenhagen 2.0
NASA Astrophysics Data System (ADS)
Din, Allan M.
2016-05-01
The long-standing conceptual controversies concerning the interpretation of nonrelativistic quantum mechanics are argued, on one hand, to be due to its incompleteness, as affirmed by Einstein. But on the other hand, it appears to be possible to complete it at least partially, as Bohr might have appreciated it, in the framework of its standard mathematical formalism with observables as appropriately defined self-adjoint operators. This completion of quantum mechanics is based on the requirement on laboratory physics to be effectively confined to a bounded space region and on the application of the von Neumann deficiency theorem to properly define a set of self-adjoint extensions of standard observables, e.g. the momenta and the Hamiltonian, in terms of certain isometries on the region boundary. This is formalized mathematically in the setting of a boundary ontology for the so-called Qbox in which the wave function acquires a supplementary dependence on a set of Additional Boundary Variables (ABV). It is argued that a certain geometric subset of the ABV parametrizing Quasi-Periodic Translational Isometries (QPTI) has a particular physical importance by allowing for the definition of an ontic wave function, which has the property of epitomizing the spatial wave function “collapse.” Concomitantly the standard wave function in an unbounded geometry is interpreted as an epistemic wave function, which together with the ontic QPTI wave function gives rise to the notion of two-wave duality, replacing the standard concept of wave-particle duality. More generally, this approach to quantum physics in a bounded geometry provides a novel analytical basis for a better understanding of several conceptual notions of quantum mechanics, including reality, nonlocality, entanglement and Heisenberg’s uncertainty relation. The scope of this analysis may be seen as a foundational update of the multiple versions 1.x of the Copenhagen interpretation of quantum mechanics, which is
Li, Hongzhi; Fajer, Mikolai; Yang, Wei
2007-01-14
A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations.
Delirium Quantum Or, where I will take quantum mechanics if it will let me
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.
2007-02-01
Once again, I take advantage of the wonderfully liberal and tolerant mood Andrei Khrennikov sets at his yearly conferences by submitting a nonstandard paper for the proceedings. This pseudo-paper consists of excerpts drawn from two of my samizdats [Quantum States: What the Hell Are They? and Darwinism All the Way Down (and Probabilism All the Way Back Up)] that I think best summarize what I am aiming for on the broadest scale with my quantum foundations program. Section 1 tries to draw a picture of a physical world whose essence is "Darwinism all the way down." Section 2 outlines how quantum theory should be viewed in light of that, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of "identical" quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a William Jamesian style "radical pluralism." Sections 4 and 5 further detail how quantum theory should not be viewed so much as a "theory of the world," but rather as a theory of decision-making for agents immersed within a quantum world—that is, a world in continual creation. Finally, Sections 6 and 7 attempt to sketch once again the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I see for the malleable world quantum mechanics hints of.
Reflections on Zeilinger-Brukner Information Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2016-07-01
In this short review I present my personal reflections on Zeilinger-Brukner information interpretation of quantum mechanics (QM).In general, this interpretation is very attractive for me. However, its rigid coupling to the notion of irreducible quantum randomness is a very complicated issue which I plan to address in more detail. This note may be useful for general public interested in quantum foundations, especially because I try to analyze essentials of the information interpretation critically (i.e., not just emphasizing its advantages as it is commonly done). This review is written in non-physicist friendly manner. Experts actively exploring this interpretation may be interested in the paper as well, as in the comments of "an external observer" who have been monitoring the development of this approach to QM during the last 18 years. The last part of this review is devoted to the general methodology of science with references to views of de Finetti, Wigner, and Peres.
Quantum processes as a mechanism in olfaction for smell recognition?
NASA Astrophysics Data System (ADS)
Brookes, Jennifer
2011-03-01
The physics of smell is not well understood. The biological processes that occur following a signalling event are well understood (Buck 1991). However, the reasons how and why a signalling event occurs when a particular smell molecule and receptor combination is made, remains un-established. Luca Turin proposes a signalling mechanism which determines smell molecules by quantum mechanics (Turin 1996). Investigation of this mechanism shows it to be physically robust (Brookes,et al, 2007), and consequences of the theory provides quantitative measurements of smell and interesting potential experiments that may determine whether the recognition of smell is a quantum event. Brookes, J.C, Hartoutsiou, F, Horsfield, A.P and Stoneham, A.M. (2007). Physical Review Letters 98, no. 3 038101 Buck, L. (1991) Cell, 65, no.1 (4): 175-187. Turin, L. (1996) Chemical Sences 21, no 6. 773-791 With many thanks to the Wellcome Trust.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
On the complexity of classical and quantum algorithms for numerical problems in quantum mechanics
NASA Astrophysics Data System (ADS)
Bessen, Arvid J.
