Science.gov

Sample records for invasive mechanical ventilation

  1. Modern non-invasive mechanical ventilation turns 25.

    PubMed

    Díaz Lobato, Salvador; Mayoralas Alises, Sagrario

    2013-11-01

    The history of non-invasive mechanical ventilation goes back more than 100 years, but it was not until 1987 when what we could call "modern" non-invasive mechanical ventilation was developed. The description of Delaubier and Rideau of a patient with Duchenne's disease who had been effectively ventilated through a nasal mask marked the start of a new era in the history of non-invasive mechanical ventilation. Over these last 25years, we have witnessed exponential growth in its use, field of activity and technological advances on an exciting fast-paced track. We believe that it is time to review the main milestones that have marked the development of non-invasive mechanical ventilation to date, while paying homage to this therapeutic method that has contributed so much to the advancement of respiratory medicine in the last 25years.

  2. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    PubMed

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  3. [Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients.

  4. [Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients. PMID:25702198

  5. Pressure versus volume controlled modes in invasive mechanical ventilation.

    PubMed

    Garnero, A J; Abbona, H; Gordo-Vidal, F; Hermosa-Gelbard, C

    2013-05-01

    The first generation of mechanical ventilators were controlled and cycled by pressure. Unfortunately, they did not allow control of the delivered tidal volume under changes in the dynamics of the respiratory system. This led to a second generation of ventilators that allowed volume control, hence favoring the ventilatory strategy based on normalization of the arterial gases. Studies conducted in the 1980s which related lung injury to the high ventilator pressures utilized while treating acute respiratory distress syndrome patients renewed interest in pressure-controlled mechanical ventilation. In addition, new evidence became available, leading to the development of pulmonary protective strategies aiming at preventing the progression of ventilator-induced lung injury. This review provides a detailed description of the control of pressure or volume using certain ventilatory modes, and offers a general view of their advantages and disadvantages, based on the latest available evidence.

  6. Pressure versus volume controlled modes in invasive mechanical ventilation.

    PubMed

    Garnero, A J; Abbona, H; Gordo-Vidal, F; Hermosa-Gelbard, C

    2013-05-01

    The first generation of mechanical ventilators were controlled and cycled by pressure. Unfortunately, they did not allow control of the delivered tidal volume under changes in the dynamics of the respiratory system. This led to a second generation of ventilators that allowed volume control, hence favoring the ventilatory strategy based on normalization of the arterial gases. Studies conducted in the 1980s which related lung injury to the high ventilator pressures utilized while treating acute respiratory distress syndrome patients renewed interest in pressure-controlled mechanical ventilation. In addition, new evidence became available, leading to the development of pulmonary protective strategies aiming at preventing the progression of ventilator-induced lung injury. This review provides a detailed description of the control of pressure or volume using certain ventilatory modes, and offers a general view of their advantages and disadvantages, based on the latest available evidence. PMID:23260264

  7. [Non-invasive mechanical ventilation in the treatment of acute heart failure].

    PubMed

    Alfonso Megido, Joaquín; González Franco, Alvaro

    2014-03-01

    When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view.

  8. Resolution of obstructive atelectasis with non-invasive mechanical ventilation.

    PubMed

    Mirambeaux Villalona, Rosa; Mayoralas Alises, Sagrario; Díaz Lobato, Salvador

    2014-10-01

    Bronchoscopy is a commonly used technique in patients with atelectasis due to mucus plugs. We present here the case of an 82-year-old patient with a history of Meige's syndrome who developed acute respiratory failure due to atelectasis of the right upper lobe associated with hospital-acquired pneumonia. The patient had a severely reduced level of consciousness, significant work-of-breathing and severe hypercapnic acidosis, all of which contraindicated bronchoscopy. Bi-level noninvasive mechanical ventilation (NIMV) was initiated by way of a face mask. Progress was favourable, with clear clinical and gasometric improvement. The chest X-ray performed 12hours later showed complete resolution of the atelectasis. These data suggest that NIMV may be useful in the treatment of atelectasis is some critical patients.

  9. Resolution of obstructive atelectasis with non-invasive mechanical ventilation.

    PubMed

    Mirambeaux Villalona, Rosa; Mayoralas Alises, Sagrario; Díaz Lobato, Salvador

    2014-10-01

    Bronchoscopy is a commonly used technique in patients with atelectasis due to mucus plugs. We present here the case of an 82-year-old patient with a history of Meige's syndrome who developed acute respiratory failure due to atelectasis of the right upper lobe associated with hospital-acquired pneumonia. The patient had a severely reduced level of consciousness, significant work-of-breathing and severe hypercapnic acidosis, all of which contraindicated bronchoscopy. Bi-level noninvasive mechanical ventilation (NIMV) was initiated by way of a face mask. Progress was favourable, with clear clinical and gasometric improvement. The chest X-ray performed 12hours later showed complete resolution of the atelectasis. These data suggest that NIMV may be useful in the treatment of atelectasis is some critical patients. PMID:24411928

  10. [Non-invasive mechanical ventilation in postoperative patients. A clinical review].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive ventilation (NIV) is a method of ventilatory support that is increasing in importance day by day in the management of postoperative respiratory failure. Its role in the prevention and treatment of atelectasis is particularly important in the in the period after thoracic and abdominal surgeries. Similarly, in the transplanted patient, NIV can shorten the time of invasive mechanical ventilation, reducing the risk of infectious complications in these high-risk patients. It has been performed A systematic review of the literature has been performed, including examining the technical, clinical experiences and recommendations concerning the application of NIV in the postoperative period.

  11. [Non-invasive mechanical ventilation in postoperative patients. A clinical review].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive ventilation (NIV) is a method of ventilatory support that is increasing in importance day by day in the management of postoperative respiratory failure. Its role in the prevention and treatment of atelectasis is particularly important in the in the period after thoracic and abdominal surgeries. Similarly, in the transplanted patient, NIV can shorten the time of invasive mechanical ventilation, reducing the risk of infectious complications in these high-risk patients. It has been performed A systematic review of the literature has been performed, including examining the technical, clinical experiences and recommendations concerning the application of NIV in the postoperative period. PMID:25892605

  12. [Non-invasive mechanical ventilation in the treatment of acute heart failure].

    PubMed

    Alfonso Megido, Joaquín; González Franco, Alvaro

    2014-03-01

    When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view. PMID:24930085

  13. [Non-invasive and invasive mechanical ventilation for treatment of chronic respiratory failure. S2-Guidelines published by the German Medical Association of Pneumology and Ventilatory Support].

    PubMed

    Windisch, W; Brambring, J; Budweiser, S; Dellweg, D; Geiseler, J; Gerhard, F; Köhnlein, T; Mellies, U; Schönhofer, B; Schucher, B; Siemon, K; Walterspacher, S; Winterholler, M; Sitter, H

    2010-04-01

    The field of mechanical ventilation is highly important in pulmonary medicine. The German Medical Association of Pneumology and Ventilatory Support ["Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP)"] therefore has formulated these guidelines for home mechanical non-invasive and invasive ventilation. Non-invasive home mechanical ventilation can be administered using various facial masks; invasive home mechanical ventilation is performed via a tracheostomy. Home mechanical ventilation is widely and increasingly accepted as a treatment option for chronic ventilatory failure which most often occurs in COPD, restrictive lung diseases, obesity-hypoventilation syndrome and neuromuscular disorders. Essential for the initiation of home mechanical ventilation are the presence of symptoms of ventilatory failure and the detection of hypoventilation, most importantly hypercapnia. These guidelines comprise general indication criteria along with disease-specific criteria summarised by treatment algorithms. In addition, the management of bronchial secretions and care of paediatric patients are addressed. Home mechanical ventilation must be organised around a specialised respiratory care centre with expertise in patient selection, the initiation and the control of home mechanical ventilation. In this regard, the guidelines provide detailed information about technical requirements (equipment), control and settings of mechanical ventilation as well as organisation of patient care. A key requirement for home mechanical ventilation is the qualification of specialised home-care services, which is addressed in detail. Independent living and the quality of respiratory care are of highest priority in patients receiving home mechanical ventilation, since home mechanical ventilation can interfere with the integrity of a patient and often marks a life-sustaining therapy. Home mechanical ventilation has been shown to improve health-related quality of life of patients

  14. Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy.

    PubMed

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak

    2016-01-01

    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery. PMID:27591472

  15. [Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy].

    PubMed

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak

    2016-01-01

    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery.

  16. Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy.

    PubMed

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak

    2016-01-01

    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery.

  17. [Amyotrophic neuralgia associated with bilateral phrenic paralysis treated with non-invasive mechanical ventilation].

    PubMed

    García García, María Del Carmen; Hernández Borge, Jacinto; Antona Rodríguez, María José; Pires Gonçalves, Pedro; García García, Gema

    2015-09-01

    Amyotrophic neuralgia is an uncommon neuropathy characterized by severe unilateral shoulder pain. Isolated or concomitant involvement of other peripheral motor nerves depending on the brachial plexus such as phrenic or laryngeal nerves is unusual(1). Its etiology is unknown, yet several explanatory factors have been proposed. Phrenic nerve involvement, either unilateral or bilateral, is exceedingly rare. Diagnosis relies on anamnesis, functional and imaging investigations and electromyogram. We report the case of a 48-year-old woman with a past history of renal transplantation due to proliferative glomerulonephritis with subsequent transplant rejection, who was eventually diagnosed with amyotrophic neuralgia with bilateral phrenic involvement, and who required sustained non-invasive mechanical ventilation.

  18. Pathophysiological Basis of Acute Respiratory Failure on Non-Invasive Mechanical Ventilation.

    PubMed

    Romero-Dapueto, C; Budini, H; Cerpa, F; Caceres, D; Hidalgo, V; Gutiérrez, T; Keymer, J; Pérez, R; Molina, J; Giugliano-Jaramillo, C

    2015-01-01

    Noninvasive mechanical ventilation (NIMV) was created for patients who needed noninvasive ventilator support, this procedure decreases the complications associated with the use of endotracheal intubation (ETT). The application of NIMV has acquired major relevance in the last few years in the management of acute respiratory failure (ARF), in patients with hypoxemic and hypercapnic failure. The main advantage of NIMV as compared to invasive mechanical ventilation (IMV) is that it can be used earlier outside intensive care units (ICUs). The evidence strongly supports its use in patients with COPD exacerbation, support in weaning process in chronic obstructive pulmonary disease (COPD) patients, patients with acute cardiogenic pulmonary edema (ACPE), and Immunosuppressed patients. On the other hand, there is poor evidence that supports the use of NIMV in other pathologies such as pneumonia, acute respiratory distress syndrome (ARDS), and during procedures as bronchoscopy, where its use is still controversial because the results of these studies are inconclusive against the decrease in the rate of intubation or mortality.

  19. Pathophysiological Basis of Acute Respiratory Failure on Non-Invasive Mechanical Ventilation

    PubMed Central

    Romero-Dapueto, C; Budini, H; Cerpa, F; Caceres, D; Hidalgo, V; Gutiérrez, T; Keymer, J; Pérez, R; Molina, J; Giugliano-Jaramillo, C

    2015-01-01

    Noninvasive mechanical ventilation (NIMV) was created for patients who needed noninvasive ventilator support, this procedure decreases the complications associated with the use of endotracheal intubation (ETT). The application of NIMV has acquired major relevance in the last few years in the management of acute respiratory failure (ARF), in patients with hypoxemic and hypercapnic failure. The main advantage of NIMV as compared to invasive mechanical ventilation (IMV) is that it can be used earlier outside intensive care units (ICUs). The evidence strongly supports its use in patients with COPD exacerbation, support in weaning process in chronic obstructive pulmonary disease (COPD) patients, patients with acute cardiogenic pulmonary edema (ACPE), and Immunosuppressed patients. On the other hand, there is poor evidence that supports the use of NIMV in other pathologies such as pneumonia, acute respiratory distress syndrome (ARDS), and during procedures as bronchoscopy, where its use is still controversial because the results of these studies are inconclusive against the decrease in the rate of intubation or mortality. PMID:26312101

  20. [Amyotrophic neuralgia associated with bilateral phrenic paralysis treated with non-invasive mechanical ventilation].

    PubMed

    García García, María Del Carmen; Hernández Borge, Jacinto; Antona Rodríguez, María José; Pires Gonçalves, Pedro; García García, Gema

    2015-09-01

    Amyotrophic neuralgia is an uncommon neuropathy characterized by severe unilateral shoulder pain. Isolated or concomitant involvement of other peripheral motor nerves depending on the brachial plexus such as phrenic or laryngeal nerves is unusual(1). Its etiology is unknown, yet several explanatory factors have been proposed. Phrenic nerve involvement, either unilateral or bilateral, is exceedingly rare. Diagnosis relies on anamnesis, functional and imaging investigations and electromyogram. We report the case of a 48-year-old woman with a past history of renal transplantation due to proliferative glomerulonephritis with subsequent transplant rejection, who was eventually diagnosed with amyotrophic neuralgia with bilateral phrenic involvement, and who required sustained non-invasive mechanical ventilation. PMID:26049960

  1. Clinical review: Helmet and non-invasive mechanical ventilation in critically ill patients

    PubMed Central

    2013-01-01

    Non-invasive mechanical ventilation (NIV) has proved to be an excellent technique in selected critically ill patients with different forms of acute respiratory failure. However, NIV can fail on account of the severity of the disease and technical problems, particularly at the interface. The helmet could be an alternative interface compared to face mask to improve NIV success. We performed a clinical review to investigate the main physiological and clinical studies assessing the efficacy and related issues of NIV delivered with a helmet. A computerized search strategy of MEDLINE/PubMed (January 2000 to May 2012) and EMBASE (January 2000 to May 2012) was conducted limiting the search to retrospective, prospective, nonrandomized and randomized trials. We analyzed 152 studies from which 33 were selected, 12 physiological and 21 clinical (879 patients). The physiological studies showed that NIV with helmet could predispose to CO2 rebreathing and increase the patients' ventilator asynchrony. The main indications for NIV were acute cardiogenic pulmonary edema, hypoxemic acute respiratory failure (community-acquired pneumonia, postoperative and immunocompromised patients) and hypercapnic acute respiratory failure. In 9 of the 21 studies the helmet was compared to a face mask during either continous positive airway pressure or pressure support ventilation. In eight studies oxygenation was similar in the two groups, while the intubation rate was similar in four and lower in three studies for the helmet group compared to face mask group. The outcome was similar in six studies. The tolerance was better with the helmet in six of the studies. Although these data are limited, NIV delivered by helmet could be a safe alternative to the face mask in patients with acute respiratory failure. PMID:23680299

  2. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. PMID:27203509

  3. Rib-cage-movement measurements as a potential new trigger signal in non-invasive mechanical ventilation.

    PubMed

    Ivanovic, M; Petrovic, J; Miletic, M; Danicic, A; Bojovic, B; Vukcevic, M; Lazovic, B; Gluvic, Z; Hadzievski, Lj; Allsop, T; Webb, D J

    2015-08-01

    Non-invasive ventilation performed through an oronasal mask is a standard in clinical and homecare mechanical ventilation. Besides all its advantages, inevitable leaks through the mask cause errors in the feedback information provided by the airflow sensor and, hence, patient-ventilator asynchrony with multiple negative consequences. Here we investigate a new way to provide a trigger to the ventilator. The method is based on the measurement of rib cage movement at the onset of inspiration and during breathing by fibre-optic sensors. In a series of simultaneous measurements by a long-period fibre grating sensor and pneumotachograph we provide the statistical evidence of the 200 ms lag of the pneumo with respect the fibre-optic signal. The lag is registered consistently across three independent delay metrics. Further, we discuss exceptions from this trend and identify the needed improvements to the proposed fibre-sensing scheme. PMID:26737297

  4. Mechanical Ventilation

    MedlinePlus

    ... or husband or next of kin). It is important that you talk with your family members and your doctors about using a ventilator and what you would like to happen in different situations. The more clearly you explain your values and choices to friends, loved ones and doctors, ...

  5. Home Mechanical Ventilation in Children.

    PubMed

    Preutthipan, Aroonwan

    2015-09-01

    The number of children dependent on home mechanical ventilation has been reported to be increasing in many countries around the world. Home mechanical ventilation has been well accepted as a standard treatment of children with chronic respiratory failure. Some children may need mechanical ventilation as a lifelong therapy. To send mechanically ventilated children back home may be more difficult than adults. However, relatively better outcomes have been demonstrated in children. Children could be safely ventilated at home if they are selected and managed properly. Conditions requiring home ventilation include increased respiratory load from airway or lung pathologies, ventilatory muscle weakness and failure of neurologic control of ventilation. Home mechanical ventilation should be considered when the patient develops progressive respiratory failure or intractable failure to wean mechanical ventilation. Polysomnography or overnight pulse oximetry plus capnometry are used to detect nocturnal hypoventilation in early stage of respiratory failure. Ventilator strategy including non-invasive and invasive approach should be individualized for each patient. The author strongly believes that parents and family members are able to take care of their child at home if they are trained and educated effectively. A good team work with dedicated members is the key factor of success. PMID:26223874

  6. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. PMID:26593078

  7. The effects of the semirecumbent position on hemodynamic status in patients on invasive mechanical ventilation: prospective randomized multivariable analysis

    PubMed Central

    2013-01-01

    Introduction Adopting the 45° semirecumbent position in mechanically ventilated critically ill patients is recommended, as it has been shown to reduce the incidence of ventilator-associated pneumonia. Although the benefits to the respiratory system are clear, it is not known whether elevating the head of the bed results in hemodynamic instability. We examined the effect of head of bed elevation (HBE) on hemodynamic status and investigated the factors that influence mean arterial pressure (MAP) and central venous oxygen saturation (ScvO2) when patients were positioned at 0°, 30°, and 45°. Methods Two hundred hemodynamically stable adults on invasive mechanical ventilation admitted to a multidisciplinary surgical intensive care unit were recruited. Patients' characteristics included catecholamine and sedative doses, the original angle of head of bed elevation (HBE), the level of positive end expiratory pressure (PEEP), duration and mode of mechanical ventilation. A sequence of HBE positions (0°, 30°, and 45°) was adopted in random order, and MAP and ScvO2 were measured at each position. Patients acted as their own controls. The influence of degree of HBE and of the covariables on MAP and ScvO2 was analyzed by using liner mixed models. Additionally, uni- and multivariable logistic regression models were used to indentify risk factors for hypotension during HBE, defined as MAP <65 mmHg. Results Changing HBE from supine to 45° caused significant reductions in MAP (from 83.8 mmHg to 71.1 mmHg, P < 0.001) and ScvO2 (76.1% to 74.3%, P < 0.001). Multivariable modeling revealed that mode and duration of mechanical ventilation, the norepinephrine dose, and HBE had statistically significant influences. Pressure-controlled ventilation was the most influential risk factor for hypotension when HBE was 45° (odds ratio (OR) 2.33, 95% confidence interval (CI), 1.23 to 4.76, P = 0.017). Conclusions HBE to the 45° position is associated with significant decreases in MAP and

  8. Lights and shadows of non-invasive mechanical ventilation for chronic obstructive pulmonary disease (COPD) exacerbations

    PubMed Central

    Lopez-Campos, Jose Luis; Jara-Palomares, Luis; Muñoz, Xavier; Bustamante, Víctor; Barreiro, Esther

    2015-01-01

    Despite the overwhelming evidence justifying the use of non-invasive ventilation (NIV) for providing ventilatory support in chronic obstructive pulmonary disease (COPD) exacerbations, recent studies demonstrated that its application in real-life settings remains suboptimal. European clinical audits have shown that 1) NIV is not invariably available, 2) its availability depends on countries and hospital sizes, and 3) numerous centers declare their inability to provide NIV to all of the eligible patients presenting throughout the year. Even with an established indication, the use of NIV in acute respiratory failure due to COPD exacerbations faces important challenges. First, the location and personnel using NIV should be carefully selected. Second, the use of NIV is not straightforward despite the availability of technologically advanced ventilators. Third, NIV therapy of critically ill patients requires a thorough knowledge of both respiratory physiology and existing ventilatory devices. Accordingly, an optimal team-training experience, the careful selection of patients, and special attention to the selection of devices are critical for optimizing NIV outcomes. Additionally, when applied, NIV should be closely monitored, and endotracheal intubation should be promptly available in the case of failure. Another topic that merits careful consideration is the use of NIV in the elderly. This patient population is particularly fragile, with several physiological and social characteristics requiring specific attention in relation to NIV. Several other novel indications should also be critically examined, including the use of NIV during fiberoptic bronchoscopy or transesophageal echocardiography, as well as in interventional cardiology and pulmonology. The present narrative review aims to provide updated information on the use of NIV in acute settings to improve the clinical outcomes of patients hospitalized for COPD exacerbations. PMID:25829958

  9. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  10. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis.

    PubMed

    Schefold, Joerg C; Storm, Christian; Bercker, Sven; Pschowski, Rene; Oppert, Michael; Krüger, Anne; Hasper, Dietrich

    2010-06-01

    Early optimization of fluid status is of central importance in the treatment of critically ill patients. This study aims to investigate whether inferior vena cava (IVC) diameters correlate with invasively assessed hemodynamic parameters and whether this approach may thus contribute to an early, non-invasive evaluation of fluid status. Thirty mechanically ventilated patients with severe sepsis or septic shock (age 60 +/- 15 years; APACHE-II score 31 +/- 8; 18 male) were included. IVC diameters were measured throughout the respiratory cycle using transabdominal ultrasonography. Consecutively, volume-based hemodynamic parameters were determined using the single-pass thermal transpulmonary dilution technique. This was a prospective study in a tertiary care academic center with a 24-bed medical intensive care unit (ICU) and a 14-bed anesthesiological ICU. We found a statistically significant correlation of both inspiratory and expiratory IVC diameter with central venous pressure (p = 0.004 and p = 0.001, respectively), extravascular lung water index (p = 0.001, p < 0.001, respectively), intrathoracic blood volume index (p = 0.026, p = 0.05, respectively), the intrathoracic thermal volume (both p < 0.001), and the PaO(2)/FiO(2) oxygenation index (p = 0.007 and p = 0.008, respectively). In this study, IVC diameters were found to correlate with central venous pressure, extravascular lung water index, intrathoracic blood volume index, the intrathoracic thermal volume, and the PaO(2)/FiO(2) oxygenation index. Therefore, sonographic determination of IVC diameter seems useful in the early assessment of fluid status in mechanically ventilated septic patients. At this point in time, however, IVC sonography should be used only in addition to other measures for the assessment of volume status in mechanically ventilated septic patients.

  11. Mechanical ventilator - infants

    MedlinePlus

    ... gas measurements, and x-rays. WHAT ARE THE RISKS OF A MECHANICAL VENTILATOR? Most babies who need ventilator assistance have some lung problems, including immature or diseased lungs, which are ... for injury. Sometimes, delivering oxygen under pressure can ...

  12. Mechanical ventilation in children.

    PubMed

    Kendirli, Tanil; Kavaz, Asli; Yalaki, Zahide; Oztürk Hişmi, Burcu; Derelli, Emel; Ince, Erdal

    2006-01-01

    Mechanical ventilation can be lifesaving, but > 50% of complications in conditions that require intensive care are related to ventilatory support, particularly if it is prolonged. We retrospectively evaluated the medical records of patients who had mechanical ventilation in the Pediatric Intensive Care Unit (PICU) during a follow-up period between January 2002-May 2005. Medical records of 407 patients were reviewed. Ninety-one patients (22.3%) were treated with mechanical ventilation. Ages of all patients were between 1-180 (median: 8) months. The mechanical ventilation time was 18.8 +/- 14.1 days. Indication of mechanical ventilation could be divided into four groups as respiratory failure (64.8%), cardiovascular failure (19.7%), central nervous system disease (9.8%) and safety airway (5.4%). Tracheostomy was performed in four patients. The complication ratio of mechanically ventilated children was 42.8%, and diversity of complications was as follows: 26.3% atelectasia, 17.5% ventilator-associated pneumonia, 13.1% pneumothorax, 5.4% bleeding, 4.3% tracheal edema, and 2.1% chronic lung disease. The mortality rate of mechanically ventilated patients was 58.3%, but the overall mortality rate in the PICU was 12.2%. In conclusion, there are few published epidemiological data on the follow-up results and mortality in infants and children who are mechanically ventilated. PMID:17290566

  13. Conventional mechanical ventilation

    PubMed Central

    Tobias, Joseph D.

    2010-01-01

    The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU). Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the arena for the development of the manual skills and the refinement of the equipment needed for airway management, which subsequently led to the more widespread use of endotracheal intubation thereby ushering in the era of positive pressure ventilation. Although there seems to be an ever increasing complexity in the techniques of mechanical ventilation, its successful use in the PICU should be guided by the basic principles of gas exchange and the physiology of respiratory function. With an understanding of these key concepts and the use of basic concepts of mechanical ventilation, this technique can be successfully applied in both the PICU and the operating room. This article reviews the basic physiology of gas exchange, principles of pulmonary physiology, and the concepts of mechanical ventilation to provide an overview of the knowledge required for the provision of conventional mechanical ventilation in various clinical arenas. PMID:20927268

  14. Innovations in mechanical ventilation.

    PubMed

    Branson, Richard D; Johannigman, Jay A

    2009-07-01

    New features of mechanical ventilators are frequently introduced, including new modes, monitoring techniques, and triggering techniques. But new rarely translates into any measureable improvement in outcome. We describe 4 new techniques and attempt to define what is a new invention versus what is innovative-a technique that significantly improves a measurable variable. We describe and review the literature on automated weaning, automated measurement of functional residual capacity, neural triggering, and novel displays of respiratory mechanics. PMID:19558743

  15. The mechanical ventilator: past, present, and future.

    PubMed

    Kacmarek, Robert M

    2011-08-01

    The use of ventilatory assistance can be traced back to biblical times. However, mechanical ventilators, in the form of negative-pressure ventilation, first appeared in the early 1800s. Positive-pressure devices started to become available around 1900 and today's typical intensive care unit (ICU) ventilator did not begin to be developed until the 1940s. From the original 1940s ventilators until today, 4 distinct generations of ICU ventilators have existed, each with features different from that of the previous generation. All of the advancements in ICU ventilator design over these generations provide the basis for speculation on the future. ICU ventilators of the future will be able to integrate electronically with other bedside technology; they will be able to effectively ventilate all patients in all settings, invasively and noninvasively; ventilator management protocols will be incorporated into the basic operation of the ventilator; organized information will be presented instead of rows of unrelated data; alarm systems will be smart; closed-loop control will be present on most aspects of ventilatory support; and decision support will be available. The key term that will be used to identify these future ventilators will be smart!

  16. Mechanical ventilation in abdominal surgery.

    PubMed

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery.

  17. Weaning from mechanical ventilation.

    PubMed

    Shaikh, Hameeda; Morales, Daniel; Laghi, Franco

    2014-08-01

    For many critically ill patients admitted to an intensive care unit, the insertion of an endotracheal tube and the initiation of mechanical ventilation (MV) can be lifesaving procedures. Subsequent patient care often requires intensivists to manage the complex interaction of multiple failing organ systems. The shift in the intensivists' focus toward the discontinuation of MV can thus occur late in the course of critical illness. The dangers of MV, however, make it imperative to wean patients at the earliest possible time. Premature weaning trials, however, trigger significant respiratory distress, which can cause setbacks in the patient's clinical course. Premature extubation is also risky. To reduce delayed weaning and premature extubation, a three-step diagnostic strategy is suggested: measurement of weaning predictors, a trial of unassisted breathing (T-tube trial), and a trial of extubation. Since each step constitutes a diagnostic test, clinicians must not only command a thorough understanding of each test but must also be aware of the principles of clinical decision making when interpreting the information generated by each step. Many difficult aspects of pulmonary pathophysiology encroach on weaning management. Accordingly, weaning commands sophisticated, individualized care. Few other responsibilities of an intensivist require a more analytical effort and carry more promise for improving patient outcome than the application of physiologic principles in the weaning of patients.

  18. [Non invasive ventilation in the emergency setting].

    PubMed

    Wilhelm, Laetitia; Della Santa, Vincent; Hanhart, Walter-Alexandre

    2015-08-12

    Before the development of non invasive ventilation (NIV), endotracheal intubation was the only ventilatory therapy available in case of severe respiratory distress and acute respiratory failure. NIV used to be employed in intensive care settings only. Nowadays, the use of NIV has been democratized to include the emergency room, and the pre-hospital care setting for treatment of acute respiratory failure. Cardiogenic pulmonary edema and acute exacerbation of COPD are indications of choice, since NIV improves mortality. The efficiency of the therapy depends on early treatment; however, endotracheal intubation should not be delayed when it becomes necessary. PMID:26449102

  19. How to reduce invasiveness in non-invasive ventilation.

    PubMed

    Chiandotto, Valeria

    2012-10-01

    Non invasive ventilation plays a key role in neonatal intensive care unit (NICU) activity and several instruments have recently been developed that are designed to maintain positive pressure in order to improve functional residual capacity of the lung. However, devices used to provide non-invasive respiratory assistance are frequently a cause of discomfort when applied to a fragile neonate. Indeed, they are applied for lengthy periods in low birth weight (VLBW) infants. In addition to these side effects we have to consider several other stressful events. In our opinion, reducing invasiveness in the NICU is a process where the main steps are recognizing a need for the organization of diagnostic and therapeutic procedures with respect for the rhythm of the newborn, recognizing the fragility of preterm newborns and their brain plasticity, improving environmental standards in both structural terms and staff behaviour, and promoting the active role of parents in supporting the development of the newborn.

  20. Non invasive ventilation as an additional tool for exercise training.

    PubMed

    Ambrosino, Nicolino; Cigni, Paolo

    2015-01-01

    Recently, there has been increasing interest in the use of non invasive ventilation (NIV) to increase exercise capacity. In individuals with COPD, NIV during exercise reduces dyspnoea and increases exercise tolerance. Different modalities of mechanical ventilation have been used non-invasively as a tool to increase exercise tolerance in COPD, heart failure and lung and thoracic restrictive diseases. Inspiratory support provides symptomatic benefit by unloading the ventilatory muscles, whereas Continuous Positive Airway Pressure (CPAP) counterbalances the intrinsic positive end-expiratory pressure in COPD patients. Severe stable COPD patients undergoing home nocturnal NIV and daytime exercise training showed some benefits. Furthermore, it has been reported that in chronic hypercapnic COPD under long-term ventilatory support, NIV can also be administered during walking. Despite these results, the role of NIV as a routine component of pulmonary rehabilitation is still to be defined. PMID:25874110

  1. Mechanical ventilation for severe asthma.

    PubMed

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting. PMID:26033128

  2. Long-term mechanical ventilation and nutrition.

    PubMed

    Ambrosino, Nicolino; Clini, Enrico

    2004-05-01

    Mechanical ventilation (MV) in chronic situations is commonly used, either delivered invasively or by means of non-invasive interfaces, to control hypoventilation in patients with chest wall, neuromuscular or obstructive lung diseases (either in adulthood or childhood). The global prevalence of ventilator-assisted individuals (VAI) in Europe ranges from 2 to 30 per 100000 population according to different countries. Nutrition is a common problem to face with in patients with chronic respiratory diseases: nonetheless, it is a key component in the long-term management of underweight COPD patients whose muscular disfunction may rapidly turn to peripheral muscle waste. Since long-term mechanical ventilation (LTMV) is usually prescribed in end-stage respiratory diseases with poor nutritional status, nutrition and dietary intake related problems need to be carefully assessed and corrected in these patients. This paper aims to review the most recent innovations in the field of nutritional status and food intake-related problems of VAI (both in adulthood and in childhood).

  3. [Non-invasive mechanical ventilation with a facial interface during sedation for a percutaneous endoscopic gastrostomy in a patient with amyotrophic lateral sclerosis].

    PubMed

    González-Frasquet, M C; García-Covisa, N; Vidagany-Espert, L; Herranz-Gordo, A; Llopis-Calatayud, J E

    2015-11-01

    Amyotrophic lateral sclerosis is a chronic neurodegenerative disease of the central nervous system which affects the motor neurons and produces a progressive muscle weakness, leading to atrophy and muscle paralysis, and ultimately death. Performing a percutaneous endoscopic gastrostomy with sedation in patients with amyotrophic lateral sclerosis can be a challenge for the anesthesiologist. The case is presented of a 76-year-old patient who suffered from advanced stage amyotrophic lateral sclerosis, ASA III, in which a percutaneous endoscopic gastrostomy was performed with deep sedation, for which non-invasive ventilation was used as a respiratory support to prevent hypoventilation and postoperative respiratory complications. PMID:25804680

  4. [Non-invasive mechanical ventilation with a facial interface during sedation for a percutaneous endoscopic gastrostomy in a patient with amyotrophic lateral sclerosis].

    PubMed

    González-Frasquet, M C; García-Covisa, N; Vidagany-Espert, L; Herranz-Gordo, A; Llopis-Calatayud, J E

    2015-11-01

    Amyotrophic lateral sclerosis is a chronic neurodegenerative disease of the central nervous system which affects the motor neurons and produces a progressive muscle weakness, leading to atrophy and muscle paralysis, and ultimately death. Performing a percutaneous endoscopic gastrostomy with sedation in patients with amyotrophic lateral sclerosis can be a challenge for the anesthesiologist. The case is presented of a 76-year-old patient who suffered from advanced stage amyotrophic lateral sclerosis, ASA III, in which a percutaneous endoscopic gastrostomy was performed with deep sedation, for which non-invasive ventilation was used as a respiratory support to prevent hypoventilation and postoperative respiratory complications.

  5. A taxonomy for mechanical ventilation: 10 fundamental maxims.

    PubMed

    Chatburn, Robert L; El-Khatib, Mohamad; Mireles-Cabodevila, Eduardo

    2014-11-01

    The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator.

  6. Improving non-invasive ventilation documentation.

    PubMed

    Smith, Matthew; Elkheir, Natalie

    2014-01-01

    Record keeping for patients on non-invasive ventilation (NIV) at St. Georges Hospital is poor. The initial NIV prescription is often not recorded, and changes to the NIV prescription or the rationale for the changes (ABG results) are also poorly documented. This leads to confusion for nurses/doctors as to what the correct settings are, meaning patients could receive ineffective ventilation. The use of NIV is also poorly recorded by nursing staff meaning that doctors are unsure if the prescribed NIV is being achieved. This can lead to treatment being escalated unnecessarily in the event of treatment failure. Non-invasive ventilation (NIV) is the provision of ventilatory support in the form of positive pressure via the patient's upper airway using a mask or similar device. NIV is indicated for treatment of acute hypercapnic respiratory failure, of which there are many causes, though COPD is the indication in up to 70% of cases.[1] British Thoracic Society (BTS) guidelines for NIV suggest that the rationale for commencing a patient on NIV and the proposed settings should be clearly documented.[2] Clinicians cannot effectively tailor changes to the patients NIV settings if this information is not clearly recorded, which could lead to increased time requiring NIV or NIV failure. Three main areas were considered important to measure for this project. The initial prescription of the NIV, changes to the NIV settings, and nursing documentation surrounding NIV. A baseline measurement of NIV documentation for two weeks found NIV documentation to globally very poor. NIV was formally prescribed 29% of the time, full detail of intended settings were documented 57% of the time, the decision to commence NIV was discussed with the respiratory consultant/SpR just 29% of the time and on no occasion was a decision regarding escalation of treatment recorded. Eighteen changes were made to the NIV settings. These were formally prescribed 22% of the time and detail of the intended

  7. Non-invasive Ventilation in Premature Infants: Based on Evidence or Habit

    PubMed Central

    Garg, Shalabh; Sinha, Sunil

    2013-01-01

    Despite surfactant and mechanical ventilation being the standard of care for preterm infants with respiratory failure, non-invasive respiratory support is increasingly being employed in neonatal units. The latter can be accomplished in a variety of ways but none of them have been proven so far to be superior to intubation and mechanical ventilation. Nonetheless, they appear to be safe and effective in experienced hands. This article relates to the use of non-invasive forms of respiratory support and evidence is reviewed from the clinical trials which have evaluated the use of these techniques. PMID:24404523

  8. The role of invasive ventilation in exacerbations of chronic obstructive pulmonary disease causing respiratory failure.

    PubMed

    Kosky, Christopher; Turton, Charles

    2006-01-01

    Acute hypercapnic respiratory failure in chronic obstructive pulmonary disease can usually be managed initially with medical treatment and non- invasive ventilation. In circumstances where non- invasive ventilation cannot be used or has failed, intubation and invasive ventilation may be lifesaving. The outcome of patients with an exacerbation of COPD requiring invasive ventilation is better than often thought, with a hospital survival of 70-89%. Decisions regarding invasive ventilation made by physicians and patients with COPD are unpredictable and vary with the individual. This article reviews the role of invasive ventilation in exacerbations of COPD to assist decision making.

  9. Sleep and Mechanical Ventilation in Critical Care.

    PubMed

    Blissitt, Patricia A

    2016-06-01

    Sleep disturbances in critically ill mechanically ventilated patients are common. Although many factors may potentially contribute to sleep loss in critical care, issues around mechanical ventilation are among the more complex. Sleep deprivation has systemic effects that may prolong the need for mechanical ventilation and length of stay in critical care and result in worse outcomes. This article provides a brief review of the physiology of sleep, physiologic changes in breathing associated with sleep, and the impact of mechanical ventilation on sleep. A summary of the issues regarding research studies to date is also included. Recommendations for the critical care nurse are provided. PMID:27215357

  10. Sleep and Mechanical Ventilation in Critical Care.

    PubMed

    Blissitt, Patricia A

    2016-06-01

    Sleep disturbances in critically ill mechanically ventilated patients are common. Although many factors may potentially contribute to sleep loss in critical care, issues around mechanical ventilation are among the more complex. Sleep deprivation has systemic effects that may prolong the need for mechanical ventilation and length of stay in critical care and result in worse outcomes. This article provides a brief review of the physiology of sleep, physiologic changes in breathing associated with sleep, and the impact of mechanical ventilation on sleep. A summary of the issues regarding research studies to date is also included. Recommendations for the critical care nurse are provided.

  11. The basis and basics of mechanical ventilation.

    PubMed

    Bone, R C; Eubanks, D H

    1991-06-01

    The development of mechanical ventilators and the procedures for their application began with the simple foot pump developed by Fell O'Dwyer in 1888. Ventilators have progressed through three generations, beginning with intermittent positive pressure breathing units such as the Bird and Bennett device in the 1960s. These were followed by second-generation units--represented by the Bennett MA-2 ventilator--in the 1970s, and the third-generation microprocessor-controlled units of today. During this evolutionary process clinicians recognized Types I and II respiratory failure as being indicators for mechanical ventilatory support. More recently investigators have expanded, clarified, and clinically applied the physiology of the work of breathing (described by Julius Comroe and other pioneers) to muscle fatigue, requiring ventilatory support. A ventilator classification system can help the clinician understand how ventilators function and under what conditions they may fail to operate as desired. Pressure-support ventilation is an example of how industry has responded to a clinical need--that is, to unload the work of breathing. All positive pressure ventilators generate tidal volumes by using power sources such as medical gas cylinders, air compressors, electrically driven turbines, or piston driven motors. Positive end-expiratory pressures, synchronized intermittent mandatory ventilation, pressure support ventilation, pressure release ventilation, and mandatory minute ventilation, are examples of the special functions available on modern ventilators. Modern third-generation ventilators use microprocessors to control operational functions and monitors. Because these units have incorporated the experience learned from earlier ventilators, it is imperative that clinicians understand basic ventilator operation and application in order to most effectively prescribe and assess their use. PMID:2036934

  12. Echocardiography in a Patient on Mechanical Ventilation.

    PubMed

    Sachdeva, Ankush

    2015-07-01

    Cardiopulmonary interactions or effects of spontaneous and mechanical ventilation (MV) were first documented in the year 1733. Stephen Hales showed that the blood pressure of healthy individual fell during spontaneous inspiration and he later went on to discover the ventilator. A year later Kussmaul described pulsus paradoxus (inspiratory absence of radial pulse) in patients with tubercular pericarditis. Echocardiography can help to diagnose a wide variety of cardiovascular diseases and can guide therapeutic decisions in patients on mechanical ventilation. PMID:26731826

  13. Exercise oscillatory ventilation: Mechanisms and prognostic significance

    PubMed Central

    Dhakal, Bishnu P; Lewis, Gregory D

    2016-01-01

    Alteration in breathing patterns characterized by cyclic variation of ventilation during rest and during exercise has been recognized in patients with advanced heart failure (HF) for nearly two centuries. Periodic breathing (PB) during exercise is known as exercise oscillatory ventilation (EOV) and is characterized by the periods of hyperpnea and hypopnea without interposed apnea. EOV is a non-invasive parameter detected during submaximal cardiopulmonary exercise testing. Presence of EOV during exercise in HF patients indicates significant impairment in resting and exercise hemodynamic parameters. EOV is also an independent risk factor for poor prognosis in HF patients both with reduced and preserved ejection fraction irrespective of other gas exchange variables. Circulatory delay, increased chemosensitivity, pulmonary congestion and increased ergoreflex signaling have been proposed as the mechanisms underlying the generation of EOV in HF patients. There is no proven treatment of EOV but its reversal has been noted with phosphodiesterase inhibitors, exercise training and acetazolamide in relatively small studies. In this review, we discuss the mechanistic basis of PB during exercise and the clinical implications of recognizing PB patterns in patients with HF. PMID:27022457

  14. Diaphragmatic contraction during assisted mechanical ventilation.

    PubMed

    Flick, G R; Bellamy, P E; Simmons, D H

    1989-07-01

    Indirect evidence from airway pressure recordings in mechanically ventilated patients suggests that the diaphragm exhibits contractile activity beyond that required to trigger a ventilator-assisted breath. We used the diaphragmatic EMG to provide direct evidence of persistent contractile activity and studied the effects of alterations in ventilator-delivered flow rate and tidal volume on the duration of diaphragmatic contraction. The duration of contraction was expressed in terms of inspired volume. During a single breath, diaphragmatic force generation ceases at the point of peak electromyographic activity; hence, the inspired volume at peak EMG is the volume at the diaphragmatic off-switch (Voff). Ventilator-delivered flow rate and tidal volume were varied during assisted (patient-initiated) and controlled (ventilator-initiated) breaths while diaphragmatic EMG and inspired volume were recorded simultaneously in ten patients with a variety of illnesses requiring mechanical ventilation. Spontaneous ventilator-unassisted breaths were also recorded for comparison. We found that (1) during assisted breaths, diaphragmatic activity continued after the ventilator was triggered, (2) Voff was usually close to spontaneous tidal volume, (3) Voff increased significantly as ventilator-delivered flow rate increased, and (4) controlled breaths may also be associated with phasic electromyographic activity. The data have implications for resting patients on assisted ventilation.

  15. Humidification during mechanical ventilation in the adult patient.

    PubMed

    Al Ashry, Haitham S; Modrykamien, Ariel M

    2014-01-01

    Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evolved. Sophisticated systems composed of reservoirs, wires, heating devices, and other elements have become part of our usual armamentarium in the intensive care unit. Therefore, basic knowledge of the mechanisms of action of each of these devices, as well as their advantages and disadvantages, becomes a necessity for the respiratory care and intensive care practitioner. In this paper, we review current methods of airway humidification during invasive mechanical ventilation of adult patients. We describe a variety of devices and describe the eventual applications according to specific clinical conditions.

  16. Humidification during Mechanical Ventilation in the Adult Patient

    PubMed Central

    Al Ashry, Haitham S.; Modrykamien, Ariel M.

    2014-01-01

    Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evolved. Sophisticated systems composed of reservoirs, wires, heating devices, and other elements have become part of our usual armamentarium in the intensive care unit. Therefore, basic knowledge of the mechanisms of action of each of these devices, as well as their advantages and disadvantages, becomes a necessity for the respiratory care and intensive care practitioner. In this paper, we review current methods of airway humidification during invasive mechanical ventilation of adult patients. We describe a variety of devices and describe the eventual applications according to specific clinical conditions. PMID:25089275

  17. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation.

    PubMed

    Navalesi, Paolo; Costa, Roberta

    2003-02-01

    Increased knowledge of the mechanisms that determine respiratory failure has led to the development of new technologies aimed at improving ventilatory treatment. Proportional assist ventilation and neurally adjusted ventilatory assist have been designed with the goal of improving patient-ventilator interaction by matching the ventilator support with the neural output of the respiratory centers. With proportional assist ventilation, the support is continuously readjusted in proportion to the predicted inspiratory effort. Neurally adjusted ventilatory assist is an experimental mode in which the assistance is delivered in proportion to the electrical activity of the diaphragm, assessed by means of an esophageal electrode. Biologically variable (or fractal) ventilation is a new, volume-targeted, controlled ventilation mode aimed at improving oxygenation; it incorporates the breath-to-breath variability that characterizes a natural breathing pattern.

  18. Exhaled breath condensate collection in the mechanically ventilated patient.

    PubMed

    Carter, Stewart R; Davis, Christopher S; Kovacs, Elizabeth J

    2012-05-01

    Collection of exhaled breath condensate (EBC) is a non-invasive means of sampling the airway-lining fluid of the lungs. EBC contains numerous measurable mediators, whose analysis could change the management of patients with certain pulmonary diseases. While initially popularized in investigations involving spontaneously breathing patients, an increasing number of studies have been performed using EBC in association with mechanical ventilation. Collection of EBC in mechanically ventilated patients follows basic principles of condensation, but is influenced by multiple factors. Effective collection requires selection of a collection device, adequate minute ventilation, low cooling temperatures, and sampling times of greater than 10 min. Condensate can be contaminated by saliva, which needs to be filtered. Dilution of samples occurs secondary to distilled water in vapors and humidification in the ventilator circuit. Dilution factors may need to be employed when investigating non-volatile biomarkers. Storage and analysis should occur promptly at -70 °C to -80 °C to prevent rapid degradation of samples. The purpose of this review is to examine and describe methodologies and problems of EBC collection in mechanically ventilated patients. A straightforward and safe framework has been established to investigate disease processes in this population, yet technical aspects of EBC collection still exist that prevent clinical practicality of this technology. These include a lack of standardization of procedure and analysis of biomarkers, and of normal reference ranges for mediators in healthy individuals. Once these procedural aspects have been addressed, EBC could serve as a non-invasive alternative to invasive evaluation of lungs in mechanically ventilated patients.

  19. Mechanical ventilation in orbit: emphasis on closed-loop ventilation.

    PubMed

    Kaczka, David W; Beck, George

    2004-09-01

    As part of a Crew Health Care Maintenance System onboard the International Space Station, the National Aeronautics and Space Administration has included a Respiratory Support Pack (RSP) to resuscitate or sustain a crew member with an acute impairment in pulmonary function. This article provides a critical appraisal of the RSP and of current strategies for mechanical ventilation in space. Various closed-loop ventilation strategies are reviewed,and their appropriateness for respiratory support in space is explored. Recommendations are made for enhancing and upgrading the current RSP to provide an injured crew member with the best possible chance of survival.

  20. Non invasive ventilation in immunocompromised patients.

    PubMed

    Conti, G; Costa, R; Antonelli, M

    2011-03-01

    In the last thirty years, the rapid evolution of surgical techniques, together with the use of innovative immunosuppressive strategies and optimal chemoprofilaxis, has dramatically extended the applicability of solid organs transplantation. However, despite the increase of post-transplantation survival rate, respiratory complications remain the main cause of morbidity and one of the main causes of mortality. Accordingly, the use of aggressive treatments has also increased the survival rates in patients with hematologic malignancies, but at price of an increased susceptibility to infections. Many immunocompromised patients develop acute respiratory failure (ARF). In this situation, the early application of positive pressure ventilation is aimed at restoring the decreased lung volume, increasing oxygenation, and reducing both the work of breathing and the respiratory drive; moreover to re-establish patient's equilibrium allows to buy time for an effective etiologic treatment. According to the results of several prospective randomized and non-randomized trials, the application of NIV seems able both to decrease the rate of nosocomial infectious complications, and to improve gas exchange with optimal patients tolerance. The aim of this review will be to shortly analyze the fields of application and the clinical results obtained with NIV in patients with immunosuppression of various origin.

  1. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes.

  2. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. PMID:24507472

  3. Prolonged Mechanical Ventilation (PMV): When is it Justified in ICU?

    PubMed

    Trivedi, Trupti H

    2015-10-01

    Over years, the number of patients requiring prolonged mechanical ventilation (PMV) in ICU has increased. Trends in the numbers of patients requiring PMV are of interest to health service planners because they consume a disproportionate amount of healthcare resources, and have high illness costs.1 PMV is defined as need of invasive mechanical ventilation for consecutive 21 days for at least 6 hours per day. With improvement in ICU care more patients survive acute respiratory failure and with that number of patients requiring PMV is likely to increase further. In a large multi centric study in United Kingdom the incidence PMV was 4.4 per 100 ICU admissions, and 6.3 per 100 ventilated ICU admissions. Also these patients used 29.1% of all general ICU bed days, had longer hospital stay after ICU discharge than non-PMV patients and had higher hospital mortality (40.3% vs 33.8%, P = 0.02).2. PMID:27608685

  4. Secretion management in the mechanically ventilated patient.

    PubMed

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  5. Shut-off mechanism for ventilation hose

    SciTech Connect

    Huyett, J.D.; Meskanick, G.R.

    1989-12-07

    A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

  6. Electrical Impedance Tomography During Mechanical Ventilation.

    PubMed

    Walsh, Brian K; Smallwood, Craig D

    2016-10-01

    Electrical impedance tomography (EIT) is a noninvasive, non-radiologic imaging modality that may be useful for the quantification of lung disorders and titration of mechanical ventilation. The principle of operation is based on changes in electrical conductivity that occur as a function of changes in lung volume during ventilation. EIT offers potentially important benefits over standard imaging modalities because the system is portable and non-radiologic and can be applied to patients for long periods of time. Rather than providing a technical dissection of the methods utilized to gather, compile, reconstruct, and display EIT images, the present article seeks to provide an overview of the clinical application of this technology as it relates to monitoring mechanical ventilation and providing decision support at the bedside. EIT has been shown to be useful in the detection of pneumothoraces, quantification of pulmonary edema and comparison of distribution of ventilation between different modes of ventilation and may offer superior individual titration of PEEP and other ventilator parameters compared with existing approaches. Although application of EIT is still primarily done within a research context, it may prove to be a useful bedside tool in the future. However, head-to-head comparisons with existing methods of mechanical ventilation titration in humans need to be conducted before its application in general ICUs can be recommended. PMID:27682815

  7. Daytime mechanical ventilation in chronic respiratory insufficiency.

    PubMed

    Schönhofer, B; Geibel, M; Sonneborn, M; Haidl, P; Köhler, D

    1997-12-01

    Chronic respiratory insufficiency (CRI) is associated with nocturnal hypoventilation. Treatment with noninvasive mechanical ventilation (NIMV) performed overnight relieves symptoms of hypoventilation and improves daytime blood gases in CRI. In order to test whether the efficacy of NIMV depends on it being applied during sleep, we conducted a prospective case-controlled study comparing daytime mechanical ventilation (dMV) in awake patients with nocturnal mechanical ventilation (nMV) given in equal quantities. We enrolled 34 clinically stable patients (age 56.1+/-12.1 yrs, 20 females, 14 males) with CRI due to restrictive lung and chest wall disorders and neuromuscular disease. Using a prospective case-control design, matched subjects were allocated alternately to dMV and nMV. After 1 month of NIMV there was considerable symptomatic improvement in both dMV and nMV patients. There were no significant differences between groups in the improvement in daytime arterial carbon dioxide tension (Pa,CO2) (dMV from 7.5+/-0.6 to 5.7+/-0.6 kPa; nMV from 7.2+/-0.5 to 5.8+/-0.5 kPa, p<0.0001) and during the unassisted spontaneous night-time ventilation in terms of transcutaneous Pa,CO2 (dMV from 8.4+/-1.2 to 6.6+/-0.7 kPa; nMV from 8.2+/-1.2 to 6.8+/-0.5 kPa, p<0.0001). We conclude that in many respects, when compared to nocturnal mechanical ventilation, daytime mechanical ventilation in awake patients is equally effective at reversing chronic respiratory insufficiency. Since long-term safety issues were not addressed in this study, we recommend that nocturnal mechanical ventilation should remain the modality of choice for noninvasive mechanical ventilation.

  8. [Weaning from mechanical ventilation. Weaning categories and weaning concepts].

    PubMed

    Geiseler, J; Kelbel, C

    2016-04-01

    The international classification of three weaning categories (simple weaning, difficult weaning, prolonged weaning) has been modified in the German weaning guidelines: the group of prolonged weaning has been subclassified into weaning without noninvasive ventilation (NIV), weaning with NIV, if necessary with continuing NIV in the form of home mechanical ventilation, and weaning failure.Strategies to prevent prolonged weaning comprise daily interruption of sedation, daily screening of capability of spontaneous breathing by a spontaneous breathing trial (SBT) and early implementation of NIV instead of continuing invasive mechanical ventilation especially in hypercapnic patients. The comorbidity left heart failure plays a major role in weaning failure and need for re-intubation-in this case early diagnosis and if necessary modification of heart therapy are important.Specialised weaning-centres offer the option for successful weaning for about 50-60 % of patients declared as unweanable by usual intensive care units. A multimodal therapy concept with respiratory therapists, physiotherapists and speech therapy is necessary to reach this goal. In case of weaning failure a professional discharge management to invasive home mechanical ventilation is important. Competent care by physicians in the out-of-hospital area is restricted by the sectoral division of responsibility by the German health care system. Improvement in this area is urgently needed. PMID:27084181

  9. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b)...

  10. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b)...

  11. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts...

  12. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b)...

  13. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b)...

  14. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts...

  15. Brazilian recommendations of mechanical ventilation 2013. Part I

    PubMed Central

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25210957

  16. Brazilian recommendations of mechanical ventilation 2013. Part I

    PubMed Central

    Barbas, Carmen Sílvia Valente; Ísola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; de Carvalho, Carlos Roberto Ribeiro; Toufen, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernardete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; de Matos, Gustavo Faissol Janot; Emmerich, João Claudio; Valiatti, Jorge Luis dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Cláudio; Malbouisson, Luiz Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamad; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; de Jesus, Rodrigo Francisco; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sérgio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25028944

  17. Brazilian recommendations of mechanical ventilation 2013. Part 2

    PubMed Central

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25410835

  18. Brazilian recommendations of mechanical ventilation 2013. Part 2

    PubMed Central

    Barbas, Carmen Sílvia Valente; Ísola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa Neto, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; de Carvalho, Carlos Roberto Ribeiro; Toufen Júnior, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernadete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; de Matos, Gustavo Faissol Janot; Emmerich, João Claudio; Valiatti, Jorge Luis dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Claudio; Malbouisson, Luis Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamed; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; de Jesus, Rodrigo Francisco; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sergio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25295817

  19. Brazilian recommendations of mechanical ventilation 2013. Part I.

    PubMed

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25210957

  20. Brazilian recommendations of mechanical ventilation 2013. Part I.

    PubMed

    Barbas, Carmen Sílvia Valente; Isola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa Neto, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; Carvalho, Carlos Roberto Ribeiro de; Toufen Júnior, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernardete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; Matos, Gustavo Faissol Janot de; Emmerich, João Claudio; Valiatti, Jorge Luis Dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Cláudio; Malbouisson, Luiz Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamad; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; Jesus, Rodrigo Francisco de; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sérgio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumonia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25028944

  1. Brazilian recommendations of mechanical ventilation 2013. Part 2.

    PubMed

    2014-10-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25410835

  2. Brazilian recommendations of mechanical ventilation 2013. Part 2.

    PubMed

    Barbas, Carmen Sílvia Valente; Ísola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa Neto, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; de Carvalho, Carlos Roberto Ribeiro; Toufen Júnior, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernadete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; de Matos, Gustavo Faissol Janot; Emmerich, João Claudio; Valiatti, Jorge Luis dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Claudio; Malbouisson, Luis Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamed; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; de Jesus, Rodrigo Francisco; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sergio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25295817

  3. Sedation during weaning from mechanical ventilation.

    PubMed

    Suter, P M

    1994-01-01

    The transition from mechanical ventilation to spontaneous breathing in the intensive care unit is a two-stage process: weaning and extubation. Certain parameters require consideration before the commencement of weaning, namely respiratory function (both pulmonary gas exchange and respiratory muscle strength), cardiovascular status, stability of clinical condition, low metabolic demands, psychological factors and, possibly, patient collaboration. Appropriate sedation is crucial for successful weaning to keep the patient rested and to maintain the oxygen consumption and carbon dioxide production low. In this review, three types of patient are considered: patients having short-term ventilation after trauma or surgery, those having long-term ventilation for chronic pulmonary disease, and those with other associated severe organ dysfunction, such as heart failure. Strategies for weaning are outlined for each of these situations and the role of sedation is discussed. Making the transition from mechanical ventilation to unassisted spontaneous breathing can be a difficult process, particularly for those patients in the intensive care unit (ICU) requiring prolonged ventilatory assistance for severe respiratory failure secondary to: exacerbation of chronic obstructive airways disease (COAD) acute respiratory distress syndrome (ARDS) underlying diseases affecting cardiac function. This transition may be considered to comprise two separate stages, namely weaning and extubation. Weaning consists of preparation for spontaneous breathing supported and monitored by a mechanical ventilator and attendant monitoring of all the important vital parameters, while extubation marks the final switch to unsupported spontaneous breathing, which may be quite a big step for the patient. Important weaning parameters.

  4. Flow measurement in mechanical ventilation: a review.

    PubMed

    Schena, Emiliano; Massaroni, Carlo; Saccomandi, Paola; Cecchini, Stefano

    2015-03-01

    Accurate monitoring of flow rate and volume exchanges is essential to minimize ventilator-induced lung injury. Mechanical ventilators employ flowmeters to estimate the amount of gases delivered to patients and use the flow signal as a feedback to adjust the desired amount of gas to be delivered. Since flowmeters play a crucial role in this field, they are required to fulfill strict criteria in terms of dynamic and static characteristics. Therefore, mechanical ventilators are equipped with only the following kinds of flowmeters: linear pneumotachographs, fixed and variable orifice meters, hot wire anemometers, and ultrasonic flowmeters. This paper provides an overview of these sensors. Their working principles are described together with their relevant advantages and disadvantages. Furthermore, the most promising emerging approaches for flowmeters design (i.e., fiber optic technology and three dimensional micro-fabrication) are briefly reviewed showing their potential for this application. PMID:25659299

  5. Early non-invasive ventilation treatment for severe influenza pneumonia.

    PubMed

    Masclans, J R; Pérez, M; Almirall, J; Lorente, L; Marqués, A; Socias, L; Vidaur, L; Rello, J

    2013-03-01

    The role of non-invasive ventilation (NIV) in acute respiratory failure caused by viral pneumonia remains controversial. Our objective was to evaluate the use of NIV in a cohort of (H1N1)v pneumonia. Usefulness and success of NIV were assessed in a prospective, observational registry of patients with influenza A (H1N1) virus pneumonia in 148 Spanish intensive care units (ICUs) in 2009-10. Significant variables for NIV success were included in a multivariate analysis. In all, 685 patients with confirmed influenza A (H1N1)v viral pneumonia were admitted to participating ICUs; 489 were ventilated, 177 with NIV. The NIV was successful in 72 patients (40.7%), the rest required intubation. Low Acute Physiology and Chronic Health Evaluation (APACHE) II, low Sequential Organ Failure Assessment (SOFA) and absence of renal failure were associated with NIV success. Success of NIV was independently associated with fewer than two chest X-ray quadrant opacities (OR 3.5) and no vasopressor requirement (OR 8.1). However, among patients with two or more quadrant opacities, a SOFA score ≤7 presented a higher success rate than those with SOFA score >7 (OR 10.7). Patients in whom NIV was successful required shorter ventilation time, shorter ICU stay and hospital stay than NIV failure. In patients in whom NIV failed, the delay in intubation did not increase mortality (26.5% versus 24.2%). Clinicians used NIV in 25.8% of influenza A (H1N1)v viral pneumonia admitted to ICU, and treatment was effective in 40.6% of them. NIV success was associated with shorter hospital stay and mortality similar to non-ventilated patients. NIV failure was associated with a mortality similar to those who were intubated from the start.

  6. Experimental studies on artificial ventilation using a tidal volume ventilator. Mechanics and dynamics of ventilation.

    PubMed

    Lindahl, S; Okmian, L

    1979-08-01

    In 24 piglets (2.7-24.5 kg b.w.), the mechanics of ventilation, the accuracy of dosage of respiratory volumes, and the influence of the ventilator's volume/pressure characteristics (Cvent, "internal compliance") on the dynamic course of insufflation were studied. A linear relationship was shown to exist between tidal volume and end-inspiratory tracheal pressure and between tidal volume and insufflation time. The insufflation time was reduced to about 50% of previously registered values. The error between set and registered tidal volume was found to be 6.0 +/- 2.7%. During the insufflation a linear relationship was found between the instant amount of delivered breathing gas and the corresponding endotracheal pressure change. The ventilator's Cvent did (and body size, total compliance and tidal volume did not) significantly influence the size of the direction coefficient for the linear instantaneous volume/pressure relationship, the magnitude of tracheal peak pressure and a short insufflation time, and vice versa. The use of greater power from the ventilator resulted in a significant shortening of the duration of insufflation and vice versa. The duration of insufflation is the parameter of choice in evaluating the efficiency of the ventilatory equipment. When the ventilator's performance is defined, measurements of the duration of insufflation may enable evaluation of conditions within the lungs.

  7. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV.

  8. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV. PMID:25138799

  9. A Medical Student Workshop in Mechanical Ventilation.

    ERIC Educational Resources Information Center

    And Others; Kushins, Lawrence G.

    1980-01-01

    In order to teach applied respiratory physiology to medical students, the anesthesiology faculty at the University of Florida College of Medicine has designed and implemented a course that includes a laboratory workshop in mechanical ventilation of an animal model that allows students to apply and expand their knowledge. (JMD)

  10. Anxiety and Agitation in Mechanically Ventilated Patients

    PubMed Central

    Tate, Judith Ann; Dabbs, Annette Devito; Hoffman, Leslie; Milbrandt, Eric; Happ, Mary Beth

    2013-01-01

    During an ethnography conducted in an intensive care unit (ICU), we found that anxiety and agitation occurred frequently, and were important considerations in the care of 30 patients weaning from prolonged mechanical ventilation. We conducted a secondary analysis to (a) describe characteristics of anxiety and agitation experienced by mechanically ventilated patients; (b) explore how clinicians recognize and interpret anxiety and agitation and (c) describe strategies and interventions used to manage anxiety and agitation with mechanically ventilated patients. We constructed the Anxiety-Agitation in Mechanical Ventilation Model to illustrate the multidimensional features of symptom recognition and management. Patients’ ability to interact with the environment served as a basis for identification and management of anxiety or agitation. Clinicians’ attributions about anxiety or agitation and “knowing the patient” contributed to their assessment of patient responses. Clinicians chose strategies to overcome either the stimulus or patient’s appraisal of risk of the stimulus. This article contributes to the body of knowledge about symptom recognition and management in the ICU by providing a comprehensive model to guide future research and practice. PMID:21908706

  11. [Monitorization of respiratory mechanics in the ventilated patient].

    PubMed

    García-Prieto, E; Amado-Rodríguez, L; Albaiceta, G M

    2014-01-01

    Monitoring during mechanical ventilation allows the measurement of different parameters of respiratory mechanics. Accurate interpretation of these data can be useful for characterizing the situation of the different components of the respiratory system, and for guiding ventilator settings. In this review, we describe the basic concepts of respiratory mechanics, their interpretation, and their potential use in fine-tuning mechanical ventilation.

  12. [Monitorization of respiratory mechanics in the ventilated patient].

    PubMed

    García-Prieto, E; Amado-Rodríguez, L; Albaiceta, G M

    2014-01-01

    Monitoring during mechanical ventilation allows the measurement of different parameters of respiratory mechanics. Accurate interpretation of these data can be useful for characterizing the situation of the different components of the respiratory system, and for guiding ventilator settings. In this review, we describe the basic concepts of respiratory mechanics, their interpretation, and their potential use in fine-tuning mechanical ventilation. PMID:24199991

  13. Intermittent daytime mouthpiece ventilation successfully augments nocturnal non-invasive ventilation, controlling ventilatory failure and maintaining patient independence.

    PubMed

    Ward, Karen; Ford, Verity; Ashcroft, Helen; Parker, Robert

    2015-01-01

    A 53-year-old woman with spinal muscular atrophy and a 7-year history of nocturnal non-invasive ventilation (NIV) use via nasal mask and chinstrap was admitted electively. Outpatient review suggested symptomatic hypercapnia and hypoxaemia. Use of her usual NIV resulted in early morning respiratory acidosis due to excess mouth leak, and continuous face mask NIV was instigated while in hospital. Once stabilised, she elected to return to nasal ventilation. At outpatient review, respiratory acidosis reoccurred despite diurnal use of NIV. Using the patient's routine ventilator and a novel mouthpiece and trigger algorithm, intermittent daytime mouthpiece ventilation (MPV) was introduced alongside overnight NIV. Control of respiratory failure was achieved and, vitally, independent living maintained. Intermittent MPV was practicable and effective where the limits of ventilator tolerance had otherwise been reached. MPV may reduce the need for tracheostomy ventilation and this case serves as a reminder of the increasing options routinely available to NIV clinicians. PMID:26160549

  14. [Home mechanical ventilation-tracheostomy ventilation, for the long-term and variation].

    PubMed

    Yamamoto, Makoto

    2006-12-01

    We experienced long-term ventilation for 30 patients mostly with amyotrophic lateral sclerosis (ALS). For long-term ventilation by tracheostomy positive pressure ventilation (TPPV), we must set tidal volume (TV) over 600 ml, because setting 400 ml as TV usually applied in Japan, often develops atelectasis which causes frequent or serious pneumonia. To avoid both the elevation of airway pressure and hyper ventilation, the following intervals are needed: 10 times/min for breathing frequency and 2 seconds for exhaling time. In the cases with ventilator induced lung injury (VILI), it is necessary to lower the TV and to treat with steroid pulse therapy. In the transitional stage from non-invasive positive pressure ventilation (NPPV) to TPPV, we conduct tracheostomy for suction of the sputum. In that stage, by using a cuffless tracheal canule, we can continue NPPV. As another method in that stage, we recommend biphasic management by NPPV at daytime and TPPV at nighttime with a bi-level ventilator. This method can provide certain ventilation also during sleep. When the respiratory failure proceeds further, we manage the ventilation with a bi-level ventilator on TPPV, because a bi-level ventilator is also good adapting to assist spontaneous breathing in that stage. And if the patient does not have bulbar paralysis, the patient can utter by air leakage with using bi-level ventilator and flattening the cuff of the tracheal canule. PMID:17469348

  15. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure. PMID:25844759

  16. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  17. Bilateral Scapulohumeral Ankylosis after Prolonged Mechanical Ventilation.

    PubMed

    van Lotten, Manon L; Schreinemakers, J Rieneke; van Noort, Arthur; Rademakers, Maarten V

    2016-09-01

    This case demonstrates a rarely reported bilateral scapulohumeral bony ankylosis. A young woman developed extensive heterotopic ossifications (HOs) in both shoulder joints after being mechanically ventilated for several months at the intensive care unit in a comatose status. She presented with a severe movement restriction of both shoulder joints. Surgical resection of the bony bridges was performed in 2 separate sessions with a significant improvement of shoulder function afterwards. No postoperative complications, pain, or recurrence of HOs were noted at 1-year follow-up. Mechanical ventilation, immobilization, neuromuscular blockage, and prolonged sedation are known risk factors for the development of HOs in the shoulder joints. Relatively early surgical resection of the HOs can be performed safely in contrary to earlier belief. Afterwards, nonsteroidal anti-inflammatory drugs and/or radiation therapy can be possible treatment modalities to prevent recurrence of HOs. PMID:27583120

  18. Bilateral Scapulohumeral Ankylosis after Prolonged Mechanical Ventilation

    PubMed Central

    Schreinemakers, J. Rieneke; van Noort, Arthur; Rademakers, Maarten V.

    2016-01-01

    This case demonstrates a rarely reported bilateral scapulohumeral bony ankylosis. A young woman developed extensive heterotopic ossifications (HOs) in both shoulder joints after being mechanically ventilated for several months at the intensive care unit in a comatose status. She presented with a severe movement restriction of both shoulder joints. Surgical resection of the bony bridges was performed in 2 separate sessions with a significant improvement of shoulder function afterwards. No postoperative complications, pain, or recurrence of HOs were noted at 1-year follow-up. Mechanical ventilation, immobilization, neuromuscular blockage, and prolonged sedation are known risk factors for the development of HOs in the shoulder joints. Relatively early surgical resection of the HOs can be performed safely in contrary to earlier belief. Afterwards, nonsteroidal anti-inflammatory drugs and/or radiation therapy can be possible treatment modalities to prevent recurrence of HOs. PMID:27583120

  19. Carbon dioxide and oxygen levels in disposable individually ventilated cages after removal from mechanical ventilation.

    PubMed

    Nagamine, Claude M; Long, C Tyler; McKeon, Gabriel P; Felt, Stephen A

    2012-03-01

    Disposable individually ventilated cages have lids that restrict air exchange when the cage is not mechanically ventilated. This design feature may cause intracage CO2 to increase and O2 to decrease (hypercapnic and hypoxic conditions, respectively) when the electrical supply to the ventilated rack fails, the ventilated rack malfunctions, cages are docked in the rack incorrectly, or cages are removed from the ventilated rack for extended periods of time. We investigated how quickly hypercapnic and hypoxic conditions developed within disposable individually ventilated cages after removal from mechanical ventilation and compared the data with nondisposable static cages, disposable static cages, and unventilated nondisposable individually ventilated cages. When disposable individually ventilated cages with 5 adult mice per cage were removed from mechanical ventilation, CO2 concentrations increased from less than 1% at 0 h to approximately 5% at 3 h and O2 levels dropped from more than 20% at 0 h to 11.7% at 6 h. The breathing pattern of the mice showed a prominent abdominal component (hyperventilation). Changes were similar for 4 adult mice per cage, reaching at least 5% CO2 at 4 h and 13.0% O2 at 6 h. For 3 or 2 mice per cage, values were 4.6% CO2 and 14.7% O2 and 3.04% CO2 and 17.1% O2, respectively, at 6 h. These results document that within disposable individually ventilated cages, a hypercapnic and hypoxic microenvironment develops within hours in the absence of mechanical ventilation.

  20. Emergency Department Treatment of the Mechanically Ventilated Patient.

    PubMed

    Spiegel, Rory; Mallemat, Haney

    2016-02-01

    Mechanical ventilation has a long and storied history, but until recently the process required little from the emergency physician. In the modern emergency department, critically ill patients spend a longer period under the care of the emergency physician, requiring a greater understanding of ventilator management. This article serves as an introduction to mechanical ventilation and a user-friendly bedside guide.

  1. Collective fluid mechanics of honeybee nest ventilation

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  2. Extra corporeal carbon dioxide removal: A reliable modality in refractory hypercapnia to prevent invasive ventilation.

    PubMed

    Agarwal, Atiharsh Mohan; Singh, Tapas Kumar

    2015-05-01

    Extracorporeal carbon dioxide removal (ECCO2R) is a valid alternative to consider in hypercapnic respiratory failure in chronic obstructive pulmonary disease (COPD) patients to avoid invasive ventilation when noninvasive ventilation fails. Here we report a similar case, after obtaining informed consent, where a patient suffering from severe hypercapnic respiratory failure due to COPD, was selected for ECCO2R and improved remarkably.

  3. The influence of music during mechanical ventilation and weaning from mechanical ventilation: A review.

    PubMed

    Hetland, Breanna; Lindquist, Ruth; Chlan, Linda L

    2015-01-01

    Mechanical ventilation (MV) causes many distressing symptoms. Weaning, the gradual decrease in ventilator assistance leading to termination of MV, increases respiratory effort, which may exacerbate symptoms and prolong MV. Music, a non-pharmacological intervention without side effects may benefit patients during weaning from mechanical ventilatory support. A narrative review of OVID Medline, PsychINFO, and CINAHL databases was conducted to examine the evidence for the use of music intervention in MV and MV weaning. Music intervention had a positive impact on ventilated patients; 16 quantitative and 2 qualitative studies were identified. Quantitative studies included randomized clinical trials (10), case controls (3), pilot studies (2) and a feasibility study. Evidence supports music as an effective intervention that can lesson symptoms related to MV and promote effective weaning. It has potential to reduce costs and increase patient satisfaction. However, more studies are needed to establish its use during MV weaning.

  4. Estimates of the demand for mechanical ventilation in the United States during an influenza pandemic.

    PubMed

    Meltzer, Martin I; Patel, Anita; Ajao, Adebola; Nystrom, Scott V; Koonin, Lisa M

    2015-05-01

    An outbreak in China in April 2013 of human illnesses due to avian influenza A(H7N9) virus provided reason for US public health officials to revisit existing national pandemic response plans. We built a spreadsheet model to examine the potential demand for invasive mechanical ventilation (excluding "rescue therapy" ventilation). We considered scenarios of either 20% or 30% gross influenza clinical attack rate (CAR), with a "low severity" scenario with case fatality rates (CFR) of 0.05%-0.1%, or a "high severity" scenario (CFR: 0.25%-0.5%). We used rates-of-influenza-related illness to calculate the numbers of potential clinical cases, hospitalizations, admissions to intensive care units, and need for mechanical ventilation. We assumed 10 days ventilator use per ventilated patient, 13% of total ventilator demand will occur at peak, and a 33.7% weighted average mortality risk while on a ventilator. At peak, for a 20% CAR, low severity scenario, an additional 7000 to 11,000 ventilators will be needed, averting a pandemic total of 35,000 to 55,000 deaths. A 30% CAR, high severity scenario, will need approximately 35,000 to 60,500 additional ventilators, averting a pandemic total 178,000 to 308,000 deaths. Estimates of deaths averted may not be realized because successful ventilation also depends on sufficient numbers of suitably trained staff, needed supplies (eg, drugs, reliable oxygen sources, suction apparatus, circuits, and monitoring equipment) and timely ability to match access to ventilators with critically ill cases. There is a clear challenge to plan and prepare to meet demands for mechanical ventilators for a future severe pandemic.

  5. Basics of mechanical ventilation for dogs and cats.

    PubMed

    Hopper, Kate; Powell, Lisa L

    2013-07-01

    Respiratory failure may occur due to hypoventilation or hypoxemia. Regardless of the cause, emergent anesthesia and intubation, accompanied by positive pressure ventilation, may be necessary and life saving. Long-term mechanical ventilation requires some specialized equipment and knowledge; however, short-term ventilation can be accomplished without the use of an intensive care unit ventilator, and can provide oxygen supplementation and carbon dioxide removal in critical patients. PMID:23747268

  6. [Mechanical ventilation in chronic ventilatory insufficiency].

    PubMed

    Schucher, B; Magnussen, H

    2007-10-01

    Mechanical ventilation has become an important treatment option in chronic ventilatory failure. There are different diseases which lead to ventilatory failure and to home mechanical ventilation (HMV). A primary loss of in- and expiratory muscle strength is the reason for respiratory deterioration in neuromuscular disease. In most of these diseases ventilatory failure develops because of the progressive character of muscular damage. Initially, ventilatory failure can be found during night-time. In the case of hypercapnia at daytime, life expectancy is strongly reduced, especially in amyotrophic lateral sclerosis and Duchenne muscular dystrophy. HMV leads to a prolongation of life and to an increase in quality of life, if bulbar involvement is not severe. Impressive clinical improvements under HMV have been found in restrictive disorders of the rib cage like kyphoscoliosis or posttuberculosis sequelae, with an increase of quality of life, walking distance and a decrease in pulmonary hypertension. Only few data are published about long-term results of HMV in Obesity Hypoventilation. In terms of retrospective analyses of clinical data HMV seems to improve survival in this population. Some patients only need CPAP treatment, but most patients have to be treated with ventilatory support. The application of HMV in patients with chronic ventilatory failure due to chronic obstructive pulmonary disease (COPD) is growing, but there are controversial results in randomised clinical trials. Analysis of these data suggest better results of HMV in patients with severe hypercapnia, with the application of higher effective ventilatory pressure and a ventilator mode with a significant reduction in the work of breathing. Under such conditions HMV leads to a reduction of hypercapnia, an improvement in sleep quality, walking distance and quality of life, but until now there is no evidence in reduction of mortality in COPD. PMID:17620231

  7. Ethical challenges in home mechanical ventilation: A secondary analysis

    PubMed Central

    Dybwik, Knut; Nielsen, Erik Waage; Brinchmann, Berit Støre

    2012-01-01

    The aim of this study was to explore the ethical challenges in home mechanical ventilation based on a secondary analysis of qualitative empirical data. The data included perceptions of healthcare professionals in hospitals and community health services and family members of children and adults using home mechanical ventilation. The findings show that a number of ethical challenges, or dilemmas, arise at all levels in the course of treatment: deciding who should be offered home mechanical ventilation, respect for patient and family wishes, quality of life, dignity and equal access to home mechanical ventilation. Other challenges were the impacts home mechanical ventilation had on the patient, the family, the healthcare services and the allocation of resources. A better and broader understanding of these issues is crucial in order to improve the quality of care for both patient and family and assist healthcare professionals involved in home mechanical ventilation to make decisions for the good of the patient and his or her family. PMID:22183963

  8. New puzzles for the use of non-invasive ventilation for immunosuppressed patients.

    PubMed

    Barbas, Carmen Sílvia Valente; Serpa Neto, Ary

    2016-01-01

    On October 27, 2015, Lemile and colleagues published an article in JAMA entitled "Effect of Noninvasive Ventilation vs. Oxygen Therapy on Mortality among Immunocompromised Patients with Acute Respiratory Failure: A Randomized Clinical Trial", which investigated the effects of non-invasive ventilation (NIV) in 28-day mortality of 374 critically ill immunosuppressed patients. The authors found that among immunosuppressed patients admitted to the intensive care unit (ICU) with hypoxemic acute respiratory failure, early NIV compared with oxygen therapy alone did not reduce 28-day mortality. Furthermore, different from the previous publications, there were no significant differences in ICU-acquired infections, duration of mechanical ventilation, or lengths of ICU or hospital stays. The study power was limited, median oxygen flow used was higher than used before or 9 L/min, NIV settings provided tidal volumes higher than what is considered protective nowadays or from 7 to 10 mL/kg of ideal body weight and the hypoxemic respiratory failure was moderate to severe (median PaO2/FIO2 was around 140), a group prone to failure in noninvasive ventilatory support. Doubts arose regarding the early use of NIV in immunosuppressed critically ill patients with non-hypercapnic hypoxemic respiratory failure that need to be solved in the near future. PMID:26904233

  9. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    PubMed

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  10. Inhaled antibiotics in mechanically ventilated patients.

    PubMed

    Michalopoulos, A S; Falagas, M E

    2014-02-01

    During the last decade, inhaled antibiotics, especially colistin, has been widely used worldwide as a therapeutic option, supplementary to conventional intravenous antibiotics, for the treatment of multidrug-resistant (MDR) Gram-negative nosocomial and ventilator-associated pneumonia (VAP). Antimicrobial aerosols are commonly used in mechanically ventilated patients with VAP, although information regarding their efficacy and optimal technique of administration has been limited. Recent studies showed that the administration of inhaled antibiotics in addition to systemic antibiotics provided encouraging results associated with low toxicity for the management of VAP mainly due to MDR Gram negative bacteria. Although the theory behind aerosolized administration of antibiotics seems to be sound, there are limited data available to support the routine use of this modality since very few randomized controlled trials (RCTs) have still examined the efficacy of this approach in patients with VAP. Additionally, this route of antibiotic delivery has not been approved until now neither by the FDA nor by the European Medicines Agency (EMEA) in patients with VAP. However, since the problem of VAP due to MDR bacteria has been increased worldwide RCTs are urgently needed in order to prove the safety, efficiency and efficacy of inhaled antimicrobial agents administered alone or in conjunction with parenteral antibiotics for the management of VAP in critically ill patients. Indeed, more data are needed to establish the appropriate role of inhaled antibiotics for the treatment of VAP.

  11. Optimizing Communication in Mechanically Ventilated Patients

    PubMed Central

    Pandian, Vinciya; Smith, Christine P.; Cole, Therese Kling; Bhatti, Nasir I.; Mirski, Marek A.; Yarmus, Lonny B.; Feller-Kopman, David J.

    2014-01-01

    Purpose To describe the types of talking tracheostomy tubes available, present four case studies of critically ill patients who used a specialized tracheostomy tube to improve speech, discuss their advantages and disadvantages, propose patient selection criteria, and provide practical recommendations for medical care providers. Methods Retrospective chart review of patients who underwent tracheostomy in 2010. Results Of the 220 patients who received a tracheostomy in 2010, 164 (74.55%) received a percutaneous tracheostomy and 56 (25.45%) received an open tracheostomy. Among the percutaneous tracheostomy patients, speech-language pathologists were consulted on 113 patients, 74 of whom were on a ventilator. Four of these 74 patients received a talking tracheostomy tube, and all four were able to speak successfully while on the mechanical ventilator even though they were unable to tolerate cuff deflation. Conclusions Talking tracheostomy tubes allow patients who are unable to tolerate-cuff deflation to achieve phonation. Our experience with talking tracheostomy tubes suggests that clinicians should consider their use for patients who cannot tolerate cuff deflation. PMID:25429193

  12. Non-invasive ventilation in acute respiratory failure in children

    PubMed Central

    Abadesso, Clara; Nunes, Pedro; Silvestre, Catarina; Matias, Ester; Loureiro, Helena; Almeida, Helena

    2012-01-01

    The aim of this paper is to assess the clinical efficacy of non-invasive ventilation (NIV) in avoiding endotracheal intubation (ETI), to demonstrate clinical and gasometric improvement and to identify predictive risk factors associated with NIV failure. An observational prospective clinical study was carried out. Included Patients with acute respiratory disease (ARD) treated with NIV, from November 2006 to January 2010 in a Pediatric Intensive Care Unit (PICU). NIV was used in 151 patients with acute respiratory failure (ARF). Patients were divided in two groups: NIV success and NIV failure, if ETI was required. Mean age was 7.2±20.3 months (median: 1 min: 0,3 max.: 156). Main diagnoses were bronchiolitis in 102 (67.5%), and pneumonia in 44 (29%) patients. There was a significant improvement in respiratory rate (RR), heart rate (HR), pH, and pCO2 at 2, 6, 12 and 24 hours after NIV onset (P<0.05) in both groups. Improvement in pulse oximetric saturation/fraction of inspired oxygen (SpO2/FiO2) was verified at 2, 4, 6, 12 and 24 hours after NIV onset in the success group (P<0.001). In the failure group, significant SpO2/FiO2 improvement was only observed in the first 4 hours. NIV failure occurred in 34 patients (22.5%). Risk factors for NIV failure were apnea, prematurity, pneumonia, and bacterial co-infection (P<0.05). Independent risk factors for NIV failure were apneia (P<0.001; odds ratio 15.8; 95% confidence interval: 3.42–71.4) and pneumonia (P<0.001, odds ratio 31.25; 95% confidence interval: 8.33–111.11). There were no major complications related with NIV. In conclusion this study demonstrates the efficacy of NIV as a form of respiratory support for children and infants with ARF, preventing clinical deterioration and avoiding ETI in most of the patients. Risk factors for failure were related with immaturity and severe infection. PMID:22802994

  13. Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    Reddy, Raghu M; Guntupalli, Kalpalatha K

    2007-01-01

    Chronic obstructive pulmonary disease (COPD) is a major global healthcare problem. Studies vary widely in the reported frequency of mechanical ventilation in acute exacerbations of COPD. Invasive intubation and mechanical ventilation may be associated with significant morbidity and mortality. A good understanding of the airway pathophysiology and lung mechanics in COPD is necessary to appropriately manage acute exacerbations and respiratory failure. The basic pathophysiology in COPD exacerbation is the critical expiratory airflow limitation with consequent dynamic hyperinflation. These changes lead to further derangement in ventilatory mechanics, muscle function and gas exchange which may result in respiratory failure. This review discusses the altered respiratory mechanics in COPD, ways to detect these changes in a ventilated patient and formulating ventilatory techniques to optimize management of respiratory failure due to exacerbation of COPD. PMID:18268918

  14. Optimal Delivery of Aerosols to Infants During Mechanical Ventilation

    PubMed Central

    Azimi, Mandana; Hindle, Michael

    2014-01-01

    Abstract Purpose: The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. Methods: In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. Results: In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80–90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2–4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Conclusions: Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1–10% to a range of 45–60%. PMID:24299500

  15. Update on clinical trials in home mechanical ventilation.

    PubMed

    Hodgson, Luke E; Murphy, Patrick B

    2016-02-01

    Home mechanical ventilation (HMV) is an increasingly common intervention and is initiated for a range of pathological processes, including neuromuscular disease (NMD), chronic obstructive pulmonary disease (COPD) and obesity related respiratory failure. There have been important recent data published in this area, which helps to guide practice by indicating which populations may benefit from this intervention and the optimum method of setting up and controlling sleep disordered breathing. Recent superficially conflicting data has been published regarding HMV in COPD, with a trial in post-exacerbation patients suggesting no benefit, but in stable chronic hypercapnic patients suggesting a clear and sustained mortality benefit. The two studies are critiqued and the potential reasons for the differing results are discussed. Early and small trial data is frequently contradicted with larger randomised controlled trials and this has been the case with diaphragm pacing being shown to be potentially harmful in the latest data, confirming the importance of non-invasive ventilation (NIV) in NMD such as motor neurone disease. Advances in ventilator technology have so far appeared quicker than the clinical data to support their use; although small and often unblinded, the current data suggests equivalence to standard modes of NIV, but with potential comfort benefits that may enhance adherence. The indications for NIV have expanded since its inception, with an effort to treat sleep disordered breathing as a result of chronic heart failure (HF). The SERVE-HF trial has recently demonstrated no clear advantage to this technology and furthermore detected a potentially deleterious effect, with a worsening of all cause and cardiovascular mortality in the treated group compared to controls. The review serves to provide the reader with a critical review of recent advances in the field of sleep disordered breathing and HMV. PMID:26904266

  16. Update on clinical trials in home mechanical ventilation

    PubMed Central

    Hodgson, Luke E.

    2016-01-01

    Home mechanical ventilation (HMV) is an increasingly common intervention and is initiated for a range of pathological processes, including neuromuscular disease (NMD), chronic obstructive pulmonary disease (COPD) and obesity related respiratory failure. There have been important recent data published in this area, which helps to guide practice by indicating which populations may benefit from this intervention and the optimum method of setting up and controlling sleep disordered breathing. Recent superficially conflicting data has been published regarding HMV in COPD, with a trial in post-exacerbation patients suggesting no benefit, but in stable chronic hypercapnic patients suggesting a clear and sustained mortality benefit. The two studies are critiqued and the potential reasons for the differing results are discussed. Early and small trial data is frequently contradicted with larger randomised controlled trials and this has been the case with diaphragm pacing being shown to be potentially harmful in the latest data, confirming the importance of non-invasive ventilation (NIV) in NMD such as motor neurone disease. Advances in ventilator technology have so far appeared quicker than the clinical data to support their use; although small and often unblinded, the current data suggests equivalence to standard modes of NIV, but with potential comfort benefits that may enhance adherence. The indications for NIV have expanded since its inception, with an effort to treat sleep disordered breathing as a result of chronic heart failure (HF). The SERVE-HF trial has recently demonstrated no clear advantage to this technology and furthermore detected a potentially deleterious effect, with a worsening of all cause and cardiovascular mortality in the treated group compared to controls. The review serves to provide the reader with a critical review of recent advances in the field of sleep disordered breathing and HMV. PMID:26904266

  17. Amyotrophic Lateral Sclerosis Patients' Perspectives on Use of Mechanical Ventilation.

    ERIC Educational Resources Information Center

    Young, Jenny M.; And Others

    1994-01-01

    Interviewed 13 amyotrophic lateral sclerosis patients. All believed that they alone should make decision regarding use of mechanical ventilation. Factors they considered important were quality of life, severity of disability, availability of ventilation by means of nasal mask, possible admission to long-term care facility, ability to discontinue…

  18. Ammonia emissions from two mechanically ventilated UK livestock buildings

    NASA Astrophysics Data System (ADS)

    Demmers, T. G. M.; Burgess, L. R.; Short, J. L.; Phillips, V. R.; Clark, J. A.; Wathes, C. M.

    Ammonia emission rates from livestock buildings are required to construct an accurate emission inventory for the UK. Ventilation and ammonia emission rates from a fattening pig unit and a broiler house, both mechanically ventilated, were estimated using fan wheel anemometers and thermal converters with a chemiluminescence NO x-analyser to measure the ventilation rate and the ammonia concentration, respectively. The estimated ammonia emission factors were 46.9 and 16.6 kg lu -1 a -1 for the fattening pig unit and the broiler house, respectively. Both emission factors were within the range reported in the literature. A tracer gas (CO) method, based on a constant tracer release rate, was validated for measuring ventilation rates from naturally ventilated livestock buildings. Air inlets and outlets were identified using the air temperature or tracer concentration in the opening. Tracer concentration was found to be a more suitable criterion than temperature. In both houses, a significant correlation between the estimated ventilation rate using the tracer method and the measured ventilation rate using fan wheel anemometers was found. The ventilation rate was underestimated by 12 and 6% for the piggery and broiler house, respectively. The instantaneous ammonia emission derived from the tracer gas method was lower than the ammonia emission derived from the fan wheel anemometer method by 14 and 16% for the piggery and broiler house, respectively. The ventilation and ammonia emission estimates using the tracer method were within acceptable range from the ventilation and emission rates measured using measuring fans, but because of its accuracy and simplicity the fan wheel anemometer method is preferred for long-term measurements of ventilation rate in mechanically ventilated buildings.

  19. Do all mechanically ventilated pediatric patients require continuous capnography?

    PubMed

    Hamel, Donna S; Cheifetz, Ira M

    2006-09-01

    With most patients in modern ICUs requiring mechanical ventilation, any technology that may lead to more optimal ventilatory strategies would be invaluable in the management of critically ill patients. The focus of most ventilator strategies is protecting the lung from the deleterious effects of mechanical ventilation. Every effort is made to minimize the duration of mechanical ventilation while optimizing the potential for successful extubation. A concise organized plan based on objective criteria that is adjusted to meet changes in patient status is clearly recommended. Continuous capnographic monitoring provides clinicians with clear, precise, objective data that may prove beneficial in the design and implementation of mechanical ventilatory strategies. There are no clear-cut methods for achieving the optimal ventilator strategy for a specific patient. Although guidelines and management theories exist throughout the medical literature, in practice, they often merely serve as loose guidelines. The dynamic properties of an acutely ill patient make the management of mechanical ventilation an ongoing process requiring clinical assessment and planning by multidisciplinary members of the patient care team. Comprehensive evaluation of ventilatory management strategies and patient responses must be made by a collaborative effort of physicians, respiratory care practitioners, and nurses. An objective, consistent approach to the overall management is essential. Although still controversial, it is the authors' opinion that volumetric capnograph provides the data necessary to establish adequate gas delivery, optimal PEEP, and effective ventilation with the least amount of mechanical assistance, regardless of clinician or institutional preferences. PMID:16952808

  20. Non-invasive ventilation in immunocompromised patients with acute hypoxemic respiratory failure.

    PubMed

    Del Sorbo, Lorenzo; Jerath, Angela; Dres, Martin; Parotto, Matteo

    2016-03-01

    The survival rate of immunocompromised patients has improved over the past decades in light of remarkable progress in diagnostic and therapeutic options. Simultaneously, there has been an increase in the number of immunocompromised patients with life threatening complications requiring intensive care unit (ICU) treatment. ICU admission is necessary in up to 15% of patients with acute leukemia and 20% of bone marrow transplantation recipients, and the main reason for ICU referral in this patient population is acute hypoxemic respiratory failure, which is associated with a high mortality rate, particularly in patients requiring endotracheal intubation. The application of non-invasive ventilation (NIV), and thus the avoidance of endotracheal intubation and invasive mechanical ventilation with its side effects, appears therefore of great importance in this patient population. Early trials supported the benefits of NIV in these settings, and the 2011 Canadian guidelines for the use of NIV in critical care settings suggest the use of NIV in immune-compromised patients with a grade 2B recommendation. However, the very encouraging results from initial seminal trials were not confirmed in subsequent observational and randomized clinical studies, questioning the beneficial effect of NIV in immune-compromised patients. Based on these observations, a French group led by Azoulay decided to assess whether early intermittent respiratory support with NIV had a role in reducing the mortality rate of immune-compromised patients with non-hypercapnic hypoxemic respiratory failure developed in less than 72 h, and hence conducted a multicenter randomized controlled trial (RCT) in experienced ICUs in France. This perspective reviews the findings from their RCT in the context of the current critical care landscape, and in light of recent results from other trials focused on the early management of acute hypoxemic respiratory failure. PMID:27076972

  1. Inspiratory muscle training to enhance weaning from mechanical ventilation.

    PubMed

    Bissett, B; Leditschke, I A

    2007-10-01

    This report describes the use of specific inspiratory muscle training to enhance weaning from mechanical ventilation in a patient who had failed conventional weaning strategies. A 79-year-old man remained ventilator-dependent 17 days following laparotomy. A program of daily inspiratory muscle training was initiated. The mean training threshold increased progressively during the program and simultaneously the periods of unassisted breathing achieved gradually increased. By day 27, mechanical ventilation was no longer required. Inspiratory muscle training can be implemented effectively in the difficult to wean patient and should be considered for patients who have failed conventional weaning strategies.