Our understanding of complex quantum mechanical processes is limited by our inability to solve the equations that govern them except for simple cases. Numerical simulation of quantum systems appears to be our best option to understand, design and improve quantum systems. It turns out, however, that computational problems in quantum mechanics are notoriously difficult to treat numerically. The computational time that is required often scales exponentially with the size of the problem. One of the most radical approaches for treating quantum problems was proposed by Feytiman in 1982 [46]: he suggested that quantum mechanics itself showed a promising way to simulate quantum physics. This idea, the so called quantum computer, showed its potential convincingly in one important regime with the development of Shor's integer factorization algorithm which improves exponentially on the best known classical algorithm. In this thesis we explore six different computational problems from quantum mechanics, study their computational complexity and try to find ways to remedy them. In the first problem we investigate the reasons behind the improved performance of Shor's and similar algorithms. We show that the key quantum part in Shor's algorithm, the quantum phase estimation algorithm, achieves its good performance through the use of power queries and we give lower bounds for all phase estimation algorithms that use power queries that match the known upper bounds. Our research indicates that problems that allow the use of power queries will achieve similar exponential improvements over classical algorithms. We then apply our lower bound technique for power queries to the Sturm-Liouville eigenvalue problem and show matching lower bounds to the upper bounds of Papageorgiou and Wozniakowski [85]. It seems to be very difficult, though, to find nontrivial instances of the Sturm-Lionville problem for which power queries can be simulated efficiently. A quantum computer differs from a
Quantum chemical studies of growth mechanisms of ultrananocrystalline diamond.
Curtiss, L. A.; Zapol, P.; Sternberg, M.; Redfern, P. C.; Horner, D. A.; Gruen, D. M.; Materials Science Division; North Central Coll.
2004-06-07
Computational studies of growth mechanisms on diamond surfaces based on C{sub 2} precursor have been reviewed. The investigations have postulated reaction mechanisms with diamond growth occurring by insertion of C{sub 2} into the C-H bonds of the hydrogen-terminated diamond surface or into {pi}-bonded carbon dimers on dehydrogenated diamond surfaces. Reaction barriers for both growth and renucleation at (011) and (100) diamond surfaces had been calculated using quantum chemistry approaches. Preliminary results on growth mechanism involving CN precursors are also reported.
Single-atom quantum control of macroscopic mechanical oscillators
NASA Astrophysics Data System (ADS)
Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.
2014-01-01
We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
NASA Astrophysics Data System (ADS)
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
Third emission mechanism in solid-state nanocavity quantum electrodynamics.
Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu
2012-09-01
Photonic crystal (PC) nanocavities have been receiving a great deal of attention recently because of their ability to strongly confine photons in a tiny space with a high quality factor. According to cavity quantum electrodynamics (cavity QED), such confined photons can achieve efficient interactions with excitons in semiconductors, leading to the Purcell effect in the weak coupling regime and vacuum Rabi splitting (VRS) in the strong coupling regime. These features are promising for applications such as quantum information processing, highly efficient single photon sources and ultra-low threshold lasers. In this context, the coupled system of a semiconductor quantum dot (QD) and a PC nanocavity has been intensively investigated in recent years.Although experimental reports have demonstrated such fundamental features, two anomalous phenomena have also been observed. First, photon emission from the cavity occurs even when it is significantly detuned from the QD. Second, spectral triplets are formed by additional bare-cavity lines between the VRS lines. These features cannot be explained by standard cavity QED theories and have prompted controversy regarding their physical mechanisms. In this review we describe the recent experimental and theoretical progress made in the investigation of these phenomena. Similar mechanisms will also occur in many other coupled quantum systems, and thus the findings are applicable to a wide range of fields.
Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations
NASA Astrophysics Data System (ADS)
Friedman, Andrew S.; Gallicchio, Jason; Kaiser, David I.; Guth, Alan H.