  2. Assessment of respiratory output in mechanically ventilated patients.

    PubMed

    Laghi, Franco

    2005-06-01

    Mechanically ventilated patients are subject to few pathophysiologic disturbances that have such intuitive importance as abnormal function of the respiratory output. Abnormal function of the respiratory output plays a fundamental role in all aspects of mechanical ventilation: in determining which patients require mechanical ventilation, in determining the interaction between a patient and the ventilator, and in determining when a patient can tolerate discontinuation of mechanical ventilation. Monitoring indexes such as the rate of rise in electrical activity of the diaphragm, Po.1, (dP/dt)max, and Pmus, has provided insight into the performance of the respiratory centers in critically ill patients, but these methods require considerable refinement. A large body of research on measurements of energy expenditure of the respiratory muscles, such as pressure-time product, and measurements of inspiratory effort, such as the tension-time index, is currently accumulating. Several challenges, however, lay ahead regarding these indices. First, there is the need to identify the correct level of pressure generation and respiratory muscle effort that should be attained in the day-to-day management of mechanically ventilated patients. The correct titration of ventilator setting should not cause iatrogenic muscle damage because the support is excessive or insufficient. One of the challenges in reaching this goal is that for the same patient, different underlying pathologic conditions (eg, sepsis or ventilator-associated muscle injury) may require different levels of support. Second, many of the measurements of pressure generation and effort have been confined to the research laboratory. Modifications of the technology to achieve accurate measurements in the intensive care unit-outside of the research laboratory--are needed. To facilitate individual titration of ventilator settings, the new technologies must provide easier access to quantification of drive, pressure output, and

  3. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    PubMed

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  4. Exposure to mechanical ventilation promotes tolerance to ventilator-induced lung injury by Ccl3 downregulation.

    PubMed

    Blázquez-Prieto, Jorge; López-Alonso, Inés; Amado-Rodríguez, Laura; Batalla-Solís, Estefanía; González-López, Adrián; Albaiceta, Guillermo M

    2015-10-15

    Inflammation plays a key role in the development of ventilator-induced lung injury (VILI). Preconditioning with a previous exposure can damp the subsequent inflammatory response. Our objectives were to demonstrate that tolerance to VILI can be induced by previous low-pressure ventilation, and to identify the molecular mechanisms responsible for this phenomenon. Intact 8- to 12-wk-old male CD1 mice were preconditioned with 90 min of noninjurious ventilation [peak pressure 17 cmH2O, positive end-expiratory pressure (PEEP) 2 cmH2O] and extubated. Seven days later, preconditioned mice and intact controls were submitted to injurious ventilation (peak pressure 20 cmH2O, PEEP 0 cmH2O) for 2 h to induce VILI. Preconditioned mice showed lower histological lung injury scores, bronchoalveolar lavage albumin content, and lung neutrophilic infiltration after injurious ventilation, with no differences in Il6 or Il10 expression. Microarray analyses revealed a downregulation of Calcb, Hspa1b, and Ccl3, three genes related to tolerance phenomena, in preconditioned animals. Among the previously identified genes, only Ccl3, which encodes the macrophage inflammatory protein 1 alpha (MIP-1α), showed significant differences between intact and preconditioned mice after high-pressure ventilation. In separate, nonconditioned animals, treatment with BX471, a specific blocker of CCR1 (the main receptor for MIP-1α), decreased lung damage and neutrophilic infiltration caused by high-pressure ventilation. We conclude that previous exposure to noninjurious ventilation induces a state of tolerance to VILI. Downregulation of the chemokine gene Ccl3 could be the mechanism responsible for this effect.

  5. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  6. Preemptive mechanical ventilation can block progressive acute lung injury

    PubMed Central

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-01-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  7. Preemptive mechanical ventilation can block progressive acute lung injury.

    PubMed

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  8. Non-invasive ventilation in prone position for refractory hypoxemia after bilateral lung transplantation.

    PubMed

    Feltracco, Paolo; Serra, Eugenio; Barbieri, Stefania; Persona, Paolo; Rea, Federico; Loy, Monica; Ori, Carlo

    2009-01-01

    Temporary graft dysfunction with gas exchange abnormalities is a common finding during the postoperative course of a lung transplant and is often determined by the post-reimplantation syndrome. Supportive measures including oxygen by mask, inotropes, diuretics, and pulmonary vasodilators are usually effective in non-severe post-reimplantation syndromes. However, in less-responsive clinical pictures, tracheal intubation with positive pressure ventilation, or non-invasive positive pressure ventilation (NIV), is necessary. We report on the clinical course of two patients suffering from refractory hypoxemia due to post-reimplantation syndrome treated with NIV in the prone and Trendelenburg positions. NIV was well tolerated and led to resolution of atelectactic areas and dishomogeneous lung infiltrates. Repeated turning from supine to prone under non invasive ventilation determined a stable improvement of gas exchange and prevented a more invasive approach. Even though NIV in the prone position has not yet entered into clinical practice, it could be an interesting option to achieve a better match between ventilation and perfusion. This technique, which we successfully applied in lung transplantation, can be easily extended to other lung diseases with non-recruitable dorso-basal areas.

  9. Prolonged Mechanical Ventilation: Challenges to Nurses and Outcome in Extremely Preterm Babies.

    PubMed

    Joseph, Rachel A

    2015-08-01

    Worldwide, about 15 million infants are born prematurely each year. Technological advances, including invasive mechanical ventilation, play a major role in the survival of extremely preterm babies. Those who survive may have prolonged morbid conditions that result in long-term sequelae. Nurses face several challenges during the hospitalization of these infants. Vigilant care, monitoring, and careful handling of the infants can prevent infections and long-term complications. Newer, less invasive technologies are promising for improved outcomes in extremely preterm infants. PMID:26232802

  10. Noninvasive mechanical ventilation in chronic obstructive pulmonary disease and in acute cardiogenic pulmonary edema.

    PubMed

    Rialp Cervera, G; del Castillo Blanco, A; Pérez Aizcorreta, O; Parra Morais, L

    2014-03-01

    Noninvasive ventilation (NIV) with conventional therapy improves the outcome of patients with acute respiratory failure due to hypercapnic decompensation of chronic obstructive pulmonary disease (COPD) or acute cardiogenic pulmonary edema (ACPE). This review summarizes the main effects of NIV in these pathologies. In COPD, NIV improves gas exchange and symptoms, reducing the need for endotracheal intubation, hospital mortality and hospital stay compared with conventional oxygen therapy. NIV may also avoid reintubation and may decrease the length of invasive mechanical ventilation. In ACPE, NIV accelerates the remission of symptoms and the normalization of blood gas parameters, reduces the need for endotracheal intubation, and is associated with a trend towards lesser mortality, without increasing the incidence of myocardial infarction. The ventilation modality used in ACPE does not affect the patient prognosis.

  11. Clinical management of stressors perceived by patients on mechanical ventilation.

    PubMed

    Thomas, Loris A

    2003-02-01

    Psychological and psychosocial stressors perceived by the mechanically ventilated patient include intensive care unit environmental factors, communication factors, stressful symptoms, and the effectiveness of interventions. The studies reviewed in this article showed four stressors commonly identified by mechanically ventilated patients including dyspnea, anxiety, fear, and pain. Few interventional studies to reduce these stressors are available in the literature. Four interventions including hypnosis and relaxation, patient education and information sharing, music therapy, and supportive touch have been investigated in the literature and may be helpful in reducing patient stress. The advanced practice nurse is instrumental in the assessment of patient-perceived stressors while on the ventilator, and in the planning and implementation of appropriate interventions to reduce stressors and facilitate optimal ventilation, weaning, or both. PMID:12574705

  12. Mechanical Ventilation Drives Inflammation in Severe Viral Bronchiolitis

    PubMed Central

    Hennus, Marije P.; van Vught, Adrianus J.; Brabander, Mark; Brus, Frank; Jansen, Nicolaas J.; Bont, Louis J.

    2013-01-01

    Introduction Respiratory insufficiency due to severe respiratory syncytial virus (RSV) infection is the most frequent cause of paediatric intensive care unit admission in infants during the winter season. Previous studies have shown increased levels of inflammatory mediators in airways of mechanically ventilated children compared to spontaneous breathing children with viral bronchiolitis. In this prospective observational multi-center study we aimed to investigate whether this increase was related to disease severity or caused by mechanical ventilation. Materials and Methods Nasopharyngeal aspirates were collected <1 hour before intubation and 24 hours later in RSV bronchiolitis patients with respiratory failure (n = 18) and non-ventilated RSV bronchiolitis controls (n = 18). Concentrations of the following cytokines were measured: interleukin (IL)-1α, IL-1β, IL-6, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1α. Results Baseline cytokine levels were comparable between ventilated and non-ventilated infants. After 24 hours of mechanical ventilation mean cytokine levels, except for MIP-1α, were elevated compared to non-ventilated infected controls: IL-1α (159 versus 4 pg/ml, p<0.01), IL-1β (1068 versus 99 pg/ml, p<0.01), IL-6 (2343 versus 958 pg/ml, p<0.05) and MCP-1 (174 versus 26 pg/ml, p<0.05). Conclusions Using pre- and post-intubation observations, this study suggests that endotracheal intubation and subsequent mechanical ventilation cause a robust pulmonary inflammation in infants with RSV bronchiolitis. PMID:24349427

  13. Predicting success in weaning from mechanical ventilation.

    PubMed

    Meade, M; Guyatt, G; Cook, D; Griffith, L; Sinuff, T; Kergl, C; Mancebo, J; Esteban, A; Epstein, S

    2001-12-01

    We identified 65 observational studies of weaning predictors that had been reported in 70 publications. After grouping predictors with similar names but different thresholds, the following predictors met our relevance criteria: heterogeneous populations, 51; COPD patients, 21; and cardiovascular ICU patients, 45. Many variables were of no use in predicting the results of weaning. Moreover, few variables had been studied in > 50 patients or had results presented to generate estimates of predictive power. For stepwise reductions in mechanical support, the most promising predictors were a rapid shallow breathing index (RSBI) < 65 breaths/min/L (measured using the ventilator settings that were in effect at the time that the prediction was made) and a pressure time product < 275 cm H2O/L/s. The pooled likelihood ratios (LRs) were 1.1 (95% confidence interval [CI], 0.95 to 1.28) for a respiratory rate [RR] of < 38 breaths/min and 0.32 (95% CI, 0.06 to 1.71) for an RR of > 38 breaths/min, which indicate that an RR of < 38 breaths/min leaves the probability of successful weaning virtually unchanged but that a value of > 38 breaths/min leads to a small reduction in the probability of success in weaning the level of mechanical support. For trials of unassisted breathing, the most promising weaning predictors include the following: RR; RSBI; a product of RSBI and occlusion pressure < 450 cm H2O breaths/min/L; maximal inspiratory pressure (PImax) < 20 cm H2O; and a knowledge-based system for adjusting pressure support. Pooled results for the power of a positive test result for both RR and RSBI were limited (highest LR, 2.23), while the power of a negative test result was substantial (ie, LR, 0.09 to 0.23). Summary data suggest a similar predictive power for RR and RSBI. In the prediction of successful extubation, an RR of < 38 breaths/min (sensitivity, 88%; specificity, 47%), an RSBI < 100 or 105 breaths/min/L (sensitivity, 65 to 96%; specificity, 0 to 73%), PImax, and APACHE

  14. Non invasive ventilation after extubation in paediatric patients: a preliminary study

    PubMed Central

    2010-01-01

    Background Non-invasive ventilation (NIV) may be useful after extubation in children. Our objective was to determine postextubation NIV characteristics and to identify risk factors of postextubation NIV failure. Methods A prospective observational study was conducted in an 8-bed pediatric intensive care unit (PICU). Following PICU protocol, NIV was applied to patients who had been mechanically ventilated for over 12 hours considered at high-risk of extubation failure -elective NIV (eNIV), immediately after extubation- or those who developed respiratory failure within 48 hours after extubation -rescue NIV (rNIV)-. Patients were categorized in subgroups according to their main underlying conditions. NIV was deemed successful when reintubation was avoided. Logistic regression analysis was performed in order to identify predictors of NIV failure. Results There were 41 episodes (rNIV in 20 episodes). Success rate was 50% in rNIV and 81% in eNIV (p = 0.037). We found significant differences in univariate analysis between success and failure groups in respiratory rate (RR) decrease at 6 hours, FiO2 at 1 hour and PO2/FiO2 ratio at 6 hours. Neurologic condition was found to be associated with NIV failure. Multiple logistic regression analysis identified no variable as independent NIV outcome predictor. Conclusions Our data suggest that postextubation NIV seems to be useful in avoiding reintubation in high-risk children when applied immediately after extubation. NIV was more likely to fail when ARF has already developed (rNIV), when RR at 6 hours did not decrease and if oxygen requirements increased. Neurologic patients seem to be at higher risk of reintubation despite NIV use. PMID:20444256

  15. Enteral alimentation and gastrointestinal bleeding in mechanically ventilated patients.

    PubMed

    Pingleton, S K; Hadzima, S K

    1983-01-01

    The incidence of upper gastrointestinal (GI) bleeding in mechanically ventilated ICU patients receiving enteral alimentation was reviewed and compared to bleeding occurring in ventilated patients receiving prophylactic antacids or cimetidine. Of 250 patients admitted to our ICU during a 1-yr time period, 43 ventilated patients were studied. Patients in each group were comparable with respect to age, respiratory diagnosis, number of GI hemorrhage risk factors, and number of ventilator, ICU, and hospital days. Twenty-one patients had evidence of GI bleeding. Fourteen of 20 patients receiving antacids and 7 of 9 patients receiving cimetidine had evidence of GI bleeding. No bleeding occurred in 14 patients receiving enteral alimentation. Complications of enteral alimentation were few and none required discontinuation of enteral alimentation. Our preliminary data suggest the role of enteral alimentation in critically ill patients may include not only protection against malnutrition but also protection against GI bleeding.

  16. Pulmonary hyperinflation. A form of barotrauma during mechanical ventilation.

    PubMed

    Baeza, O R; Wagner, R B; Lowery, B D

    1975-11-01

    Barotrauma has been used to describe several specific complications related to mechanical ventilation. These include tension lung cyst, pneumothorax, pneumomediastinum, pneumoperitoneum, and subcutaneous emphysema. Pulmonary hyperinflation, another such complication, occurred in 6 patients, being fatal in 3. Two pathophysiologic mechanisms are discussed. The simpler, and well-recognized, ball-valve airway obstruction allows inspiration of air delivered by the mechanical ventilator but prevents expiration. A more complex circumstance exists when pulmonary contusion or infiltration produces differential lung compliances. This allows extreme hyperinflation of areas of normal lung during attempts to ventilate abnormal lung of low compliance. This mechanism is particularly evident when positive end-expiratory pressure (PEEP) is used in an attempt to open collapsed ventilatory units. Functional complications of lung hyperinflation include decreased alveolar ventilation and compression effects on adjacent structures. Interference with and shifts of regional lung perfusion may worsen gas exchange. Proper treatment includes airway clearance by bronchoscopy, the judicious use of bronchodilators, the discontinuance of PEEP, and adjustments of mechanical ventilators to prevent high airway pressures.

  17. Noninvasive Estimation of Respiratory Mechanics in Spontaneously Breathing Ventilated Patients: A Constrained Optimization Approach.

    PubMed

    Vicario, Francesco; Albanese, Antonio; Karamolegkos, Nikolaos; Wang, Dong; Seiver, Adam; Chbat, Nicolas W

    2016-04-01

    This paper presents a method for breath-by-breath noninvasive estimation of respiratory resistance and elastance in mechanically ventilated patients. For passive patients, well-established approaches exist. However, when patients are breathing spontaneously, taking into account the diaphragmatic effort in the estimation process is still an open challenge. Mechanical ventilators require maneuvers to obtain reliable estimates for respiratory mechanics parameters. Such maneuvers interfere with the desired ventilation pattern to be delivered to the patient. Alternatively, invasive procedures are needed. The method presented in this paper is a noninvasive way requiring only measurements of airway pressure and flow that are routinely available for ventilated patients. It is based on a first-order single-compartment model of the respiratory system, from which a cost function is constructed as the sum of squared errors between model-based airway pressure predictions and actual measurements. Physiological considerations are translated into mathematical constraints that restrict the space of feasible solutions and make the resulting optimization problem strictly convex. Existing quadratic programming techniques are used to efficiently find the minimizing solution, which yields an estimate of the respiratory system resistance and elastance. The method is illustrated via numerical examples and experimental data from animal tests. Results show that taking into account the patient effort consistently improves the estimation of respiratory mechanics. The method is suitable for real-time patient monitoring, providing clinicians with noninvasive measurements that could be used for diagnosis and therapy optimization.

  18. Treatment with aerosols in mechanically ventilated patients: is it worthwhile?

    PubMed

    Mouloudi, Eleni; Georgopoulos, Dimitris

    2002-02-01

    Aerosol medications are commonly used in mechanically ventilated patients. Several classes of drugs with different properties and indications may be given by inhalation. In all cases, compared with the systemic route, the inhaled therapy has the main advantage that for a given therapeutic response, the drug dose is several-fold lower, while the systemic absorption is negligible, thus the side effects are greatly minimized. In addition, for some medications the systemic route either causes non-acceptable side effects or results in considerably inferior therapeutic response, rendering the inhaled route the method of choice of drug administration. Bronchodilators, corticosteroids, vasoactive drugs, surfactants, antibiotics, helium and perfluorocarbons are the medications that can be given by inhalation during mechanical ventilation. Some of those represent part of the standard treatment for various groups of mechanically ventilated patients, while the role of others has not been well established yet.

  19. Mechanical exsufflation, noninvasive ventilation, and new strategies for pulmonary rehabilitation and sleep disordered breathing.

    PubMed Central

    Bach, J. R.

    1992-01-01

    Manual and mechanical exsufflation are important but underutilized ways to clear airway secretions. These methods are especially useful when used in concert with noninvasive intermittent positive airway pressure ventilatory assistance to facilitate extubation and ventilator weaning. This can be used as much as 24 hours a day as an alternative to tracheostomy ventilation or body ventilator use for patients with paralytic restrictive ventilatory insufficiency. These techniques expedite community management of ventilator assisted individuals by avoiding tracheostomy and need for invasive suctioning and ongoing wound care. For these techniques to be effective and to prevent further suppression of ventilatory drive, supplemental oxygen administration must be avoided unless pO2 is less than 60 mm Hg despite normalization of pCO2. Custom molded interfaces for the delivery of noninvasive intermittent positive airway pressure ventilatory assistance can also be used to facilitate the delivery of variable inspiratory expiratory positive airway pressure for patients with obstructive sleep apnea. Noninvasive intermittent positive airway pressure ventilatory assistance or body ventilator use can rest the respiratory muscles of patients with advanced chronic obstructive pulmonary disease. This and pulmonary rehabilitation programs geared to exercise reconditioning are therapeutic options that significantly improve the quality of life of these patients. For both paralytic restrictive and obstructive pulmonary patients, these techniques decrease cost and frequency of hospitalizations. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1586868

  20. Cost containment and mechanical ventilation in the United States.

    PubMed

    Cohen, I L; Booth, F V

    1994-08-01

    In many ICUs, admission and discharge hinge on the need for intubation and ventilatory support. As few as 5% to 10% of ICU patients require prolonged mechanical ventilation, and this patient group consumes > or = 50% of ICU patient days and ICU resources. Prolonged ventilatory support and chronic ventilator dependency, both in the ICU and non-ICU settings, have a significant and growing impact on healthcare economics. In the United States, the need for prolonged mechanical ventilation is increasingly recognized as separate and distinct from the initial diagnosis and/or procedure that leads to hospitalization. This distinction has led to improved reimbursement under the prospective diagnosis-related group (DRG) system, and demands more precise accounting from healthcare providers responsible for these patients. Using both published and theoretical examples, mechanical ventilation in the United States is discussed, with a focus on cost containment. Included in the discussion are ventilator teams, standards of care, management protocols, stepdown units, rehabilitation units, and home care. The expanding role of total quality management (TQM) is also presented. PMID:8087585

  1. Weaning from mechanical ventilation in paediatrics. State of the art.

    PubMed

    Valenzuela, Jorge; Araneda, Patricio; Cruces, Pablo

    2014-03-01

    Weaning from mechanical ventilation is one of the greatest volume and strength issues in evidence-based medicine in critically ill adults. In these patients, weaning protocols and daily interruption of sedation have been implemented, reducing the duration of mechanical ventilation and associated morbidity. In paediatrics, the information reported is less consistent, so that as yet there are no reliable criteria for weaning and extubation in this patient group. Several indices have been developed to predict the outcome of weaning. However, these have failed to replace clinical judgement, although some additional measurements could facilitate this decision.

  2. Weaning from mechanical ventilation in paediatrics. State of the art.

    PubMed

    Valenzuela, Jorge; Araneda, Patricio; Cruces, Pablo

    2014-03-01

    Weaning from mechanical ventilation is one of the greatest volume and strength issues in evidence-based medicine in critically ill adults. In these patients, weaning protocols and daily interruption of sedation have been implemented, reducing the duration of mechanical ventilation and associated morbidity. In paediatrics, the information reported is less consistent, so that as yet there are no reliable criteria for weaning and extubation in this patient group. Several indices have been developed to predict the outcome of weaning. However, these have failed to replace clinical judgement, although some additional measurements could facilitate this decision. PMID:23542044

  3. Weaning from mechanical ventilation: the evidence from clinical research.

    PubMed

    Meade, M O; Guyatt, G H; Cook, D J

    2001-12-01

    Mechanical ventilation incurs substantial morbidity, mortality, and costs. Both premature extubation and delayed extubation can cause harm. Therefore, weaning that is both expeditious and safe is highly desirable. The purpose of this review is to summarize the literature related to weaning modes, spontaneous breathing trials, weaning predictors, weaning with noninvasive positive pressure ventilation, and weaning protocols. We used 5 computerized databases and a duplicate independent review process to select articles for this review. We included randomized clinical trials evaluating any weaning interventions and nonrandomized trials of weaning predictors, with a focus on studies reporting clinically important outcomes. We abstracted quantitative data using several metrics and pooled results across studies only when our assessment of the patients, interventions, and outcomes indicated that pooling was legitimate. The available clinical research evidence suggests that, for progressive weaning of the level of mechanical support, it may be best to choose modes other than synchronized intermittent mandatory ventilation and it is unreasonable to be dogmatic about the use of other modes. There may also be substantial benefits to early extubation with back-up institution of noninvasive positive pressure ventilation, as needed, though this remains an experimental approach. For trials of spontaneous breathing, low levels of pressure support may hasten extubation. We did not uncover any consistently powerful weaning predictors, suggesting that formal use of predictors in patients being considered for reduction or discontinuation of mechanical support is unlikely to improve patient care. The likely explanation is that clinicians already fully consider information from weaning predictors in choosing patients for trials of reduction or discontinuation of mechanical ventilation. Finally, implementation of respiratory therapist- or nurse-driven protocols may be useful for all

  4. Cost comparison of mechanically ventilated patients across the age span

    PubMed Central

    Hayman, William R.; Leuthner, Steven R.; Laventhal, Naomi T.; Brousseau, David; Lagatta, Joanne M.

    2016-01-01

    Objective to compare use of mechanical ventilation and hospital costs across ventilated patients of all ages, preterm through adults, in a nationally-representative sample. Study Design secondary analysis of the 2009 Agency for Healthcare Research and Quality National Inpatient Sample. Results 1,107,563 (2.8%) patients received mechanical ventilation. For surviving ventilated patients, median costs for infants ≤32 weeks’ gestation were $51,000–$209,000, whereas median costs for older patients were lower, from $17,000–$25,000. For non-surviving ventilated patients, median costs were $27,000–$39,000 except at the extremes of age; the median cost was $10,000 for <24 week newborns, and $14,000 for 91+ year adults. Newborns of all gestational ages had a disproportionate share of hospital costs relative to their total volume. Conclusions Most ICU resources at the extremes of age are not directed toward non-surviving patients. From a perinatal perspective, attention should be directed toward improving outcomes and reducing costs for all infants, not just at the earliest gestational ages. PMID:26468935

  5. Long Term Non-Invasive Ventilation in Children: Impact on Survival and Transition to Adult Care

    PubMed Central

    Chatwin, Michelle; Tan, Hui-Leng; Bush, Andrew; Rosenthal, Mark; Simonds, Anita Kay

    2015-01-01

    Background The number of children receiving domiciliary ventilatory support has grown over the last few decades driven largely by the introduction and widening applications of non-invasive ventilation. Ventilatory support may be used with the intention of increasing survival, or to facilitate discharge home and/or to palliate symptoms. However, the outcome of this intervention and the number of children transitioning to adult care as a consequence of longer survival is not yet clear. Methods In this retrospective cohort study, we analysed the outcome in children (<17 years) started on home NIV at Royal Brompton Hospital over an 18 year period 1993-2011. The aim was to establish for different diagnostic groups: survival rate, likelihood of early death depending on diagnosis or discontinuation of ventilation, and the proportion transitioning to adult care. Results 496 children were commenced on home non invasive ventilation; follow-up data were available in 449 (91%). Fifty six per cent (n=254) had neuromuscular disease. Ventilation was started at a median age (IQR) 10 (3-15) years. Thirteen percent (n=59) were less than 1 year old. Forty percent (n=181) have transitioned to adult care. Twenty four percent (n=109) of patients have died, and nine percent (n=42) were able to discontinue ventilatory support. Conclusion Long term ventilation is associated with an increase in survival in a range of conditions leading to ventilatory failure in children, resulting in increasing numbers surviving to adulthood. This has significant implications for planning transition and adult care facilities. PMID:25933065

  6. Lung hyperinflation by mechanical ventilation versus isolated tracheal aspiration in the bronchial hygiene of patients undergoing mechanical ventilation

    PubMed Central

    Assmann, Crisiela Brum; Vieira, Paulo José Cardoso; Kutchak, Fernanda; Rieder, Marcelo de Mello; Forgiarini, Soraia Genebra Ibrahim; Forgiarini Junior, Luiz Alberto

    2016-01-01

    Objective To determine the efficacy of lung hyperinflation maneuvers via a mechanical ventilator compared to isolated tracheal aspiration for removing secretions, normalizing hemodynamics and improving lung mechanics in patients on mechanical ventilation. Methods This was a randomized crossover clinical trial including patients admitted to the intensive care unit and on mechanical ventilation for more than 48 hours. Patients were randomized to receive either isolated tracheal aspiration (Control Group) or lung hyperinflation by mechanical ventilator (MVH Group). Hemodynamic and mechanical respiratory parameters were measured along with the amount of aspirated secretions. Results A total of 50 patients were included. The mean age of the patients was 44.7 ± 21.6 years, and 31 were male. Compared to the Control Group, the MVH Group showed greater aspirated secretion amount (3.9g versus 6.4g, p = 0.0001), variation in mean dynamic compliance (-1.3 ± 2.3 versus -2.9 ± 2.3; p = 0.008), and expired tidal volume (-0.7 ± 0.0 versus -54.1 ± 38.8, p = 0.0001) as well as a significant decrease in peak inspiratory pressure (0.2 ± 0.1 versus 2.5 ± 0.1; p = 0.001). Conclusion In the studied sample, the MVH technique led to a greater amount of aspirated secretions, significant increases in dynamic compliance and expired tidal volume and a significant reduction in peak inspiratory pressure. PMID:27096673

  7. Evalution of mechanical ventilators in a hyperbaric environment.

    PubMed

    Gallagher, T J; Smith, R A; Bell, G C

    1978-02-01

    Four mechanical ventilators, the pneumatic Emerson, IMV bird, Urgency bird, and the Modified Mark 2 bird were tested in a hyperbaric chamber at depths up to 165 ft of sea water (FSW). All failed except the Emerson, which is the only machine recommended for chamber use at this time.

  8. Improved survival with an ambulatory model of non-invasive ventilation implementation in motor neuron disease.

    PubMed

    Sheers, Nicole; Berlowitz, David J; Rautela, Linda; Batchelder, Ian; Hopkinson, Kim; Howard, Mark E

    2014-06-01

    Non-invasive ventilation (NIV) increases survival and quality of life in motor neuron disease (MND). NIV implementation historically occurred during a multi-day inpatient admission at this institution; however, increased demand led to prolonged waiting times. The aim of this study was to evaluate the introduction of an ambulatory model of NIV implementation. A prospective cohort study was performed. Inclusion criteria were referral for NIV implementation six months pre- or post-commencement of the Day Admission model. This model involved a 4-h stay to commence ventilation with follow-up in-laboratory polysomnography titration and outpatient attendance. Outcome measures included waiting time, hospital length of stay, adverse events and polysomnography data. Results indicated that after changing to the Day Admission model the median waiting time fell from 30 to 13.5 days (p < 0.04) and adverse events declined (4/17 pre- (three deaths, one acute admission) vs. 0/12 post-). Survival was also prolonged (median (IQR) 278 (51-512) days pre- vs 580 (306-1355) days post-introduction of the Day Admission model; hazard ratio 0.41, p = 0.04). Daytime PaCO2 was no different. In conclusion, reduced waiting time to commence ventilation and improved survival were observed following introduction of an ambulatory model of NIV implementation in people with MND, with no change in the effectiveness of ventilation.

  9. [Noninvasive mechanical ventilation in patients with stable severe COPD].

    PubMed

    Schucher, B; Zerbst, J; Baumann, H J

    2004-06-01

    Noninvasive positive pressure ventilation in patients with stable chronic obstructive pulmonary disease. The role of non-invasive positive pressure ventilation (NIPPV) is well documented in patients with restrictive thoracic diseases like kyphoscoliosis, tuberculosis sequelae or neuromuscular disease. There is also a good evidence for the use of NIPPV in acute respiratory failure in patients with an exacerbation of COPD. The application of NIPPV in patients with chronic respiratory failure is growing, but there is less evidence than in restrictive disorders. NIPPV can unload the respiratory muscles in patients with chronic hypercapnic COPD and so alleviates fatigue of the respiratory pump, but improvement in the maximal inspiratory pressure (Pi (max)) is small or even absent. An improvement of sleep quality has also postulated, there was an increase in total sleep time and sleep effectiveness when using higher inspiratory pressure. An increase of the walking distance was shown in short term studies, only. In most studies, there was an increase in quality of life as a main topic. Mortality was unchanged in the two long-term randomised controlled studies. Current data suggest a possible role of NIPPV in patients with severe hypercapnia. A high effective inspiratory pressure and a ventilator mode with a significant reduction in the work of breathing should be choosen. NIPPV should be started in hospital, a close reassessment must be performed. Patients who accepted NIPPV in the first weeks had a good compliance for long-term use. PMID:15216436

  10. Mechanical Ventilation Boot Camp: A Simulation-Based Pilot Study

    PubMed Central

    Yee, Jennifer; Fuenning, Charles; George, Richard; Hejal, Rana; Haines, Nhi; Dunn, Diane; Gothard, M. David; Ahmed, Rami A.

    2016-01-01

    Objectives. Management of mechanically ventilated patients may pose a challenge to novice residents, many of which may not have received formal dedicated critical care instruction prior to starting their residency training. There is a paucity of data regarding simulation and mechanical ventilation training in the medical education literature. The purpose of this study was to develop a curriculum to educate first-year residents on addressing and troubleshooting ventilator alarms. Methods. Prospective evaluation was conducted of seventeen residents undergoing a twelve-hour three-day curriculum. Residents were assessed using a predetermined critical action checklist for each case, as well as pre- and postcurriculum multiple-choice cognitive knowledge questionnaires and confidence surveys. Results. Significant improvements in cognitive knowledge, critical actions, and self-reported confidence were demonstrated. The mean change in test score from before to after intervention was +26.8%, and a median score increase of 25% was noted. The ARDS and the mucus plugging cases had statistically significant improvements in critical actions, p < 0.001. A mean increase in self-reported confidence was realized (1.55 to 3.64), p = 0.049. Conclusions. A three-day simulation curriculum for residents was effective in increasing competency, knowledge, and confidence with ventilator management. PMID:26949545

  11. Ventilation distribution and chest wall mechanics in microgravity

    NASA Technical Reports Server (NTRS)

    Paiva, M.; Wantier, M.; Verbanck, S.; Engel, L. A.; Prisk, G. K.; Guy, H. J. B.; West, J. B.

    1997-01-01

    The effect of gravity on lung ventilation distribution and the mechanisms of the chest wall were investigated. The following tests were performed with the respiratory monitoring system of the Anthorack, flown onboard Spacelab D2 mission: single breath washout (SBW), multiple breath washout (MBW) and argon rebreathing (ARB). In order to study chest wall mechanisms in microgravity, a respiratory inductive plethysmograph was used. The SBW tests did not reach statistical significance, while the ARB tests showed that gravity independent inhomogeneity of specific ventilation is larger than gravity dependent inhomogeneity. In which concerns the chest wall mechanisms, the analysis on the four astronauts during the normal respirations of the relaxation maneuver showed a 40 percent increase on the abdominal contribution to respiration.

  12. [Lung-brain interaction in the mechanically ventilated patient].

    PubMed

    López-Aguilar, J; Fernández-Gonzalo, M S; Turon, M; Quílez, M E; Gómez-Simón, V; Jódar, M M; Blanch, L

    2013-10-01

    Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term.

  13. [Lung-brain interaction in the mechanically ventilated patient].

    PubMed

    López-Aguilar, J; Fernández-Gonzalo, M S; Turon, M; Quílez, M E; Gómez-Simón, V; Jódar, M M; Blanch, L

    2013-10-01

    Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term. PMID:23260265

  14. Mechanical effects of heat-moisture exchangers in ventilated patients.

    PubMed

    Iotti, G A; Olivei, M C; Braschi, A

    1999-01-01

    Although they represent a valuable alternative to heated humidifiers, artificial noses have unfavourable mechanical effects. Most important of these is the increase in dead space, with consequent increase in the ventilation requirement. Also, artificial noses increase the inspiratory and expiratory resistance of the apparatus, and may mildly increase intrinsic positive end-expiratory pressure. The significance of these effects depends on the design and function of the artificial nose. The pure humidifying function results in just a moderate increase in dead space and resistance of the apparatus, whereas the combination of a filtering function with the humidifying function may critically increase the volume and the resistance of the artificial nose, especially when a mechanical filter is used. The increase in the inspiratory load of ventilation that is imposed by artificial noses, which is particularly significant for the combined heat-moisture exchanger filters, should be compensated for by an increase either in ventilator output or in patient's work of breathing. Although both approaches can be tolerated by most patients, some exceptions should be considered. The increased pressure and volume that are required to compensate for the artificial nose application increase the risk of barotrauma and volutrauma in those patients who have the most severe alterations in respiratory mechanics. Moreover, those patients who have very limited respiratory reserve may not be able to compensate for the inspiratory work imposed by an artificial nose. When we choose an artificial nose, we should take into account the volume and resistance of the available devices. We should also consider the mechanical effects of the artificial noses when setting mechanical ventilation and when assessing a patient's ability to breathe spontaneously.

  15. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  16. Use of volume-targeted non-invasive bilevel positive airway pressure ventilation in a patient with amyotrophic lateral sclerosis*,**

    PubMed Central

    Diaz-Abad, Montserrat; Brown, John Edward

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968

  17. Impact of Sedation on Cognitive Function in Mechanically Ventilated Patients.

    PubMed

    Porhomayon, Jahan; El-Solh, Ali A; Adlparvar, Ghazaleh; Jaoude, Philippe; Nader, Nader D

    2016-02-01

    The practice of sedation dosing strategy in mechanically ventilated patient has a profound effect on cognitive function. We conducted a comprehensive review of outcome of sedation on mental health function in critically ill patients on mechanical ventilation in the intensive care unit (ICU). We specifically evaluated current sedative dosing strategy and the development of delirium, post-traumatic stress disorders (PTSDs) and agitation. Based on this review, heavy dosing sedation strategy with benzodiazepines contributes to cognitive dysfunction. However, outcome for mental health dysfunction is mixed in regard to newer sedatives agents such as dexmedetomidine and propofol. Moreover, studies that examine the impact of sedatives for persistence of PTSD/delirium and its long-term cognitive and functional outcomes for post-ICU patients are frequently underpowered. Most studies suffer from low sample sizes and methodological variations. Therefore, larger randomized controlled trials are needed to properly assess the impact of sedation dosing strategy on cognitive function. PMID:26559680

  18. Convective mixing mechanisms in high frequency intermittent jet ventilation.

    PubMed

    Scherer, P W; Muller, W J; Raub, J B; Haselton, F R

    1989-01-01

    A liquid flow visualization technique was used to identify the location of neutrally buoyant bead clouds injected into airway models during flows simulating high frequency intermittent jet ventilation (HFIJV) in neonatal lungs. The motions of these bead clouds show that the convective or bulk mixing that occurs during HFIJV is made up of two parts; a turbulent convective exchange with the atmosphere caused by the jet in the trachea and a streaming motion along the airways driven by an interaction between the jet and the expansion and contraction of the airways due to their compliance. These convective streaming motions combine with molecular diffusion to produce augmented diffusion which transports O2 and CO2 between the trachea and the peripheral alveoli. Optimizing HFIJV (as well as other forms of HFV) depends on maximizing these airway convective streaming flows which depend on many more lung and fluid mechanical parameters than are necessary to describe conventional mechanical ventilation.

  19. Real-time noninvasive estimation of intrapleural pressure in mechanically ventilated patients: a feasibility study.

    PubMed

    Albanese, Antonio; Karamolegkos, Nikolaos; Haider, Syed W; Seiver, Adam; Chbat, Nicolas W

    2013-01-01

    A method for real-time noninvasive estimation of intrapleural pressure in mechanically ventilated patients is proposed. The method employs a simple first-order lung mechanics model that is fitted in real-time to flow and pressure signals acquired non-invasively at the opening of the patient airways, in order to estimate lung resistance (RL), lung compliance (CL) and intrapleural pressure (Ppl) continuously in time. Estimation is achieved by minimizing the sum of squared residuals between measured and model predicted airway pressure using a modified Recursive Least Squares (RLS) approach. Particularly, two different RLS algorithms, namely the conventional RLS with Exponential Forgetting (EF-RLS) and the RLS with Vector-type Forgetting Factor (VFF-RLS), are considered in this study and their performances are first evaluated using simulated data. Simulations suggest that the conventional EF-RLS algorithm is not suitable for our purposes, whereas the VFF-RLS method provides satisfactory results. The potential of the VFF-RLS based method is then proved on experimental data collected from a mechanically ventilated pig. Results show that the method provides continuous estimated lung resistance and compliance in normal physiological ranges and pleural pressure in good agreement with invasive esophageal pressure measurements.

  20. Microbial invasions: the process, patterns, and mechanisms.

    PubMed

    Mallon, Cyrus Alexander; Elsas, Jan Dirk van; Salles, Joana Falcão

    2015-11-01

    There has recently been a surge of literature examining microbial invasions into a variety of environments. These studies often include a component of biological diversity as a major factor determining an invader's fate, yet common results are rarely cross-compared. Since many studies only present a snapshot of the entire invasion process, a bird's eye view is required to piece together the entire continuum, which we find consists of introduction, establishment, spread, and impact phases. We further examine the patterns and mechanisms associated with invasion resistance and create a mechanistic synthesis governed by the species richness, species evenness, and resource availability of resident communities. We conclude by exploring the advantages of using a theoretical invasion framework across different fields.

  1. Automatic detection of AutoPEEP during controlled mechanical ventilation

    PubMed Central

    2012-01-01

    Background Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end expiratory pressure) with some slight language abuse, is a frequent deleterious phenomenon in patients undergoing mechanical ventilation. Although not readily quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow waveform. If expiratory flow does not return to zero before the next inspiration, AutoPEEP is present. This simple detection however requires the eye of an expert clinician at the patient’s bedside. An automatic detection of AutoPEEP should be helpful to optimize care. Methods In this paper, a platform for automatic detection of AutoPEEP based on the flow signal available on most of recent mechanical ventilators is introduced. The detection algorithms are developed on the basis of robust non-parametric hypothesis testings that require no prior information on the signal distribution. In particular, two detectors are proposed: one is based on SNT (Signal Norm Testing) and the other is an extension of SNT in the sequential framework. The performance assessment was carried out on a respiratory system analog and ex-vivo on various retrospectively acquired patient curves. Results The experiment results have shown that the proposed algorithm provides relevant AutoPEEP detection on both simulated and real data. The analysis of clinical data has shown that the proposed detectors can be used to automatically detect AutoPEEP with an accuracy of 93% and a recall (sensitivity) of 90%. Conclusions The proposed platform provides an automatic early detection of AutoPEEP. Such functionality can be integrated in the currently used mechanical ventilator for continuous monitoring of the patient-ventilator interface and, therefore, alleviate the clinician task. PMID:22715924

  2. Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China.

    PubMed

    Yan, Q; Zhou, M; Zou, M; Liu, W-e

    2016-03-01

    The purpose of this study was to investigate the clinical characteristics of hypervirulent K. pneumoniae (hvKP) induced ventilator-associated pneumonia (VAP) and the microbiological characteristics and epidemiology of the hvKP strains. A retrospective study of 49 mechanically ventilated patients with K. pneumoniae induced VAP was conducted at a university hospital in China from January 2014 to December 2014. Clinical characteristics and K. pneumoniae antimicrobial susceptibility and biofilm formation were analyzed. Genes of capsular serotypes K1, K2, K5, K20, K54 and K57 and virulence factors plasmid rmpA(p-rmpA), iroB, iucA, mrkD, entB, iutA, ybtS, kfu and allS were also evaluated. Multilocus sequence typing (MLST) and random amplified polymorphic DNA (RAPD) analyses were used to study the clonal relationship of the K. pneumoniae strains. Strains possessed p-rmpA and iroB and iucA were defined as hvKP. Of 49 patients, 14 patients (28.6 %) were infected by hvKP. Antimicrobial resistant rate was significantly higher in cKP than that in hvKP. One ST29 K54 extended-spectrum-beta-lactamase (ESBL) producing hvKP strain was detected. The prevalence of K1 and K2 in hvKP was 42.9 % and 21.4 %, respectively. The incidences of K1, K2, K20, p-rmpA, iroB, iucA, iutA, Kfu and alls were significantly higher in hvKP than those in cKP. ST23 was dominant among hvKP strains, and all the ST23 strains had identical RAPD pattern. hvKP has become a common pathogen of VAP in mechanically ventilated patients in China. Clinicians should increase awareness of hvKP induced VAP and enhance epidemiologic surveillance.

  3. Performance comparisons of naturally and mechanically ventilated solar-assisted nurseries

    SciTech Connect

    Milanuk, M.; Bodman, G.R.; DeShazer, J.A.; Schulte, D.

    1983-12-01

    When combined with solar floor heating and careful management, naturally ventilated swine nurseries can result in energy savings and comparable pig responses to mechanically ventilated nurseries of the current design that were also solar assisted.

  4. Elective discontinuation of life-sustaining mechanical ventilation on a chronic ventilator unit.

    PubMed

    Ankrom, M; Zelesnick, L; Barofsky, I; Georas, S; Finucane, T E; Greenough, W B

    2001-11-01

    Withdrawal of medical interventions has become common in the hospital for patients with terminal disease. Despite the widespread feeling that medical interventions may be futile in certain patients, many patients, families, and medical staff find withdrawal of care difficult and withdrawal of mechanical ventilation to be the most disturbing secondary to the close proximity of withdrawal and death. Presented is a 6-year retrospective review of elective withdrawal of life-sustaining mechanical ventilation on a chronic ventilator unit (CVU) in an academic nursing home. Of the 98 patients admitted to the 19-bed CVU during this period, only 13 underwent terminal weaning (TW). Statistically, these 13 patients did not differ significantly in age, gender, race, route of nutrition, decisional capacity, or length of stay on the unit compared with the 85 patients who were not terminally weaned (t-test P > .05). Stepwise logistic regression found that patients who were more alert at admission were more likely to have participated in TW (chi2 = 5.22, coefficient for alertness P < .036). The decision to terminate mechanical ventilation was made by patients in eight cases and by family in five cases. The first step in the process leading to TW was a discussion with the patient and family about plan of care, including the patient's desires for attempted resuscitation, rehospitalization, advance directives, and family contacts. Plan of care was reviewed informally in a weekly multidisciplinary round and formally, to address each patient's care plan, in a multidisciplinary family meeting on a regular basis. The second step was to address TW when brought up by the patient, family, or medical staff. A request for TW by a patient or surrogate was referred to the medical staff, who screened the patient for depression or other remediable symptoms. The third step was to refer the patient and family to another formal meeting to discuss the request for TW and, if needed, in the case of

  5. Non-invasive ventilation for children with acute respiratory failure in the developing world: literature review and an implementation example.