2015-01-01
We propose an experiment which would leverage cosmology to test quantum mechanics using astronomical observations. Our experiment would send entangled photons to detectors over 100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of distant, causally disconnected, cosmic sources - such as pairs of quasars or patches of the Cosmic Microwave Background - all while the entangled pair is still in flight. This would, for the first time, close close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with some local "hidden variables" due to unknown causal influences a mere few milliseconds prior to the experiment. Our "Cosmic Bell" experiment would push any such hidden variable conspiracy all the way back to the hot big bang, since the end of any period of inflation, 13.8 Gyr ago, an improvement of 20 orders of magnitude. We demonstrate the real world feasibility of our experimental setup. While causally disjoint patches of the cosmic microwave background radiation at redshift z ~ 1090 could be used to set the detectors, z > 3.65 quasars observed at optical wavelengths are arguably the optimal candidate source pairs using present technology. Our proposal is supported by some of the world's leading quantum experimentalists, who have begun to collaborate with us to conduct the experiment in the next 2-3 years using some of the instrumentation they have already built and used at two astronomical observatories in the Canary Islands. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the
Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano
2016-09-13
We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.
Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano
2016-09-13
We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution. PMID:27494227
Bosson, Maël; Grudinin, Sergei; Redon, Stephane
2013-03-01
We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.
Approaching the standard quantum limit of mechanical torque sensing
Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.
2016-01-01
Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins. PMID:27762273
A quantum mechanical polarizable force field for biomolecular interactions.
Donchev, A G; Ozrin, V D; Subbotin, M V; Tarasov, O V; Tarasov, V I
2005-05-31
We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs.
The equivalence principle of quantum mechanics: Uniqueness theorem
Faraggi, A.E.; Matone, M.
1997-10-28
Recently the authors showed that the postulated diffeomorphic equivalence of states implies quantum mechanics. This approach takes the canonical variables to be dependent by the relation p = {partial_derivative}{sub q}S{sub 0} and exploits a basic GL(2,C)-symmetry which underlies the canonical formalism. In particular, they looked for the special transformations leading to the free system with vanishing energy. Furthermore, they saw that while on the one hand the equivalence principle cannot be consistently implemented in classical mechanics, on the other it naturally led to the quantum analogue of the Hamilton-Jacobi equation, thus implying the Schroedinger equation. In this letter they show that actually the principle uniquely leads to this solution. The authors also express the canonical and Schroedinger equations by means of the brackets recently introduced in the framework of N = 2 SYM. These brackets are the analogue of the Poisson brackets with the canonical variables taken as dependent.
BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)
NASA Astrophysics Data System (ADS)
Mahler, G.
2004-07-01
Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried to expel the non-classical nature of quantum mechanics. More recent proposals intend to complete quantum mechanics not within mechanics proper but on a `higher (synthetic) level'; by means of a combination with gravitation theory (R Penrose), with quantum information theory (C M Caves, C A Fuchs) or with psychology and brain science (H P Stapp). I think it is fair to say that in each case the combination is with a subject that, per se, suffers from a very limited understanding that is even more severe than that of quantum mechanics. This was acceptable, though, if it could convincingly be argued that scientific progress desperately needs to join forces. Quantum mechanics of a closed system was a beautiful and well understood theory with its respective state being presented as a point on a deterministic trajectory in Liouville space---not unlike the motion of a classical N-particle system in its 6N-dimensional phase-space. Unfortunately, we need an inside and an outside view, we need an external reference frame, we need an observer. This unavoidable partition is the origin of most of the troubles we have with quantum mechanics. A pragmatic solution is introduced in the form of so-called measurement postulates: one of the various incompatible properties of the system under consideration is supposed to be realized (i.e. to become a fact, to be defined without fundamental dispersion) based on `instantaneous' projections within some externally selected measurement basis. As a result, the theory becomes essentially statistical rather than deterministic
Frank, Steven A.
2016-01-01
In nematodes, environmental or physiological perturbations alter death’s scaling of time. In human cancer, genetic perturbations alter death’s curvature of time. Those changes in scale and curvature follow the constraining contours of death’s invariant geometry. I show that the constraints arise from a fundamental extension to the theories of randomness, invariance and scale. A generalized Gompertz law follows. The constraints imposed by the invariant Gompertz geometry explain the tendency of perturbations to stretch or bend death’s scaling of time. Variability in death rate arises from a combination of constraining universal laws and particular biological processes. PMID:27785361
Polymer quantum mechanics some examples using path integrals
Parra, Lorena; Vergara, J. David
2014-01-14
In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, A. |
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
Resolution of the Klein Paradox within Relativistic Quantum Mechanics
Alhaidari, A. D.
2011-10-27
We present a resolution of the Klein paradox within the framework of one-particle relativistic quantum mechanics (no pair production). Not only reflection becomes total but the vacuum remains neutral as well. This is accomplished by replacing the pair production process with virtual negative energy ''incidence'' within the barrier in a process analogous to the introduction of image charges in electrostatic and virtual sources in optics.
Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino
2016-06-27
This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.
Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino
2016-06-27
This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. PMID:27225077
NASA Astrophysics Data System (ADS)
Halliwell, Jonathan J.; Ortiz, Miguel E.
1993-07-01
This paper is concerned with the question of the existence of composition laws in the sum-over-histories approach to relativistic quantum mechanics and quantum cosmology, and its connection with the existence of a canonical formulation. In nonrelativistic quantum mechanics, the propagator is represented by a sum over histories in which the paths move forward in time. The composition law of the propagator then follows from the fact that the paths intersect an intermediate surface of constant time once and only once, and a partition of the paths according to their crossing position may be affected. In relativistic quantum mechanics, by contrast, the propagators (or Green functions) may be represented by sums over histories in which the paths move backward and forward in time. They therefore intersect surfaces of constant time more than once, and the relativistic composition law, involving a normal derivative term, is not readily recovered. The principal technical aim of this paper is to show that the relativistic composition law may, in fact, be derived directly from a sum over histories by partitioning the paths according to their first crossing position of an intermediate surface. We review the various Green functions of the Klein-Gordon equation, and derive their composition laws. We obtain path-integral representations for all Green functions except the causal one. We use the proper time representation, in which the path integral has the form of a nonrelativistic sum over histories but is integrated over time. The question of deriving the composition laws therefore reduces to the question of factoring the propagators of nonrelativistic quantum mechanics across an arbitrary surface in configuration space. This may be achieved using a known result called the path decomposition expansion (PDX). We give a proof of the PDX using a spacetime lattice definition of the Euclidean propagator. We use the PDX to derive the composition laws of relativistic quantum mechanics
Effects of a scalar scaling field on quantum mechanics
NASA Astrophysics Data System (ADS)
Benioff, Paul
2016-07-01
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
Novel symmetries in N=2 supersymmetric quantum mechanical models
Malik, R.P.; Khare, Avinash
2013-07-15
We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.
Attosecond delays in photoionization: time and quantum mechanics
NASA Astrophysics Data System (ADS)
Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2014-10-01
This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.
A Separable, Dynamically Local Ontological Model of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pienaar, Jacques
2016-01-01
A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.
The effect of a mechanical force on quantum reaction rate: quantum Bell formula.
Makarov, Dmitrii E
2011-11-21
The purpose of this note is to derive a quantum-mechanical analog of Bell's formula, which describes the sensitivity of a chemical reaction to a mechanical pulling force. According to this formula, the reaction rate depends exponentially on the force f, i.e., k(f) ~ exp(f/f(c)), where the force scale f(c) is estimated as the thermal energy k(B)T divided by a distance a between the reactant and transition states along the pulling coordinate. Here I use instanton theory to show that, at low temperatures where quantum tunneling is dominant, this force scale becomes f(c) ~ ℏω/a (in the limit where frictional damping is absent) or f(c) ~ ℏτ(-1)/a (in the strong damping limit). Here ω is a characteristic vibration frequency along the pulling coordinate and τ is a characteristic relaxation time in the reactant state. That is, unlike the classical case where f(c) is unaffected by dissipation, this force scale becomes friction dependent in the quantum limit. I further derive higher-order corrections in the force dependence of the rate, describe generalizations to many degrees of freedom, and discuss connection to other quantum rate theories. PMID:22112071
Quantum mechanical molecular dynamics studies of chemical systems
NASA Astrophysics Data System (ADS)
Pavese, Marc
Methods for including quantum mechanical effects in molecular dynamics (MD) simulations are discussed in this thesis. The thesis focuses on the path integral centroid molecular dynamics (CMD) algorithm. This algorithm is first described and then used in simulations of low temperature para-hydrogen, and also in simulations of the excess proton in water clusters and in the bulk. The CMD method allows one to include the effects of nuclear quantization approximately while still maintaining a quasi-classical, trajectory based, description of the dynamics. The effects of quantization of the electronic degrees of freedom are also discussed. These effects are usually taken into account implicitly through parameterized potential functions. However, methods for including the quantum electronic degrees of freedom explicitly in a MD simulation are also discussed in this thesis. Most notably, the Car-Parrinello method, which combines density functional theory (DFT) with MD, is employed with the CMD algorithm. This yields a method which takes explicit account of the quantum electrons and nuclei. Thus, this work represents one feasible approach for considering the quantum nature of all the degrees of freedom of the system while still maintaining an MD framework. In the concluding remarks, future directions and possibilities for this type of approach are discussed.