    PubMed

    Balfour-Lynn, R E; Marsh, G; Gorayi, D; Elahi, E; LaRovere, J

    2014-06-01

    Over 2 million children die of acute respiratory infection every year, with around 98% of these deaths occurring in developing countries. Depending upon the clinical status of the patient, supplemental oxygen is usually the first line therapy. However this often proves inadequate for acute respiratory failure (ARF), in which case intubation and mechanical positive pressure ventilation are required. Adult intensive care successfully introduced non-invasive positive pressure ventilation (NIPPV) to treat ARF over a decade ago. This experience, coupled with the use of NIPPV in children with chronic respiratory insufficiency, has led to increasing use of NIPPV to treat ARF in paediatric populations. NIPPV can have similar or improved outcomes to IPPV, but with fewer complications. However there are no controlled trials of its use in children, and most data come from observational studies and retrospective reviews. In a developing world setting, where mortality from ARF is high and the risks of intubation are great and often not feasible, NIPPV can be a simple and cost-effective way to treat these patients. Its implementation in rural Northern Ghana shows NIPPV for ARF can be delivered safely with minimal training, and appears to impact significantly on mortality in those under 5 years.

  6. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    PubMed Central

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and

  7. [Sleep-apnea syndrome, mechanical ventilation and critical care in Archivos de Bronconeumología (December 2009-December 2010)].

    PubMed

    Abad Fernández, Araceli; Pumarega, Irene Cano; Hernández, Concepción; Sampol, Gabriel; Terán-Santos, Joaquín

    2011-01-01

    The present study aims to review all the major articles on respiratory sleep disorders, mechanical ventilation, and respiratory critical care published in the last year in Archivos de bronconeumología. Between December 2009 and November 2010, 15 studies on these topics were published in Archivos de bronconeumología. Ten of these studies dealt with respiratory sleep disorders, consisting of six original articles, one special article, one review article, one letter to the editor and one supplement on chronic obstructive pulmonary disease and its association with sleep apneas. Five articles were published on non-invasive mechanical ventilation: one editorial, one special article, one article in a supplement and two original articles. As in previous years, there was a marked difference in the number of articles published on non-invasive mechanical ventilation and sleep-apnea syndrome, with a greater number of articles being published on the latter. Although some articles highlight the importance of the place where ventilation is commenced, no study specifically dealing with intermediate care units was published in Archivos de bronconeumología in 2010. This absence could be interpreted as a result of the low implantation of this type of unit in Spain, contrasting with the high activity undertaken in this field by pneumology services.

  8. [Sleep-apnea syndrome, mechanical ventilation and critical care in Archivos de Bronconeumología (December 2009-December 2010)].

    PubMed

    Abad Fernández, Araceli; Pumarega, Irene Cano; Hernández, Concepción; Sampol, Gabriel; Terán-Santos, Joaquín

    2011-01-01

    The present study aims to review all the major articles on respiratory sleep disorders, mechanical ventilation, and respiratory critical care published in the last year in Archivos de bronconeumología. Between December 2009 and November 2010, 15 studies on these topics were published in Archivos de bronconeumología. Ten of these studies dealt with respiratory sleep disorders, consisting of six original articles, one special article, one review article, one letter to the editor and one supplement on chronic obstructive pulmonary disease and its association with sleep apneas. Five articles were published on non-invasive mechanical ventilation: one editorial, one special article, one article in a supplement and two original articles. As in previous years, there was a marked difference in the number of articles published on non-invasive mechanical ventilation and sleep-apnea syndrome, with a greater number of articles being published on the latter. Although some articles highlight the importance of the place where ventilation is commenced, no study specifically dealing with intermediate care units was published in Archivos de bronconeumología in 2010. This absence could be interpreted as a result of the low implantation of this type of unit in Spain, contrasting with the high activity undertaken in this field by pneumology services. PMID:21300219

  9. Transient-state mechanisms of wind-induced burrow ventilation.

    PubMed

    Turner, J Scott; Pinshow, Berry

    2015-01-15

    Burrows are common animal habitations, yet living in a burrow presents physiological challenges for its inhabitants because the burrow isolates them from sources and sinks for oxygen, carbon dioxide, water vapor and ammonia. Conventionally, the isolation is thought to be overcome by either diffusion gas exchange within the burrow or some means of capturing wind energy to power steady or quasi-steady bulk flows of air through it. Both are examples of what may be called 'DC' models, namely steady to quasi-steady flows powered by steady to quasi-steady winds. Natural winds, however, are neither steady nor quasi-steady, but are turbulent, with a considerable portion of the energy contained in so-called 'AC' (i.e. unsteady) components, where wind velocity varies chaotically and energy to power gas exchange is stored in some form. Existing DC models of burrow gas exchange do not account for this potentially significant source of energy for ventilation. We present evidence that at least two AC mechanisms operate to ventilate both single-opening burrows (of the Cape skink, Trachylepis capensis) and double-opening model burrows (of Sundevall's jird, Meriones crassus). We propose that consideration of the physiological ecology and evolution of the burrowing habit has been blinkered by the long neglect of AC ventilation.

  10. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    PubMed

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing.

  11. Respiratory syncytial virus infection in children admitted to hospital but ventilated mechanically for other reasons.

    PubMed

    von Renesse, Anja; Schildgen, Oliver; Klinkenberg, Dennis; Müller, Andreas; von Moers, Arpad; Simon, Arne

    2009-01-01

    One thousand five hundred sixty-eight RSV infections were documented prospectively in 1,541 pediatric patients. Of these, 20 (1.3%) had acquired the RSV infection while treated by mechanical ventilation for reasons other than the actual RSV infection (group ventilated mechanically). The clinical characteristics of children who were infected with respiratory syncytial virus (RSV) infection while ventilated mechanically for other reasons are described and compared with a matched control group. Sixty percent of the group ventilated mechanically had at least one additional risk factor for a severe course of infection (prematurity 50%, chronic lung disease 20%, congenital heart disease 35%, immunodeficiency 20%). The median age at diagnosis in the group ventilated mechanically was 4.2 months. The matched pairs analysis (group ventilated mechanically vs. control group) revealed a higher proportion of patients with hypoxemia and apnoea in the group ventilated mechanically; more patients in the control group showed symptoms of airway obstruction (wheezing). At least one chest radiography was performed in 95% of the patients (n = 19) in the group ventilated mechanically versus 45% (n = 9) in the control group (P = 0.001). The frequency of pneumonia was 40% in the group ventilated mechanically and 20% in the control group. Despite existing consensus recommendations, only two patients (10%) of the group ventilated mechanically had received palivizumab previously. Significantly more patients in the group ventilated mechanically received antibiotic treatment (85% vs. 45%, P = 0.008), and attributable mortality was higher in the group ventilated mechanically (15% [n = 3] vs. 0% in the control group, P = 0.231). Children treated by long term mechanical ventilation may acquire RSV infection by transmission by droplets or caregivers and face an increased risk of a severe course of RSV infection. The low rate of immunoprophylaxis in this particular risk group should be improved.

  12. Effects of manual hyperinflation in preterm newborns under mechanical ventilation

    PubMed Central

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; de Carvalho, Werther Brunow; Krebs, Vera Lucia Jornada

    2016-01-01

    Objective To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Methods Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Results Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Conclusion Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver. PMID:27737427

  13. Care-related pain in critically ill mechanically ventilated patients.

    PubMed

    Ayasrah, S

    2016-07-01

    Despite advances in pain management, critically ill patients continue to have unacceptably high rates of uncontrolled pain. Using the Behavioural Pain Scale and physiological indicators of pain, this study examines pain levels in mechanically ventilated patients prior to and during routine nursing procedures. A prospective descriptive design was used to assess and describe care-related pain associated with nociceptive procedures (repositioning, endotracheal suctioning, and vascular punctures) and non-nociceptive procedures (mouth care, eye care and dressing change). A sample of 247 mechanically ventilated Jordanian patients was recruited from intensive care units in a military hospital. The overall mean procedural pain score of 6.34 (standard deviation [SD] 2.36) was significantly higher than the mean preprocedural pain score of 3.43 (SD 0.67, t[246]=20.82, P<0.001). The highest mean procedural pain scores were observed during repositioning (9.25, SD 1.29). Few patients received analgesics and/or sedatives in the hour prior to the procedures. The mean Ramsay Scale score was 2.49 (SD 0.95), indicating that patients were either anxious or responsive to command only. The mean physiological indicators of pain increased during repositioning and endotracheal suctioning and decreased during the rest of the procedures. Mechanically ventilated patients experience pain prior to and during routine nursing procedures. Harmless and comfort procedures are actually painful. When caring for nonverbal critically ill patients, clinicians need to consider care-related pain associated with their interventions. Relying on changes in vital signs as a primary indicator of pain can be misleading. PMID:27456175

  14. Non-invasive ventilation for sleep-disordered breathing in Smith-Magenis syndrome.

    PubMed

    Connor, Victoria; Zhao, Sizheng; Angus, Robert

    2016-01-01

    Smith-Magenis syndrome (SMS) is a rare genetic neurodevelopmental disorder characterised by behavioural disturbances, intellectual disability and early onset obesity. The physical features of this syndrome are well characterised; however, behavioural features, such as sleep disturbance, are less well understood and difficult to manage. Sleep issues in SMS are likely due to a combination of disturbed melatonin cycle, facial anatomy and obesity-related ventilatory problems. Sleep disorders can be very distressing to patients and their families, as exemplified by our patient's experience, and can worsen behavioural issues as well as general health. This case demonstrates the successful use of non-invasive ventilation in treating underlying obesity hypoventilation syndrome and obstructive sleep apnoea. As a consequence of addressing abnormalities in sleep patterns, some behavioural problems improved. PMID:27495174

  15. Domiciliary Non-invasive Ventilation in COPD: An International Survey of Indications and Practices.

    PubMed

    Crimi, Claudia; Noto, Alberto; Princi, Pietro; Cuvelier, Antoine; Masa, Juan F; Simonds, Anita; Elliott, Mark W; Wijkstra, Peter; Windisch, Wolfram; Nava, Stefano

    2016-08-01

    Despite the fact that metanalyses and clinical guidelines do not recommend the routine use of domiciliary non-invasive ventilation (NIV) for patients diagnosed with severe stable Chronic Obstructive Pulmonary Disease (COPD) and with chronic respiratory failure, it is common practice in some countries. We conducted an international web-survey of physicians involved in provision of long-term NIV to examine patterns of domiciliary NIV use in patients diagnosed with COPD. The response rate was 41.6%. A reduction of hospital admissions, improvements in quality of life and dyspnea relief were considered as the main expected benefits for patients. Nocturnal oxygen saturation assessment was the principal procedure performed before NIV prescription. Recurrent exacerbations (>3) requiring NIV and failed weaning from in hospital NIV were the most important reasons for starting domiciliary NIV. Pressure support ventilation (PSV) was the most common mode, with "low" intensity settings (PSV-low) the most popular (44.4 ± 30.1%) compared with "high" intensity (PSV-high) strategies (26.9 ± 25.9%), with different geographical preferences. COPD is confirmed to be a common indication for domiciliary NIV. Recurrent exacerbations and failed weaning from in-hospital NIV were the main reasons for its prescription. PMID:26744042

  16. Effect of non-invasive ventilation on the measurement of ventilatory and metabolic variables.

    PubMed

    Dennis, C J; Menadue, C; Harmer, A R; Barnes, D J; Alison, J A

    2016-07-01

    The effect of non-invasive ventilation (NIV) on the accuracy of measurements of ventilation, oxygen consumption (V˙O2) and carbon dioxide production (V˙CO2) was examined using a simulator. Known gas volumes of oxygen and carbon dioxide were delivered to a metabolic system that measured tidal volume, respiratory rate, V˙O2 and V˙CO2, both with and without NIV. Bland-Altman analyses were used to compare between conditions. NIV at pressure support (PS) 20cm H2O compared to without NIV showed: VT, mean difference (MD) 0mL (limits of agreement (LOA) -21 to 21) mL; V˙O2 MD -413 (LOA -810 to 16) mL/min; and V˙CO2 MD 32 (LOA -32 to 97) mL/min. For V˙O2 measurements during NIV, a correction was applied to account for increased air density due to PS. After correction, V˙O2 measurement accuracy improved; MD -46 (LOA -108 to 17) mL/min. Tidal volume and metabolic variables can be measured with acceptable accuracy during NIV, providing V˙O2 is corrected for altered gas density. PMID:26932772

  17. Flow transport and gas mixing during invasive high frequency oscillatory ventilation.

    PubMed

    Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2014-06-01

    A large Eddy simulation (LES) based computational fluid dynamics study was performed to investigate gas transport and mixing in patient specific human lung models during high frequency oscillatory ventilation. Different pressure-controlled waveforms (sinusoidal, exponential and square) and ventilator frequencies (15, 10 and 6Hz) were used (tidal volume=50mL). The waveforms were created by solving the equation of motion subjected to constant lung wall compliance and flow resistance. Simulations were conducted with and without endotracheal tube to understand the effect of invasive management device. Variation of pressure-controlled waveform and frequency exhibits significant differences on counter flow pattern, which could lead to a significant impact on the gas mixing efficiency. Pendelluft-like flow was present for the sinusoidal waveform at all frequencies but occurred only at early inspiration for the square waveform at highest frequency. The square waveform was most efficient for gas mixing, resulting in the least wall shear stress on the lung epithelium layer thereby reducing the risk of barotrauma to both airways and the alveoli for patients undergoing therapy. PMID:24656889

  18. Clinical review: Humidifiers during non-invasive ventilation - key topics and practical implications

    PubMed Central

    2012-01-01

    Inadequate gas conditioning during non-invasive ventilation (NIV) can impair the anatomy and function of nasal mucosa. The resulting symptoms may have a negative effect on patients' adherence to ventilatory treatment, especially for chronic use. Several parameters, mostly technical aspects of NIV, contribute to inefficient gas conditioning. Factors affecting airway humidity during NIV include inspiratory flow, inspiratory oxygen fraction, leaks, type of ventilator, interface used to deliver NIV, temperature and pressure of inhaled gas, and type of humidifier. The correct application of a humidification system may avoid the effects of NIV-induced drying of the airway. This brief review analyses the consequences of airway dryness in patients receiving NIV and the technical tools necessary to guarantee adequate gas conditioning during ventilatory treatment. Open questions remain about the timing of gas conditioning for acute or chronic settings, the choice and type of humidification device, the interaction between the humidifier and the underlying disease, and the effects of individual humidification systems on delivered humidity. PMID:22316078

  19. Bronchodilator delivery with metered-dose inhaler during mechanical ventilation.

    PubMed

    Georgopoulos, D; Mouloudi, E; Kondili, E; Klimathianaki, M

    2000-01-01

    The delivery of bronchodilators with metered-dose inhaler (MDI) in mechanically ventilated patients has attracted considerable interest in recent years. This is because the use of the MDI has several advantages over the nebulizer, such as reduced cost, ease of administration, less personnel time, reliability of dosing and a lower risk of contamination. A spacer device is fundamental in order to demonstrate the efficacy of the bronchodilatory therapy delivered by MDI. Provided that the technique of administration is appropriate, MDIs are as effective as nebulizers, despite a significantly lower dose of bronchodilator given by the MDI.

  20. Bronchodilator delivery with metered-dose inhaler during mechanical ventilation

    PubMed Central

    Georgopoulos, Dimitris; Mouloudi, Eleni; Kondili, Eumorfia; Klimathianaki, Maria

    2000-01-01

    The delivery of bronchodilators with metered-dose inhaler (MDI) in mechanically ventilated patients has attracted considerable interest in recent years. This is because the use of the MDI has several advantages over the nebulizer, such as reduced cost, ease of administration, less personnel time, reliability of dosing and a lower risk of contamination. A spacer device is fundamental in order to demonstrate the efficacy of the bronchodilatory therapy delivered by MDI. Provided that the technique of administration is appropriate, MDIs are as effective as nebulizers, despite a significantly lower dose of bronchodilator given by the MDI. PMID:11094505

  1. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction

    PubMed Central

    Smith, Ira J.; Godinez, Guillermo L.; Singh, Baljit K.; McCaughey, Kelly M.; Alcantara, Raniel R.; Gururaja, Tarikere; Ho, Melissa S.; Nguyen, Henry N.; Friera, Annabelle M.; White, Kathy A.; McLaughlin, John R.; Hansen, Derek; Romero, Jason M.; Baltgalvis, Kristen A.; Claypool, Mark D.; Li, Wei; Lang, Wayne; Yam, George C.; Gelman, Marina S.; Ding, Rongxian; Yung, Stephanie L.; Creger, Daniel P.; Chen, Yan; Singh, Rajinder; Smuder, Ashley J.; Wiggs, Michael P.; Kwon, Oh-Sung; Sollanek, Kurt J.; Powers, Scott K.; Masuda, Esteban S.; Taylor, Vanessa C.; Payan, Donald G.; Kinoshita, Taisei; Kinsella, Todd M.

    2014-01-01

    Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.—Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G

  2. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.

    PubMed

    Smith, Ira J; Godinez, Guillermo L; Singh, Baljit K; McCaughey, Kelly M; Alcantara, Raniel R; Gururaja, Tarikere; Ho, Melissa S; Nguyen, Henry N; Friera, Annabelle M; White, Kathy A; McLaughlin, John R; Hansen, Derek; Romero, Jason M; Baltgalvis, Kristen A; Claypool, Mark D; Li, Wei; Lang, Wayne; Yam, George C; Gelman, Marina S; Ding, Rongxian; Yung, Stephanie L; Creger, Daniel P; Chen, Yan; Singh, Rajinder; Smuder, Ashley J; Wiggs, Michael P; Kwon, Oh-Sung; Sollanek, Kurt J; Powers, Scott K; Masuda, Esteban S; Taylor, Vanessa C; Payan, Donald G; Kinoshita, Taisei; Kinsella, Todd M

    2014-07-01

    Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G

  3. The control of breathing during weaning from mechanical ventilation.

    PubMed

    Dunn, W F; Nelson, S B; Hubmayr, R D

    1991-09-01

    Using the recruitment threshold technique, we measured the CO2 responsiveness of the unloaded respiratory pump in 14 mechanically ventilated patients prior to weaning. The CO2 recruitment threshold (CO2RT) was compared with the arterial CO2 tension during unassisted breathing (CO2SB) and with the PaCO2 during mechanical ventilation (CO2MV) at machine settings determined by the primary physician. Based on these comparisons, we tested the hypotheses that (1) patients without weaning-induced respiratory distress (group 1) maintain CO2SB near CO2RT, (2) patients with weaning-induced respiratory distress (group 2) retain CO2SB above CO2RT, thereby manifesting incomplete load compensation, and (3) CO2MV is ventilator setting dependent and provides insufficient information about the ventilatory requirement during weaning. Respiratory distress was prospectively defined as sustained tachypnea (rate greater than or equal to 30) or intense dyspnea (Borg scale rating) and limited weaning in nine of 14 patients. The average CO2RT was 40 mm Hg in both groups. All patients in group 1 maintained CO2SB near CO2RT (p greater than 0.1). Seven of nine patients in group 2 retained CO2 by greater than or equal to 3 mm Hg above CO2RT (p less than 0.01). There was no significant difference between CO2MV and CO2SB in either group. We conclude that CO2RT provides a better reference of the adequacy of ventilatory load compensation during weather than CO2MV.

  4. [Non-invasive and invasive out of hospital ventilation in chronic respiratory failure : Consensus report of the working group on ventilation and intensive care medicine of the Austrian Society of Pneumology].

    PubMed

    Schenk, Peter; Eber, Ernst; Funk, Georg-Christian; Fritz, Wilfried; Hartl, Sylvia; Heininger, Peter; Kink, Eveline; Kühteubl, Gernot; Oberwaldner, Beatrice; Pachernigg, Ulrike; Pfleger, Andreas; Schandl, Petra; Schmidt, Ingrid; Stein, Markus

    2016-02-01

    The current consensus report was compiled under the patronage of the Austrian Society of Pneumology (Österreichischen Gesellschaft für Pneumologie, ÖGP) with the intention of providing practical guidelines for out-of-hospital ventilation that are in accordance with specific Austrian framework parameters and legal foundations. The guidelines are oriented toward a 2004 consensus ÖGP recommendation concerning the setup of long-term ventilated patients and the 2010 German Respiratory Society S2 guidelines on noninvasive and invasive ventilation of chronic respiratory insufficiency, adapted to national experiences and updated according to recent literature. In 11 chapters, the initiation, adjustment, and monitoring of out-of-hospital ventilation is described, as is the technical equipment and airway access. Additionally, the different indications-such as chronic obstructive pulmonary diseases, thoracic restrictive and neuromuscular diseases, obesity hypoventilation syndrome, and pediatric diseases-are discussed. Furthermore, the respiratory physiotherapy of adults and children on invasive and noninvasive long-term ventilation is addressed in detail. PMID:26837865

  5. A control system for mechanical ventilation of passive and active subjects.

    PubMed

    Tehrani, Fleur T

    2013-06-01

    Synchronization of spontaneous breathing with breaths supplied by the ventilator is essential for providing optimal ventilation to patients on mechanical ventilation. Some ventilation techniques such as Adaptive Support Ventilation (ASV), Proportional Assist Ventilation (PAV), and Neurally Adjusted Ventilatory Assist (NAVA) are designed to address this problem. In PAV, the pressure support is proportional to the patient's ongoing effort during inspiration. However, there is no guarantee that the patient receives adequate ventilation. The system described in this article is designed to automatically control the support level in PAV to guarantee delivery of patient's required ventilation. This system can also be used to control the PAV support level based on the patient's work of breathing. This technique further incorporates some of the features of ASV to deliver mandatory breaths for passive subjects. The system has been tested by using computer simulations and the controller has been implemented by using a prototype.

  6. Respirator triggering of electron-beam computed tomography (EBCT): differences in dynamic changes between augmented ventilation and controlled mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter

    2000-04-01

    The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.

  7. Advanced lung ventilation system (ALVS) with linear respiratory mechanics assumption for waveform optimization of dual-controlled ventilation.

    PubMed

    Montecchia, F; Guerrisi, M; Canichella, A

    2007-03-01

    The present paper describes the functional features of an advanced lung ventilation system (ALVS) properly designed for the optimization of conventional dual-controlled ventilation (DCV), i.e. with pressure-controlled ventilation with ensured tidal or minute volume. Considering the particular clinical conditions of patients treated with controlled ventilation the analysis and synthesis of ALVS control have been performed assuming a linear respiratory mechanics. Moreover, new airways pressure waveforms with more physiological shape can be tested on simulators of respiratory system in order to evaluate their clinical application. This is obtained through the implementation of a compensation procedure making the desired airways pressure waveform independent on patient airways resistance and lung compliance variations along with a complete real-time monitoring of respiratory system parameters leading the ventilator setting. The experimental results obtained with a lung simulator agree with the theoretical ones and show that ALVS performance is useful for the research activity aiming at the improvement of both diagnostic evaluation and therapeutic outcome relative to mechanical ventilation treatments.

  8. Ketamine for continuous sedation of mechanically ventilated patients

    PubMed Central

    Umunna, Ben-Paul; Tekwani, Karis; Barounis, Dave; Kettaneh, Nick; Kulstad, Erik

    2015-01-01

    Context: Long-term sedation with midazolam or propofol has been demonstrated to have serious adverse side effects, such as toxic accumulation or propofol infusion syndrome. Ketamine remains a viable alternative for continuous sedation as it is inexpensive and widely available, however, there are few analyses regarding its safety in this clinical setting. Objective: To review the data related to safety and efficacy of ketamine as a potential sedative agent in mechanically ventilated patients admitted to the intensive care unit (ICU). Materials and Methods: This was a single-center retrospective study from September 2011 to March 2012 of patients who required sedation for greater than 24 hours, in whom ketamine was selected as the primary sedative agent. All patients greater than 18 years of age, regardless of admitting diagnosis, were eligible for inclusion. Patients that received ketamine for continuous infusion but died prior to receiving it for 24 hours were not included. Results: Thirty patients received ketamine for continuous sedation. In four patients, ketamine was switched to another sedative agent due to possible adverse side effects. Of these, two patients had tachydysrhythmias, both with new onset atrial fibrillation and two patients had agitation believed to be caused by ketamine. The adverse event rate in our patient population was 13% (4/30). Conclusions: Among ICU patients receiving prolonged mechanical ventilation, the use of ketamine appeared to have a frequency of adverse events similar to more common sedative agents, like propofol and benzodiazepines. PMID:25709246

  9. Long term non-invasive ventilation in the community for patients with musculoskeletal disorders: 46 year experience and review

    PubMed Central

    Baydur, A.; Layne, E.; Aral, H.; Krishnareddy, N.; Topacio, R.; Frederick, G.; Bodden, W.

    2000-01-01

    BACKGROUND—A study was undertaken to assess the long term physiological and clinical outcome in 79 patients with musculoskeletal disorders (73 neuromuscular, six of the chest wall) who received non-invasive ventilation for chronic respiratory failure over a period of 46years.
METHODS—Vital capacity (VC) and carbon dioxide tension (PCO2) before and after initiation of ventilation, type and duration of ventilatory assistance, the need for tracheostomy, and mortality were retrospectively studied in 48 patients who were managed with mouth/nasal intermittent positive pressure ventilation (M/NIPPV) and 31 who received body ventilation. The two largest groups analysed were 45 patients with poliomyelitis and 15 with Duchenne's muscular dystrophy. Twenty five patients with poliomyelitis received body ventilation (for a mean of 290 months) and 20 were supported by M/NIPPV (mean 38 months). All 15 patients with Duchenne's muscular dystrophy were ventilated by NIPPV (mean 22months).
RESULTS—Fourteen patients with poliomyelitis on body ventilation (56%) but only one on M/NIPPV, and 10 of 15 patients (67%) with Duchenne's muscular dystrophy eventually received tracheostomies for ventilatory support. Five patients with other neuromuscular disorders required tracheostomies. Twenty of 29 tracheostomies (69%) were provided because of progressive disease and hypercarbia which could not be controlled by non-invasive ventilation; the remaining nine were placed because of bulbar dysfunction and aspiration related complications. Nine of 10 deaths occurred in patients on body ventilation (six with poliomyelitis), although the causes of death were varied and not necessarily related to respiratory complications. A proportionately greater number of patients on M/NIPPV (67%) reported positive outcomes (improved sense of wellbeing and independence) than did those on body ventilation (29%, p<0.01). However, other than tracheostomies and deaths, negative outcomes in the form of machine

  10. The optimum timing to wean invasive ventilation for patients with AECOPD or COPD with pulmonary infection.

    PubMed

    Song, Yuanlin; Chen, Rongchang; Zhan, Qingyuan; Chen, Shujing; Luo, Zujin; Ou, Jiaxian; Wang, Chen

    2016-01-01

    COPD is characterized by a progressive decline in lung function and mental and physical comorbidities. It is a significant burden worldwide due to its growing prevalence, comorbidities, and mortality. Complication by bronchial-pulmonary infection causes 50%-90% of acute exacerbations of COPD (AECOPD), which may lead to the aggregation of COPD symptoms and the development of acute respiratory failure. Non-invasive or invasive ventilation (IV) is usually implemented to treat acute respiratory failure. However, ventilatory support (mainly IV) should be discarded as soon as possible to prevent the onset of time-dependent complications. To withdraw IV, an optimum timing has to be selected based on weaning assessment and spontaneous breathing trial or replacement of IV by non-IV at pulmonary infection control window. The former method is more suitable for patients with AECOPD without significant bronchial-pulmonary infection while the latter method is more suitable for patients with AECOPD with acute significant bronchial-pulmonary infection. PMID:27042042

  11. [Pneumomediastinum: an aspect of pulmonary barotrauma during mechanical ventilation of acute respiratory distress syndrome].

    PubMed

    Aissaoui, Y; En-Nafaa, I; Chkoura, K; Boughalem, M; Kamili, N Drissi

    2014-06-01

    Mechanical ventilation is a fundamental treatment of acute respiratory distress syndrome (ARDS). Despite compliance with the recommendations of protective mechanical ventilation, it can results in serious complications including the pulmonary barotrauma. This is often manifested by a pneumothorax. This observation describes an unusual aspect of barotrauma which is pneumomediastinum. The authors also point out the role of chest imaging in the management of mechanical ventilation during ARDS.

  12. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  13. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-01

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality. PMID:26561823

  14. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

    PubMed Central

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F.; Hutter, Hans-Peter

    2015-01-01

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality. PMID:26561823

  15. Weaning from mechanical ventilation: why are we still looking for alternative methods?

    PubMed

    Frutos-Vivar, F; Esteban, A

    2013-12-01

    Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established.

  16. Weaning from mechanical ventilation: why are we still looking for alternative methods?

    PubMed

    Frutos-Vivar, F; Esteban, A

    2013-12-01

    Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established. PMID:23084120

  17. Noninvasive Mechanical Ventilation Improves Breathing-Swallowing Interaction of Ventilator Dependent Neuromuscular Patients: A Prospective Crossover Study

    PubMed Central

    Garguilo, Marine; Lejaille, Michèle; Vaugier, Isabelle; Orlikowski, David; Terzi, Nicolas; Lofaso, Frédéric; Prigent, Hélène

    2016-01-01

    Background Respiratory involvement in neuromuscular disorders may contribute to impaired breathing-swallowing interactions, swallowing disorders and malnutrition. We investigated whether the use of non-invasive ventilation (NIV) controlled by the patient could improve swallowing performances in a population of neuromuscular patients requiring daytime NIV. Methods Ten neuromuscular patients with severe respiratory failure requiring extensive NIV use were studied while swallowing without and with NIV (while ventilated with a modified ventilator allowing the patient to withhold ventilation as desired). Breathing-swallowing interactions were investigated by chin electromyography, cervical piezoelectric sensor, nasal flow recording and inductive plethysmography. Two water-bolus sizes (5 and 10ml) and a textured yogurt bolus were tested in a random order. Results NIV use significantly improved swallowing fragmentation (defined as the number of respiratory interruption of the swallowing of a single bolus) (p = 0.003) and breathing-swallowing synchronization (with a significant increase of swallows followed by an expiration) (p <0.0001). Patient exhibited piecemeal swallowing which was not influenced by NIV use (p = 0.07). NIV use also significantly reduced dyspnea during swallowing (p = 0.04) while preserving swallowing comfort, regardless of bolus type. Conclusion The use of patient controlled NIV improves swallowing parameters in patients with severe neuromuscular respiratory failure requiring daytime NIV, without impairing swallowing comfort. Trial Registration ClinicalTrials.gov NCT01519388 PMID:26938617

  18. Fluid flow and particle transport in mechanically ventilated airways. Part II: particle transport.

    PubMed

    Alzahrany, Mohammed; Van Rhein, Timothy; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    The flow mechanisms that play a role on aerosol deposition were identified and presented in a companion paper (Timothy et al. in Med Biol Eng Comput. doi: 10.1007/s11517-015-1407-3 , 2015). In the current paper, the effects of invasive conventional mechanical ventilation waveforms and endotracheal tube (ETT) on the aerosol transport were investigated. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by jet caused by the ETT. The orientation of the ETT toward right bronchus resulted in a substantial deposition inside right lung compared to left lung. The deposition inside right lung was ~12-fold higher than left lung for all considered cases, except for the case of using pressure-controlled sinusoidal waveform where a reduction of this ratio by ~50 % was found. The total deposition during pressure constant, volume ramp, and ascending ramp waveforms was similar and ~1.44 times higher than deposition fraction when using pressure sinusoidal waveform. Varying respiratory waveform demonstrated a significant role on the deposition enhancement factors and give evidence of drug aerosol concentrations in key deposition sites, which may be significant for drugs with negative side effects in high concentrations. These observations are thought to be important for ventilation treatment strategy. PMID:26541600

  19. Plasma cell-free DNA in patients needing mechanical ventilation

    PubMed Central

    2011-01-01

    Introduction Concentrations of plasma cell-free DNA are increased in various diseases and have shown some prognostic value in many patient groups, including critically ill patients. Pathophysiological processes behind the need for mechanical ventilation and the treatment itself could raise plasma levels of cell-free DNA. We evaluated levels of plasma cell-free DNA and their prognostic value in patients needing mechanical ventilation. Methods We studied prospectively 580 mechanically ventilated critically ill patients. Blood samples were taken at study admission (Day 0) and on Day 2. Plasma cell-free DNA concentrations were measured by real-time quantitative PCR assay for the β-globin gene and are expressed as genome equivalents (GE)/ml. Results Median (interquartile range, IQR) plasma cell-free DNA concentration was 11,853 GE/ml (5,304 to 24,620 GE/mL) at study admission, and 11,610 GE/mL (6,411 to 21,558 GE/mL) on Day 2. Concentrations at admission were significantly higher in 90-day non-survivors than survivors, 16,936 GE/mL (7,262 to 46,866 GE/mL) versus 10,026 GE/mL (4,870 to 19,820 GE/mL), P < 0.001. In a multivariate logistic regression analysis plasma cell-free DNA concentration over 16,000 GE/ml remained an independent predictor of 90-day mortality (adjusted odds ratio 2.16, 95% confidence interval CI 1.37 to 3.40). Positive likelihood ratio of plasma cell-free DNA at admission for the prediction of 90-day mortality was 1.72 (95% CI 1.40 to 2.11). Conclusions Plasma levels of cell-free DNA were significantly higher in non-survivors than survivors. Plasma DNA level at baseline was an independent predictor of 90-day mortality. However, its clinical benefit as a prognostic marker seems to be limited. PMID:21838858

  20. Palliative care and circumstances of dying in German ALS patients using non-invasive ventilation.

    PubMed

    Kühnlein, Peter; Kübler, Andrea; Raubold, Sabine; Worrell, Marcia; Kurt, Anja; Gdynia, Hans-Jürgen; Sperfeld, Anne-Dorte; Ludolph, Albert Christian

    2008-04-01

    Non-invasive ventilation (NIV) is known to improve quality of life and to prolong survival in amyotrophic lateral sclerosis (ALS) patients. However, little is known about the circumstances of dying in ventilated ALS patients. In the light of the debate on legalizing euthanasia it is important to provide empirical data about the process of dying in these patients. In a structured interview, 29 family caregivers of deceased ALS patients were asked about their own and the patient's attitude toward physician-assisted suicide (PAS) and euthanasia, circumstances of dying, and the use of palliative medication. Quantitative and qualitative content analysis was performed on the data. Non-recurring suicidal thoughts were reported by five patients. Three patients and seven relatives had thought about PAS. Seventeen caregivers described the patients' death as "peaceful", while choking was reported in six bulbar patients. In final stages of dying, the general practitioner (GP) was involved in the treatment of 10 patients, with palliative medication including sedatives and opiates being administered in eight cases. In conclusion, in contrast to the Netherlands, where 20% of terminal ALS patients die from PAS or euthanasia, only a small minority of our patients seems to have thought about PAS. The legal situation in Germany (where euthanasia is illegal), a bias due to the selection of NIV patients as well as a high percentage of religious patients and those with good levels of social support from family and friends, might account for this. Most of our patients died peacefully at home from carbon dioxide narcosis, but choking was described in some bulbar patients. Thus, palliative care, especially the use of opiates, anxiolytics and sedatives should be optimized, and the involvement of GP should be strongly encouraged, especially in bulbar patients. PMID:18428001

  1. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  2. Mechanical ventilation: past lessons and the near future

    PubMed Central

    2013-01-01

    The ability to compensate for life-threatening failure of respiratory function is perhaps the signature technology of intensive care medicine. Unchanging needs for providing effective life-support with minimized risk and optimized comfort have been, are now, and will be the principal objectives of providing mechanical ventilation. Important lessons acquired over nearly half-a-century of ICU care have brought us closer to meeting them, as technological advances in instrumentation now effectively put this hard-won knowledge into action. Rising demand in the face of economic constraints is likely to drive future innovations focused on reducing the need for user input, automating multi-element protocols, and carefully monitoring the patient for progress and complications. PMID:23514222

  3. Opioid Analgesics for Sedation and Analgesia During Mechanical Ventilation.

    PubMed

    Zeller, Brandy; Giebe, Jeanne

    2015-01-01

    Neonates are exposed to repetitive pain and stress during their stay in a NICU, which can lead to chronic complications related to their neurodevelopment and neurobehavior. Approximately 20 percent of all neonates in a NICU are intubated, mechanically ventilated, and require suctioning, which can cause both acute and chronic pain. Pain management in the neonate can be challenging. Nurses and other caregivers need to be well trained to assess pain in the neonate to effectively identify and provide appropriate pain management strategies. There is a lack of evidence to support routine administration of opiates in the neonate. As with any medication, the possibility of short- and long-term adverse reactions must be considered. Nonpharmacologic therapy should be used as much as possible. PMID:26803092

  4. Outcome at school-age after neonatal mechanical ventilation.

    PubMed

    Gunn, T R; Lepore, E; Outerbridge, E W

    1983-06-01

    103 school-age children (5 to 12 years) who survived mechanical ventilation for neonatal respiratory failure were evaluated for growth, neurological, intellectual, psychological and school function in order to determine those children most at risk for handicap. A major handicap occurred in seven children, preventing attendance at normal school or normal classes. Neurological sequelae were significantly associated with perinatal asphyxia and with birthweights of 1500g or less, and neurological sequelae and socio-economic factors were the major determinants of ability. The effects of the Neonatal Intensive Care Unit (NICU) experience on parents and subsequent parent-child relationships were also investigated: 67 per cent of the mothers were very upset by the experience and many continue to worry excessively about the health of their child. Parents who visited their child in the NICU frequently were significantly more anxious and overprotective, restricting many activities even when the child was of school age. PMID:6873492

  5. Quantitative investigation of alveolar structures with OCT using total liquid ventilation during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Gaertner, Maria; Meissner, Sven; Koch, Edmund

    2012-02-01

    To develop new treatment possibilities for patients with severe lung diseases it is crucial to understand the lung function on an alveolar level. Optical coherence tomography (OCT) in combination with intravital microscopy (IVM) are used for imaging subpleural alveoli in animal models to gain information about dynamic and morphological changes of lung tissue during mechanical ventilation. The image content suitable for further analysis is influenced by image artifacts caused by scattering, refraction, reflection, and absorbance. Because the refractive index varies with each air-tissue interface in lung tissue, these effects decrease OCT image quality exceedingly. The quality of OCT images can be increased when the refractive index inside the alveoli is matched to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. To use the advantages of liquid-filling for in vivo imaging of small rodent lungs, a suitable breathing fluid (perfluorodecalin) and a special liquid respirator are necessary. Here we show the effect of liquid-filling on OCT and IVM image quality of subpleural alveoli in a mouse model.

  6. Technology for noninvasive mechanical ventilation: looking into the black box

    PubMed Central

    Navajas, Daniel; Montserrat, Josep M.

    2016-01-01

    Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support. PMID:27730162

  7. Model-based advice for mechanical ventilation: From research (INVENT) to product (Beacon Caresystem).

    PubMed

    Rees, Stephen E; Karbing, Dan S

    2015-01-01

    This paper describes the structure and functionality of a physiological model-based system for providing advice on the settings of mechanical ventilation. Use of the system is presented with examples of patients on support and control modes of mechanical ventilation.

  8. Accepting or declining non-invasive ventilation or gastrostomy in amyotrophic lateral sclerosis: patients' perspectives.

    PubMed

    Greenaway, L P; Martin, N H; Lawrence, V; Janssen, A; Al-Chalabi, A; Leigh, P N; Goldstein, L H

    2015-01-01

    The objective was to identify factors associated with decisions made by patients with amyotrophic lateral sclerosis (ALS) to accept or decline non-invasive ventilation (NIV) and/or gastrostomy in a prospective population-based study. Twenty-one people with ALS, recruited from the South-East ALS Register who made an intervention decision during the study timeframe underwent a face-to-face in-depth interview, with or without their informal caregiver present. Sixteen had accepted an intervention (11 accepted gastrostomy, four accepted NIV and one accepted both interventions). Five patients had declined gastrostomy. Thematic analysis revealed three main themes: (1) patient-centric factors (including perceptions of control, acceptance and need, and aspects of fear); (2) external factors (including roles played by healthcare professionals, family, and information provision); and (3) the concept of time (including living in the moment and the notion of 'right thing, right time'). Many aspects of these factors were inter-related. Decision-making processes for the patients were found to be complex and multifaceted and reinforce arguments for individualised (rather than 'algorithm-based') approaches to facilitating decision-making by people with ALS who require palliative interventions. PMID:25683760

  9. Nursing care of the mechanically ventilated patient: what does the evidence say? Part one.

    PubMed

    Couchman, Bronwyn A; Wetzig, Sharon M; Coyer, Fiona M; Wheeler, Margaret K

    2007-02-01

    The care of the mechanically ventilated patient is at the core of a nurse's clinical practice in the Intensive Care Unit (ICU). Published work relating to the numerous nursing issues of the care of the mechanically ventilated patient in the ICU is growing significantly. Literature focuses on patient assessment and management strategies for patient stressors, pain and sedation. Yet this literature is fragmentary by nature. The purpose of this paper is to provide a single comprehensive examination of the evidence related to the care of the mechanically ventilated patient. In part one of this two-part paper, the evidence on nursing care of the mechanically ventilated patient is explored with specific focus on patient safety: particularly patient and equipment assessment. Part two of the paper examines the evidence related to the mechanically ventilated patient's comfort, the patient/family unit, patient position, hygiene, management of stressors, pain management and sedation.

  10. Anaesthesia ventilators

    PubMed Central

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  11. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...) Each electric motor that drives a ventilation fan must not be within the ducts for any space that may... housing made of ferrous material with at least 13mm (0.512 in.) tip clearance. (j) No ventilation fan...

  12. Anesthetic management in atrial fibrillation ablation procedure: Adding non-invasive ventilation to deep sedation.

    PubMed

    Sbrana, Francesco; Ripoli, Andrea; Formichi, Bruno

    2015-01-01

    Anesthetic management of patients undergoing pulmonary vein isolation for atrial fibrillation has specific requirements. The feasibility of non-invasive ventilation (NIV) added to deep sedation procedure was evaluated. Seventy-two patients who underwent ablation procedure were retrospectively revised, performed with (57%) or without (43%) application of NIV (Respironic(®) latex-free total face mask connected to Garbin ventilator-Linde Inc.) during deep sedation (Midazolam 0.01-0.02 mg/kg, fentanyl 2.5-5 μg/kg and propofol: bolus dose 1-1.5 mg/kg, maintenance 2-4 mg/kg/h). In the two groups (NIV vs deep sedation), differences were detected in intraprocedural (pH 7.37 ± 0.05 vs 7.32 ± 0.05, p = 0.001; PaO2 117.10 ± 27.25 vs 148.17 ± 45.29, p = 0.004; PaCO2 43.37 ± 6.91 vs 49.33 ± 7.34, p = 0.002) and in percentage variation with respect to basal values (pH -0.52 ± 0.83 vs -1.44 ± 0.87, p = 0.002; PaCO2 7.21 ± 15.55 vs 34.91 ± 25.76, p = 0.001) of arterial blood gas parameters. Two episodes of respiratory complications, treated with application of NIV, were reported in deep sedation procedure. Endotracheal intubation was not necessary in any case. Adverse events related to electrophysiological procedures and recurrence of atrial fibrillation were recorded, respectively, in 36% and 29% of cases. NIV proved to be feasible in this context and maintained better respiratory homeostasis and better arterial blood gas balance when added to deep sedation. PMID:26937093

  13. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    NASA Astrophysics Data System (ADS)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  14. Effect of Pressure Controlled Waveforms on Flow Transport and Gas mixing in a Patient Specific Lung Model during Invasive High Frequency Oscillatory Ventilation

    NASA Astrophysics Data System (ADS)

    Alzahrany, Mohammed; Banerjee, Arindam

    2012-11-01

    A computational fluid dynamic study is carried out to investigate gas transport in patient specific human lung models (based on CT scans) during high frequency oscillatory ventilation (HFOV). Different pressure-controlled waveforms and various ventilator frequencies are studied to understand the effect of flow transport and gas mixing during these processes. Three different pressure waveforms are created by solving the equation of motion subjected to constant lung wall compliance and flow resistance. Sinusoidal, exponential and constant waveforms shapes are considered with three different frequencies 6, 10 and 15 Hz and constant tidal volume 50 ml. The velocities are calculated from the obtained flow rate and imposed as inlet flow conditions to represent the mechanical ventilation waveforms. An endotracheal tube ETT is joined to the model to account for the effect of the invasive management device with the peak Reynolds number (Re) for all the cases ranging from 6960 to 24694. All simulations are performed using high order LES turbulent model. The gas transport near the flow reversal will be discussed at different cycle phases for all the cases and a comparison of the secondary flow structures between different cases will be presented.

  15. Living with severe physical impairment, Duchenne's muscular dystrophy and home mechanical ventilation

    PubMed Central

    Dreyer, Pia S.; Steffensen, Birgit F.; Pedersen, Birthe D.