Quantum Mechanics and the Principle of Maximal Variety
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-06-01
Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation. The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically. This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.
A signed particle formulation of non-relativistic quantum mechanics
Sellier, Jean Michel
2015-09-15
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.
Np Incorporation into Uranyl Alteration Phases: A Quantum Mechanical Approach
Shuller, Lindsay; Ewing, Rodney C. |; Becker, Udo
2007-07-01
Neptunium is a major contributor to the long-term radioactivity in a geologic repository for spent nuclear fuel (SNF) due to its long half-life (2.1 million years). The mobility of Np may be decreased by its incorporation into the U{sup 6+} phases that form during the corrosion of SNF. The ionic radii of Np{sup 5+} (0.089 nm) and U{sup 6+} (0.087 nm) are similar, as is their chemistry. Experimental studies have shown that Np can be incorporated into uranyl phases up to concentrations on the order of 100 ppm. The low concentration of Np in the uranyl phases complicates experimental detection and presents a significant challenge for determining the incorporation mechanism. Therefore, we have used quantum mechanical calculations to investigate incorporation mechanisms and evaluate the energetics of Np substituting for U. CASTEP, a density functional theory based code that uses plane waves to model the behavior of the valence electrons and pseudo-potentials to model the behavior of the core and inner valence electrons, was used to calculate optimal H positions, relaxed geometry, and the energy of different uranyl phases. The incorporation energy for Np into uranyl alteration phases was calculated for studtite, [(UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}](H{sub 2}O){sub 2}, and boltwoodite, HK(UO{sub 2})(SiO{sub 4}) 1.5(H{sub 2}O). Studtite is the rare case of a stable, naturally-occurring peroxide mineral, in this case a uranyl hydroxyl peroxide that forms in the presence of H{sub 2}O{sub 2} from the radiolysis of H{sub 2}O. For studtite, two incorporation mechanisms were evaluated: (1) charge-balanced substitution of Np{sup 5+} and H{sup +} for one U{sup 6+}, and (2) direct substitution of Np{sup 6+} for U{sup 6+}. For boltwoodite, the H atomic positions prior to Np incorporation were determined, as well as the Np incorporation mechanisms and the corresponding substitution energies. The preferential incorporation of Np into different structure types of U{sup 6+} minerals
Friesner, Richard A; Guallar, Victor
2005-01-01
We describe large scale ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic reactions. First, technical aspects of the methodology are reviewed, including the hybrid density functional theory (DFT) methods that are typically employed for the QM aspect of the calculations, and various approaches to defining the interface between the QM and MM regions in QM/MM approaches. The modeling of the enzymatic catalytic cycle for three examples--methane monooxygenase, cytochrome P450, and triose phosphate isomerase--are discussed in some depth, followed by a brief summary of other systems that have been investigated by ab initio methods over the past several years. Finally, a discussion of the qualitative and quantitative conclusions concerning enzymatic catalysis that are available from modern ab initio approaches is presented, followed by a conclusion briefly summarizing future prospects.
The measurement problem in quantum mechanics: A phenomenological investigation
NASA Astrophysics Data System (ADS)
Hunter, Joel Brooks
2008-10-01
This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality
The GRW Theory and Vagueness in Quantum Mechanics.
NASA Astrophysics Data System (ADS)
Lewis, Peter John
This dissertation is an investigation into the adequacy of the GRW theory of quantum mechanics as a solution to the measurement problem, and a comparison between the GRW theory and the other potential solutions. A new problem, the vagueness problem, is found to afflict a broad class of quantum mechanical theories, including the GRW theory. The standard theory of quantum mechanics and the measurement problem from which it suffers are sketched. The GRW theory of quantum mechanics is explained, along with how it is intended to solve the measurement problem. The major obstacle to the adequacy of the GRW theory in this regard, known as the tails problem, is presented. Two potential lines of response to the tails problem are outlined, namely modifying the GRW dynamics and modifying the interpretation rule connecting the language of the theory to everyday language. The first of these is quickly shown to be unworkable. The second is investigated in some detail. A defense of this line of response in terms of the inherent vagueness of the translation between the language of physical theory and everyday language is presented. However, it is argued that any modified interpretation rule which can adequately respond to the tails problem will violate intuitions concerning counting and the logic of parts and wholes. This is termed the vagueness problem. The extent of the vagueness problem among the other promising solutions to the measurement problem is investigated. It is demonstrated that the modal theories suffer from this problem, but Bohm-type hidden variable theories do not. It is argued that this gives us reason to prefer the hidden variable theories over their competitors. The empirical adequacy of the GRW theory is investigated. It is found that empirical considerations cannot at present decide between the GRW theory and its alternatives, although they may be able to do so eventually. The conclusion drawn is that because of the vagueness problem, the GRW theory and the
A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fearn, H.
2016-01-01
This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.
A short course on quantum mechanics and methods of quantization
NASA Astrophysics Data System (ADS)
Ercolessi, Elisa
2015-07-01
These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.
PREFACE: EmQM13: Emergent Quantum Mechanics 2013
NASA Astrophysics Data System (ADS)
2014-04-01
These proceedings comprise the invited lectures of the second international symposium on Emergent Quantum Mechanics (EmQM13), which was held at the premises of the Austrian Academy of Sciences in Vienna, Austria, 3-6 October 2013. The symposium was held at the ''Theatersaal'' of the Academy of Sciences, and was devoted to the open exploration of emergent quantum mechanics, a possible ''deeper level theory'' that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, ''superclassical'' physics? The symposium provided a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards emergent quantum mechanics. Contributions were invited that presented current advances in both standard as well as unconventional approaches to quantum mechanics. The EmQM13 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After a very successful first conference on the same topic in 2011, the new partnership between AINS and the Fetzer Franklin Fund in producing the EmQM13 symposium was able to further expand interest in the promise of emergent quantum mechanics. The symposium consisted of two parts, an opening evening addressing the general public, and the scientific program of the conference proper. The opening evening took place at the Great Ceremonial Hall (Grosser Festsaal) of the Austrian Academy of Sciences, and it presented talks and a panel discussion on ''The Future of Quantum Mechanics'' with three distinguished speakers: Stephen Adler (Princeton), Gerard 't Hooft (Utrecht) and Masanao Ozawa (Nagoya). The articles contained in
A Case Study of Teaching Quantum Mechanics Using Research Publications
NASA Astrophysics Data System (ADS)
Sharma, Manjula
2015-04-01
Significant research effort is dedicated to student learning of quantum mechanics. Students often find quantum interesting but are challenged by the abstraction. The mathematical detail detracts from the conceptual underpinnings. This presentation provides examples of innovating teaching which attempt to address these matters. It draws on an Australian Government Office for Learning and Teaching National Teaching Fellowship which involved 9 universities. The innovations use research publications in different ways within a lecture course. In some, papers which shaped the field are used to examine conceptual underpinnings, in some students critique research papers, and in others students search for papers to share with peers. The role of different face-to-face pedagogies such as whole class discussions and small group work will be discussed. Ways in which assessment has been changed will also be discussed.
Perspective: Polarizable continuum models for quantum-mechanical descriptions
NASA Astrophysics Data System (ADS)
Lipparini, Filippo; Mennucci, Benedetta
2016-04-01
Polarizable continuum solvation models are nowadays the most popular approach to describe solvent effects in the context of quantum mechanical calculations. Unexpectedly, despite their widespread use in all branches of quantum chemistry and beyond, important aspects of both their theoretical formulation and numerical implementation are still not completely understood. In particular, in this perspective we focus on the numerical issues of their implementation when applied to large systems and on the theoretical framework needed to treat time dependent problems and excited states or to deal with electronic correlation. Possible extensions beyond a purely electrostatic model and generalizations to environments beyond common solvents are also critically presented and discussed. Finally, some possible new theoretical approaches and numerical strategies are suggested to overcome the obstacles which still prevent a full exploitation of these models.
Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers
NASA Astrophysics Data System (ADS)
Barati, Ehsan; Cinal, Marek
2015-06-01
A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Astrophysics Data System (ADS)
Spiridonov, Vyacheslav
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Evanescent radiation, quantum mechanics and the Casimir effect
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1989-01-01
An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.
Maximum-power quantum-mechanical Carnot engine.