    2010-01-01

    Aim To study life-experiences of people living with Duchenne's muscular dystrophy (DMD), home mechanical ventilation (HMV) and physical impairment. Background Since the introduction of invasive HMV in the late 1980s people with DMD in Denmark live longer and have the experience of adulthood and a high degree of physical dependency. Method Nineteen patients with DMD and invasive HMV were interviewed in 2007. The interviews were recorded, transcribed verbatim and analysed according to a method inspired by Ricoeur's theory of interpretation. Findings HMV not only extended the participants lifespan, it also gave them the capacity to live an active life. They were totally dependent in everyday living, but in spite of this, they did not see themselves as physically impaired. They realised that there were activities that were physically impossible, but they considered themselves to be just the same person they had always been. This dependency was described as “independent dependency”. Conclusion The lived-experience of physical impairment is found to be “independent dependency” in an active life. To solve problems with loneliness, society needs to work with prejudice and misunderstanding and for better physical accessibility to enable full participation. PMID:20689774

  16. Non-invasive Positive Pressure Ventilation during Sleep at 3800m: relationship to Acute Mountain Sickness and sleeping oxyhemoglobin saturation

    PubMed Central

    Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N

    2014-01-01

    Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046

  17. Does Music Influence Stress in Mechanically Ventilated Patients?

    PubMed Central

    Chlan, Linda L.; Engeland, William C.; Savik, Kay

    2012-01-01

    Objectives Mechanically ventilated patients experience profound stress. Interventions are needed to ameliorate stress that does not cause adverse effects. The purpose of this study was to explore the influence of music on stress in a sample of patients over the duration of ventilatory support. Research Methodology/Design Randomized controlled trial randomized patients (56.8 ± 16.9 years, 61% male, APACHE III 57.2 ± 18.3) receiving ventilatory support to: 1) patient-directed music (PDM) where patients self-initiated music listening whenever desired from a preferred collection, 2) Headphones only to block ICU noise, or 3) usual ICU care. Twenty-four hour urinary cortisol samples were collected from a sub-set of subjects with intact renal function and not receiving medications known to influence cortisol levels (n = 65). Setting 12 ICUs in the Midwestern United States. Main Outcome Measures Urinary free cortisol (UFC), an integrative biomarker of stress. Results Controlling for illness severity, gender, and baseline UFC (29-45 mg/day), mixed models analysis revealed no significant differences among groups in UFC over the course of ventilatory support. Conclusion While music did not significantly reduce cortisol, less profound spikes in UFC levels were observed but that, given the limitations of the research, this observation could have occurred merely by chance. PMID:23228527

  18. Clinical Outcomes Associated with Home Mechanical Ventilation: A Systematic Review.

    PubMed

    MacIntyre, Erika J; Asadi, Leyla; Mckim, Doug A; Bagshaw, Sean M

    2016-01-01

    Background. The prevalence of patients supported with home mechanical ventilation (HMV) for chronic respiratory failure has increased. However, the clinical outcomes associated with HMV are largely unknown. Methods. We performed a systematic review of studies evaluating patients receiving HMV for indications other than obstructive lung disease, reporting at least one clinically relevant outcome including health-related quality of life (HRQL) measured by validated tools; hospitalization requirements; caregiver burden; and health service utilization. We searched MEDLINE, EMBASE, CINAHL, the Cochrane library, clinical trial registries, proceedings from selected scientific meetings, and bibliographies of retrieved citations. Results. We included 1 randomized control trial (RCT) and 25 observational studies of mixed methodological quality involving 4425 patients; neuromuscular disorders (NMD) (n = 1687); restrictive thoracic diseases (RTD) (n = 481); obesity hypoventilation syndrome (OHS) (n = 293); and others (n = 748). HRQL was generally described as good for HMV users. Mental rather than physical HRQL domains were rated higher, particularly where physical assessment was limited. Hospitalization rates and days in hospital appear to decrease with implementation of HMV. Caregiver burden associated with HMV was generally high; however, it is poorly described. Conclusion. HRQL and need for hospitalization may improve after establishment of HMV. These inferences are based on relatively few studies of marked heterogeneity and variable quality. PMID:27445559

  19. Respiratory muscle dysfunction: a multicausal entity in the critically ill patient undergoing mechanical ventilation.

    PubMed

    Díaz, Magda C; Ospina-Tascón, Gustavo A; Salazar C, Blanca C

    2014-02-01

    Respiratory muscle dysfunction, particularly of the diaphragm, may play a key role in the pathophysiological mechanisms that lead to difficulty in weaning patients from mechanical ventilation. The limited mobility of critically ill patients, and of the diaphragm in particular when prolonged mechanical ventilation support is required, promotes the early onset of respiratory muscle dysfunction, but this can also be caused or exacerbated by other factors that are common in these patients, such as sepsis, malnutrition, advanced age, duration and type of ventilation, and use of certain medications, such as steroids and neuromuscular blocking agents. In this review we will study in depth this multicausal origin, in which a common mechanism is altered protein metabolism, according to the findings reported in various models. The understanding of this multicausality produced by the same pathophysiological mechanism could facilitate the management and monitoring of patients undergoing mechanical ventilation.

  20. Respiratory muscle dysfunction: a multicausal entity in the critically ill patient undergoing mechanical ventilation.

    PubMed

    Díaz, Magda C; Ospina-Tascón, Gustavo A; Salazar C, Blanca C

    2014-02-01

    Respiratory muscle dysfunction, particularly of the diaphragm, may play a key role in the pathophysiological mechanisms that lead to difficulty in weaning patients from mechanical ventilation. The limited mobility of critically ill patients, and of the diaphragm in particular when prolonged mechanical ventilation support is required, promotes the early onset of respiratory muscle dysfunction, but this can also be caused or exacerbated by other factors that are common in these patients, such as sepsis, malnutrition, advanced age, duration and type of ventilation, and use of certain medications, such as steroids and neuromuscular blocking agents. In this review we will study in depth this multicausal origin, in which a common mechanism is altered protein metabolism, according to the findings reported in various models. The understanding of this multicausality produced by the same pathophysiological mechanism could facilitate the management and monitoring of patients undergoing mechanical ventilation. PMID:23669061

  1. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... have any combination of fixed or rotating components made of an aluminum or magnesium alloy and ferrous fixed or rotating components. (k) Each ventilation intake and exhaust must have a protective...

  2. Characteristics and progression of children with acute viral bronchiolitis subjected to mechanical ventilation

    PubMed Central

    Ferlini, Roberta; Pinheiro, Flávia Ohlweiler; Andreolio, Cinara; Carvalho, Paulo Roberto Antonacci; Piva, Jefferson Pedro

    2016-01-01

    Objective To analyze the characteristics of children with acute viral bronchiolitis subjected to mechanical ventilation for three consecutive years and to correlate their progression with mechanical ventilation parameters and fluid balance. Methods Longitudinal study of a series of infants (< one year old) subjected to mechanical ventilation for acute viral bronchitis from January 2012 to September 2014 in the pediatric intensive care unit. The children's clinical records were reviewed, and their anthropometric data, mechanical ventilation parameters, fluid balance, clinical progression, and major complications were recorded. Results Sixty-six infants (3.0 ± 2.0 months old and with an average weight of 4.7 ± 1.4kg) were included, of whom 62% were boys; a virus was identified in 86%. The average duration of mechanical ventilation was 6.5 ± 2.9 days, and the average length of stay in the pediatric intensive care unit was 9.1 ± 3.5 days; the mortality rate was 1.5% (1/66). The peak inspiratory pressure remained at 30cmH2O during the first four days of mechanical ventilation and then decreased before extubation (25 cmH2O; p < 0.05). Pneumothorax occurred in 10% of the sample and extubation failure in 9%, which was due to upper airway obstruction in half of the cases. The cumulative fluid balance on mechanical ventilation day four was 402 ± 254mL, which corresponds to an increase of 9.0 ± 5.9% in body weight. Thirty-seven patients (56%) exhibited a weight gain of 10% or more, which was not significantly associated with the ventilation parameters on mechanical ventilation day four, extubation failure, duration of mechanical ventilation or length of stay in the pediatric intensive care unit. Conclusion The rate of mechanical ventilation for acute viral bronchiolitis remains constant, being associated with low mortality, few adverse effects, and positive cumulative fluid balance during the first days. Better fluid control might reduce the duration of mechanical

  3. The Effect of Pressure-Controlled Ventilation and Volume-Controlled Ventilation in Prone Position on Pulmonary Mechanics and Inflammatory Markers.

    PubMed

    Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel

    2016-08-01

    The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.

  4. Transpulmonary pressure monitoring during mechanical ventilation: a bench-to-bedside review.

    PubMed

    Mietto, Cristina; Malbrain, Manu L N G; Chiumello, Davide

    2015-01-01

    Different ventilation strategies have been suggested in the past in patients with acute respiratory distress syndrome (ARDS). Airway pressure monitoring alone is inadequate to assure optimal ventilatory support in ARDS patients. The assessment of transpulmonary pressure (PTP) can help clinicians to tailor mechanical ventilation to the individual patient needs. Transpulmonary pressure monitoring, defined as airway pressure (Paw) minus intrathoracic pressure (ITP), provides essential information about chest wall mechanics and its effects on the respiratory system and lung mechanics. The positioning of an esophageal catheter is required to measure the esophageal pressure (Peso), which is clinically used as a surrogate for ITP or pleural pressure (Ppl), and calculates the transpulmonary pressure. The benefits of such a ventilation approach are avoiding excessive lung stress and individualizing the positive end-expiratory pressure (PEEP) setting. The aim is to prevent over-distention of alveoli and the cyclic recruitment/derecruitment or shear stress of lung parenchyma, mechanisms associated with ventilator-induced lung injury (VILI). Knowledge of the real lung distending pressure, i.e. the transpulmonary pressure, has shown to be useful in both controlled and assisted mechanical ventilation. In the latter ventilator modes, Peso measurement allows one to assess a patient's respiratory effort, patient-ventilator asynchrony, intrinsic PEEP and the calculation of work of breathing. Conditions that have an impact on Peso, such as abdominal hypertension, will also be discussed briefly.

  5. Transpulmonary pressure monitoring during mechanical ventilation: a bench-to-bedside review.

    PubMed

    Mietto, Cristina; Malbrain, Manu L N G; Chiumello, Davide

    2015-01-01

    Different ventilation strategies have been suggested in the past in patients with acute respiratory distress syndrome (ARDS). Airway pressure monitoring alone is inadequate to assure optimal ventilatory support in ARDS patients. The assessment of transpulmonary pressure (PTP) can help clinicians to tailor mechanical ventilation to the individual patient needs. Transpulmonary pressure monitoring, defined as airway pressure (Paw) minus intrathoracic pressure (ITP), provides essential information about chest wall mechanics and its effects on the respiratory system and lung mechanics. The positioning of an esophageal catheter is required to measure the esophageal pressure (Peso), which is clinically used as a surrogate for ITP or pleural pressure (Ppl), and calculates the transpulmonary pressure. The benefits of such a ventilation approach are avoiding excessive lung stress and individualizing the positive end-expiratory pressure (PEEP) setting. The aim is to prevent over-distention of alveoli and the cyclic recruitment/derecruitment or shear stress of lung parenchyma, mechanisms associated with ventilator-induced lung injury (VILI). Knowledge of the real lung distending pressure, i.e. the transpulmonary pressure, has shown to be useful in both controlled and assisted mechanical ventilation. In the latter ventilator modes, Peso measurement allows one to assess a patient's respiratory effort, patient-ventilator asynchrony, intrinsic PEEP and the calculation of work of breathing. Conditions that have an impact on Peso, such as abdominal hypertension, will also be discussed briefly. PMID:26575165

  6. An Overview of the Predictor Standard Tools for Patient Weaning from Mechanical Ventilation.

    PubMed

    Dehghani, Acieh; Abdeyazdan, Gholamhossein; Davaridolatabadi, Elham

    2016-02-01

    Most patients staying in the intensive care unit (ICU) require respiratory support through a ventilator. Since prolonged mechanical ventilation and weaning from the ventilator without criteria or at the inappropriate time can result in many complications, it is required that patients be weaned off the ventilator as soon as possible. This study was conducted to investigate a few standard tools that predict successful and timely weaning of patients from the ventilator. In the literature, SOFA and APACHE II scores, along with various tools, including Burn, Morganroth, and Corgian, have been used in weaning patients from the ventilator. In most of these studies, the increase or decrease in the APACHE II score was correlated with the patient's weaning time, and this score could be used as a criterion for weaning. Several authors have expressed their belief that the SOFA score in the ICU is a good indicator of the prognosis of patient's weaning from the ventilator, length of stay, mortality, and rate of recovery. Several studies have compared SOFA and APACHE II scores and have shown that there is a positive correlation between the SOFA and APACHE II scores and that both mortality and dependence on the ventilator are related to these two scores. Another tool is Burn's weaning program. A higher Burn score indicates successful weaning off of the ventilator, successful extubation, lower length of mechanical ventilation, and shorter stay in the hospital. However, the capabilities of the Morganroth scale and the Gluck and Corgian scoring systems were evaluated only for successful weaning off of the ventilator, and a decrease in the Morganroth and Gluck scores indicated successful weaning. PMID:27054004

  7. An Overview of the Predictor Standard Tools for Patient Weaning from Mechanical Ventilation

    PubMed Central

    Dehghani, Acieh; Abdeyazdan, Gholamhossein; Davaridolatabadi, Elham

    2016-01-01

    Most patients staying in the intensive care unit (ICU) require respiratory support through a ventilator. Since prolonged mechanical ventilation and weaning from the ventilator without criteria or at the inappropriate time can result in many complications, it is required that patients be weaned off the ventilator as soon as possible. This study was conducted to investigate a few standard tools that predict successful and timely weaning of patients from the ventilator. In the literature, SOFA and APACHE II scores, along with various tools, including Burn, Morganroth, and Corgian, have been used in weaning patients from the ventilator. In most of these studies, the increase or decrease in the APACHE II score was correlated with the patient’s weaning time, and this score could be used as a criterion for weaning. Several authors have expressed their belief that the SOFA score in the ICU is a good indicator of the prognosis of patient’s weaning from the ventilator, length of stay, mortality, and rate of recovery. Several studies have compared SOFA and APACHE II scores and have shown that there is a positive correlation between the SOFA and APACHE II scores and that both mortality and dependence on the ventilator are related to these two scores. Another tool is Burn’s weaning program. A higher Burn score indicates successful weaning off of the ventilator, successful extubation, lower length of mechanical ventilation, and shorter stay in the hospital. However, the capabilities of the Morganroth scale and the Gluck and Corgian scoring systems were evaluated only for successful weaning off of the ventilator, and a decrease in the Morganroth and Gluck scores indicated successful weaning. PMID:27054004

  8. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    EPA Science Inventory

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  9. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  10. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients

    SciTech Connect

    Hurford, W.E.; Lynch, K.E.; Strauss, H.W.; Lowenstein, E.; Zapol, W.M. )

    1991-06-01

    Patients who cannot be separated from mechanical ventilation (MV) after an episode of acute respiratory failure often have coexisting coronary artery disease. The authors hypothesized that increased left ventricular (LV) wall stress during periods of spontaneous ventilation (SV) could alter myocardial perfusion in these patients. Using thallium-201 (201TI) myocardial scintigraphy, the authors studied the occurrence of myocardial perfusion abnormalities during periods of SV in 15 MV-dependent patients (nine women, six men; aged 71 {plus minus} 7 yr, mean {plus minus} SD). Fourteen of these patients were studied once with 201TI myocardial scintigraphy during intermittent mechanical ventilation (IMV) and again on another day, after at least 10 min of SV through a T-piece. One patient was studied during SV only. Thirteen of 14 of the patients (93%) studied during MV had abnormal patterns of initial myocardial 201TI uptake, but only 1 patient demonstrated redistribution of 201TI on delayed images. The remainder of the abnormalities observed during MV were fixed defects. SV produced significant alterations of myocardial 201TI distribution or transient LV dilation, or both, in 7 of the 15 patients (47%). Four patients demonstrated new regional decreases of LV myocardial thallium concentration with redistribution of the isotope on delayed images. The patient studied only during SV also had myocardial 201TI defects with redistribution. Five patients (3 also having areas of 201TI redistribution) had transient LV dilation during SV.

  11. Non-invasive ventilation in obesity hypoventilation syndrome without severe obstructive sleep apnoea

    PubMed Central

    Masa, Juan F; Corral, Jaime; Caballero, Candela; Barrot, Emilia; Terán-Santos, Joaquin; Alonso-Álvarez, Maria L; Gomez-Garcia, Teresa; González, Mónica; López-Martín, Soledad; De Lucas, Pilar; Marin, José M; Marti, Sergi; Díaz-Cambriles, Trinidad; Chiner, Eusebi; Egea, Carlos; Miranda, Erika; Mokhlesi, Babak; García-Ledesma, Estefanía; Sánchez-Quiroga, M-Ángeles; Ordax, Estrella; González-Mangado, Nicolás; Troncoso, Maria F; Martinez-Martinez, Maria-Ángeles; Cantalejo, Olga; Ojeda, Elena; Carrizo, Santiago J; Gallego, Begoña; Pallero, Mercedes; Ramón, M Antonia; Díaz-de-Atauri, Josefa; Muñoz-Méndez, Jesús; Senent, Cristina; Sancho-Chust, Jose N; Ribas-Solís, Francisco J; Romero, Auxiliadora; Benítez, José M; Sanchez-Gómez, Jesús; Golpe, Rafael; Santiago-Recuerda, Ana; Gomez, Silvia; Bengoa, Mónica

    2016-01-01

    Background Non-invasive ventilation (NIV) is an effective form of treatment in patients with obesity hypoventilation syndrome (OHS) who have concomitant severe obstructive sleep apnoea (OSA). However, there is a paucity of evidence on the efficacy of NIV in patients with OHS without severe OSA. We performed a multicentre randomised clinical trial to determine the comparative efficacy of NIV versus lifestyle modification (control group) using daytime arterial carbon dioxide tension (PaCO2) as the main outcome measure. Methods Between May 2009 and December 2014 we sequentially screened patients with OHS without severe OSA. Participants were randomised to NIV versus lifestyle modification and were followed for 2 months. Arterial blood gas parameters, clinical symptoms, health-related quality of life assessments, polysomnography, spirometry, 6-min walk distance test, blood pressure measurements and healthcare resource utilisation were evaluated. Statistical analysis was performed using intention-to-treat analysis. Results A total of 365 patients were screened of whom 58 were excluded. Severe OSA was present in 221 and the remaining 86 patients without severe OSA were randomised. NIV led to a significantly larger improvement in PaCO2 of −6 (95% CI −7.7 to −4.2) mm Hg versus −2.8 (95% CI −4.3 to −1.3) mm Hg, (p<0.001) and serum bicarbonate of −3.4 (95% CI −4.5 to −2.3) versus −1 (95% CI −1.7 to −0.2 95% CI)  mmol/L (p<0.001). PaCO2 change adjusted for NIV compliance did not further improve the inter-group statistical significance. Sleepiness, some health-related quality of life assessments and polysomnographic parameters improved significantly more with NIV than with lifestyle modification. Additionally, there was a tendency towards lower healthcare resource utilisation in the NIV group. Conclusions NIV is more effective than lifestyle modification in improving daytime PaCO2, sleepiness and polysomnographic parameters. Long

  12. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  13. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  14. Determinants of skin contact pressure formation during non-invasive ventilation.

    PubMed

    Dellweg, Dominic; Hochrainer, Dieter; Klauke, Matthias; Kerl, Jens; Eiger, Glenn; Kohler, Dieter

    2010-03-01

    There is no published data about mask features that impact skin contact pressure during mask ventilation. To investigate the physical factors of skin contact pressure formation. We measured masks with original and reduced air cushion size and recorded contact pressure. We determined cushion contact and mask areas by planimetric measurements. Contact pressures necessary to prevent air leakage during inspiration exceed inspiratory pressure by 1.01+/-0.41 hPa independent of cushion size. Contact area, ventilator pressure and mask area during inspiration and expiration impact contact pressure. Mask contact pressures are higher during expiration. The contact pressure increases with increase in inspiratory pressures independent of the ventilator cycle. During expiration, the contact pressure will increase in proportion to the expiratory pressure reduction of the ventilator. The mask with reduced air cushion size developed higher contact pressures. Contact pressure can be reduced by selecting masks with a small mask area in combination with a large mask cushion.

  15. Mechanics of ventilation in swellsharks, Cephaloscyllium ventriosum (Scyliorhinidae).

    PubMed

    Ferry-Graham, L A

    1999-06-01

    A simple two-pump model has served to describe the mechanics of ventilation in cartilaginous and bony fishes since the pioneering work of G. M. Hughes. A hallmark of this model is that water flow over the gills is continuous. Studies of feeding kinematics in the swellshark Cephaloscyllium ventriosum, however, suggested that a flow reversal occurred during prey capture and transport. Given that feeding is often considered to be simply an exaggeration of the kinematic events performed during respiration, I investigated whether flow reversals are potentially present during respiration. Pressure and impedance data were coupled with kinematic data from high-speed video footage and dye studies and used to infer patterns of water flow through the heads of respiring swellsharks. Swellsharks were implanted with pressure transducers to determine the pattern and magnitude of pressures generated within the buccal and parabranchial (gill) cavities during respiration. Pressure traces revealed extended periods of pressure reversal during the respiratory cycle. Further, impedance data suggested that pressures within the buccal and parabranchial cavities were not generated by the cyclic opening and closing of the jaws and gills in the manner previously suggested by Hughes. Thus, the classic model needs to be re-evaluated to determine its general applicability. Two alternative models for pressure patterns and their mechanism of generation during respiration are provided. The first depicts a double-reversal scenario common in the swellshark whereby pressures are reversed following both of the pump stages (the suction pump and the pressure pump) rather than after the pressure-pump stage only. The second model describes a scenario in which the suction pump is insufficient for generating a positive pressure differential across the gills; thus, a pressure reversal persists throughout this phase of respiration. Kinematic analysis based on high-speed video footage and dye studies, however

  16. Mechanics of ventilation in swellsharks, Cephaloscyllium ventriosum (Scyliorhinidae).

    PubMed

    Ferry-Graham, L A

    1999-06-01

    A simple two-pump model has served to describe the mechanics of ventilation in cartilaginous and bony fishes since the pioneering work of G. M. Hughes. A hallmark of this model is that water flow over the gills is continuous. Studies of feeding kinematics in the swellshark Cephaloscyllium ventriosum, however, suggested that a flow reversal occurred during prey capture and transport. Given that feeding is often considered to be simply an exaggeration of the kinematic events performed during respiration, I investigated whether flow reversals are potentially present during respiration. Pressure and impedance data were coupled with kinematic data from high-speed video footage and dye studies and used to infer patterns of water flow through the heads of respiring swellsharks. Swellsharks were implanted with pressure transducers to determine the pattern and magnitude of pressures generated within the buccal and parabranchial (gill) cavities during respiration. Pressure traces revealed extended periods of pressure reversal during the respiratory cycle. Further, impedance data suggested that pressures within the buccal and parabranchial cavities were not generated by the cyclic opening and closing of the jaws and gills in the manner previously suggested by Hughes. Thus, the classic model needs to be re-evaluated to determine its general applicability. Two alternative models for pressure patterns and their mechanism of generation during respiration are provided. The first depicts a double-reversal scenario common in the swellshark whereby pressures are reversed following both of the pump stages (the suction pump and the pressure pump) rather than after the pressure-pump stage only. The second model describes a scenario in which the suction pump is insufficient for generating a positive pressure differential across the gills; thus, a pressure reversal persists throughout this phase of respiration. Kinematic analysis based on high-speed video footage and dye studies, however

  17. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  18. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... area must change the air in that space at least eight times each hour. (e) A ventilation system must... top of each space that personnel enter during cargo handling operations. (b) The discharge end of each... openings to accommodations, service, control station, and other gas-safe spaces. (c) Each...

  19. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  20. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients.

    PubMed

    Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.

  1. Early mechanical ventilation is deleterious after aspiration-induced lung injury in rabbits.

    PubMed

    Hermon, Michael M; Wassermann, Esther; Pfeiler, Claudia; Pollak, Arnold; Redl, Heinz; Strohmaier, Wolfgang

    2005-01-01

    We investigated whether mechanical ventilation after aspiration is deleterious when started before surfactant therapy. Gas exchange and lung mechanics were measured in rabbits after aspiration either mechanically ventilated before or after lavage with diluted surfactant or Ringer's solution. Lung injury was induced by intratracheal instillation of 2 mL/kg of a betain/HCl pepsin mixture. After 30 min of spontaneous breathing, ventilation was started in 12 rabbits, which were then treated by lavage with diluted surfactant (15 mL/kg body weight; 5.3 mg/mL, group MVpre S) or with Ringer's solution (1 mL/kg; group MVpre R). Another 12 rabbits were treated by lavage while spontaneously breathing and were then connected to the ventilator (MVpost S and MVpost R). Sham control rabbits were mechanically ventilated for 4 h. At the end of experiment, PaO2/FiO2 ratio in MVpost S was five times higher than in MVpre S (P=0.0043). Lung mechanics measurements showed significant difference between MVpre S and MVpost S (P=0.0072). There was histopathologic evidence of decreased lung injury in MVpost S. Immediate initiation of ventilation is harmful when lung injury is induced by aspiration. Further investigations are needed to clarify whether the timing of lavage with diluted surfactant has an impact on the treatment of patients with aspiration or comparable types of direct lung injury. PMID:15614133

  2. Predictors of extubation failure and reintubation in newborn infants subjected to mechanical ventilation

    PubMed Central

    Costa, Ana Cristina de Oliveira; Schettino, Renata de Carvalho; Ferreira, Sandra Clecêncio

    2014-01-01

    Objective To identify risk factors for extubation failure and reintubation in newborn infants subjected to mechanical ventilation and to establish whether ventilation parameters and blood gas analysis behave as predictors of those outcomes. Methods Prospective study conducted at a neonatal intensive care unit from May to November 2011. A total of 176 infants of both genders subjected to mechanical ventilation were assessed after extubation. Extubation failure was defined as the need to resume mechanical ventilation within less than 72 hours. Reintubation was defined as the need to reintubate the infants any time after the first 72 hours. Results Based on the univariate analysis, the variables gestational age <28 weeks, birth weight <1,000g and low Apgar scores were associated with extubation failure and reintubation. Based on the multivariate analysis, the variables length of mechanical ventilation (days), potential of hydrogen (pH) and partial pressure of oxygen (pO2) remained associated with extubation failure, and the five-minute Apgar score and age at extubation were associated with reintubation. Conclusion Low five-minute Apgar scores, age at extubation, length of mechanical ventilation, acid-base disorders and hyperoxia exhibited associations with the investigated outcomes of extubation failure and reintubation. PMID:24770689

  3. Total Liquid Ventilation Provides Superior Respiratory Support to Conventional Mechanical Ventilation in a Large Animal Model of Severe Respiratory Failure

    PubMed Central

    Pohlmann, Joshua R; Brant, David O; Daul, Morgan A; Reoma, Junewai L; Kim, Anne C; Osterholzer, Kathryn R; Johnson, Kent J; Bartlett, Robert H; Cook, Keith E; Hirschl, Ronald B

    2011-01-01

    Total liquid ventilation (TLV) has the potential to provide respiratory support superior to conventional mechanical ventilation (CMV) in the acute respiratory distress syndrome (ARDS). However, laboratory studies are limited to trials in small animals for no longer than 4 hours. The objective of this study was to compare TLV and CMV in a large animal model of ARDS for 24 hours. Ten sheep weighing 53 ± 4 (SD) kg were anesthetized and ventilated with 100% oxygen. Oleic acid was injected into the pulmonary circulation until PaO2:FiO2 ≥ 60 mmHg, followed by transition to a protective CMV protocol (n=5) or TLV (n=5) for 24 hours. Pathophysiology was recorded and the lungs were harvested for histological analysis. Animals treated with CMV became progressively hypoxic and hypercarbic despite maximum ventilatory support. Sheep treated with TLV maintained normal blood gases with statistically greater PO2 (p<10−9) and lower PCO2 (p < 10−3) than the CMV group. Survival at 24 hours in the TLV and CMV groups were 100% and 40% respectively (p< 0.05). Thus, TLV provided gas exchange superior to CMV in this laboratory model of severe ARDS. PMID:21084968

  4. Noninvasive Mechanical Ventilation in Acute Respiratory Failure Patients: A Respiratory Therapist Perspective

    PubMed Central

    Hidalgo, V; Giugliano-Jaramillo, C; Pérez, R; Cerpa, F; Budini, H; Cáceres, D; Gutiérrez, T; Molina, J; Keymer, J; Romero-Dapueto, C

    2015-01-01

    Physiotherapist in Chile and Respiratory Therapist worldwide are the professionals who are experts in respiratory care, in mechanical ventilation (MV), pathophysiology and connection and disconnection criteria. They should be experts in every aspect of the acute respiratory failure and its management, they and are the ones who in medical units are able to resolve doubts about ventilation and the setting of the ventilator. Noninvasive mechanical ventilation should be the first-line of treatment in acute respiratory failure, and the standard of care in severe exacerbations of chronic obstructive pulmonary disease, acute cardiogenic pulmonary edema, and in immunosuppressed patients with high levels of evidence that support the work of physiotherapist. Exist other considerations where most of the time, physicians and other professionals in the critical units do not take into account when checking the patient ventilator synchrony, such as the appropriate patient selection, ventilator selection, mask selection, mode selection, and the selection of a trained team in NIMV. The physiotherapist needs to evaluate bedside; if patients are properly connected to the ventilator and in a synchronously manner. In Chile, since 2004, the physioterapist are included in the guidelines as a professional resource in the ICU organization, with the same skills and obligations as those described in the literature for respiratory therapists. PMID:26312104

  5. Noninvasive Mechanical Ventilation in Acute Respiratory Failure Patients: A Respiratory Therapist Perspective.

    PubMed

    Hidalgo, V; Giugliano-Jaramillo, C; Pérez, R; Cerpa, F; Budini, H; Cáceres, D; Gutiérrez, T; Molina, J; Keymer, J; Romero-Dapueto, C

    2015-01-01

    Physiotherapist in Chile and Respiratory Therapist worldwide are the professionals who are experts in respiratory care, in mechanical ventilation (MV), pathophysiology and connection and disconnection criteria. They should be experts in every aspect of the acute respiratory failure and its management, they and are the ones who in medical units are able to resolve doubts about ventilation and the setting of the ventilator. Noninvasive mechanical ventilation should be the first-line of treatment in acute respiratory failure, and the standard of care in severe exacerbations of chronic obstructive pulmonary disease, acute cardiogenic pulmonary edema, and in immunosuppressed patients with high levels of evidence that support the work of physiotherapist. Exist other considerations where most of the time, physicians and other professionals in the critical units do not take into account when checking the patient ventilator synchrony, such as the appropriate patient selection, ventilator selection, mask selection, mode selection, and the selection of a trained team in NIMV. The physiotherapist needs to evaluate bedside; if patients are properly connected to the ventilator and in a synchronously manner. In Chile, since 2004, the physioterapist are included in the guidelines as a professional resource in the ICU organization, with the same skills and obligations as those described in the literature for respiratory therapists.

  6. Pulmonary function in mechanically-ventilated patients during 24-hour use of a hygroscopic condensor humidifier.

    PubMed

    MacIntyre, N R; Anderson, H R; Silver, R M; Schuler, F R; Coleman, R E

    1983-11-01

    Hygroscopic condensor humidifiers (HCH) are reportedly capable of humidifying even the driest of ventilator source gases with at least 30 mg H2O/liter of ventilation. To assess the adequacy of the HCH during mechanical ventilation, we studied 26 patients over a 72-hour period (alternating 24-hour periods of humidification by a conventional cascade and the HCH). In these patients, we found no significant difference in static lung compliance, airway resistance, PaO2, and PaCO2 on either system. Additionally, estimates of sputum volume (over a four-hour collection period) and clearance of aerosolized 99mTc labelled DTPA (in five of these patients) also showed no significant differences between the two systems. We conclude that the HCH is capable of supplying necessary heat and moisture to most mechanically-ventilated patients for at least a period of 24 hours.

  7. Case report: Maintaining and withdrawing long-term invasive ventilation in a patient with MND/ALS in a home setting.

    PubMed

    LeBon, B; Fisher, S

    2011-04-01

    Long-term home-based invasive ventilation in patients with motor neurone disease/amyotrophic lateral sclerosis (MND/ALS) remains rare in the UK. We describe a case of an MND/ALS patient who was treated with long-term invasive ventilation at home but subsequently requested its withdrawal despite a seemingly stable period of his illness. We also discuss the impact of the delivery of this treatment and its withdrawal on his carers, primary healthcare team, community trust managers and specialist palliative care team.

  8. The use of 2% chlorhexidine gel and toothbrushing for oral hygiene of patients receiving mechanical ventilation: effects on ventilator-associated pneumonia

    PubMed Central

    Meinberg, Maria Cristina de Avila; Cheade, Maria de Fátima Meinberg; Miranda, Amanda Lucia Dias; Fachini, Marcela Mascaro; Lobo, Suzana Margareth

    2012-01-01

    Objective To evaluate the effects of oral chlorhexidine hygiene with toothbrushing on the rate of ventilator-associated pneumonia in a mixed population of critically ill patients under prolonged mechanical ventilation. Methods Prospective, randomized, and placebo-controlled pilot study. Patients who were receiving mechanical ventilation, had been admitted less than 24 hours prior, and were anticipated to require mechanical ventilation for more than 72 hours were included in the study. The patients were randomly divided into one of the following groups: chlorhexidine hygiene with toothbrushing or a placebo group (gel with the same color and consistency and toothbrushing). Results The planned interim analysis was conducted using 52 patients, and the study was terminated prematurely. In total, 28 patients were included in the chlorhexidine / toothbrushing group, and 24 patients were included in the placebo group. Ventilator-associated pneumonia occurred in 45.8% of the placebo group and in 64.3% of the chlorhexidine hygiene with toothbrushing group (RR=1.4; 95% CI=0.83-2.34; p=0.29). Conclusion Because the study was terminated due to futility, it was not possible to evaluate the impact of oral hygiene using 2% chlorhexidine and toothbrushing on the incidence of ventilator-associated pneumonia in this heterogeneous population of critical patients receiving long-term mechanical ventilation, and no beneficial effect was observed for this intervention. PMID:23917935

  9. The rapid shallow breathing index as a predictor of successful mechanical ventilation weaning: clinical utility when calculated from ventilator data

    PubMed Central

    de Souza, Leonardo Cordeiro; Lugon, Jocemir Ronaldo

    2015-01-01

    ABSTRACT OBJECTIVE: The use of the rapid shallow breathing index (RSBI) is recommended in ICUs, where it is used as a predictor of mechanical ventilation (MV) weaning success. The aim of this study was to compare the performance of the RSBI calculated by the traditional method (described in 1991) with that of the RSBI calculated directly from MV parameters. METHODS: This was a prospective observational study involving patients who had been on MV for more than 24 h and were candidates for weaning. The RSBI was obtained by the same examiner using the two different methods (employing a spirometer and the parameters from the ventilator display) at random. In comparing the values obtained with the two methods, we used the Mann-Whitney test, Pearson's linear correlation test, and Bland-Altman plots. The performance of the methods was compared by evaluation of the areas under the ROC curves. RESULTS: Of the 109 selected patients (60 males; mean age, 62 ± 20 years), 65 were successfully weaned, and 36 died. There were statistically significant differences between the two methods for respiratory rate, tidal volume, and RSBI (p < 0.001 for all). However, when the two methods were compared, the concordance and the intra-observer variation coefficient were 0.94 (0.92-0.96) and 11.16%, respectively. The area under the ROC curve was similar for both methods (0.81 ± 0.04 vs. 0.82 ± 0.04; p = 0.935), which is relevant in the context of this study. CONCLUSIONS: The satisfactory performance of the RSBI as a predictor of weaning success, regardless of the method employed, demonstrates the utility of the method using the mechanical ventilator. PMID:26785962

  10. Linkages of plant–soil feedbacks and underlying invasion mechanisms

    PubMed Central

    Inderjit; Cahill, James F.

    2015-01-01

    Soil microbial communities and processes have repeatedly been shown to impact plant community assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities. Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several known and well-described mechanisms of plant invasion. Critically, a given soil community process may either facilitate or limit invasion, depending upon local conditions and the specific mechanisms of soil processes involved. Additionally, as soil communities typically consist of species with short generation times, the net consequences of plant–soil feedbacks for invasion trajectories are likely to change over time, as ecological and evolutionary adjustments occur. Here we provide an overview of the ecological linkages of plant–soil feedbacks and underlying mechanisms of invasion. PMID:25784668

  11. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  12. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  13. Angiogenesis induced by prenatal ischemia predisposes to periventricular hemorrhage during postnatal mechanical ventilation

    PubMed Central

    Tosun, Cigdem; Hong, Caron; Carusillo, Brianna; Ivanova, Svetlana; Gerzanich, Volodymyr; Simard, J. Marc

    2014-01-01

    BACKGROUND Three risk factors are associated with hemorrhagic forms of encephalopathy of prematurity (EP): (i) prematurity, (ii) in utero ischemia (IUI) or perinatal ischemia, and (iii) mechanical ventilation. We hypothesized that IUI would induce an angiogenic response marked by activation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), the latter degrading vascular basement membrane and increasing vulnerability to raised intravenous pressure during positive pressure mechanical ventilation. METHODS We studied a rat model of hemorrhagic-EP characterized by periventricular hemorrhages in which a 20-min episode of IUI is induced at E19, pups are born naturally at E21–22, and on P0, are subjected to a 20-min episode of positive pressure mechanical ventilation. Tissues were studied by H&E staining, immunolabeling, immunoblot and zymography. RESULTS Mechanical ventilation of rat pups 2–3 days after 20-min IUI caused widespread hemorrhages in periventricular tissues. IUI resulted in upregulation of VEGF and MMP-9. Zymography confirmed significantly elevated gelatinase activity. MMP-9 activation was accompanied by severe loss of MMP-9 substrates, collagen IV and laminin, in microvessels in periventricular areas. CONCLUSION Our findings are consistent with the hypothesis that positive pressure mechanical ventilation of the newborn in the context of recent prenatal ischemia/hypoxia can predispose to periventricular hemorrhages. PMID:25665055

  14. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Battista, L.

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  15. Pulmonary Drug Delivery System for inhalation therapy in mechanically ventilated patients.

    PubMed

    Dhand, Rajiv; Sohal, Harjyot

    2008-01-01

    The Pulmonary Drug Delivery System (PDDS) Clinical represents a newer generation of electronic nebulizers that employ a vibrating mesh or aperture plate to generate an aerosol. The PDDS Clinical is designed for aerosol therapy in patients receiving mechanical ventilation. The components of the device include a control module that is connected to the nebulizer/reservoir unit by a cable. The nebulizer contains Aerogen's OnQ aerosol generator. A pressure sensor monitors the pressure in the inspiratory limb of the ventilator circuit and provides feedback to the control module. Based on the feedback from the pressure sensor, aerosol generation occurs only during a specific part of the respiratory cycle. In bench models, the PDDS Clinical has high efficiency for aerosol delivery both on and off the ventilator, with a lower respiratory tract delivery of 50-70% of the nominal dose. Currently, the PDDS Clinical is being evaluated for the treatment of ventilator-associated pneumonia with aerosolized amikacin, an aminoglycoside antibiotic. Preliminary studies in patients with ventilator-associated pneumonia found that the administration of amikacin via PDDS reduced the need for concomitant intravenous antibiotics; however, more definitive clinical studies are needed. The PDDS Clinical delivers a high percentage of the nominal dose to the lower respiratory tract, and is well suited for inhalation therapy in mechanically ventilated patients. PMID:18095891

  16. Changes in respiratory mechanics during respiratory physiotherapy in mechanically ventilated patients

    PubMed Central

    Moreira, Fernanda Callefe; Teixeira, Cassiano; Savi, Augusto; Xavier, Rogério

    2015-01-01

    Objective To evaluate the changes in ventilatory mechanics and hemodynamics that occur in patients dependent on mechanical ventilation who are subjected to a standard respiratory therapy protocol. Methods This experimental and prospective study was performed in two intensive care units, in which patients dependent on mechanical ventilation for more than 48 hours were consecutively enrolled and subjected to an established respiratory physiotherapy protocol. Ventilatory variables (dynamic lung compliance, respiratory system resistance, tidal volume, peak inspiratory pressure, respiratory rate, and oxygen saturation) and hemodynamic variables (heart rate) were measured one hour before (T-1), immediately after (T0) and one hour after (T+1) applying the respiratory physiotherapy protocol. Results During the period of data collection, 104 patients were included in the study. Regarding the ventilatory variables, an increase in dynamic lung compliance (T-1 = 52.3 ± 16.1mL/cmH2O versus T0 = 65.1 ± 19.1mL/cmH2O; p < 0.001), tidal volume (T-1 = 550 ± 134mL versus T0 = 698 ± 155mL; p < 0.001), and peripheral oxygen saturation (T-1 = 96.5 ± 2.29% versus T0 = 98.2 ± 1.62%; p < 0.001) were observed, in addition to a reduction of respiratory system resistance (T-1 = 14.2 ± 4.63cmH2O/L/s versus T0 = 11.0 ± 3.43cmH2O/L/s; p < 0.001), after applying the respiratory physiotherapy protocol. All changes were present in the assessment performed one hour (T+1) after the application of the respiratory physiotherapy protocol. Regarding the hemodynamic variables, an immediate increase in the heart rate after application of the protocol was observed, but that increase was not maintained (T-1 = 88.9 ± 18.7 bpm versus T0 = 93.7 ± 19.2bpm versus T+1 = 88.5 ± 17.1bpm; p < 0.001). Conclusion Respiratory therapy leads to immediate changes in the lung mechanics and hemodynamics of mechanical ventilation-dependent patients, and ventilatory changes are likely to remain for at least one hour

  17. Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients.

    PubMed

    Ghoochani Khorasani, Ahmad; Shadnia, Shahin; Mashayekhian, Mohammad; Rahimi, Mitra; Aghabiklooei, Abbas

    2016-01-01

    Background. Ventilator-associated pneumonia (VAP) is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT) is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients) in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT) in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1) subglottic secretion drainage (SSD) group who were intubated by Evac ETT (n = 43) and (2) control group who were intubated by C-ETT (n = 48). Results. Of the 91 eligible patients, 56 (61.5%) were male. VAP was detected in 24 of 43 (55.8%) patients in the case group and 23 of 48 (47.9%) patients in the control group (P = 0.45). The most frequently isolated microorganisms were S. aureus (54.10%) and Acinetobacter spp. (19.68%). The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P = 0.68). Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients. PMID:27651976

  18. Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients

    PubMed Central

    Mashayekhian, Mohammad; Rahimi, Mitra; Aghabiklooei, Abbas

    2016-01-01

    Background. Ventilator-associated pneumonia (VAP) is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT) is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients) in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT) in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1) subglottic secretion drainage (SSD) group who were intubated by Evac ETT (n = 43) and (2) control group who were intubated by C-ETT (n = 48). Results. Of the 91 eligible patients, 56 (61.5%) were male. VAP was detected in 24 of 43 (55.8%) patients in the case group and 23 of 48 (47.9%) patients in the control group (P = 0.45). The most frequently isolated microorganisms were S. aureus (54.10%) and Acinetobacter spp. (19.68%). The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P = 0.68). Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients.

  19. Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients

    PubMed Central

    Mashayekhian, Mohammad; Rahimi, Mitra; Aghabiklooei, Abbas

    2016-01-01

    Background. Ventilator-associated pneumonia (VAP) is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT) is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients) in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT) in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1) subglottic secretion drainage (SSD) group who were intubated by Evac ETT (n = 43) and (2) control group who were intubated by C-ETT (n = 48). Results. Of the 91 eligible patients, 56 (61.5%) were male. VAP was detected in 24 of 43 (55.8%) patients in the case group and 23 of 48 (47.9%) patients in the control group (P = 0.45). The most frequently isolated microorganisms were S. aureus (54.10%) and Acinetobacter spp. (19.68%). The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P = 0.68). Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients. PMID:27651976

  20. Music preferences of mechanically ventilated patients participating in a randomized controlled trial

    PubMed Central

    Heiderscheit, Annie; Breckenridge, Stephanie J.; Chlan, Linda L.; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients’ preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process. PMID:25574992

  1. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    PubMed

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P < 0.0001) and Rrs>9(r = 0.88,P < 0.0001) were significantly stronger (P = 0.005;P = 0.03, respectively) than withFEV1(r = -0.68,P = 0.0001). The slopes for the relationship ofVDPwith simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for theVDP-Xrs0.2relationship was largest, suggesting thatVDPwas dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics.

  2. Chest compression with a higher level of pressure support ventilation: effects on secretion removal, hemodynamics, and respiratory mechanics in patients on mechanical ventilation*

    PubMed Central

    Naue, Wagner da Silva; Forgiarini, Luiz Alberto; Dias, Alexandre Simões; Vieira, Silvia Regina Rios

    2014-01-01

    OBJECTIVE: To determine the efficacy of chest compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation, in comparison with that of aspiration alone, in removing secretions, normalizing hemodynamics, and improving respiratory mechanics in patients on mechanical ventilation. METHODS: This was a randomized crossover clinical trial involving patients on mechanical ventilation for more than 48 h in the ICU of the Porto Alegre Hospital de Clínicas, in the city of Porto Alegre, Brazil. Patients were randomized to receive aspiration alone (control group) or compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation (intervention group). We measured hemodynamic parameters, respiratory mechanics parameters, and the amount of secretions collected. RESULTS: We included 34 patients. The mean age was 64.2 ± 14.6 years. In comparison with the control group, the intervention group showed a higher median amount of secretions collected (1.9 g vs. 2.3 g; p = 0.004), a greater increase in mean expiratory tidal volume (16 ± 69 mL vs. 56 ± 69 mL; p = 0.018), and a greater increase in mean dynamic compliance (0.1 ± 4.9 cmH2O vs. 2.8 ± 4.5 cmH2O; p = 0.005). CONCLUSIONS: In this sample, chest compression accompanied by an increase in pressure support significantly increased the amount of secretions removed, the expiratory tidal volume, and dynamic compliance. (ClinicalTrials.gov Identifier:NCT01155648 [http://www.clinicaltrials.gov/]) PMID:24626270

  3. Rocking bed and prolonged independence from nocturnal non-invasive ventilation in neurogenic respiratory failure associated with limb weakness

    PubMed Central

    Cormican, L; Higgins, S; Davidson, A; Howard, R; Williams, A

    2004-01-01

    A 40 year old mother of three with autosomal dominant scapuloperoneal muscular dystrophy presented with severe neurogenic respiratory failure requiring nocturnal non-invasive ventilation (NIV). Because of the development of profound proximal muscular weakness as a consequence of the progressive nature of her neurological disease, she eventually was unable to apply and remove the facial interface to set up her NIV circuit. She therefore became dependent on her children and carers to start and stop NIV during the night. A rocking bed was successfully employed as an alternative to nocturnal NIV. Ventilation was facilitated by the passive movement of the diaphragm as a consequence of the movement of the abdominal contents under the effect of gravity. Benefit was demonstrated objectively by pulse oximetry and subjectively by the improvement in the patient's symptomatology and continued independence at night. The ease of use of a rocking bed should be borne in mind when the necessity for nocturnal ventilatory support in neuromuscular disease results in the potential loss of independence for a patient. PMID:15192173

  4. A new horizon for the use of non-invasive ventilation in patients with acute respiratory distress syndrome

    PubMed Central

    2016-01-01

    Non-invasive ventilation (NIV) has assumed an important role in the management of acute respiratory failure (ARF). NIV, compared with standard medical therapy, improves survival and reduces complications in selected patients with ARF. NIV represents the first-line intervention for some forms of ARF, such as chronic obstructive pulmonary disease (COPD) exacerbations and acute cardiogenic pulmonary edema. The use of NIV is also well supported for immunocompromised patients who are at high risk for infectious complications from endotracheal intubation. Selection of appropriate patients is crucial for optimizing NIV success rates. Appropriate ventilator settings, a well-fitting and comfortable interface, and a team skilled and experienced in managing NIV are key components to its success. In a recent issue of the Journal of the American Medical Association, Patel et al. reported the results of their single-center trial of 83 patients with acute respiratory distress syndrome (ARDS) who were randomly assigned to NIV delivered via a helmet or face mask. Patients assigned to the helmet group exhibited a significantly lower intubation rate and were more likely to survive through 90 days. This perspective reviews the findings of this trial in the context of current clinical practice and in light of data from the literature focused on the potential reasons for success of NIV delivered through a helmet compared to face mask. The implications for early management of patients with ARDS are likewise discussed. PMID:27761452

  5. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support.

    PubMed

    Siirala, Waltteri; Noponen, Tommi; Olkkola, Klaus T; Vuori, Arno; Koivisto, Mari; Hurme, Saija; Aantaa, Riku

    2012-02-01

    The aim of this validation study was to assess the reliability of gas exchange measurement with indirect calorimetry among subjects who undergo non-invasive ventilation (NIV). Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured in twelve healthy volunteers. Respiratory quotient (RQ) and resting energy expenditure (REE) were then calculated from the measured VO2 and VCO2 values. During the measurement period the subjects were breathing spontaneously and ventilated using NIV. Two different sampling air flow values 40 and 80 l/min were used. The gas leakage from the measurement setup was assessed with a separate capnograph. The mean weight of the subjects was 93 kg. Their mean body mass index was 29 (range 22-40) kg/m2. There was no statistically significant difference in the measured values for VO2, VCO2, RQ and REE during NIV-supported breathing and spontaneous breathing. The change of sampling air flow had no statistically significant effect on any of the above parameters. We found that REE can be accurately measured with an indirect calorimeter also during NIV-supported breathing and the change of sampling air flow does not distort the gas exchange measurement. A higher sampling air flow in indirect calorimetry decreases the possibility for air leakages in the measurement system and increases the reliability of REE measurement. PMID:22207315

  6. Intracuff alkalized lidocaine reduces sedative/analgesic requirements for mechanically ventilated patients

    PubMed Central

    Basuni, Ahmed Sobhy

    2014-01-01

    Background: The objective of this study is to investigate the effect of intracuff alkalized lidocaine on sedative/analgesic requirements for mechanically ventilated patients and its consequence on patient-ventilator interaction. Materials and Methods: A total of 64 patients who expected to require ventilatory support for a period of more than 48 h were randomly assigned to groups S and L. In group S, the endotracheal tube (ETT) cuffs were inflated with normal saline. In group L, the ETT cuffs were inflated with lidocaine 2% and sodium bicarbonate 8.4%. The investigator and the surgical intensive care unit staff were blinded to the nature of cuff-filled solutions. Sedation was maintained with propofol and fentanyl infusions. The total requirements for propofol and fentanyl, frequency and severity of cough and number of ineffective triggering during the first 24 h of mechanical ventilation were recorded. Results: There was a significant reduction (about 30%) in the requirements for propofol and fentanyl in patients who received intracuff alkalinized lidocaine; P < 0.001. The frequency and severity of cough were significantly lower in group L compared with group S and the frequency of ineffective triggering was significantly lower in group L; P < 0.001 for both comparisons. Conclusion: Intracuff alkalized lidocaine increases ETT tolerance and hence, decreases sedatives/analgesics requirements for mechanically ventilated patients. This results in improved patient-ventilator synchronization. PMID:25422600

  7. [Complications in the use of mechanical ventilator in newborns: one year's experience].

    PubMed

    Wang, G C; Kao, H A; Hwang, F Y; Ho, M Y; Hsu, C H; Hung, H Y

    1991-01-01

    A retrospective study was undertaken of 175 patients (119 males, 56 females) admitted to the neonatal intensive care unit of Mackay Memorial Hospital during the period of July 1, 1985 to June 30, 1986 who received mechanical ventilation during their stay at the hospital. Upon reviewing the clinical histories of these patients, the complication rate of mechanical ventilation was 31.9%. The percentages of each complication were: pneumothorax 50.0%, pneumomediastinum 5.2%, pulmonary interstitial emphysema 1.7%, atelectasia 13.8%, pneumonia 13.8%, chronic lung disease 13.8%, nasopharyngeal infection 1.7%. Survival rate of these ventilated patients with or without complication was not significant statistically (69.2% vs 65.6%). However, with regard to the hospital course, cases with complication had a significantly longer duration of ventilator usage, hospital stay and oxygen usage than uncomplicated cases. In conclusion, experienced personnel are needed to supervise the use of mechanical ventilation in neonates, and a team of well-trained nurses working in the neonatal intensive care unit are essential to minimize complications. PMID:1776449

  8. Bacterial colonization in humidifying cascade reservoirs after 24 and 48 hours of continuous mechanical ventilation.

    PubMed

    Goularte, T A; Manning, M; Craven, D E

    1987-05-01

    We evaluated levels of bacterial colonization in the humidifying cascade reservoirs of 466 mechanical ventilators; 326 reservoirs were cultured after 24 hours and 140 were cultured after 48 hours of continuous mechanical ventilation. Bacterial colonization was absent in 284 (87.1%) of the humidifier reservoirs sampled at 24 hours and 125 (89.3%) of the reservoirs cultured at 48 hours. Levels of bacterial colonization in the remaining humidifiers were low (less than 100 organisms/mL). The median temperature recorded in the reservoir fluid of 30 different ventilators was 50 degrees C (range 40 degrees to 60 degrees C). In vitro seeding of reservoir fluid at 50 degrees C with 10(6) organisms/mL of four different species of nosocomial gram-negative bacilli and Staphylococcus aureus demonstrated rapid killing of all five strains over a 6-hour incubation period, and no significant bacterial aerosols were detected. Rates and levels of bacteria in heated humidifier reservoirs are low and nosocomial pathogens survive poorly at the median reservoir temperature of 50 degrees C. We conclude that the heated humidifier reservoir on a mechanical ventilator is an unlikely source of colonization or bacterial aerosols, and therefore it can be changed every 48 hours with the ventilator tubing.

  9. Multicenter Evaluation of a Novel Surveillance Paradigm for Complications of Mechanical Ventilation

    PubMed Central

    Klompas, Michael; Khan, Yosef; Kleinman, Kenneth; Evans, R. Scott; Lloyd, James F.; Stevenson, Kurt; Samore, Matthew; Platt, Richard

    2011-01-01

    Background Ventilator-associated pneumonia (VAP) surveillance is time consuming, subjective, inaccurate, and inconsistently predicts outcomes. Shifting surveillance from pneumonia in particular to complications in general might circumvent the VAP definition's subjectivity and inaccuracy, facilitate electronic assessment, make interfacility comparisons more meaningful, and encourage broader prevention strategies. We therefore evaluated a novel surveillance paradigm for ventilator-associated complications (VAC) defined by sustained increases in patients' ventilator settings after a period of stable or decreasing support. Methods We assessed 600 mechanically ventilated medical and surgical patients from three hospitals. Each hospital contributed 100 randomly selected patients ventilated 2–7 days and 100 patients ventilated >7 days. All patients were independently assessed for VAP and for VAC. We compared incidence-density, duration of mechanical ventilation, intensive care and hospital lengths of stay, hospital mortality, and time required for surveillance for VAP and for VAC. A subset of patients with VAP and VAC were independently reviewed by a physician to determine possible etiology. Results Of 597 evaluable patients, 9.3% had VAP (8.8 per 1,000 ventilator days) and 23% had VAC (21.2 per 1,000 ventilator days). Compared to matched controls, both VAP and VAC prolonged days to extubation (5.8, 95% CI 4.2–8.0 and 6.0, 95% CI 5.1–7.1 respectively), days to intensive care discharge (5.7, 95% CI 4.2–7.7 and 5.0, 95% CI 4.1–5.9), and days to hospital discharge (4.7, 95% CI 2.6–7.5 and 3.0, 95% CI 2.1–4.0). VAC was associated with increased mortality (OR 2.0, 95% CI 1.3–3.2) but VAP was not (OR 1.1, 95% CI 0.5–2.4). VAC assessment was faster (mean 1.8 versus 39 minutes per patient). Both VAP and VAC events were predominantly attributable to pneumonia, pulmonary edema, ARDS, and atelectasis. Conclusions Screening ventilator settings for VAC captures a

  10. Home Mechanical Ventilation in Childhood-Onset Hereditary Neuromuscular Diseases: 13 Years’ Experience at a Single Center in Korea

    PubMed Central

    Han, Young Joo; Park, June Dong; Lee, Bongjin; Choi, Yu Hyeon; Suh, Dong In; Lim, Byung Chan; Chae, Jong-Hee

    2015-01-01

    Introduction Children with hereditary neuromuscular diseases (NMDs) are at a high risk of morbidity and mortality related to respiratory failure. The use of home mechanical ventilation (HMV) has saved the lives of many children with NMD but, due to a lack of studies, dependable guidelines are not available. We drew upon our experience to compare the various underlying NMDs and to evaluate HMV with regard to respiratory morbidity, the proper indications and timing for its use, and to develop a policy to improve the quality of home noninvasive ventilation (NIV). Methods We retrospectively analyzed the medical records of 57 children with childhood-onset hereditary NMDs in whom HMV was initiated between January 2000 and May 2013 at Seoul National University Children's Hospital. The degree of respiratory morbidity was estimated by the frequency and duration of hospitalizations caused by respiratory distress. Results The most common NMD was spinal muscular atrophy (SMA, n = 33). Emergent mechanical ventilation was initiated in 44% of the patients before the confirmed diagnosis, and the indicators of pre-HMV respiratory morbidity (e.g., extubation trials, hypoxia, hospitalizations, and intensive care unit stay) were greater in these patients than in others. The proportion of post-HMV hospitalizations (range, 0.00−0.52; median, 0.01) was lower than that of pre-HMV hospitalizations (0.02−1.00; 0.99) (P < 0.001). Eight patients were able to maintain home NIV. The main causes of NIV failure were air leakage and a large amount of airway secretions. Conclusions The application of HMV helped reduce respiratory morbidity in children with childhood-onset hereditary NMD. Patients with SMA type I can benefit from an early diagnosis and the timely application of HMV. The choice between invasive and noninvasive HMV should be based on the patient’s age and NIV trial tolerance. Systematic follow-up guidelines provided by a multidisciplinary team are needed. PMID:25822836

  11. Aerosol delivery of antimicrobial agents during mechanical ventilation: current practice and perspectives.

    PubMed

    Michalopoulos, Argyris; Metaxas, Eugenios I; Falagas, Matthew E

    2011-03-01

    Critically ill patients, who develop ventilator-associated pneumonia during prolonged mechanical ventilation, often require antimicrobial agents administered through the endotracheal or the tracheotomy tube. The delivery of antibiotics via the respiratory tract has been established over the past years as an alternative route in order to deliver high concentrations of antimicrobial agents directly to the lungs and avoid systemic toxicity. Since the only formal indications for inhaled/aerosolized antimicrobial agents is for patients suffering from cystic fibrosis, consequently the majority of research and published studies concerns this group of patients. Newer devices and new antibiotic formulations are currently off-label used in ambulatory cystic fibrosis patients whereas similar data for the mechanically ventilated patients do not yet exist. PMID:21235473

  12. Assessment of the effect of continuous sedation with mechanical ventilation on adrenal insufficiency in patients with traumatic brain injury.

    PubMed

    Li, Min; Zhang, Ying; Wu, Kang-Song; Hu, Ying-Hong

    2016-03-01

    The aim of this study was to assess the effect of continuous propofol sedation plus prolonged mechanical ventilation on adrenal insufficiency (AI) in patients with traumatic brain injury (TBI). Eighty-five adult patients diagnosed with moderate TBI (Glasgow Coma Scale (GCS) score 9-13) from October 2011 to October 2012 were included in this prospective study. The patients comprised three groups: no mechanical ventilation and sedation (n=27), mechanical ventilation alone (n=24) and mechanical ventilation plus sedation (n=34). The low-dose short Synacthen test was performed at 8:00 on the first, third, and fifth days after TBI. Logistic regression analysis was performed to identify factors affecting the use of mechanical ventilation and sedation, and the incidence of AI. On the fifth day after injury, the mean baseline cortisol and simulated cortisol levels were significantly lower in the mechanical ventilation plus sedation group compared with the other two groups. Multivariate regression analysis showed that the Acute Physiology and Chronic Health Evaluation (APACHE) score was independently associated with treatment with mechanical ventilation and sedation compared to mechanical ventilation alone. Furthermore, hypoxemia on admission and shock were associated with the development of AI. The findings showed that sedation is associated with an increased incidence of AI. Patients with TBI who are treated with continuous sedation should be monitored for AI carefully. PMID:26912007

  13. Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs.

    PubMed

    Wellman, Tyler J; Winkler, Tilo; Costa, Eduardo L V; Musch, Guido; Harris, R Scott; Venegas, Jose G; Vidal Melo, Marcos F

    2012-09-01

    Heterogeneous, small-airway diameters and alveolar derecruitment in poorly aerated regions of normal lungs could produce ventilation heterogeneity at those anatomic levels. We modeled the washout kinetics of (13)NN with positron emission tomography to examine how specific ventilation (sV) heterogeneity at different length scales is influenced by lung aeration. Three groups of anesthetized, supine sheep were studied: high tidal volume (Vt; 18.4 ± 4.2 ml/kg) and zero end-expiratory pressure (ZEEP) (n = 6); low Vt (9.2 ± 1.0 ml/kg) and ZEEP (n = 6); and low Vt (8.2 ± 0.2 ml/kg) and positive end-expiratory pressure (PEEP; 19 ± 1 cmH(2)O) (n = 4). We quantified fractional gas content with transmission scans, and sV with emission scans of infused (13)NN-saline. Voxel (13)NN-washout curves were fit with one- or two-compartment models to estimate sV. Total heterogeneity, measured as SD[log(10)(sV)], was divided into length-scale ranges by measuring changes in variance of log(10)(sV), resulting from progressive filtering of sV images. High-Vt ZEEP showed higher sV heterogeneity at <12- (P < 0.01), 12- to 36- (P < 0.01), and 36- to 60-mm (P < 0.05) length scales compared with low-Vt PEEP, with low-Vt ZEEP in between. Increased heterogeneity was associated with the emergence of low sV units in poorly aerated regions, with a high correlation (r = 0.95, P < 0.001) between total heterogeneity and the fraction of lung with slow washout. Regional mean fractional gas content was inversely correlated with regional sV heterogeneity at <12- (r = -0.67), 12- to 36- (r = -0.74), and >36-mm (r = -0.72) length scales (P < 0.001). We conclude that sV heterogeneity at length scales <60 mm increases in poorly aerated regions of mechanically ventilated normal lungs, likely due to heterogeneous small-airway narrowing and alveolar derecruitment. PEEP reduces sV heterogeneity by maintaining lung expansion and airway patency at those small length scales.

  14. A student paper: music in critical care setting for clients on mechanical ventilators: a student perspective.

    PubMed

    Ho, Van; Chang, Sue; Olivas, Rosa; Almacen, Catherine; Dimanlig, Marbert; Rodriguez, Heather

    2012-01-01

    This article written by baccalaureate nursing students briefly discusses the use of music therapy in clients on mechanical ventilation in intensive care units. The article explores the possible benefits of music therapy and its use in other aspects of health care. PMID:23042464

  15. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p < .05). Administration of pleasant, natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support.

  16. Mechanical ventilation alone, and in the presence sepsis, induces peripheral skeletal muscle catabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  17. Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  18. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  19. Swallowing rehabilitation of dysphagic tracheostomized patients under mechanical ventilation in intensive care units: a feasibility study

    PubMed Central

    Rodrigues, Katia Alonso; Machado, Flávia Ribeiro; Chiari, Brasília Maria; Rosseti, Heloísa Baccaro; Lorenzon, Paula; Gonçalves, Maria Inês Rebelo

    2015-01-01

    Objective The aim of the present study was to assess the feasibility of the early implementation of a swallowing rehabilitation program in tracheostomized patients under mechanical ventilation with dysphagia. Methods This prospective study was conducted in the intensive care units of a university hospital. We included hemodynamically stable patients under mechanical ventilation for at least 48 hours following 48 hours of tracheostomy and with an appropriate level of consciousness. The exclusion criteria were previous surgery in the oral cavity, pharynx, larynx and/or esophagus, the presence of degenerative diseases or a past history of oropharyngeal dysphagia. All patients were submitted to a swallowing rehabilitation program. An oropharyngeal structural score, a swallowing functional score and an otorhinolaryngological structural and functional score were determined before and after swallowing therapy. Results We included 14 patients. The mean duration of the rehabilitation program was 12.4 ± 9.4 days, with 5.0 ± 5.2 days under mechanical ventilation. Eleven patients could receive oral feeding while still in the intensive care unit after 4 (2 - 13) days of therapy. All scores significantly improved after therapy. Conclusion In this small group of patients, we demonstrated that the early implementation of a swallowing rehabilitation program is feasible even in patients under mechanical ventilation. PMID:25909315

  20. A Critical Review of Mechanical Ventilation Virtual Simulators: Is It Time to Use Them?

    PubMed Central

    Gomes, Gabriela Carvalho; Sousa, Nancy Delma Silva Vega Canjura; Carvalho, Andrea K; Diniz, Marcelo Emanoel Bezerra; Viana Junior, Antonio Brazil; Holanda, Marcelo Alcantara

    2016-01-01

    Background Teaching mechanical ventilation at the bedside with real patients is difficult with many logistic limitations. Mechanical ventilators virtual simulators (MVVS) may have the potential to facilitate mechanical ventilation (MV) training by allowing Web-based virtual simulation. Objective We aimed to identify and describe the current available MVVS, to compare the usability of their interfaces as a teaching tool and to review the literature on validation studies. Methods We performed a comparative evaluation of the MVVS, based on a literature/Web review followed by usability tests according to heuristic principles evaluation of their interfaces as performed by professional experts on MV. Results Eight MVVS were identified. They showed marked heterogeneity, mainly regarding virtual patient's anthropomorphic parameters, pulmonary gas exchange, respiratory mechanics and muscle effort configurations, ventilator terminology, basic ventilatory modes, settings alarms, monitoring parameters, and design. The Hamilton G5 and the Xlung covered a broader number of parameters, tools, and have easier Web-based access. Except for the Xlung, none of the simulators displayed monitoring of arterial blood gases and alternatives to load and save the simulation. The Xlung obtained the greater scores on heuristic principles assessments and the greater score of easiness of use, being the preferred MVVS for teaching purposes. No strong scientific evidence on the use and validation of the current MVVS was found. Conclusions There are only a few MVVS currently available. Among them, the Xlung showed a better usability interface. Validation tests and development of new or improvement of the current MVVS are needed. PMID:27731850

  1. Clinical study on VATS combined mechanical ventilation treatment of ARDS secondary to severe chest trauma

    PubMed Central

    Qi, Yongjun

    2016-01-01

    The aim of the study was to investigate the clinical effects of microinvasive video-assisted thoracoscopic surgery (VATS) combined with mechanical ventilation in the treatment of acute respiratory distress syndrome (ARDS) secondary to severe chest trauma. A total of 62 patients with ARDS secondary to severe chest trauma were divided into the observation and control groups. The patients in the observation groups were treated with VATS combined with early mechanical ventilation while patients in the control group were treated using routine open thoracotomy combined with early mechanical ventilation. Compared to the controls, the survival rate of the observation group was significantly higher. The average operation time of the observation group was significantly shorter than that of the control group, and the incidence of complications in the perioperative period of the observation group was significantly lower than that of the control group (p<0.05). The average application time of the observation group was significantly shorter than that of the control group, and the incidence of ventilator-associated complications was significantly lower than that of the control group (p<0.05). In conclusion, a reasonable understanding of the indications and contraindications of VATS, combined with early mechanical treatment significantly improved the success rate of the treatment of ARDS patients secondary to severe chest trauma and reduced the complications. PMID:27446317

  2. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation.

    PubMed

    Hussein, Omar; Walters, Bruce; Stroetz, Randolph; Valencia, Paul; McCall, Deborah; Hubmayr, Rolf D

    2013-10-01

    Mechanical ventilation may cause harm by straining lungs at a time they are particularly prone to injury from deforming stress. The objective of this study was to define the relative contributions of alveolar overdistension and cyclic recruitment and "collapse" of unstable lung units to membrane wounding of alveolar epithelial cells. We measured the interactive effects of tidal volume (VT), transpulmonary pressure (PTP), and of airspace liquid on the number of alveolar epithelial cells with plasma membrane wounds in ex vivo mechanically ventilated rat lungs. Plasma membrane integrity was assessed by propidium iodide (PI) exclusion in confocal images of subpleural alveoli. Cyclic inflations of normal lungs from zero end-expiratory pressure to 40 cmH2O produced VT values of 56.9 ± 3.1 ml/kg and were associated with 0.12 ± 0.12 PI-positive cells/alveolus. A preceding tracheal instillation of normal saline (3 ml) reduced VT to 49.1 ± 6 ml/kg but was associated with a significantly greater number of wounded alveolar epithelial cells (0.52 ± 0.16 cells/alveolus; P < 0.01). Mechanical ventilation of completely saline-filled lungs with saline (VT = 52 ml/kg) to pressures between 10 and 15 cmH2O was associated with the least number of wounded epithelial cells (0.02 ± 0.02 cells/alveolus; P < 0.01). In mechanically ventilated, partially saline-filled lungs, the number of wounded cells increased substantially with VT, but, once VT was accounted for, wounding was independent of maximal PTP. We found that interfacial stress associated with the generation and destruction of liquid bridges in airspaces is the primary biophysical cell injury mechanism in mechanically ventilated lungs. PMID:23997173

  3. Influence of different degrees of head elevation on respiratory mechanics in mechanically ventilated patients

    PubMed Central

    Martinez, Bruno Prata; Marques, Thaís Improta; Santos, Daniel Reis; Salgado, Vanessa Silva; Nepomuceno Júnior, Balbino Rivail; Alves, Giovani Assunção de Azevedo; Gomes Neto, Mansueto; Forgiarini Junior, Luiz Alberto

    2015-01-01

    Objective The positioning of a patient in bed may directly affect their respiratory mechanics. The objective of this study was to evaluate the respiratory mechanics of mechanically ventilated patients positioned with different head angles hospitalized in an intensive care unit. Methods This was a prospective physiological study in which static and dynamic compliance, resistive airway pressure, and peripheral oxygen saturation were measured with the head at four different positions (0° = P1, 30° = P2, 45° = P3, and 60° = P4). Repeated-measures analysis of variance (ANOVA) with a Bonferroni post-test and Friedman analysis were used to compare the values obtained at the different positions. Results A comparison of the 35 evaluated patients revealed that the resistive airway pressure values in the 0° position were higher than those obtained when patients were positioned at greater angles. The elastic pressure analysis revealed that the 60° position produced the highest value relative to the other positions. Regarding static compliance, a reduction in values was observed from the 0° position to the 60° position. The dynamic compliance analysis revealed that the 30° angle produced the greatest value compared to the other positions. The peripheral oxygen saturation showed little variation, with the highest value obtained at the 0° position. Conclusion The highest dynamic compliance value was observed at the 30° position, and the highest oxygenation value was observed at the 0° position. PMID:26761472

  4. Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.

    PubMed

    Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199

  5. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    PubMed Central

    Shen, Dongkai; Zhang, Qian

    2016-01-01

    In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP) controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  6. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    PubMed Central

    Shen, Dongkai; Zhang, Qian

    2016-01-01

    In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP) controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics. PMID:27660646

  7. Sustained Inflation at Birth Did Not Alter Lung Injury from Mechanical Ventilation in Surfactant-Treated Fetal Lambs

    PubMed Central

    Hillman, Noah H.; Kemp, Matthew W.; Miura, Yuichiro; Kallapur, Suhas G.; Jobe, Alan H.

    2014-01-01

    Background Sustained inflations (SI) are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. Hypothesis A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. Methods The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline). Fetal lambs were randomized to one of four 15 minute interventions: 1) PEEP 8 cmH2O; 2) 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3) mechanical ventilation with 7 ml/kg tidal volume; or 4) 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. Results SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP) 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. Conclusion In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation. PMID:25419969

  8. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery.

    PubMed

    Dong, Zehua; Yu, Bangxu; Zhang, Quanfang; Pei, Haitao; Xing, Jinyan; Fang, Wei; Sun, Yunbo; Song, Zhen

    2016-01-01

    We investigated the effects of early rehabilitation therapy on prolonged mechanically ventilated patients after coronary artery bypass surgery (CABG).A total of 106 patients who underwent CABG between June 2012 and May 2015 were enrolled and randomly assigned into an early rehabilitation group (53 cases) and a control group (53 cases). The rehabilitation therapy consisted of 6 steps including head up, transferring from supination to sitting, sitting on the edge of bed, sitting in a chair, transferring from sitting to standing, and walking along a bed. The patients received rehabilitation therapy in the intensive care unit (ICU) after CABG in the early rehabilitation group. The control group patients received rehabilitation therapy after leaving the ICU.The results showed that the early rehabilitation therapy could significantly decrease the duration of mechanical ventilation (early rehabilitation group: 8.1 ± 3.3 days; control group: 13.9 ± 4.1 days, P < 0.01), hospital stay (early rehabilitation group: 22.0 ± 3.8 days; control group: 29.1 ± 4.6 days, P < 0.01), and ICU stay (early rehabilitation group: 11.7 ± 3.2 days; control group: 18.3 ± 4.2 days, P < 0.01) for patients requiring more than 72 hours prolonged mechanical ventilation. The results of Kaplan-Meier analysis showed that the proportions of patients remaining on mechanical ventilation in the early rehabilitation group were larger than that in the control group after 7 days of rehabilitation therapy (logrank test: P < 0.01). The results provide evidence for supporting the application of early rehabilitation therapy in patients requiring prolonged mechanical ventilation after CABG. PMID:26973269

  9. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery.

    PubMed

    Dong, Zehua; Yu, Bangxu; Zhang, Quanfang; Pei, Haitao; Xing, Jinyan; Fang, Wei; Sun, Yunbo; Song, Zhen

    2016-01-01

    We investigated the effects of early rehabilitation therapy on prolonged mechanically ventilated patients after coronary artery bypass surgery (CABG).A total of 106 patients who underwent CABG between June 2012 and May 2015 were enrolled and randomly assigned into an early rehabilitation group (53 cases) and a control group (53 cases). The rehabilitation therapy consisted of 6 steps including head up, transferring from supination to sitting, sitting on the edge of bed, sitting in a chair, transferring from sitting to standing, and walking along a bed. The patients received rehabilitation therapy in the intensive care unit (ICU) after CABG in the early rehabilitation group. The control group patients received rehabilitation therapy after leaving the ICU.The results showed that the early rehabilitation therapy could significantly decrease the duration of mechanical ventilation (early rehabilitation group: 8.1 ± 3.3 days; control group: 13.9 ± 4.1 days, P < 0.01), hospital stay (early rehabilitation group: 22.0 ± 3.8 days; control group: 29.1 ± 4.6 days, P < 0.01), and ICU stay (early rehabilitation group: 11.7 ± 3.2 days; control group: 18.3 ± 4.2 days, P < 0.01) for patients requiring more than 72 hours prolonged mechanical ventilation. The results of Kaplan-Meier analysis showed that the proportions of patients remaining on mechanical ventilation in the early rehabilitation group were larger than that in the control group after 7 days of rehabilitation therapy (logrank test: P < 0.01). The results provide evidence for supporting the application of early rehabilitation therapy in patients requiring prolonged mechanical ventilation after CABG.

  10. Sampling and analyzing alveolar exhaled breath condensate in mechanically ventilated patients: a feasibility study.

    PubMed

    Vaschetto, Rosanna; Corradi, Massimo; Goldoni, Matteo; Cancelliere, Laura; Pulvirenti, Simone; Fazzini, Ugo; Capuzzi, Fabio; Longhini, Federico; Mutti, Antonio; Della Corte, Francesco; Navalesi, Paolo

    2015-12-01

    Recent studies in spontaneously breathing subjects indicate the possibility of obtaining the alveolar fraction of exhaled breath condensate (aEBC). In critically ill mechanically ventilated patients, in whom microbial colonization of the upper airways is constant, collection of aEBC could considerably add to the ability of monitoring alveolar inflammation. We designed this study to test the feasibility of collecting aEBC in mechanically ventilated critically ill patients through a dedicated apparatus, i.e. a CO2 valve combined with a condenser placed in the expiratory limb of the ventilator circuit. We also aimed to assess the adequacy of the samples obtained by measuring different markers of oxidative stress and inflammation. We enrolled 40 mechanically ventilated patients, 20 with and 20 without acute respiratory distress syndrome (ARDS). Measurements of respiratory mechanics, gas exchange and hemodynamics were obtained with a standard ventilator circuit after 30 min of aEBC collection and after inserting the dedicated collecting apparatus. Data showed that intrinsic positive end-expiratory pressure, peak and plateau pressure, static compliance and airway resistance (Raw) were similar before and after adding the collecting apparatus in both ARDS and controls. Similarly, gas exchange and hemodynamic variables did not change and 30 min collection provided a median aEBC volume of 2.100 and 2.300 ml for ARDS and controls, respectively. aEBC pH showed a trend toward a slight reduction in the ARDS group of patients, as opposed to controls (7.83 (7.62-8.03) versus 7.98 (7.87-8.12), respectively, p  =  0.055)). H2O2 was higher in patients with ARDS, compared to controls (0.09 (0.06-0.12) μM versus 0.03 (0.01-0.09) μM, p  =  0.043), while no difference was found in proteins content, 8-isoprostane, 4-hydroxy-2-nonhenal. In conclusion, we demonstrate, in patients receiving controlled mechanical ventilation, that aEBC collection is feasible without

  11. Sampling and analyzing alveolar exhaled breath condensate in mechanically ventilated patients: a feasibility study.

    PubMed

    Vaschetto, Rosanna; Corradi, Massimo; Goldoni, Matteo; Cancelliere, Laura; Pulvirenti, Simone; Fazzini, Ugo; Capuzzi, Fabio; Longhini, Federico; Mutti, Antonio; Della Corte, Francesco; Navalesi, Paolo

    2015-11-19

    Recent studies in spontaneously breathing subjects indicate the possibility of obtaining the alveolar fraction of exhaled breath condensate (aEBC). In critically ill mechanically ventilated patients, in whom microbial colonization of the upper airways is constant, collection of aEBC could considerably add to the ability of monitoring alveolar inflammation. We designed this study to test the feasibility of collecting aEBC in mechanically ventilated critically ill patients through a dedicated apparatus, i.e. a CO2 valve combined with a condenser placed in the expiratory limb of the ventilator circuit. We also aimed to assess the adequacy of the samples obtained by measuring different markers of oxidative stress and inflammation. We enrolled 40 mechanically ventilated patients, 20 with and 20 without acute respiratory distress syndrome (ARDS). Measurements of respiratory mechanics, gas exchange and hemodynamics were obtained with a standard ventilator circuit after 30 min of aEBC collection and after inserting the dedicated collecting apparatus. Data showed that intrinsic positive end-expiratory pressure, peak and plateau pressure, static compliance and airway resistance (Raw) were similar before and after adding the collecting apparatus in both ARDS and controls. Similarly, gas exchange and hemodynamic variables did not change and 30 min collection provided a median aEBC volume of 2.100 and 2.300 ml for ARDS and controls, respectively. aEBC pH showed a trend toward a slight reduction in the ARDS group of patients, as opposed to controls (7.83 (7.62-8.03) versus 7.98 (7.87-8.12), respectively, p  =  0.055)). H2O2 was higher in patients with ARDS, compared to controls (0.09 (0.06-0.12) μM versus 0.03 (0.01-0.09) μM, p  =  0.043), while no difference was found in proteins content, 8-isoprostane, 4-hydroxy-2-nonhenal. In conclusion, we demonstrate, in patients receiving controlled mechanical ventilation, that aEBC collection is feasible without

  12. A Prognostic Model for One-year Mortality in Patients Requiring Prolonged Mechanical Ventilation

    PubMed Central

    Carson, Shannon S.; Garrett, Joanne; Hanson, Laura C.; Lanier, Joyce; Govert, Joe; Brake, Mary C.; Landucci, Dante L.; Cox, Christopher E.; Carey, Timothy S.

    2009-01-01

    Objective A measure that identifies patients who are at high risk of mortality after prolonged ventilation will help physicians communicate prognosis to patients or surrogate decision-makers. Our objective was to develop and validate a prognostic model for 1-year mortality in patients ventilated for 21 days or more. Design Prospective cohort study. Setting University-based tertiary care hospital Patients 300 consecutive medical, surgical, and trauma patients requiring mechanical ventilation for at least 21 days were prospectively enrolled. Measurements and Main Results Predictive variables were measured on day 21 of ventilation for the first 200 patients and entered into logistic regression models with 1-year and 3-month mortality as outcomes. Final models were validated using data from 100 subsequent patients. One-year mortality was 51% in the development set and 58% in the validation set. Independent predictors of mortality included requirement for vasopressors, hemodialysis, platelet count ≤150 ×109/L, and age ≥50. Areas under the ROC curve for the development model and validation model were 0.82 (se 0.03) and 0.82 (se 0.05) respectively. The model had sensitivity of 0.42 (se 0.12) and specificity of 0.99 (se 0.01) for identifying patients who had ≥90% risk of death at 1 year. Observed mortality was highly consistent with both 3- and 12-month predicted mortality. These four predictive variables can be used in a simple prognostic score that clearly identifies low risk patients (no risk factors, 15% mortality) and high risk patients (3 or 4 risk factors, 97% mortality). Conclusions Simple clinical variables measured on day 21 of mechanical ventilation can identify patients at highest and lowest risk of death from prolonged ventilation. PMID:18552692

  13. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications.

    PubMed

    Baldoli, Ilaria; Cuttano, Armando; Scaramuzzo, Rosa T; Tognarelli, Selene; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Laschi, Cecilia; Ghirri, Paolo; Menciassi, Arianna; Dario, Paolo; Boldrini, Antonio

    2015-08-01

    Respiratory problems are among the main causes of mortality for preterm newborns with pulmonary diseases; mechanical ventilation provides standard care, but long-term complications are still largely reported. In this framework, continuous medical education is mandatory to correctly manage assistance devices. However, commercially available neonatal respiratory simulators are rarely suitable for representing anatomical and physiological conditions; a step toward high-fidelity simulation, therefore, is essential for nurses and neonatologists to acquire the practice needed without any risk. An innovative multi-compartmental infant respirator simulator based on a five-lobe model was developed to reproduce different physio-pathological conditions in infants and to simulate many different kinds of clinical scenarios. The work consisted of three phases: (1) a theoretical study and modeling phase, (2) a prototyping phase, and (3) testing of the simulation software during training courses. The neonatal pulmonary simulator produced allows the replication and evaluation of different mechanical ventilation modalities in infants suffering from many different kinds of respiratory physio-pathological conditions. In particular, the system provides variable compliances for each lobe in an independent manner and different resistance levels for the airway branches; moreover, it allows the trainer to simulate both autonomous and mechanically assisted respiratory cycles in newborns. The developed and tested simulator is a significant contribution to the field of medical simulation in neonatology, as it makes it possible to choose the best ventilation strategy and to perform fully aware management of ventilation parameters. PMID:26238790

  14. A new nasal cavity nursing methods application in patients with mechanical ventilation

    PubMed Central

    Wei, Liuqing; Qin, Gang; Yang, Xining; Hu, Meichun; Jiang, Fufu; Lai, Tianwei

    2013-01-01

    Objective: To compare different nasal cavity nursing methods on mechanically ventilated patients. Methods: According to acute physiology and chronic health evaluation (APACHEII), 615 cases of mechanically ventilated patients were divided into group A, group B and group C by stratified random method. Traditional oral nursing plus aspirating secretions from oral cavity and nasal cavity q6h were done in group A. Based on methods in group A, normal saline was used for cleaning nasal cavity in group B. Besides the methods in group A, atomizing nasal cleansing a6h was also used in group C. Incidence rate of Ventilator-Associated Pneumonia (VAP) and APACHE II scores after administrating were compared. The correlation between APACHE II score and outcomes was analyzed by Spearman-rank correlation. Results: In group A, incidence of VAP was 36.76%, group B was 30.24%, group C was 20.38%, and the difference was statistically significant. APACHE II scores in group C were significantly lower compared with group A and B. APACHE II score was negatively correlated with clinical outcomes. Conclusions: For mechanically ventilated patients, nasal nursing can’t be ignored and the new atomizing nasal cleaning is an effective method for VAP prevention. PMID:24353671

  15. Suppressive oligonucleotides inhibit inflammation in a murine model of mechanical ventilator induced lung injury

    PubMed Central

    Scheiermann, Julia

    2016-01-01

    Background Mechanical ventilation (MV) is commonly used to improve blood oxygenation in critically ill patients and for general anesthesia. Yet the cyclic mechanical stress induced at even moderate ventilation volume settings [tidal volume (Vt) <10 mL/kg] can injure the lungs and induce an inflammatory response. This work explores the effect of treatment with suppressive oligonucleotides (Sup ODN) in a mouse model of ventilator-induced lung injury (VILI). Methods Balb/cJ mice were mechanically ventilated for 4 h using clinically relevant Vt and a positive end-expiratory pressure of 3 cmH2O under 2–3% isoflurane anesthesia. Lung tissue and bronchoalveolar lavage fluid were collected to assess lung inflammation and lung function was monitored using a FlexiVent®. Results MV induced significant pulmonary inflammation characterized by the influx and activation of CD11c+/F4/80+ macrophages and CD11b+/Ly6G+ polymorphonuclear cells into the lung and bronchoalveolar lavage fluid. The concurrent administration of Sup ODN attenuated pulmonary inflammation as evidenced by reduced cellular influx and production of inflammatory cytokines. Oligonucleotide treatment did not worsen lung function as measured by static compliance or resistance. Conclusions Treatment with Sup ODN reduces the lung injury induced by MV in mice. PMID:27746995

  16. Effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with amyotrophic lateral sclerosis.

    PubMed

    Boentert, Matthias; Brenscheidt, Inga; Glatz, Christian; Young, Peter

    2015-09-01

    In amyotrophic lateral sclerosis (ALS), non-invasive ventilation (NIV) is indicated if sleep-disordered breathing (SDB), daytime hypercapnia, or significant diaphragmatic weakness is present. We investigated both short-term and long-term effects of NIV on objective measures of sleep and nocturnal respiration in patients with ALS. Polysomnography (PSG) and transcutaneous capnography were conducted for diagnosis of SDB (T0), for treatment initiation (T1), and follow-up 3, 9, and 15 months later (T2, T3, and T4, respectively). Records from 65 patients were retrospectively analyzed at T0 and T1. At subsequent timepoints, the number of full data sets decreased since follow-up sleep studies frequently included polygraphy rather than PSG (T2, 38 patients, T3, 17 patients, T4, 11 patients). At T0, mean age was 63.2 years, 29 patients were female, and 22 patients had bulbar ALS. Immediate sequelae of NIV initiation included significant increases of slow wave sleep, rapid eye movement sleep, and oxygen saturation. Mean apnea-hypopnea index, respiratory rate, and the maximum transcutaneous carbon dioxide tension were reduced. At T2-T4, normoxia and normocapnia were preserved. Sleep quality measures showed no alteration as diurnal use of NIV gradually increased reflecting disease progression. In contrast to previous reports, improvement of sleep and respiratory outcomes was found in both non-bulbar and bulbar patients. NIV significantly improves objective sleep quality and SDB in the first night of treatment in patients with bulbar and non-bulbar ALS. NIV warrants nocturnal normoventilation without deterioration of sleep quality in the long run with only minor changes to ventilator settings. PMID:26076745

  17. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. Methods/Design The PROtective VARiable ventilation trial (‘PROVAR’) is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. Discussion We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Trial registration Clinicaltrials.gov NCT01683578 (registered on September 3 3012). PMID:24885921

  18. Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of flow pattern.

    PubMed

    Mouloudi, E; Prinianakis, G; Kondili, E; Georgopoulos, D

    2000-08-01

    In mechanically ventilated patients the flow pattern during bronchodilator delivery by metered-dose inhaler (MDI) could be a factor that might influence the effectiveness of this therapy. In order to test this the effect of two different inspiratory flow patterns on the bronchodilation induced by beta2-agonists administered via MDI and spacer in a group of mechanically ventilated patients with chronic obstructive pulmonary disease (COPD) was examined. Eighteen mechanically ventilated patients with COPD, were prospectively randomized to receive two (n=8, protocol A) or six (n=10 protocol B) puffs salbutamol (100 microg x puff(-1)) either under pressure control (decelerating flow pattern) or under volume control (square wave flow pattern). With both modes, tidal volume and inspiratory time were identical. Salbutamol was administered via an MDI adapted to the inspiratory limb of the ventilator circuit using an aerosol cloud-enhancer spacer. After a 6-h washout, patients were crossed over to receive the same dose of salbutamol (200 or 600 microg, respectively in protocols A and B) by the alternative mode of administration. Static and dynamic airway pressures, minimum (Rint) and maximum (Rrs) inspiratory resistance and the difference between Rrs and Rint (deltaR) were measured before and at 15, 30 and 60 min after salbutamol. Independent of the dose, salbutamol caused a significant decrease in dynamic and static airway pressures, Rint and Rrs. These changes were not influenced by the inspiratory flow pattern and were evident at 15, 30 and 60 min after salbutamol. It is concluded that salbutamol delivered via metered dose inhaler and spacer device, induces significant bronchodilation in mechanically ventilated patients with chronic obstructive pulmonary disease, the magnitude of which is not affected by the inspiratory flow/time profile.

  19. Ventilator-induced lung injury in preterm infants

    PubMed Central

    Carvalho, Clarissa Gutierrez; Silveira, Rita C; Procianoy, Renato Soibelmann

    2013-01-01

    In preterm infants, the need for intubation and mechanical ventilation is associated with ventilator-induced lung injuries and subsequent bronchopulmonary dysplasia. The aim of the present review was to improve the understanding of the mechanisms of injury that involve cytokine-mediated inflammation to contribute to the development of new preventive strategies. Relevant articles were retrieved from the PubMed database using the search terms "ventilator-induced lung injury preterm", "continuous positive airway pressure", "preterm", and "bronchopulmonary dysplasia". The resulting data and other relevant information were divided into several topics to ensure a thorough, critical view of ventilation-induced lung injury and its consequences in preterm infants. The role of pro-inflammatory cytokines (particularly interleukins 6 and 8 and tumor necrosis factor alpha) as mediators of lung injury was assessed. Evidence from studies conducted with animals and human newborns is described. This evidence shows that brief periods of mechanical ventilation is sufficient to induce the release of pro-inflammatory cytokines. Other forms of mechanical and non-invasive ventilation were also analyzed as protective alternatives to conventional mechanical ventilation. It was concluded that non-invasive ventilation, intubation followed by early surfactant administration and quick extubation for nasal continuous positive airway pressure, and strategies that regulate tidal volume and avoid volutrauma (such as volume guarantee ventilation) protect against ventilator-induced lung injury in preterm infants. PMID:24553514

  20. Interactive effects of mechanical ventilation, inhaled nitric oxide and oxidative stress in acute lung injury.

    PubMed

    Ronchi, Carlos Fernando; Ferreira, Ana Lucia Anjos; Campos, Fabio Joly; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Moraes, Marcos Aurélio; Bonatto, Rossano Cesar; Yeum, Kyung-Jin; Fioretto, Jose Roberto

    2014-01-01

    To compare conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation (HFOV), with/without inhaled nitric oxide (iNO), for oxygenation, inflammation, antioxidant/oxidative stress status, and DNA damage in a model of acute lung injury (ALI). Lung injury was induced by tracheal infusion of warm saline. Rabbits were ventilated at [Formula: see text] 1.0 and randomly assigned to one of five groups. Overall antioxidant defense/oxidative stress was assessed by total antioxidant performance assay, and DNA damage by comet assay. Ventilatory and hemodynamic parameters were recorded every 30min for 4h. ALI groups showed worse oxygenation than controls after lung injury. After 4h of mechanical ventilation, HFOV groups presented significant improvements in oxygenation. HFOV with and without iNO, and CMV with iNO showed significantly increased antioxidant defense and reduced DNA damage than CMV without iNO. Inhaled nitric oxide did not beneficially affect HFOV in relation to antioxidant defense/oxidative stress and pulmonary DNA damage. Overall, lung injury was reduced using HFOV or CMV with iNO. PMID:24148688

  1. Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients.

    PubMed

    Vandecandelaere, Ilse; Coenye, Tom

    2015-01-01

    In critically ill patients, breathing is impaired and mechanical ventilation, using an endotracheal tube (ET) connected to a ventilator, is necessary. Although mechanical ventilation is a life-saving procedure, it is not without risk. Because of several reasons, a biofilm often forms at the distal end of the ET and this biofilm is a persistent source of bacteria which can infect the lungs, causing ventilator-associated pneumonia (VAP). There is a link between the microbial flora of ET biofilms and the microorganisms involved in the onset of VAP. Culture dependent and independent techniques were already used to identify the microbial flora of ET biofilms and also, the antibiotic resistance of microorganisms obtained from ET biofilms was determined. The ESKAPE pathogens play a dominant role in the onset of VAP and these organisms were frequently identified in ET biofilms. Also, antibiotic resistant microorganisms were frequently present in ET biofilms. Members of the normal oral flora were also identified in ET biofilms but it is thought that these organisms initiate ET biofilm formation and are not directly involved in the development of VAP.

  2. Comparison of INSURE method with conventional mechanical ventilation after surfactant administration in preterm infants with respiratory distress syndrome: therapeutic challenge.