Abe, Sumiyoshi
2011-04-01
In their work [J. Phys. A 33, 4427 (2000)], Bender, Brody, and Meister have shown by employing a two-state model of a particle confined in the one-dimensional infinite potential well that it is possible to construct a quantum-mechanical analog of the Carnot engine through changes of both the width of the well and the quantum state in a specific manner. Here, a discussion is developed about realizing the maximum power of such an engine, where the width of the well moves at low but finite speed. The efficiency of the engine at the maximum power output is found to be universal independently of any of the parameters contained in the model.
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
NASA Technical Reports Server (NTRS)
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Probing scattering mechanisms with symmetric quantum cascade lasers.
Deutsch, Christoph; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Klang, Pavel; Kubis, Tillmann; Klimeck, Gerhard; Schuster, Manfred E; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl
2013-03-25
A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.
Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks
Leggett, A.J.; Garg, A.
1985-03-04
It is shown that, in the contect of an idealized ''macroscopic quantum coherence'' experiment, the prediction of quantum mechanics are incompattible with the conjunction of two general assimptions which are designated ''macroscopic realism'' and ''noninvasive measurability at the macroscopiclevel.'' The conditions under which quantum mechanics can be tested against these assumptions in a realistic experiment are discussed.
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
The Kantian element in the Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cale, David Lee
In Quantum Physics and the Philosophical Tradition, Aage Petersen makes the troubling claim that the entirety of the tradition of Western philosophy is "deconstructed" by quantum mechanics. This viewpoint applies, especially, to the relationship between Kantian philosophy and quantum theory. It is generally accepted that quantum mechanics, in its Copenhagen interpretation, has destroyed all validity for the classical belief in a deterministic underlying reality, a belief sustained throughout the nineteenth century through a philosophical ground in Kant's critical philosophy. This dissertation takes on the daunting task of determining what, if any, relationship can be had between contemporary physics and Kantian philosophy. It begins with a historical review of the challenges posed for Kant's arguments and proposed solutions, especially those offered by Cassirer. It then turns to the task of providing the Western philosophical tradition with an interpretation apart from Petersen's, which sees it as concerned only with the problem of being. The offered solution is the suggestion that Western philosophy be understood as a struggle, between epistemological and ontological perspectives, to provide a context for the various descriptions of nature provided by human scientific progress. Kant's philosophy is then interpreted as an effort to provide Newtonian physics with a valid context in the face of Hume's skepticism. The finding is that Kant was the first to suggest that an object does not acquire the spatio-temporal properties used in its physical description until introduced to an observer. The dissertation concludes that the authors of the Copenhagen interpretation were essentially engaged in Kant's enterprise through their attempt to provide an observer based context for the spatio-temporal descriptive principles used in the physics of their time.
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahmadov, F; Aielli, G; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P
2014-03-01
This Letter presents a search for quantum black-hole production using 20.3 fb-1 of data collected with the ATLAS detector in pp collisions at the LHC at √s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered. PMID:24655244
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahmadov, F; Aielli, G; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Christidi, I A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costa Batalha Pedro, R; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Crispin Ortuzar, M; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Deigaard, I; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Grybel, K; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; Lecompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Luehring, F; Lukas, W; Luminari, L; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McHedlidze, G; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S G; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reinsch, A; Reisin, H; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarkisyan-Grinbaum, E; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schramm, S; Schreyer, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimmin, C O; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Socher, F; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Stumer, I; Stupak, J; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L
2014-03-01
This Letter presents a search for quantum black-hole production using 20.3 fb-1 of data collected with the ATLAS detector in pp collisions at the LHC at √s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Fractional supersymmetry and hierarchy of shape invariant potentials
Daoud, M.; Kibler, M. R.
2006-12-15
Fractional supersymmetric quantum mechanics is developed from a generalized Weyl-Heisenberg algebra. The Hamiltonian and the supercharges of fractional supersymmetric dynamical systems are built in terms of the generators of this algebra. The Hamiltonian gives rise to a hierarchy of isospectral Hamiltonians. Special cases of the algebra lead to dynamical systems for which the isospectral supersymmetric partner Hamiltonians are connected by a (translational or cyclic) shape invariance condition.
NASA Astrophysics Data System (ADS)
Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.
2013-11-01
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
Dark current mechanism of terahertz quantum-well photodetectors
Jia, J. Y.; Gao, J. H.; Hao, M. R.; Wang, T. M.; Shen, W. Z.; Zhang, Y. H.; Cao, J. C.; Guo, X. G.; Schneider, H.
2014-10-21
Dark current mechanisms of terahertz quantum-well photodetectors (THz QWPs) are systematically investigated experimentally and theoretically by measuring two newly designed structures combined with samples reported previously. In contrast to previous investigations, scattering-assisted tunneling dark current is found to cause significant contributions to total dark current. A criterion is also proposed to determine the major dark current mechanism at different peak response frequencies. We further determine background limited performance (BLIP) temperatures, which decrease both experimentally and theoretically as the electric field increases. This work gives good description of dark current mechanism for QWPs in the THz region and is extended to determine the transition fields and BLIP temperatures with response peaks from 3 to 12 THz.
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
NASA Astrophysics Data System (ADS)
Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.
2016-04-01
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities.
Quantum mechanics in fractional and other anomalous spacetimes
Calcagni, Gianluca; Nardelli, Giuseppe; Scalisi, Marco
2012-10-15
We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final states.
Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
NASA Astrophysics Data System (ADS)
Didier, Nicolas; Lemonde, Marc-Antoine; Clerk, Aashish A.
A key challenge limiting truly quantum behaviour in optomechanical systems is the typically small value of the optomechanical coupling at the single-photon, single-phonon level. We present an approach for exponentially enhancing the single-photon coupling strength in an optomechanical system using only additional linear resources. It allows one to reach the quantum nonlinear regime of optomechanics, where nonlinear effects are observed at the single photon level, even if the bare coupling strength is much smaller than the mechanical frequency and cavity damping rate. Our method is based on using a large amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical setup, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. Preprint: arXiv:1509.09238.
Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets
NASA Astrophysics Data System (ADS)
Kienzler, D.; Flühmann, C.; Negnevitsky, V.; Lo, H.-Y.; Marinelli, M.; Nadlinger, D.; Home, J. P.
2016-04-01
We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δ α =15.6 , corresponding to a distance of 240 nm between the two superposed wave packets.
Generalized Uncertainty Relation in the Non-commutative Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chung, Won Sang
2016-06-01
In this paper the non-commutative quantum mechanics (NCQM) with the generalized uncertainty relations {Δ } x1 {Δ } x2 ≥ {θ}/{2}, {Δ} p1 {Δ } p2 ≥ {bar{θ}}/{2}, {Δ } xi {Δ } pi ≥ {hbar _{eff}}/{2} is discussed. Four each uncertainty relation, wave functions saturating each uncertainty relation are explicitly constructed. The unitary operators relating the non-commutative position and momentum operators to the commutative position and momentum operators are also investigated. We also discuss the uncertainty relation related to the harmonic oscillator.
Sachdev-Ye-Kitaev model as Liouville quantum mechanics
NASA Astrophysics Data System (ADS)
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-10-01
We show that the proper inclusion of soft reparameterization modes in the Sachdev-Ye-Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics. As a result, all zero temperature correlation functions decay with the universal exponent ∝τ - 3 / 2 for times larger than the inverse single particle level spacing τ ≫ Nln N. In the particular case of the single particle Green function this behavior is manifestation of the zero-bias anomaly, or scaling in energy as ɛ 1 / 2. We also present exact diagonalization study supporting our conclusions.
On the quantum mechanical solutions with minimal length uncertainty
NASA Astrophysics Data System (ADS)
Shababi, Homa; Pedram, Pouria; Chung, Won Sang
2016-06-01
In this paper, we study two generalized uncertainty principles (GUPs) including [X,P] = iℏ(1 + βP2j) and [X,P] = iℏ(1 + βP2 + kβ2P4) which imply minimal measurable lengths. Using two momentum representations, for the former GUP, we find eigenvalues and eigenfunctions of the free particle and the harmonic oscillator in terms of generalized trigonometric functions. Also, for the latter GUP, we obtain quantum mechanical solutions of a particle in a box and harmonic oscillator. Finally we investigate the statistical properties of the harmonic oscillator including partition function, internal energy, and heat capacity in the context of the first GUP.
"Spring theory of relativity" originating from quantum mechanics
NASA Astrophysics Data System (ADS)
Yefremov, Alexander P.
Compact derivation of mathematical equations similar to those of quantum and classical mechanics is given on the base of fractal decomposition of a three-dimensional space. In physical units the equations become Shrödinger and Hamilton-Jacobi equations, the wave function of a free particle associated with a virtual ring. Locally uniform motion of the ring in the physical space provides an original helix (or regular cylindrical spring) model of a relativistic theory equivalent in results with special relativity, the free particle's relativistic Lagrangian emerging automatically. Irregular spring model generates theory similar to general relativity.