    PubMed

    Nayeri, Fatemeh Sadat; Esmaeilnia Shirvani, Tahereh; Aminnezhad, Majid; Amini, Elaheh; Dalili, Hossein; Moghimpour Bijani, Faezeh

    2014-01-01

    Administration of endotracheal surfactant is potentially the main treatment for neonates suffering from RDS (Respiratory Distress Syndrome), which is followed by mechanical ventilation. Late and severe complications may develop as a consequence of using mechanical ventilation. In this study, conventional methods for treatment of RDS are compared with surfactant administration, use of mechanical ventilation for a brief period and NCPAP (Nasal Continuous Positive Airway Pressure), (INSURE method ((Intubation, Surfactant administration and extubation)). A randomized clinical trial study was performed, including all newborn infants with diagnosed RDS and a gestational age of 35 weeks or less, who were admitted in NICU of Valiasr hospital. The patients were then divided randomly into two CMV (Conventional Mechanical Ventilation) and INSURE groups. Surfactant administration and consequent long-term mechanical ventilation were done in the first group (CMV group). In the second group (INSURE group), surfactant was administered followed by a short-term period of mechanical ventilation. The infants were then extubated, and NCPAP was embedded. The comparison included crucial duration of mechanical ventilation and oxygen therapy, IVH (Intraventricular Hemorrhage), PDA (Patent Ductus Arteriosus), air-leak syndromes, BPD (Broncho-Pulmonary Dysplasia) and mortality rate. The need for mechanical ventilation in 5th day of admission was 43% decreased (P=0.005) in INSURE group in comparison to CMV group. A decline (P=0.01) in the incidence of IVH and PDA was also achieved. Pneumothorax, chronic pulmonary disease and mortality rates, were not significantly different among two groups. (P=0.25, P=0.14, P=0.25, respectively). This study indicated that INSURE method in the treatment of RDS decreases the need for mechanical ventilation and oxygen-therapy in preterm neonates. Moreover, relevant complications as IVH and PDA were observed to be reduced. Thus, it seems rationale to perform

  3. Adjunct therapies during mechanical ventilation: airway clearance techniques, therapeutic aerosols, and gases.

    PubMed

    Kallet, Richard H

    2013-06-01

    Mechanically ventilated patients in respiratory failure often require adjunct therapies to address special needs such as inhaled drug delivery to alleviate airway obstruction, treat pulmonary infection, or stabilize gas exchange, or therapies that enhance pulmonary hygiene. These therapies generally are supportive in nature rather than curative. Currently, most lack high-level evidence supporting their routine use. This overview describes the rationale and examines the evidence supporting adjunctive therapies during mechanical ventilation. Both mechanistic and clinical research suggests that intrapulmonary percussive ventilation may enhance pulmonary secretion mobilization and might reverse atelectasis. However, its impact on outcomes such ICU stay is uncertain. The most crucial issue is whether aerosolized antibiotics should be used to treat ventilator-associated pneumonia, particularly when caused by multi-drug resistant pathogens. There is encouraging evidence from several studies supporting its use, at least in individual cases of pneumonia non-responsive to systemic antibiotic therapy. Inhaled pulmonary vasodilators provide at least short-term improvement in oxygenation and may be useful in stabilizing pulmonary gas exchange in complex management situations. Small uncontrolled studies suggest aerosolized heparin with N-acetylcysteine might break down pulmonary casts and relieve airway obstruction in patients with severe inhalation injury. Similar low-level evidence suggests that heliox is effective in reducing airway pressure and improving ventilation in various forms of lower airway obstruction. These therapies generally are supportive and may facilitate patient management. However, because they have not been shown to improve patient outcomes, it behooves clinicians to use these therapies parsimoniously and to monitor their effectiveness carefully. PMID:23709200

  4. Influence of drive and timing mechanisms on breathing pattern and ventilation during mental task performance.

    PubMed

    Wientjes, C J; Grossman, P; Gaillard, A W

    1998-09-01

    Assessment of multiple respiratory measures may provide insight into how behavioral demands affect the breathing pattern. This is illustrated by data from a study among 44 subjects, in which tidal volume, respiration rate, minute ventilation and indices of central drive and timing mechanisms were assessed via inductive plethysmography, in addition to end-tidal PCO2. After a baseline, three conditions of a memory comparison task were presented. The first two conditions differed only with regard to the presence or absence of feedback of performance (NFB and FB). In the third 'all-or-nothing' (AON) condition, subjects only received a monetary bonus, if their performance exceeded that of the previous two conditions. Minute ventilation increased from baseline to all task conditions, and from NFB and FB to AON. Respiration rate increased in all task conditions, but there were no differences between task conditions. Tidal volume decreased during NFB, but was equal to baseline during FB and AON. Of the respiratory control indices, inspiratory flow rate covaried much more closely with minute ventilation than duty cycle. The task performance induced a minor degree of hyperventilation. The discussion focusses on how behavioral demands affect respiratory control processes to produce alterations in breathing pattern and ventilation.

  5. The role of endocrine mechanisms in ventilator-associated lung injury in critically ill patients.

    PubMed

    Penesova, A; Galusova, A; Vigas, M; Vlcek, M; Imrich, R; Majek, M

    2012-07-01

    The critically ill subjects are represented by a heterogeneous group of patients suffering from a life-threatening event of different origin, e.g. trauma, cardiopulmonary failure, surgery or sepsis. The majority of these patients are dependent on the artificial lung ventilation, which means a life-saving chance for them. However, the artificial lung ventilation may trigger ventilation-associated lung injury (VALI). The mechanical ventilation at higher volumes (volutrauma) and pressure (barotrauma) can cause histological changes in the lungs including impairments in the gap and adherens junctions and desmosomes. The injured lung epithelium may lead to an impairment of the surfactant production and function, and this may not only contribute to the pathophysiology of VALI but also to acute respiratory distress syndrome. Other components of VALI are atelectrauma and toxic effects of the oxygen. Collectively, all these effects may result in a lung inflammation associated with a subsequent profibrotic changes, endothelial dysfunction, and activation of the local and systemic endocrine responses such as the renin-angiotensin system (RAS). The present review is aimed to describe some of the pathophysiologic aspects of VALI providing a basis for novel therapeutic strategies in the critically ill patients. PMID:22808908

  6. A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

    PubMed Central

    Kim, Chang-Sei; Ansermino, J. Mark; Hahn, Jin-Oh

    2016-01-01

    The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate model to derive two lower-order candidate models. We compared these candidate models for predictive capability and reliability using experimental data collected from 25 pediatric subjects undergoing dynamically varying mechanical ventilation during surgical procedures. A two-compartment model equipped with transport delay to account for CO2 delivery between the lungs and the tissues showed modest but statistically significant improvement in predictive capability over the same model without transport delay. Aggregating the lungs and the tissues into a single compartment further degraded the predictive fidelity of the model. In addition, the model equipped with transport delay demonstrated superior reliability to the one without transport delay. Further, the respiratory parameters derived from the model equipped with transport delay, but not the one without transport delay, were physiologically plausible. The results suggest that gas transport between the lungs and the tissues must be taken into account to accurately reproduce the respiratory CO2 gas exchange process under conditions of wide-ranging and dynamically varying mechanical ventilation conditions. PMID:26870728

  7. Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients.

    PubMed

    Morrow, Brenda; Futter, Merle; Argent, Andrew

    2006-01-01

    Endotracheal suctioning is performed regularly in ventilated infants and children to remove obstructive secretions. The effect of suctioning on respiratory mechanics is not known. This study aimed to determine the immediate effect of endotracheal suctioning on dynamic lung compliance, tidal volume, and airway resistance in mechanically-ventilated paediatric patients by means of a prospective observational clinical study. Lung mechanics were recorded for five minutes before and five minutes after a standardised suctioning procedure in 78 patients intubated with endotracheal tubes < or = 4.0 mm internal diameter. Twenty-four patients with endotracheal tube leaks > or = 20% were excluded from analysis. There was a significant overall decrease in dynamic compliance (p < 0.001) and mechanical expired tidal volume (p = 0.03) following suctioning with no change in the percentage endotracheal tube leak (p = 0.41). The change in dynamic compliance was directly related to both endotracheal tube and catheter sizes. There was no significant change in expiratory or inspiratory airway resistance following suctioning (p > 0.05). Although the majority of patients (68.5%) experienced a drop in dynamic compliance following suctioning, dynamic compliance increased in 31.5% of patients after the procedure. This study demonstrates that endotracheal suctioning frequently causes an immediate drop in dynamic compliance and expired tidal volume in ventilated children with variable lung pathology, intubated with small endotracheal tubes, probably indicating loss of lung volume caused by the suctioning procedure. There is no evidence that suctioning reduces airway resistance.

  8. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    PubMed Central

    Robey, Ian F.; Nesbit, Lance A.

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P < 0.01). Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs). To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (P ≤ 0.003). Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX). The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion. PMID:23936808

  9. Modified Mapleson D system for long-term mechanical ventilation of infants and children.

    PubMed

    Holzman, B H; Trapana, Y; Mora, J; MacIntyre, S

    1981-06-01

    The Bain circuit, a modified Mapleson D system, is a lightweight, simple circuit which has been used primarily for anesthesia. This report describes its use for long-term mechanical ventilation for infants and children. The use of this circuit improved warming of inspired gas reducing patient heat loss and, additionally, it was believed to have resulted in increased humidity of the inspired gas. There were no instances of accidental extubation nor were any of the endotracheal tubes blocked by inspissated secretions. Temperatures of the humidifiers had to be lower than conventionally recommended but this did not result in any nosocomial infections. This circuit is an effective and safe circuit to use for long-term mechanical ventilation of children.

  10. Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation.

    PubMed

    de Prost, Nicolas; Costa, Eduardo L; Wellman, Tyler; Musch, Guido; Winkler, Tilo; Tucci, Mauro R; Harris, R Scott; Venegas, Jose G; Vidal Melo, Marcos F

    2011-11-01

    Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.

  11. Intrapulmonary haematoma complicating mechanical ventilation in patients with chronic obstructive pulmonary disease.

    PubMed

    Bonmarchand, G; Lefebvre, E; Lerebours-Pigeonnière, G; Genevois, A; Massari, P; Leroy, J

    1988-01-01

    Intrapulmonary haematomas occurred during mechanical ventilation of two patients with advanced chronic obstructive pulmonary disease and bullous dystrophy. In both cases, the haematomas were revealed by blood-stained aspirates, a fall in haemoglobin level, and the appearance of radiological opacities. Haematoma occurrence in the area of a bulla which recently has rapidly increased in size, suggests that the haematoma is due to the rupture of stretched vessels embedded in the wall of the bulla. PMID:3379188

  12. Association Between Vitamin D Status and Weaning From Prolonged Mechanical Ventilation in Survivors of Critical Illness

    PubMed Central

    Verceles, Avelino C; Weiler, Bethany; Koldobskiy, Dafna; Goldberg, Andrew P; Netzer, Giora; Sorkin, John D

    2015-01-01

    BACKGROUND In this study, we examined the association between 25-hydroxyvitamin D (25(OH)D) concentration and successful weaning from mechanical ventilation in a cohort of ICU survivors requiring prolonged mechanical ventilation. METHODS This was a retrospective cohort study of ICU survivors admitted to a long-term acute care hospital. Demographic data were extracted from medical records, including 25(OH)D concentrations drawn on admission. Subjects were divided into 2 groups based on their 25(OH)D concentrations (deficient, < 20 ng/mL; not deficient, ≥ 20 ng/mL), and associations between 25(OH)D concentration and successful weaning were calculated. RESULTS A total of 183 subjects were studied. A high prevalence of 25(OH)D deficiency was found (61%, 111/183). No association was found between 25(OH)D concentration and weaning from mechanical ventilation. Increased comorbidity burden (Charlson comorbidity index) was associated with decreased odds of weaning (odds ratio of 0.50, 95% CI 0.25– 0.99, P = .05). CONCLUSIONS Vitamin D deficiency is common in ICU survivors requiring prolonged mechanical ventilation. Surprisingly, there was no significant relationship between 25(OH)D concentration and successful weaning. This finding may be due to the low 25(OH)D concentrations seen in our subjects. Given what is known about vitamin D and lung function and given the low vitamin D concentrations seen in patients requiring long-term ventilatory support, interventional studies assessing the effects of 25(OH)D supplementation in these patients are needed. PMID:25715347

  13. Diagnostic potential of circulating cell-free DNA in patients needing mechanical ventilation: promises and challenges

    PubMed Central

    2011-01-01

    Circulating cell-free DNA (cf-DNA) mainly comes from apoptotic cells and can reflect the extent of cellular damage. Increased plasma levels of cf-DNA have been found in many acute disorders, including septic and clinically ill patients, and usually correlate well with clinical outcome. Acute respiratory failure, the most frequent organ failure in ICU patients, can be related to various acute diseases that may cause cell death and release of DNA into the bloodstream. In a recent issue of Critical Care, Okkonen and colleagues evaluate levels of cf-DNA in plasma as a prognostic marker in patients needing mechanical ventilation. They report that plasma cf-DNA was higher than normal in patients with mechanical ventilation, and even higher in patients who eventually died compared to survivors. However, its usefulness as a death predictor may be limited in the heterogeneous group of mechanically ventilated patients, probably due to confounding effects of co-morbidities, among other factors. PMID:21978490

  14. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung.

    PubMed

    Zhang, Boyang; McDonald, Fiona B; Cummings, Kevin J; Frappell, Peter B; Wilson, Richard J A

    2014-09-15

    In unrestrained whole body plethysmography, tidal volume is commonly determined using the barometric method, which assumes that temperature and humidity changes (the 'barometric component') are solely responsible for breathing-related chamber pressure fluctuations. However, in small animals chamber pressure is also influenced by a 'mechanical component' dependent on airway resistance and airflow. We devised a novel 'mechanical lung' capable of simulating neonatal mouse breathing in the absence of temperature or humidity changes. Using this device, we confirm that the chamber pressure fluctuations produced by breathing of neonatal mice are dominated by the mechanical component, precluding direct quantitative assessment of tidal volume. Recognizing the importance of airway resistance to the chamber pressure signal and the ability of our device to simulate neonatal breathing at different frequencies and tidal volumes, we invented a novel in vivo, non-invasive method for conscious airway resistance and ventilation estimation (CARVE) in neonatal rodents. This technique will allow evaluation of developmental, pathological and pharmaceutical effects on airway resistance.

  15. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung.

    PubMed

    Zhang, Boyang; McDonald, Fiona B; Cummings, Kevin J; Frappell, Peter B; Wilson, Richard J A

    2014-09-15

    In unrestrained whole body plethysmography, tidal volume is commonly determined using the barometric method, which assumes that temperature and humidity changes (the 'barometric component') are solely responsible for breathing-related chamber pressure fluctuations. However, in small animals chamber pressure is also influenced by a 'mechanical component' dependent on airway resistance and airflow. We devised a novel 'mechanical lung' capable of simulating neonatal mouse breathing in the absence of temperature or humidity changes. Using this device, we confirm that the chamber pressure fluctuations produced by breathing of neonatal mice are dominated by the mechanical component, precluding direct quantitative assessment of tidal volume. Recognizing the importance of airway resistance to the chamber pressure signal and the ability of our device to simulate neonatal breathing at different frequencies and tidal volumes, we invented a novel in vivo, non-invasive method for conscious airway resistance and ventilation estimation (CARVE) in neonatal rodents. This technique will allow evaluation of developmental, pathological and pharmaceutical effects on airway resistance. PMID:25017785

  16. Medium-term cost-effectiveness of an automated non-invasive ventilation outpatient set-up versus a standard fixed level non-invasive ventilation inpatient set-up in obese patients with chronic respiratory failure: a protocol description

    PubMed Central

    Mandal, S; Arbane, G; Murphy, P; Elliott, M W; Janssens, J P; Pepin, J L; Muir, J F; Cuvelier, A; Polkey, M; Parkin, D; Douiri, A; Hart, N

    2015-01-01

    Introduction Obesity is an escalating issue, with an accompanying increase in referrals of patients with obesity-related respiratory failure. Currently, these patients are electively admitted to hospital for initiation of non-invasive ventilation (NIV), but it is unknown whether outpatient initiation is as effective as inpatient set-up. We hypothesise that outpatient set-up using an autotitrating NIV device will be more cost-effective than a nurse-led inpatient titration and set-up. Methods and analysis We will undertake a multinational, multicentre randomised controlled trial. Participants will be randomised to receive the usual inpatient set-up, which will include nurse-led initiation of NIV or outpatient set-up with an automated NIV device. They will be stratified according to the trial site, gender and previous use of NIV or continuous positive airway pressure. Assuming a 10% dropout rate, a total sample of 82 patients will be required. Cost-effectiveness will be evaluated using standard treatment costs and health service utilisation as well as health-related quality of life measures (severe respiratory insufficiency (SRI) and EuroQol-5 dimensions (EQ-5D)). A change in the SRI questionnaire will be based on the analysis of covariance adjusting for the baseline measurements between the two arms of patients. Ethics and dissemination This study has been approved by the Westminster National Research Ethics Committee (11/LO/0414) and is the trial registered on the UKCRN portfolio. The trial is planned to start in January 2015 with publication of the trial results in 2017. Trial registration number ISRCTN 51420481. PMID:25908673

  17. Mechanical ventilation alone, and in the presence of sepsis, impair protein metabolism in the diaphragm of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  18. Respiratory Mechanics and Plasma Levels of Tumor Necrosis Factor Alpha and Interleukin 6 Are Affected by Gas Humidification during Mechanical Ventilation in Dogs

    PubMed Central

    Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O.; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H.

    2014-01-01

    The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation. PMID:25036811

  19. Gastro-oesophageal reflux in mechanically ventilated patients: effects of an oesophageal balloon.

    PubMed

    Orozco-Levi, M; Félez, M; Martínez-Miralles, E; Solsona, J F; Blanco, M L; Broquetas, J M; Torres, A

    2003-08-01

    Gastro-oesophageal reflux (GOR) and bronchoaspiration of gastric content are risk factors linked with ventilator-associated pneumonia. This study was aimed at evaluating the effect of a nasogastric tube (NGT) incorporating a low-pressure oesophageal balloon on GOR and bronchoaspiration in patients receiving mechanical ventilation. Fourteen patients were studied in a semi-recumbent position for 2 consecutive days. Inflation or deflation of the oesophageal balloon was randomised. Samples of blood, gastric content, and oropharyngeal and bronchial secretions were taken every 2 h over a period of 8 h. A radioactively labelled nutritional solution was continuously administered through the NGT. The magnitude of both the GOR and bronchoaspiration was measured by radioactivity counting of oropharyngeal and bronchial secretion samples, respectively. Inflation of the oesophageal balloon resulted in a significant decrease of both GOR and bronchoaspiration of gastric content. This protective effect was statistically significant from 4 h following inflation throughout the duration of the study. This study demonstrates that an inflated oesophageal balloon delays and decreases gastro-oesophageal and bronchial aspiration of gastric content in patients carrying a nasogastric tube and receiving enteral nutrition during mechanical ventilation. Although the method was found to be safe when applied for 8 h, longer times should be considered with caution. PMID:12952272

  20. Individuality of breathing patterns in patients under noninvasive mechanical ventilation evidenced by chaotic global models

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Rodrigues, Giovani G.; Muir, Jean-François; Aguirre, Luis A.

    2013-03-01

    Autonomous global models based on radial basis functions were obtained from data measured from patients under noninvasive mechanical ventilation. Some of these models, which are discussed in the paper, turn out to have chaotic or quasi-periodic solutions, thus providing a first piece of evidence that the underlying dynamics of the data used to estimate the global models are likely to be chaotic or, at least, have a chaotic component. It is explicitly shown that one of such global models produces attractors characterized by a Horseshoe map, two models produce toroidal chaos, and one model produces a quasi-periodic regime. These topologically inequivalent attractors evidence the individuality of breathing profiles observed in patient under noninvasive ventilation.

  1. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    PubMed

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

  2. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    PubMed

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations.

  3. Assessment of pulmonary function in amyotrophic lateral sclerosis: when can polygraphy help evaluate the need for non-invasive ventilation?

    PubMed Central

    Prell, Tino; Ringer, Thomas M; Wullenkord, Kara; Garrison, Philipp; Gunkel, Anne; Stubendorff, Beatrice; Witte, Otto W; Grosskreutz, Julian

    2016-01-01

    Background Non-invasive positive-pressure ventilation (NPPV) is an established, effective, long-term treatment for patients with amyotrophic lateral sclerosis (ALS), but the correct indicators for the establishment of NPPV have not been defined. Methods In this retrospective study, records (spirometry, nocturnal polygraphy, nocturnal blood gases) of 131 patients with ALS were reviewed in order to evaluate the role of polygraphy for prediction of respiratory failure in ALS. Results The patient group reporting with versus without dyspnoea had significantly lower values on the revised ALS-Functional Rating Scale (ALSFRS-R), vital capacity (VC), forced VC (FVC), arterial oxygen saturation and arterial oxygen tension readings, including a higher apnoea–hypopnoea index. 23 patients, who did not report about dyspnoea, had an FVC of <75%. Nocturnal hypoventilation was observed in 67% of the patients with ALS independent of their ALSFRS-R. The patient group with nocturnal hypoventilation was characterised by a significantly lower VC, FVC and maximal static inspiratory pressure compared with the group without nocturnal hypoventilation. However, also in the absence of nocturnal hypoventilation, 8 patients had a VC <50% as predicted. Discussion Our study shows that in patients not reporting dyspnoea and having an FVC of >75%, nocturnal hypoventilation was observed in nearly every second patient. Therefore, for the question of whether NPPV should be initiated, polygraphy does not provide useful additional information if the FVC is already <75% as predicted. However, in patients with more or less normal lung function parameters or where lung spirometry cannot perform adequately (eg, bulbar ALS), it can provide sufficient evidence for the need of NPPV. PMID:27010615

  4. Exhaled nitric oxide and carbon monoxide in mechanically ventilated brain-injured patients.

    PubMed

    Korovesi, I; Kotanidou, A; Papadomichelakis, E; Livaditi, O; Sotiropoulou, C; Koutsoukou, A; Marczin, N; Orfanos, S E

    2016-03-02

    The inflammatory influence and biological markers of prolonged mechanical-ventilation in uninjured human lungs remains controversial. We investigated exhaled nitric oxide (NO) and carbon monoxide (CO) in mechanically-ventilated, brain-injured patients in the absence of lung injury or sepsis at two different levels of positive end-expiratory pressure (PEEP). Exhaled NO and CO were assessed in 27 patients, without lung injury or sepsis, who were ventilated with 8 ml kg(-1) tidal volumes under zero end-expiratory pressure (ZEEP group, n  =  12) or 8 cm H2O PEEP (PEEP group, n  =  15). Exhaled NO and CO was analysed on days 1, 3 and 5 of mechanical ventilation and correlated with previously reported markers of inflammation and gas exchange. Exhaled NO was higher on day 3 and 5 in both patient groups compared to day 1: (PEEP group: 5.8 (4.4-9.7) versus 11.7 (6.9-13.9) versus 10.7 (5.6-16.6) ppb (p  <  0.05); ZEEP group: 5.3 (3.8-8.8) versus 9.8 (5.3-12.4) versus 9.6 (6.2-13.5) ppb NO peak levels for days 1, 3 and 5, respectively, p  <  0.05). Exhaled CO remained stable on day 3 but significantly decreased by day 5 in the ZEEP group only (6.3 (4.3-9.0) versus 8.1 (5.8-12.1) ppm CO peak levels for day 5 versus 1, p  <  0.05). The change scores for peak exhaled CO over day 1 and 5 showed significant correlations with arterial blood pH and plasma TNF levels (r s  =  0.49, p  =  0.02 and r s  =  -0.51 p  =  0.02, respectively). Exhaled NO correlated with blood pH in the ZEEP group and with plasma levels of IL-6 in the PEEP group. We observed differential changes in exhaled NO and CO in mechanically-ventilated patients even in the absence of manifest lung injury or sepsis. These may suggest subtle pulmonary inflammation and support application of real time breath analysis for molecular monitoring in critically ill patients.

  5. Non-invasive ventilation: comparison of effectiveness, safety, and management in acute heart failure syndromes and acute exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Pladeck, T; Hader, C; Von Orde, A; Rasche, K; Wiechmann, H W

    2007-11-01

    Continuous positive airway pressure ventilation (CPAP) and non-invasive positive pressure ventilation (NPPV) are accepted treatments in acute cardiogenic pulmonary edema (ACPE) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The aim of the study was a comparison of effectiveness, safety, and management of NPPV in ACPE and AECOPD trying to find an approach for standard management in intensive care. Thirty patients with acute respiratory failure (14 due to ACPE, 16 due to AECOPD) were prospectively included into the study. If clinical stability could not be achieved by standard therapy (pharmacological therapy and oxygen) patients were treated by non-invasive ventilation (NPPV) using a BiPAP-Vision device in S/T-mode. During the first 90 min after the onset of NPPV respiratory and vital parameters were documented every 30 min. Additional relevant outcome parameters (need for intubation, duration of ICU stay, complications and mortality) were monitored. We found that 85.7% of the ACPE patients and 50.0% of the AECOPD patients were treated successfully with NPPV. Intubation rate was 31.2% in the AECOPD group and 14.3% in the ACPE group. 78.6% of the ACPE patients and 43.8% of the AECOPD patients were regularly discharged from hospital in a good condition. In the first 90 min of NIV, there was a significant amelioration of respiratory and other vital parameters. In ACPE patients there was a significant increase in PaO2 from 58.9 mmHg to 80.6 mmHg and of oxygen saturation (SaO2) from 85.1% to 93.1% without changing the inspiratory O2 concentration. This effect was comparable in the AECOPD group, but only could be achieved by increasing the inspiratory ventilation pressure. In the ACPE group inspiratory ventilation pressure could be reduced. In conclusion, in acute respiratory failure, ACPE patients comparably profit from NPPV as do patients with AECOPD, but the algorithm of titration for non-invasive ventilation pressure is different.

  6. The long-term mechanically ventilated patient. An outcomes management approach.

    PubMed

    Burns, S M

    1998-03-01

    -management model, we recognize that other models may also result in comparable, favorable outcomes. It is important that those who adopt similar models of care delivery for managing patients requiring prolonged ventilation be scientific in their approach. Long-term studies of the efficacy of these models are essential if we are to truly provide quality care for our patients in the future. Unfortunately, as noted earlier, bias will be hard to overcome. Hospitals vested in rapidly establishing a stable financial bottom-line are likely to embrace quick applications. Projects with a true experimental design to evaluate efficacy, such as this one, will be rare in these organizations. Finally, it is critical that variables of interest be inclusive of specific quality indicators such as ventilator duration and complications rather than global institutional markers such as LOS. Standardization of variables of interest is imperative if outcomes are to be compared. For example, patients requiring long-term mechanical ventilation are identified by the AACN's Third National Study Group on weaning as those who require mechanical ventilation for more than 3 days. If we are to compare other variables of interest such as total ventilator duration, such as definition is essential or we will be comparing apples and oranges in the future. Provision of quality, cost-effective care for patients requiring prolonged ventilation is a true clinical challenge. Outcomes management is a multidisciplinary method of care delivery that is systematic and comprehensive in approach. Although little science exists related to the application of the model for patients requiring prolonged ventilation, preliminary reports are promising and warrant future applications and evaluation of the same.

  7. Sulfide toxicity: Mechanical ventilation and hypotension determine survival rate and brain necrosis

    SciTech Connect

    Baldelli, R.J.; Green, F.H.Y.; Auer, R.N. )

    1993-09-01

    Occupational exposure to hydrogen sulfide is one of the leading causes of sudden death in the workplace, especially in the oil and gas industry. High-dose exposure causes immediate neurogenic apnea and death; lower doses cause [open quotes]knockdown[close quotes] (transient loss of consciousness, with apnea). Because permanent neurological sequelae have been reported, the authors sought to determine whether sulfide can directly kill central nervous system neurons. Ventilated and unventilated rats were studied to allow administration of higher doses of sulfide and to facilitate physiological monitoring. It was extremely difficult to produce cerebral necrosis with sulfide. Only one of eight surviving unventilated rats given high-dose sulfide (a dose that was lethal in [ge]50% of animals) showed cerebral necrosis. Mechanical ventilation shifted the dose that was lethal in 50% of the animals to 190 mg/kg from 94 mg/kg in the unventilated rats. Sulfide was found to potently depress blood pressure. Cerebral necrosis was absent in the ventilated rats (n = 11), except in one rat that showed profound and sustained hypotension to [le]35 Torr. Electroencephalogram activity ceased during exposure but recovered when the animals regained consciousness. The authors conclude that very-high-dose sulfide is incapable of producing cerebral necrosis by a direct histotoxic effect. 32 refs., 5 figs.

  8. [The basics on mechanical ventilation support in acute respiratory distress syndrome].

    PubMed

    Tomicic, V; Fuentealba, A; Martínez, E; Graf, J; Batista Borges, J

    2010-01-01

    Acute Respiratory Distress Syndrome (ARDS) is understood as an inflammation-induced disruption of the alveolar endothelial-epithelial barrier that results in increased permeability and surfactant dysfunction followed by alveolar flooding and collapse. ARDS management relies on mechanical ventilation. The current challenge is to determine the optimal ventilatory strategies that minimize ventilator-induced lung injury (VILI) while providing a reasonable gas exchange. The data support that a tidal volume between 6-8 ml/kg of predicted body weight providing a plateau pressure < 30 cmH₂O should be used. High positive end expiratory pressure (PEEP) has not reduced mortality, nevertheless secondary endpoints are improved. The rationale used for high PEEP argues that it prevents cyclic opening and closing of airspaces, probably the major culprit of development of VILI. Chest computed tomography has contributed to our understanding of anatomic-functional distribution patterns in ARDS. Electric impedance tomography is a technique that is radiation-free, but still under development, that allows dynamic monitoring of ventilation distribution at bedside.

  9. Patterns and dynamics of airway colonisation in mechanically-ventilated patients.

    PubMed

    Berdal, J-E; Bjørnholt, J; Blomfeldt, A; Smith-Erichsen, N; Bukholm, G

    2007-05-01

    The aim of this study was to investigate the patterns and dynamics of the microbiota in the airways of ventilated patients. Seventy-four mechanically-ventilated patients were recruited consecutively, and oropharyngeal, tracheal and bronchoalveolar (BAL) fluid specimens were collected 48 h after intubation, and every 72 h thereafter until the patient was extubated or a total of five sample sets had been collected. Ventilator-associated pneumonia (VAP) pathogens were identified, quantified and genotyped. Microbial findings were highly correlated both between airway locations and over time when samples were taken no more than 72 h apart. If no VAP pathogen was present in the oral flora, it was unlikely to be found in a lower airway sample; i.e., the positive predictive value of the oropharyngeal sample was 0.73 (95% CI 0.67-0.80), and the negative predictive value was 0.95 (95% CI 0.92-0.99). Colonisation with Enterobacteriacae, non-fermentative bacteria and Staphylococcus aureus was monoclonal in the airways and over time, whereas colonisation with microbes normally found in the oropharynx, i.e., Haemophilus influenzae, Haemophilus parainfluenzae and Streptococcus pneumoniae, was polyclonal. When antibiotics were used, the chance of recovering VAP pathogens from all sampling sites was reduced three-fold. No correlation was observed between a bacterial count of > or =10(4) CFU/mL in BAL fluid and chest X-rays compatible with VAP.

  10. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application.

    PubMed

    Schädler, Dirk; Mersmann, Stefan; Frerichs, Inéz; Elke, Gunnar; Semmel-Griebeler, Thomas; Noll, Oliver; Pulletz, Sven; Zick, Günther; David, Matthias; Heinrichs, Wolfgang; Scholz, Jens; Weiler, Norbert

    2014-10-01

    To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.

  11. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study.

    PubMed

    De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco

    2014-02-01

    Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to

  12. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  13. Entropy correlates with Richmond Agitation Sedation Scale in mechanically ventilated critically ill patients.

    PubMed

    Sharma, Ankur; Singh, Preet Mohinder; Trikha, Anjan; Rewari, Vimi; Chandralekha

    2014-04-01

    Sedation is routinely used in intensive care units. However due to absence of objective scoring systems like Bispectral Index and entropy our ability to regulate the degree of sedation is limited. This deficiency is further highlighted by the fact that agitation scores used in intensive care units (ICU) have no role in paralyzed patients. The present study compares entropy as a sedation scoring modality with Richmond Agitation Sedation Scale (RASS) in mechanically ventilated, critically ill patients in an ICU. Twenty-seven, mechanically ventilated, critically ill patients of either sex, 16-65 years of age, were studied over a period of 24 h. They received a standard sedation regimen consisting of a bolus dose of propofol 0.5 mg/kg and fentanyl 1 lg/kg followed by infusions of propofol and fentanyl ranging from 1.5 to 5 mg/kg/h and 0.5 to 2.0 lg/kg/h, respectively. Clinically relevant values of RASS for optimal ICU sedation (between 0 and -3) in non-paralyzed patients were compared to corresponding entropy values, to find if any significant correlation exists between the two. These entropy measurements were obtained using the Datex-Ohmeda-M-EntropyTM module. This module is presently not approved by Food and Drug Administration (FDA) for monitoring sedation in ICU. A total of 527 readings were obtained. There was a statistically significant correlation between the state entropy (SE) and RASS [Spearman's rho/rs = 0.334, p\\0.0001]; response entropy (RE) and RASS [Spearman's rho/rs = 0.341, p\\0.0001]). For adequate sedation as judged by a RASS value of 0 to -3, the mean SE was 57.86 ± 16.50 and RE was 67.75 ± 15.65. The present study illustrates that entropy correlates with RASS (between scores 0 and -3) when assessing the level of sedation in mechanically ventilated critically ill patients.

  14. Early and small changes in serum creatinine concentrations are associated with mortality in mechanically ventilated patients.

    PubMed

    Nin, Nicolás; Lombardi, Raúl; Frutos-Vivar, Fernando; Esteban, Andrés; Lorente, José A; Ferguson, Niall D; Hurtado, Javier; Apezteguia, Carlos; Brochard, Laurent; Schortgen, Fréderique; Raymondos, Konstantinos; Tomicic, Vinko; Soto, Luis; González, Marco; Nightingale, Peter; Abroug, Fekri; Pelosi, Paolo; Arabi, Yaseen; Moreno, Rui; Anzueto, Antonio

    2010-08-01

    Emerging evidence suggests that minor changes in serum creatinine concentrations are associated with increased hospital mortality rates. However, whether serum creatinine concentration (SCr) on admission and its change are associated with an increased mortality rate in mechanically ventilated patients is not known. We have conducted an international, prospective, observational cohort study enrolling adult intensive care unit patients under mechanical ventilation (MV). Recursive partitioning was used to determine the values of SCr at the start of MV (SCr0) and the change in SCr ([DeltaSCr] defined as the maximal difference between the value at start of MV [day 0] and the value on MV day 2 at 8:00 am) that best discriminate mortality. In-hospital mortality, adjusted by a proportional hazards model, was the primary outcome variable. A total of 2,807 patients were included; median age was 59 years and median Simplified Acute Physiology Score II was 44. All-cause in-hospital mortality was 44%. The variable that best discriminated outcome was a SCr0 greater than 1.40 mg/dL (mortality, 57% vs. 36% for patients with SCr0 mechanically ventilated patients.

  15. Validity and reliability of “Persian Weaning Tool” in mechanically ventilated patients

    PubMed Central

    Bazrafshan, Fatemeh; Irajpour, Alireza; Abbasi, Saeed; Mahaki, Behzad

    2016-01-01

    Background: “Persian Weaning Tool” (PWT) is the only specific, national protocol designed to assess patients’ readiness for weaning from mechanical ventilation in Iran. This study was developed to determine the validity and reliability of this protocol. Materials and Methods: This is a psychometric study conducted on 31 patients connected to mechanical ventilation were ready from weaning according to anesthesiologist's diagnosis and was selected through convenient sampling. The patients selected from Intensive Care Units (ICUs) of Al-Zahra Hospital in Isfahan. The sheet data collection includes demographic data, PWT; Burn's Wean Assessment Program (BWAP), and Morganroth's scale. To determine the inter-rater reliability between researcher and his partner, Pearson correlation and paired t-test were used. To assess the criterion validity of the PWT in relation to Burn's and Morganroth's weaning scales (as criteria), Pearson correlation and McNemar tests were used. To specify a minimum acceptable score of the PWT for weaning from mechanical ventilation, receiver operating characteristic curve was used. Results: The results showed that there was statistically significant correlation between score of PWT and BWAP (r = 0.370 with P < 0.05) and there were no statistically significant differences between these tools in terms of identification of patients’ readiness for weaning (P = 0.453). There was statistically significant correlation between PWT score obtained by researcher and his colleague (r = 0.928), and the reliability of this tool was approved. The PWTs cut of point was calculated as 57 (sensitivity = 0.679, specificity = 1). Conclusions: The reliability and validity of the PWT were confirmed for this study's sample size. Consequently, the findings of this study can be used to measure the PWTs effectiveness and applicability in ICUs. PMID:27761432

  16. Effects of thoracic squeezing on airway secretion removal in mechanically ventilated patients

    PubMed Central

    Yousefnia-Darzi, Farkhondeh; Hasavari, Farideh; Khaleghdoost, Tahereh; Kazemnezhad-Leyli, Ehsan; Khalili, Malahat

    2016-01-01

    Background: Accumulation of secretions in the airways of patients with an endotracheal tube and mechanical ventilation will have serious consequences. One of the most common methods of airway clearance is endotracheal suctioning. In order to facilitate discharge of airway secretion resulting in promotion of gas exchange, chest physiotherapy techniques can be used at the time of expiration before suction. Materials and Methods: In this clinical trial with a cross-over design, 50 mechanically ventilated patients admitted to intensive care units (ICUs) were randomly divided into two groups of thoracic squeezing. In each patient, two interventions of endotracheal suctioning were conducted, one with and the other without thoracic squeezing during exhalation, with a 3 h gap between the two interventions and an elapse of three respiratory cycles between the number of compressions. Sputum secreted was collected in a container connected to a suction catheter and weighed. Data were recorded in data gathering forms and analyzed using descriptive and inferential statistics (Wilcoxon and independent t-test, Chi-square) in SPSS version 16. Results: Findings showed that the mean weight of the suction secretions removed from airway without thoracic squeezing was 1.35 g and that of suction secretions removed by thoracic squeezing was 1.94 g. Wilcoxon test showed a significant difference regarding the rate of secretion between the two techniques (P = 0.003). Conclusions: According to the study findings, endotracheal suction with thoracic squeezing on expiration helps airway secretion discharge more than suction alone in patients on mechanical ventilators and can be used as an effective method. PMID:27186214

  17. Early mobilization of mechanically ventilated patients in the intensive care unit.

    PubMed

    Taito, Shunsuke; Shime, Nobuaki; Ota, Kohei; Yasuda, Hideto

    2016-01-01

    Several recent studies have suggested that the early mobilization of mechanically ventilated patients in the intensive care unit is safe and effective. However, in these studies, few patients reached high levels of active mobilization, and the standard of care among the studies has been inconsistent. The incidence of adverse events during early mobilization is low. Its importance should be considered in the context of the ABCDE bundle. Protocols of early mobilization with strict inclusion and exclusion criteria are needed to further investigate its contributions. PMID:27478617

  18. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  19. Simultaneous tracheal and oesophageal pH monitoring during mechanical ventilation.

    PubMed Central

    Hue, V; Leclerc, F; Gottrand, F; Martinot, A; Crunelle, V; Riou, Y; Deschildre, A; Fourier, C; Turck, D

    1996-01-01

    OBJECTIVE: To simultaneously record tracheal and oesophageal pH in mechanically ventilated children to determine: (1) the feasibility and safety of the method; (2) the incidence of gastro-oesophageal reflux (GOR) and pulmonary contamination; and (3) their associated risk factors. DESIGN: Prospective study. SETTING: Paediatric intensive care unit in a university hospital. PATIENTS: Twenty mechanically ventilated children (mean age 6.7 years) who met the following inclusion criteria: endotracheal tube with an internal diameter of 4 mm or more (cuffed or uncuffed), mechanical ventilation for an acute disease, no treatment with antiacids, prokinetics, or H2-receptor blockers, and no nasogastric or orogastric tube. METHODS: The tracheal antimony pH probe was positioned 1 cm below the distal end of the endotracheal tube. The oesophageal antimony pH probe was positioned at the lower third of the oesophagus. pH was recorded on a double channel recorder and analysed with EsopHogram 5.01 software and by examination of the trace. The following definitions were used: GOR index, percentage of time pH < 4; pathological GOR, GOR index > 4.8%; tracheal reflux, fall in tracheal pH < 4, 4.5, or 5, or a decrease of one unit from baseline, in both cases preceded by an episode of GOR. The results were analysed statistically by Fisher's exact and the Kruskal-Wallis test. RESULTS: The procedure was well tolerated and the median duration of analysable recording was 6 hours (range 5-22.6). Pathological GOR was observed in eight (40%) children. GOR was more frequent with an uncuffed endotracheal tube than with a cuffed one (p = 0.01). Tracheal reflux (pH < 4) was observed in four children (20%) without clinical evidence of pulmonary aspiration. Episodes of tracheal reflux were associated with a GOR index > 10% (p < 0.01) and were more frequent with a maximal inspiratory pressure of < 25 cm H2O (p = 0.03), but were not related to the indication for mechanical ventilation, whether the

  20. Early sedation use in critically ill mechanically ventilated patients: when less is really more.

    PubMed

    Lee, Christie M; Mehta, Sangeeta

    2014-01-01

    Over the last 10 years, there has been an explosion of literature surrounding sedation management for critically ill patients. The clinical target has moved away from an unconscious and immobile patient toward a goal of light or no sedation and early mobility. The move away from terms such as 'sedation' toward more patient-centered and symptom-based control of pain, anxiety, and agitation makes the management of critically ill patients more individualized and dynamic. Over-sedation has been associated with negative ICU outcomes, including longer durations of mechanical ventilation and lengths of stay, but few studies have been able to associate deep sedation with increased mortality. PMID:25673278

  1. Low-frequency assessment of airway and tissue mechanics in ventilated COPD patients.

    PubMed

    Lorx, András; Szabó, Barna; Hercsuth, Magdolna; Pénzes, István; Hantos, Zoltán

    2009-12-01

    Low-frequency forced oscillations have increasingly been employed to characterize airway and tissue mechanics separately in the normal respiratory system and animal models of lung disease; however, few data are available on the use of this method in chronic obstructive pulmonary disease (COPD). We studied 30 intubated and mechanically ventilated patients (COPD, n = 9; acute exacerbation of COPD, n = 21) during short apneic intervals at different levels of positive end-expiratory pressure (PEEP), with small-amplitude forced oscillations between 0.4 and 4.8 Hz. In 16 patients, measurements were made before and after inhalation of fenoterol hydrobromide plus ipratropium bromide (Berodual). Newtonian resistance and coefficients of tissue resistance (G) and elastance (H) were estimated from the respiratory system impedance (Zrs) data by model fitting. Apart from some extremely high Zrs data obtained primarily at relatively low PEEP levels, the model yielded a reasonable partitioning of the airway and tissue parameters, and the inclusion of further parameters did not improve the model performance. With increasing PEEP, Newtonian resistance and the ratio G/H decreased, reflecting the volume dependence of the airway caliber and the improved homogeneity of the lungs, respectively. Bronchodilation after the administration of Berodual was also associated with simultaneous decreases in G and H, indicating recruitment of lung units. In conclusion, the measurement of low-frequency Zrs can be accomplished in ventilated COPD patients during short apneic periods and offers valuable information on the mechanical status of the airways and tissues.

  2. [Sleep respiratory disorders, non-invasive ventilation and critical care in Archivos de Bronconeumología (June 2008-November 2009)].

    PubMed

    Terán-Santos, Joaquín; Luz Alonso Alvarez, M; Carbajo, Estrella Ordax; Guevara, José Cordero; Jiménez, Fernando Masa

    2010-03-01

    The present study analyses the works published in Archivos de Bronconeumología from June 2008 to November 2009 that mention sleep disorders, non-invasive ventilation and critical care. The methodology used was to analyse the objectives of the works submitted, with their main results and the conclusions suggested by the authors, often putting forward the possibility of conducting new research studies. The review no only includes original articles but is also a reflection on the editorials, special articles and review works. PMID:20353841

  3. Mechanical ventilation in patients in the intensive care unit of a general university hospital in southern Brazil: an epidemiological study

    PubMed Central

    Fialkow, Léa; Farenzena, Maurício; Wawrzeniak, Iuri Christmann; Brauner, Janete Salles; Vieira, Sílvia Regina Rios; Vigo, Alvaro; Bozzetti, Mary Clarisse

    2016-01-01

    OBJECTIVES: To determine the characteristics, the frequency and the mortality rates of patients needing mechanical ventilation and to identify the risk factors associated with mortality in the intensive care unit (ICU) of a general university hospital in southern Brazil. METHOD: Prospective cohort study in patients admitted to the ICU who needed mechanical ventilation for at least 24 hours between March 2004 and April 2007. RESULTS: A total of 1,115 patients admitted to the ICU needed mechanical ventilation. The mortality rate was 51%. The mean age (± standard deviation) was 57±18 years, and the mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 22.6±8.3. The variables independently associated with mortality were (i) conditions present at the beginning of mechanical ventilation, age (hazard ratio: 1.01; p<0.001); the APACHE II score (hazard ratio: 1.01; p<0.005); acute lung injury/acute respiratory distress syndrome (hazard ratio: 1.38; p=0.009), sepsis (hazard ratio: 1.33; p=0.003), chronic obstructive pulmonary disease (hazard ratio: 0.58; p=0.042), and pneumonia (hazard ratio: 0.78; p=0.013) as causes of mechanical ventilation; and renal (hazard ratio: 1.29; p=0.011) and neurological (hazard ratio: 1.25; p=0.024) failure, and (ii) conditions occurring during the course of mechanical ventilation, acute lung injuri/acute respiratory distress syndrome (hazard ratio: 1.31; p<0.010); sepsis (hazard ratio: 1.53; p<0.001); and renal (hazard ratio: 1.75; p<0.001), cardiovascular (hazard ratio: 1.32; p≤0.009), and hepatic (hazard ratio: 1.67; p≤0.001) failure. CONCLUSIONS: This large cohort study provides a comprehensive profile of mechanical ventilation patients in South America. The mortality rate of patients who required mechanical ventilation was higher, which may have been related to the severity of illness of the patients admitted to our ICU. Risk factors for hospital mortality included conditions present at the start of mechanical

  4. Episodic ventilation lowers the efficiency of pulmonary CO2 excretion.

    PubMed

    Malte, Christian Lind; Malte, Hans; Wang, Tobias

    2013-11-01

    The ventilation pattern of many ectothermic vertebrates, as well as hibernating and diving endotherms, is episodic where breaths are clustered in bouts interspersed among apneas of varying duration. Using mechanically ventilated, anesthetized freshwater turtles (Trachemys scripta), a species that normally exhibits this episodic ventilation pattern, we investigated whether episodic ventilation affects pulmonary gas exchange compared with evenly spaced breaths. In two separate series of experiments (a noninvasive and an invasive), ventilation pattern was switched from a steady state, with evenly spaced breaths, to episodic ventilation while maintaining overall minute ventilation (30 ml·min(-1)·kg(-1)). On switching to an episodic ventilation pattern of 10 clustered breaths, mean CO2 excretion rate was reduced by 6 ± 5% (noninvasive protocol) or 20 ± 8% (invasive protocol) in the first ventilation pattern cycle, along with a reduction in the respiratory exchange ratio. O2 uptake was either not affected or increased in the first ventilation pattern cycle, while neither heart rate nor overall pulmonary blood flow was significantly affected by the ventilation patterns. The results confirm that, for a given minute ventilation, episodic ventilation is intrinsically less efficient for CO2 excretion, thereby indicating an increase in the total bodily CO2 store in the protocol. Despite the apparent CO2 retention, mean arterial Pco2 only increased 1 Torr during the episodic ventilation pattern, which was concomitant with a possible reduction of respiratory quotient. This would indicate a shift in metabolism such that less CO2 is produced when the efficiency of excretion is reduced. PMID:23970538

  5. Response of respiratory motor output to varying pressure in mechanically ventilated patients.

    PubMed

    Xirouhaki, N; Kondili, E; Mitrouska, I; Siafakas, N; Georgopoulos, D

    1999-09-01

    It has been shown in mechanically ventilated patients that pressure support (PS) unloads the respiratory muscles in a graded fashion depending on the PS level. The downregulation of respiratory muscles could be mediated through chemical or load-related reflex feedback. To test this hypothesis, 8 patients with acute lung injury mechanically ventilated on PS mode (baseline PS) were studied. In Protocol A, PS was randomly decreased or increased by at least 5 cmH2O for two breaths. During this time, which is shorter than circulation delay, only changes in load-related reflex feedback were operating. Sixty trials where PS increased (high PS) for two breaths and 62 trials where PS decreased (low PS), also for two breaths were analysed. Thereafter, the patients were assigned randomly to baseline, low or high PS and ventilated in each level for 30 min (Protocol B). The last 2 min of each period were analysed. Respiratory motor output was assessed by total pressure generated by the respiratory muscles (Pmus), computed from oesophageal pressure (Poes). In Protocol A, alteration in PS caused significant changes in tidal volume (VT) without any effect on Pmus waveform except for neural expiratory time (ntE). ntE increased significantly with increasing PS. In Protocol B, Pmus was significantly down-regulated with increasing PS. Carbon dioxide tension in arterial blood (Pa,CO2) measured at the end of each period increased with decreasing PS. There was not any further alteration in ntE beyond that observed in Protocol A. These results indicate that the effect of load-related reflex on respiratory motor output is limited to timing. The downregulation of pressure generated by the respiratory muscles with steady-state increase in pressure support is due to a slow feedback system, which is probably chemical in nature. PMID:10543268

  6. Is use of mechanical ventilation a reasonable proxy indicator for coma among Medicare patients hospitalized for acute stroke?

    PubMed Central

    Horner, R D; Sloane, R J; Kahn, K L

    1998-01-01

    OBJECTIVE: To ascertain whether use of mechanical ventilation on admission to the hospital is a proxy indicator of coma (i.e., very severe stroke) among acute stroke patients. METHODS: A secondary analysis of data from a medical record review on a nationally representative sample of 2,824 Medicare patients, ages 65 years or older, who were hospitalized for stroke in 1982-1983 or 1985-1986 in 297 acute care hospitals in 30 areas within five geographically dispersed states. RESULTS: Use of mechanical ventilation on the first day of hospitalization was significantly associated with level of consciousness on admission: < 2 percent of noncomatose patients versus 17.5 percent of comatose (p < .001). With a high specificity and high likelihood ratio for a positive test, use of mechanical ventilation on the first day of hospitalization ruled-in coma. It was also significantly associated with severity of illness, prognostic indicators (i.e., admission through the emergency room, admission to intensive care, and having a "do-not-resuscitate" order written during the hospital stay), and with in-hospital death. Adjusting for patient demographics, stroke type, comorbidity, and process of care, early initiation of mechanical ventilation remained significantly associated with both coma and in-hospital death. CONCLUSIONS: A stroke patient's use of mechanical ventilation on the first day of hospitalization is a valid proxy indicator of level of consciousness. PMID:9460489

  7. Driving pressure during assisted mechanical ventilation: Is it controlled by patient brain?

    PubMed

    Georgopoulos, Dimitris; Xirouchaki, Nectaria; Tzanakis, Nikolaos; Younes, Magdy

    2016-07-01

    Tidal volume (VT) is the controlled variable during passive mechanical ventilation (CMV) in order to avoid ventilator-induced-lung-injury. However, recent data indicate that the driving pressure [ΔP; VT to respiratory system compliance (Crs) ratio] is the parameter that best stratifies the risk of death. In order to study which variable (VT or ΔP) is controlled by critically ill patients, 108 previously studied patients were assigned to receive PAV+ (a mode that estimates Crs and permits the patients to select their own breathing pattern) after CMV, were re-analyzed. When patients were switched from CMV to PAV+ they controlled ΔP without constraining VT to narrow limits. VT was increased when the resumption of spontaneous breathing was associated with an increase in Crs. When ΔP was high during CMV, the patients (n=12) decreased it in 58 out of 67 measurements. We conclude that critically ill patients control the driving pressure by sizing the tidal volume to individual respiratory system compliance using appropriate feedback mechanisms aimed at limiting the degree of lung stress.

  8. Weaning Patients From Mechanical Ventilation: A Knowledge-Based System Approach

    PubMed Central

    Tong, David A.

    1990-01-01

    The WEANing PROtocol (WEANPRO) knowledge-based system assists respiratory therapists and nurses in weaning post-operative cardiovascular patients from mechanical ventilation in the intensive care unit. The knowledge contained in WEANPRO is represented by rules and is implemented in M.1® by Teknowledge, Inc. WEANPRO will run on any IBM® compatible microcomputer. WEANPRO's performance in weaning patients in the intensive care unit was evaluated three ways: (1) a statistical comparison between the mean number of arterial blood gases required to wean patients to a T-piece with and without the use of WEANPRO, (2) a critique of the suggestions offered by the system by clinicians not involved in the system development, and (3) an inspection of the user's acceptance of WEANPRO in the intensive care unit. The results of the evaluations revealed that using WEANPRO significantly decreases the number of arterial blood gas analyses needed to wean patients from total dependance on mechanical ventilation to independent breathing using a T-piece. In doing so, WEANPRO's suggestions are accurate and its use is accepted by the clinicians. Currently, WEANPRO is being used in the intensive care unit at the East Unit of Baptist Memorial Hospital in Memphis, Tennessee.

  9. State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications

    PubMed Central

    Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.

    2013-01-01

    Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738

  10. [Measurement of functional residual capacity by nitrogen washout during mechanical ventilation].

    PubMed

    Nomura, T; Saito, Y; Ogawa, H; Akata, N; Nishino, Y; Kosaka, Y

    1998-02-01

    A medical gas analyzer AMIS 2000 SP, which is a mass spectrometer, incorporating a fractional residual capacity (FRC) measuring program based on a nitrogen washout method, has been introduced recently. The purpose of this study was to assess the reliability and the reproductivity of the FRC measuring system in a clinical situation. FRC was measured by this system connected to a ventilator (Bennet 7200ae). Our study examined; 1) the accuracy of the measurement using a syringe. 2) the difference in two consecutive measurements in the same subject during mechanical ventilation, and 3) the correlation between the measured and the predicted value calculated with Gorldman's formula in 18 subjects during ventilation. The first study has showed an excellent correlation (y = 0.953x + 0.092, r = 0.996, P < 0.001) or y = 0.909x + 0.132 (r = 0.999, P < 0.001) with a tidal volume of 400 ml or 500 ml, respectively) between the measured value and the syringe capacity. Reproductivity was proved by the linear regression (y = 0.977x + 0.024, r = 0.998, P < 0.001) between the two consecutive measurements. A good correlation was shown between the measured values and the predicted values (y = 0.656x - 0.415, r = 0.849, P < 0.0001). These results showed good reliability and reproductivity of our FRC measuring system. It is concluded that the FRC measurements using AMIS2000SP system can be used in clinical respiratory managements in ICU.

  11. Bedside estimation of the inspiratory work of breathing during mechanical ventilation.

    PubMed

    Marini, J J; Rodriguez, R M; Lamb, V

    1986-01-01

    The work of chest inflation, WI, is a primary determinant of the need for ventilatory support and an integrative index of elastic and resistive impedance. Although the mechanical work performed by a ventilator in moving gas into the passive chest (WI = integral of PV dt) can be determined by measuring the area enclosed by a display of airway pressure (P) against delivered volume (V), the instrumentation required is not routinely available at the bedside. Under conditions of constant flow, however, inspiratory time represents an analog of delivered volume, and airway pressure can be recorded easily by equipment normally employed to monitor pulmonary vascular pressures. We reasoned that the area beneath the airway pressure vs time tracing should accurately reflect WI for unassisted breaths delivered by the ventilator at constant flow. We computed estimates of WI from simultaneous pressure-volume (PV) and pressure-time (PT) plots during square-wave inflation in 20 acutely ill patients. Ventilator settings were varied over the usual clinical range for tidal volume (10 to 15 ml/kg) and inspiratory flow (40 to 80 L/min). PV and PT estimates agreed closely; across the four setting combinations tested, the difference between PV and PT estimates averaged 2.4 +/- 5.6 percent (means +/- SD, r = 0.99). Furthermore, the reproducible geometric configuration of the curves generated allowed accurate estimation of WI from routine beside observations of tidal volume and peak dynamic and static inflation pressures, without the need for specialized equipment or area measurement. Such simplified estimates could serve in clinical practice to gauge the ventilatory workload and to monitor changes in respiratory impedance.

  12. Time course analysis of mechanical ventilation-induced diaphragm contractile muscle dysfunction in the rat

    PubMed Central

    Corpeno, R; Dworkin, B; Cacciani, N; Salah, H; Bergman, H-M; Ravara, B; Vitadello, M; Gorza, L; Gustafson, A-M; Hedström, Y; Petersson, J; Feng, H-Z; Jin, J-P; Iwamoto, H; Yagi, N; Artemenko, K; Bergquist, J; Larsson, L

    2014-01-01

    Controlled mechanical ventilation (CMV) plays a key role in triggering the impaired diaphragm muscle function and the concomitant delayed weaning from the respirator in critically ill intensive care unit (ICU) patients. To date, experimental and clinical studies have primarily focused on early effects on the diaphragm by CMV, or at specific time points. To improve our understanding of the mechanisms underlying the impaired diaphragm muscle function in response to mechanical ventilation, we have performed time-resolved analyses between 6 h and 14 days using an experimental rat ICU model allowing detailed studies of the diaphragm in response to long-term CMV. A rapid and early decline in maximum muscle fibre force and preceding muscle fibre atrophy was observed in the diaphragm in response to CMV, resulting in an 85% reduction in residual diaphragm fibre function after 9–14 days of CMV. A modest loss of contractile proteins was observed and linked to an early activation of the ubiquitin proteasome pathway, myosin:actin ratios were not affected and the transcriptional regulation of myosin isoforms did not show any dramatic changes during the observation period. Furthermore, small angle X-ray diffraction analyses demonstrate that myosin can bind to actin in an ATP-dependent manner even after 9–14 days of exposure to CMV. Thus, quantitative changes in muscle fibre size and contractile proteins are not the dominating factors underlying the dramatic decline in diaphragm muscle function in response to CMV, in contrast to earlier observations in limb muscles. The observed early loss of subsarcolemmal neuronal nitric oxide synthase activity, onset of oxidative stress, intracellular lipid accumulation and post-translational protein modifications strongly argue for significant qualitative changes in contractile proteins causing the severely impaired residual function in diaphragm fibres after long-term mechanical ventilation. For the first time, the present study

  13. Review of Residential Ventilation Technologies

    SciTech Connect

    Armin Rudd

    2005-08-30

    This paper reviews current and potential ventilation technologies for residential buildings, including a variety of mechanical systems, natural ventilation, and passive ventilation. with particular emphasis on North American climates and construction.

  14. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).

    PubMed

    Nieman, Gary F; Satalin, Joshua; Andrews, Penny; Habashi, Nader M; Gatto, Louis A

    2016-12-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical breath on dynamic and static global lung strain and energy load. Strain is the change in lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded a number of exciting new concepts including the following: (1) Individual mechanical breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but rather any combination of parameters that subject the lung to excessive dynamic strain and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept merits attention since our current protective ventilation strategies are fixated on the priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection.

  15. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics.

    PubMed

    Sage, Michaël; Nadeau, Mathieu; Kohlhauer, Matthias; Praud, Jean-Paul; Tissier, Renaud; Robert, Raymond; Walti, Hervé; Micheau, Philippe

    2016-08-01

    Ultra-fast cooling for mild therapeutic hypothermia (MTH) has several potential applications, including prevention of post-cardiac arrest syndrome. Ultra-fast MTH by total liquid ventilation (TLV) entails the sudden filling of the lungs with a cold perfluorocarbon liquid and its subsequent use to perform TLV. The present physiological study was aimed at assessing whether pulmonary and systemic hemodynamics as well as lung mechanics are significantly altered during this procedure. Pulmonary and systemic arterial pressures, cardiac output as well as airway resistance and respiratory system compliance were measured during ultra-fast MTH by TLV followed by rewarming and normothermia in six healthy juvenile lambs. Results show that none of the studied variables were altered upon varying the perfluorocarbon temperature from 12 to 41 °C. It is concluded that ultra-fast MTH by TLV does not have any deleterious effect on hemodynamics or lung mechanics in healthy juvenile lambs.

  16. Paid carers' experiences of caring for mechanically ventilated children at home: implications for services and training.

    PubMed

    Maddox, Christina; Pontin, David

    2013-06-01

    UK survival rates for long-term mechanically ventilated children have increased and paid carers are trained to care for them at home, however there is limited literature on carers' training needs and experience of sharing care. Using a qualitative abductive design, we purposively sampled experienced carers to generate data via diaries, semi-structured interviews, and researcher reflexive notes. Research ethics approval was granted from NHS and University committees. Five analytical themes emerged - Parent as expert; Role definition tensions; Training and Continuing Learning Needs; Mixed Emotions; Support Mechanisms highlighting the challenges of working in family homes for carers and their associated learning needs. Further work on preparing carers to share feelings with parents, using burnout prevention techniques, and building confidence is suggested. Carers highlight the lack of clinical supervision during their night-working hours. One solution may be to provide access to registered nurse support when working out-of-office hours. PMID:23711491

  17. Liquid Ventilation

    PubMed Central

    Tawfic, Qutaiba A.; Kausalya, Rajini

    2011-01-01

    Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. PMID:22043370

  18. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings.

    PubMed

    Luongo, J C; Fennelly, K P; Keen, J A; Zhai, Z J; Jones, B W; Miller, S L

    2016-10-01

    Infectious disease outbreaks and epidemics such as those due to SARS, influenza, measles, tuberculosis, and Middle East respiratory syndrome coronavirus have raised concern about the airborne transmission of pathogens in indoor environments. Significant gaps in knowledge still exist regarding the role of mechanical ventilation in airborne pathogen transmission. This review, prepared by a multidisciplinary group of researchers, focuses on summarizing the strengths and limitations of epidemiologic studies that specifically addressed the association of at least one heating, ventilating and/or air-conditioning (HVAC) system-related parameter with airborne disease transmission in buildings. The purpose of this literature review was to assess the quality and quantity of available data and to identify research needs. This review suggests that there is a need for well-designed observational and intervention studies in buildings with better HVAC system characterization and measurements of both airborne exposures and disease outcomes. Studies should also be designed so that they may be used in future quantitative meta-analyses.

  19. A novel preterm respiratory mechanics active simulator to test the performances of neonatal pulmonary ventilators

    NASA Astrophysics Data System (ADS)

    Cappa, Paolo; Sciuto, Salvatore Andrea; Silvestri, Sergio

    2002-06-01

    A patient active simulator is proposed which is capable of reproducing values of the parameters of pulmonary mechanics of healthy newborns and preterm pathological infants. The implemented prototype is able to: (a) let the operator choose the respiratory pattern, times of apnea, episodes of cough, sobs, etc., (b) continuously regulate and control the parameters characterizing the pulmonary system; and, finally, (c) reproduce the attempt of breathing of a preterm infant. Taking into account both the limitation due to the chosen application field and the preliminary autocalibration phase automatically carried out by the proposed device, accuracy and reliability on the order of 1% is estimated. The previously indicated value has to be considered satisfactory in light of the field of application and the small values of the simulated parameters. Finally, the achieved metrological characteristics allow the described neonatal simulator to be adopted as a reference device to test performances of neonatal ventilators and, more specifically, to measure the time elapsed between the occurrence of a potentially dangerous condition to the patient and the activation of the corresponding alarm of the tested ventilator.

  20. Cardiorespiratory Mechanical Simulator for In Vitro Testing of Impedance Minute Ventilation Sensors in Cardiac Pacemakers.

    PubMed

    Marcelli, Emanuela; Cercenelli, Laura

    2016-01-01

    We developed a cardiorespiratory mechanical simulator (CRMS), a system able to reproduce both the cardiac and respiratory movements, intended to be used for in vitro testing of impedance minute ventilation (iMV) sensors in cardiac pacemakers. The simulator consists of two actuators anchored to a human thorax model and a software interface to control the actuators and to acquire/process impedance signals. The actuators can be driven separately or simultaneously to reproduce the cardiac longitudinal shortening at a programmable heart rate and the diaphragm displacement at a programmable respiratory rate (RR). A standard bipolar pacing lead moving with the actuators and a pacemaker case fixed to the thorax model have been used to measure impedance (Z) variations during the simulated cardiorespiratory movements. The software is able to discriminate the low-frequency component because of respiration (Z(R)) from the high-frequency ripple because of cardiac effect (Z(C)). Impedance minute ventilation is continuously calculated from Z(R) and RR. From preliminary tests, the CRMS proved to be a reliable simulator for in vitro evaluation of iMV sensors. Respiration impedance recordings collected during cardiorespiratory movements reproduced by the CRMS were comparable in morphology and amplitude with in vivo assessments of transthoracic impedance variations.

  1. Effect of enzyme replacement therapy (ERT) added to Home Mechanical Ventilation (HMV) in Adult Pompe disease.

    PubMed

    Sayeed, Nadia; Sharma, Pooja; Abdelhalim, Manahil; Mukherjee, Rahul

    2015-12-01

    Adult Pompe disease/acid maltase deficiency is an autosomal recessive disorder resulting in accumulation of glycogen in skeletal muscles, leading to myopathy frequently involving respiratory muscles. This involvement can cause respiratory insufficiency that may present as acute hypercapnic respiratory failure. Enzyme replacement therapy (ERT) with alpha - glucosidase alfa, the only disease-specific treatment, has been available as treatment option since 2006. ERT has shown efficacy concerning muscle strength and pulmonary function in adult patients as well as positive association with survival. We present two cases where addition of ERT to Home Mechanical Ventilation (HMV) showed improvements in lung function and gas exchange that may not be entirely attributable to nocturnal HMV and therefore may further indicate the beneficial role of ERT in conjunction with HMV in Adult Pompe disease. PMID:26740886

  2. A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation.

    PubMed

    Kilic, Yusuf Alper; Kilic, Ilke

    2010-12-01

    Weaning from mechanical ventilation represents one of the most challenging issues in management of critically ill patients. Currently used weaning predictors ignore many important dimensions of weaning outcome and have not been uniformly successful. A fuzzy logic inference system that uses nine variables, and five rule blocks within two layers, has been designed and implemented over mathematical simulations and random clinical scenarios, to compare its behavior and performance in predicting expert opinion with those for rapid shallow breathing index (RSBI), pressure time index and Jabour' weaning index. RSBI has failed to predict expert opinion in 52% of scenarios. Fuzzy logic inference system has shown the best discriminative power (ROC: 0.9288), and RSBI the worst (ROC: 0.6556) in predicting expert opinion. Fuzzy logic provides an approach which can handle multi-attribute decision making, and is a very powerful tool to overcome the weaknesses of currently used weaning predictors.

  3. [Helicopter transportation of a sedated, mechanically ventilated patient with cervical cord injury].

    PubMed

    Kato, Hideya; Nishiwaki, Yuko; Hosoi, Kunihiko; Shiomi, Naoto; Hirata, Masashi

    2013-09-01

    We report helicopter transportation of a sedated, mechanically ventilated patient with cervical cord injury. A 20-year-old male sustained traumatic injury to the cervical spinal cord during extracurricular activities in a college. On arrival at the hospital, a halo vest was placed on the patient and tracheostomy was performed. On the 38th hospital day, he was transported a distance of 520km by helicopter to a specialized hospital in Fukuoka for medical repatriation. Cabin space was narrow. Since power supply and carrying capacity were limited, battery-driven and portable medical devices were used. In consideration for patient's psychological stress, he was sedated with propofol. RSS (Ramsay sedation scale) scores were recorded to evaluate whether the patient was adequately sedated during helicopter transportation. Prior to transport, we rehearsed the sedation using bispectral index monitoring (BIS) in the hospital to further ensure the patient's safety during the transport. PMID:24063142

  4. Simultaneous temperature and humidity measurements in a mechanical ventilator using an optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Hernandez, F. U.; Correia, R.; Morgan, S. P.; Hayes-Gill, B.; Evans, D.; Sinha, R.; Norris, A.; Harvey, D.; Hardman, J. G.; Korposh, S.

    2016-05-01

    An optical fibre sensor for simultaneous temperature and humidity measurements consisting of one fibre Bragg grating (FBG) to measure temperature and a mesoporous film of bilayers of Poly(allylamine hydrochloride)(PAH) and silica (SiO2) nanoparticles deposited onto the tip of the same fibre to measure humidity is reported. The hygroscopic film was created using the layer-by-layer (LbL) method and the optical reflection spectra were measured up to a maximum of 23 bilayers. The temperature sensitivity of the FBG was 10 pm/°C while the sensitivity to humidity was (-1.4x10-12 W / %RH) using 23 bilayers. The developed sensor was tested in the mechanical ventilator and temperature and humidity of the delivered artificial air was simultaneously measured. Once calibrated, the optical fibre sensor has the potential to control the absolute humidity as an essential part of critical respiratory care.

  5. Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial

    PubMed Central

    Bissett, Bernie M; Leditschke, I Anne; Neeman, Teresa; Boots, Robert; Paratz, Jennifer

    2016-01-01

    Background In patients who have been mechanically ventilated, inspiratory muscles remain weak and fatigable following ventilatory weaning, which may contribute to dyspnoea and limited functional recovery. Inspiratory muscle training may improve inspiratory muscle strength and endurance following weaning, potentially improving dyspnoea and quality of life in this patient group. Methods We conducted a randomised trial with assessor-blinding and intention-to-treat analysis. Following 48 hours of successful weaning, 70 participants (mechanically ventilated ≥7 days) were randomised to receive inspiratory muscle training once daily 5 days/week for 2 weeks in addition to usual care, or usual care (control). Primary endpoints were inspiratory muscle strength and fatigue resistance index (FRI) 2 weeks following enrolment. Secondary endpoints included dyspnoea, physical function and quality of life, post-intensive care length of stay and in-hospital mortality. Results 34 participants were randomly allocated to the training group and 36 to control. The training group demonstrated greater improvements in inspiratory strength (training: 17%, control: 6%, mean difference: 11%, p=0.02). There were no statistically significant differences in FRI (0.03 vs 0.02, p=0.81), physical function (0.25 vs 0.25, p=0.97) or dyspnoea (−0.5 vs 0.2, p=0.22). Improvement in quality of life was greater in the training group (14% vs 2%, mean difference 12%, p=0.03). In-hospital mortality was higher in the training group (4 vs 0, 12% vs 0%, p=0.051). Conclusions Inspiratory muscle training following successful weaning increases inspiratory muscle strength and quality of life, but we cannot confidently rule out an associated increased risk of in-hospital mortality. Trial registration number ACTRN12610001089022, results. PMID:27257003

  6. Early sedation and clinical outcomes of mechanically ventilated patients: a prospective multicenter cohort study

    PubMed Central

    2014-01-01

    Introduction Sedation overuse is frequent and possibly associated with poor outcomes in the intensive care unit (ICU) patients. However, the association of early oversedation with clinical outcomes has not been thoroughly evaluated. The aim of this study was to assess the association of early sedation strategies with outcomes of critically ill adult patients under mechanical ventilation (MV). Methods A secondary analysis of a multicenter prospective cohort conducted in 45 Brazilian ICUs, including adult patients requiring ventilatory support and sedation in the first 48 hours of ICU admissions, was performed. Sedation depth was evaluated after 48 hours of MV. Multivariate analysis was used to identify variables associated with hospital mortality. Results A total of 322 patients were evaluated. Overall, ICU and hospital mortality rates were 30.4% and 38.8%, respectively. Deep sedation was observed in 113 patients (35.1%). Longer duration of ventilatory support was observed (7 (4 to 10) versus 5 (3 to 9) days, P = 0.041) and more tracheostomies were performed in the deep sedation group (38.9% versus 22%, P = 0.001) despite similar PaO2/FiO2 ratios and acute respiratory distress syndrome (ARDS) severity. In a multivariate analysis, age (Odds Ratio (OR) 1.02; 95% confidence interval (CI) 1.00 to 1.03), Charlson Comorbidity Index >2 (OR 2.06; 95% CI, 1.44 to 2.94), Simplified Acute Physiology Score 3 (SAPS 3) score (OR 1.02; CI 95%, 1.00 to 1.04), severe ARDS (OR 1.44; CI 95%, 1.09 to 1.91) and deep sedation (OR 2.36; CI 95%, 1.31 to 4.25) were independently associated with increased hospital mortality. Conclusions Early deep sedation is associated with adverse outcomes and constitutes an independent predictor of hospital mortality in mechanically ventilated patients. PMID:25047960

  7. Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation.

    PubMed

    Ehrhardt, Harald; Pritzke, Tina; Oak, Prajakta; Kossert, Melina; Biebach, Luisa; Förster, Kai; Koschlig, Markus; Alvira, Cristina M; Hilgendorff, Anne

    2016-05-15

    Bronchopulmonary dysplasia (BPD), characterized by impaired alveolarization and vascularization in association with lung inflammation and apoptosis, often occurs after mechanical ventilation with oxygen-rich gas (MV-O2). As heightened expression of the proinflammatory cytokine TNF-α has been described in infants with BPD, we hypothesized that absence of TNF-α would reduce pulmonary inflammation, and attenuate structural changes in newborn mice undergoing MV-O2 Neonatal TNF-α null (TNF-α(-/-)) and wild type (TNF-α(+/+)) mice received MV-O2 for 8 h; controls spontaneously breathed 40% O2 Histologic, mRNA, and protein analysis in vivo were complemented by in vitro studies subjecting primary pulmonary myofibroblasts to mechanical stretch. Finally, TNF-α level in tracheal aspirates from preterm infants were determined by ELISA. Although MV-O2 induced larger and fewer alveoli in both, TNF-α(-/-) and TNF-α(+/+) mice, it caused enhanced lung apoptosis (TUNEL, caspase-3/-6/-8), infiltration of macrophages and neutrophils, and proinflammatory mediator expression (IL-1β, CXCL-1, MCP-1) in TNF-α(-/-) mice. These differences were associated with increased pulmonary transforming growth factor-β (TGF-β) signaling, decreased TGF-β inhibitor SMAD-7 expression, and reduced pulmonary NF-κB activity in ventilated TNF-α(-/-) mice. Preterm infants who went on to develop BPD showed significantly lower TNF-α levels at birth. Our results suggest a critical balance between TNF-α and TGF-β signaling in the developing lung, and underscore the critical importance of these key pathways in the pathogenesis of BPD. Future treatment strategies need to weigh the potential benefits of inhibiting pathologic cytokine expression against the potential of altering key developmental pathways. PMID:27016588

  8. Mechanisms of nasal high flow on ventilation during wakefulness and sleep

    PubMed Central

    Mündel, Toby; Feng, Sheng; Tatkov, Stanislav

    2013-01-01

    Nasal high flow (NHF) has been shown to increase expiratory pressure and reduce respiratory rate but the mechanisms involved remain unclear. Ten healthy participants [age, 22 ± 2 yr; body mass index (BMI), 24 ± 2 kg/m2] were recruited to determine ventilatory responses to NHF of air at 37°C and fully saturated with water. We conducted a randomized, controlled, cross-over study consisting of four separate ∼60-min visits, each 1 wk apart, to determine the effect of NHF on ventilation during wakefulness (NHF at 0, 15, 30, and 45 liters/min) and sleep (NHF at 0, 15, and 30 liters/min). In addition, a nasal cavity model was used to compare pressure/air-flow relationships of NHF and continuous positive airway pressure (CPAP) throughout simulated breathing. During wakefulness, NHF led to an increase in tidal volume from 0.7 ± 0.1 liter to 0.8 ± 0.2, 1.0 ± 0.2, and 1.3 ± 0.2 liters, and a reduction in respiratory rate (fR) from 16 ± 2 to 13 ± 3, 10 ± 3, and 8 ± 3 breaths/min (baseline to 15, 30, and 45 liters/min NHF, respectively; P < 0.01). In contrast, during sleep, NHF led to a ∼20% fall in minute ventilation due to a decrease in tidal volume and no change in fR. In the nasal cavity model, NHF increased expiratory but decreased inspiratory resistance depending on both the cannula size and the expiratory flow rate. The mechanisms of action for NHF differ from those of CPAP and are sleep/wake-state dependent. NHF may be utilized to increase tidal breathing during wakefulness and to relieve respiratory loads during sleep. PMID:23412897

  9. Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates.

    PubMed

    Ambalavanan, Namasivayam; Novak, Zuzana E

    2003-02-01

    Basic fibroblast growth factor (bFGF or FGF-2), vascular endothelial growth factor (VEGF), and endothelin-1 (ET-1) are peptide growth factors (PGF) mediating normal lung development, maturation, injury, and repair. These PGF may therefore be involved in the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesized that elevated levels of these PGF in tracheal aspirates would be associated with a) BPD and/or death; b) markers of cell injury and apoptosis; and c) chorioamnionitis, a risk factor for BPD. Tracheal aspirates collected in 29 preterm (<34 wk gestation, 500-2000 g birth weight), mechanically ventilated infants on d 1 of life were assayed for PGF and histone-associated DNA fragments by ELISA and for LDH by enzyme assay. Clinical and pathologic examination was performed for chorioamnionitis. BPD was defined as oxygen requirement/mechanical ventilation at 28 d postnatal age. The birth weight (mean +/- SE) was 1009 +/- 85 g and median gestational age was 26 wk (range, 22-33). Eighteen infants died or developed BPD. bFGF levels were elevated in infants who died or developed BPD [median (25%,75%) level of 36 (23, 44) pg/mL versus 14 (6, 30) in the survivors without BPD, p = 0.01]. bFGF levels correlated with apoptosis (r = 0.73, p < 0.001) and LDH levels (r = 0.59, p < 0.001). VEGF and ET-1 levels were not associated with apoptosis or with BPD/death. PGF levels were not associated with chorioamnionitis. We conclude that elevated bFGF levels in the preterm trachea correlate with BPD/death and markers of cell injury and apoptosis but not with chorioamnionitis. We speculate that bFGF may play a role in the development of BPD.

  10. Left ventricular diastolic dysfunction--an independent risk factor for weaning failure from mechanical ventilation.

    PubMed

    Konomi, I; Tasoulis, A; Kaltsi, I; Karatzanos, E; Vasileiadis, I; Temperikidis, P; Nanas, S; Routsi, C I

    2016-07-01

    The objective of this study was to investigate the contribution of left ventricular (LV) diastolic dysfunction to weaning failure, along with the levels of the currently used cardiac biomarkers. Forty-two mechanically ventilated patients, who fulfilled criteria for weaning from mechanical ventilation (MV), underwent a two-hour spontaneous breathing trial (SBT). Transthoracic echocardiography (TTE) was performed before the start of the SBT. The grade of LV diastolic dysfunction was assessed by pulsed-wave Doppler and tissue Doppler imaging at the level of the mitral valve. Haemodynamic and respiratory parameters were recorded. Blood levels of B-type natriuretic peptide (BNP), troponin I, creatine kinase-MB, and myoglobin were measured on MV and at the end of the SBT. Weaning success was defined as the patient's ability to tolerate spontaneous breathing for more than 48 hours. Fifteen patients failed to wean. LV diastolic dysfunction was significantly associated with weaning failure (P<0.001). The grade of diastolic dysfunction was significantly correlated with BNP levels both on MV and at the end of the SBT (P<0.001, r=0.703 and P<0.001, r=0.709, respectively). BNP levels on MV were lower in patients who successfully weaned compared to those who did not (361±523 ng/l versus 643±382 ng/l respectively, P=0.008). The presence of diastolic dysfunction was independently associated with weaning failure (odds ratio [OR] 11.23, confidence interval [CI] 1.16-109.1, P=0.037) followed by respiratory frequency/tidal volume (OR 1.05, CI 1.00-1.10, P=0.048). Therefore, assessment of LV diastolic function before the start of weaning could be useful to identify patients at risk of weaning failure.

  11. Airway secretion clearance by mechanical exsufflation for post-poliomyelitis ventilator-assisted individuals.

    PubMed

    Bach, J R; Smith, W H; Michaels, J; Saporito, L; Alba, A S; Dayal, R; Pan, J

    1993-02-01

    Pulmonary complications from impaired airway secretion clearance mechanisms are major causes of morbidity and mortality for post-poliomyelitis individuals. The purpose of this study was to review the long-term use of manually assisted coughing and mechanical insufflation-exsufflation (MI-E) by post-poliomyelitis ventilator-assisted individuals (PVAIs) and to compare the peak cough expiratory flows (PCEF) created during unassisted and assisted coughing. Twenty-four PVAIs who have used noninvasive methods of ventilatory support for an average of 27 years, relied on methods of manually assisted coughing and/or MI-E without complications during intercurrent respiratory tract infections (RTIs). Nine of the 24 individuals were studied for PCEF. They had a mean forced vital capacity (FVC) of 0.54 +/- 0.47L and a mean maximum insufflation capacity achieved by air stacking of ventilator insufflations and glossopharyngeal breathing of 1.7L. The PCEF were as follows: unassisted, 1.78 +/- 1.16L/sec; following a maximum assisted insufflation, 3.75 +/- 0.73L/sec; with manual assistance by abdominal compression following a maximum assisted insufflation, 4.64 +/- 1.42L/sec; and with MI-E, 6.97 +/- 0.89L/sec. We conclude that manually assisted coughing and MI-E are effective and safe methods of airway secretion clearance for PVAIs with impaired expiratory muscle function who would otherwise be managed by endotracheal suctioning. Severely decreased maximum insufflation capacity but not vital capacity indicate need for a tracheostomy.

  12. Factors Influencing Continuous Breath Signal in Intubated and Mechanically-Ventilated Intensive Care Unit Patients Measured by an Electronic Nose

    PubMed Central

    Leopold, Jan Hendrik; Abu-Hanna, Ameen; Colombo, Camilla; Sterk, Peter J.; Schultz, Marcus J.; Bos, Lieuwe D. J.

    2016-01-01

    Introduction: Continuous breath analysis by electronic nose (eNose) technology in the intensive care unit (ICU) may be useful in monitoring (patho) physiological changes. However, the application of breath monitoring in a non-controlled clinical setting introduces noise into the data. We hypothesized that the sensor signal is influenced by: (1) humidity in the side-stream; (2) patient-ventilator disconnections and the nebulization of medication; and (3) changes in ventilator settings and the amount of exhaled CO2. We aimed to explore whether the aforementioned factors introduce noise into the signal, and discuss several approaches to reduce this noise. Methods: Study in mechanically-ventilated ICU patients. Exhaled breath was monitored using a continuous eNose with metal oxide sensors. Linear (mixed) models were used to study hypothesized associations. Results: In total, 1251 h of eNose data were collected. First, the initial 15 min of the signal was discarded. There was a negative association between humidity and Sensor 1 (Fixed-effect β: −0.05 ± 0.002) and a positive association with Sensors 2–4 (Fixed-effect β: 0.12 ± 0.001); the signal was corrected for this noise. Outliers were most likely due to noise and therefore removed. Sensor values were positively associated with end-tidal CO2, tidal volume and the pressure variables. The signal was corrected for changes in these ventilator variables after which the associations disappeared. Conclusion: Variations in humidity, ventilator disconnections, nebulization of medication and changes of ventilator settings indeed influenced exhaled breath signals measured in ventilated patients by continuous eNose analysis. We discussed several approaches to reduce the effects of these noise inducing variables. PMID:27556467

  13. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs.

  14. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs. PMID:6754938

  15. Liquid ventilation

    PubMed Central

    Sarkar, Suman; Paswan, Anil; Prakas, S.

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported. PMID:25886321

  16. Lung Function and Organ Dysfunctions in 178 Patients Requiring Mechanical Ventilation During The 2009 Influenza A (H1N1) Pandemic

    PubMed Central

    2011-01-01

    Introduction Most cases of the 2009 influenza A (H1N1) infection are self-limited, but occasionally the disease evolves to a severe condition needing hospitalization. Here we describe the evolution of the respiratory compromise, ventilatory management and laboratory variables of patients with diffuse viral pneumonitis caused by pandemic 2009 influenza A (H1N1) admitted to the ICU. Method This was a multicenter, prospective inception cohort study including adult patients with acute respiratory failure requiring mechanical ventilation (MV) admitted to 20 ICUs in Argentina between June and September of 2009 during the influenza A (H1N1) pandemic. In a standard case-report form, we collected epidemiological characteristics, results of real-time reverse-transcriptase--polymerase-chain-reaction viral diagnostic tests, oxygenation variables, acid-base status, respiratory mechanics, ventilation management and laboratory tests. Variables were recorded on ICU admission and at days 3, 7 and 10. Results During the study period 178 patients with diffuse viral pneumonitis requiring MV were admitted. They were 44 ± 15 years of age, with Acute Physiology And Chronic Health Evaluation II (APACHE II) scores of 18 ± 7, and most frequent comorbidities were obesity (26%), previous respiratory disease (24%) and immunosuppression (16%). Non-invasive ventilation (NIV) was applied in 49 (28%) patients on admission, but 94% were later intubated. Acute respiratory distress syndrome (ARDS) was present throughout the entire ICU stay in the whole group (mean PaO2/FIO2 170 ± 25). Tidal-volumes used were 7.8 to 8.1 ml/kg (ideal body weight), plateau pressures always remained < 30 cmH2O, without differences between survivors and non-survivors; and mean positive end-expiratory pressure (PEEP) levels used were between 8 to 12 cm H2O. Rescue therapies, like recruitment maneuvers (8 to 35%), prone positioning (12 to 24%) and tracheal gas insufflation (3%) were frequently applied. At all time points

  17. Mechanical Ventilation Alters the Development of Staphylococcus aureus Pneumonia in Rabbit

    PubMed Central

    Barbar, Saber-Davide; Pauchard, Laure-Anne; Bruyère, Rémi; Bruillard, Caroline; Hayez, Davy; Croisier, Delphine; Pugin, Jérôme; Charles, Pierre-Emmanuel

    2016-01-01

    Ventilator-associated pneumonia (VAP) is common during mechanical ventilation (MV). Beside obvious deleterious effects on muco-ciliary clearance, MV could adversely shift the host immune response towards a pro-inflammatory pattern through toll-like receptor (TLRs) up-regulation. We tested this hypothesis in a rabbit model of Staphylococcus aureus VAP. Pneumonia was caused by airway challenge with S. aureus, in either spontaneously breathing (SB) or MV rabbits (n = 13 and 17, respectively). Pneumonia assessment regarding pulmonary and systemic bacterial burden, as well as inflammatory response was done 8 and 24 hours after S. aureus challenge. In addition, ex vivo stimulations of whole blood taken from SB or MV rabbits (n = 7 and 5, respectively) with TLR2 agonist or heat-killed S. aureus were performed. Data were expressed as mean±standard deviation. After 8 hours of infection, lung injury was more severe in MV animals (1.40±0.33 versus [vs] 2.40±0.55, p = 0.007), along with greater bacterial concentrations (6.13±0.63 vs. 4.96±1.31 colony forming units/gram, p = 0.002). Interleukin (IL)-8 and tumor necrosis factor (TNF)-αserum concentrations reached higher levels in MV animals (p = 0.010). Whole blood obtained from MV animals released larger amounts of cytokines if stimulated with TLR2 agonist or heat-killed S. aureus (e.g., TNF-α: 1656±166 vs. 1005±89; p = 0.014). Moreover, MV induced TLR2 overexpression in both lung and spleen tissue. MV hastened tissue injury, impaired lung bacterial clearance, and promoted a systemic inflammatory response, maybe through TLR2 overexpression. PMID:27391952

  18. Prolonged Mechanical Ventilation After Lung Transplantation-A Single-Center Study.

    PubMed

    Hadem, J; Gottlieb, J; Seifert, D; Fegbeutel, C; Sommer, W; Greer, M; Wiesner, O; Kielstein, J T; Schneider, A S; Ius, F; Fuge, J; Kühn, C; Tudorache, I; Haverich, A; Welte, T; Warnecke, G; Hoeper, M M

    2016-05-01

    This single-center study examines the incidence, etiology, and outcomes associated with prolonged mechanical ventilation (PMV), defined as time to definite spontaneous ventilation >21 days after double lung transplantation (LTx). A total of 690 LTx recipients between January 2005 and December 2012 were analyzed. PMV was necessary in 95 (13.8%) patients with decreasing incidence during the observation period (p < 0.001). Independent predictors of PMV were renal replacement therapy (odds ratio [OR] 11.13 [95% CI, 5.82-21.29], p < 0.001), anastomotic dehiscence (OR 8.74 [95% CI 2.42-31.58], p = 0.001), autoimmune comorbidity (OR 5.52 [95% CI 1.86-16.41], p = 0.002), and postoperative neurologic complications (OR 5.03 [95% CI 1.98-12.81], p = 0.001), among others. Overall 1-year survival was 86.0% (90.4% for LTx between 2010 and 2012); it was 60.7% after PMV and 90.0% in controls (p < 0.001). Conditional long-term outcome among hospital survivors, however, did not differ between the groups (p = 0.78). Multivariate analysis identified renal replacement therapy (hazard ratio [HR] 3.55 [95% CI 2.40-5.25], p < 0.001), post-LTx extracorporeal membrane oxygenation (HR 3.47 [95% CI 2.06-5.83], p < 0.001), and prolonged inotropic support (HR 1.95 [95% CI 1.39-2.75], p < 0.001), among others, as independent predictors of mortality. In conclusion, PMV complicated 14% of LTx procedures and, although associated with increased in-hospital mortality, outcomes among patients surviving to hospital discharge were unaffected. PMID:26607844

  19. Evaluation of a Mapleson D CPAP system for weaning of mechanical ventilation in pediatric patients

    PubMed Central

    Palomero-Rodríguez, Miguel Angel; de Arteaga, Héctor Chozas; Báez, Yolanda Laporta; de Vicente Sánchez, Jesús; Carretero, Pascual Sanabria; Conde, Pilar Sánchez; Ferrer, Antonio Pérez

    2016-01-01

    Background: Over the last years, we have used a flow-inflating bag circuit with a nasotracheal or nasopharyngeal tube as an interface to deliver effective CPAP support in infants (“Mapleson D CPAP system”). The primary goal of this study was to assess the usefulness of the “Mapleson D CPAP system” for weaning of mechanical ventilation (MV) in infants who received MV over 24 h. Materials and Methods: All infants who received MV for more than 24 h in the last year were enrolled in the study. Demographic data included age, gender, weight, and admission diagnosis. Heart rate, respiratory rate, blood pressure, and oxygen saturation were measured during MV, 2 h after the nasotracheal Mapleson D CPAP system and 2 h after extubation. Patients were classified into two groups: patients MV more than 48 h, and patients with MV fewer than 48 h. P < 0.05 was considered statistically significant. Results: A total of 50 children were enrolled in the study, with a median age was 34 ± 45 months (range, 1–59 months) and median weight was 11.98 ± 9.31 kg (range, 1–48 kg). Median duration of MV was 480 h (range, 2–570). There were no significant differences in PaO2, PaCO2, and pH among MV, 2 h after the nasotracheal Mapleson D CPAP system and 2 h after extubation and spontaneous ventilation with the nasopharyngeal Mapleson D CPAP system or with nasal prongs. The overall extubation failure rate was 26% (n = 13). Weight and age were significantly associated with extubation failure (P < 0.05). Conclusions: The Mapleson D CPAP system, in our opinion, is a useful and safe alternative to more complex and expensive noninvasive CPAP and BiPAP weaning from MV in infants.

  20. Influence of mechanical ventilation and sepsis on redox balance in diaphragm, myocardium, limb muscles, and lungs.

    PubMed

    Chacon-Cabrera, Alba; Rojas, Yeny; Martínez-Caro, Leticia; Vila-Ubach, Monica; Nin, Nicolas; Ferruelo, Antonio; Esteban, Andrés; Lorente, José A; Barreiro, Esther

    2014-12-01

    Mechanical ventilation (MV), using high tidal volumes (V(T)), causes lung (ventilator-induced lung injury [VILI]) and distant organ injury. Additionally, sepsis is characterized by increased oxidative stress. We tested whether MV is associated with enhanced oxidative stress in sepsis, the commonest underlying condition in clinical acute lung injury. Protein carbonylation and nitration, antioxidants, and inflammation (immunoblotting) were evaluated in diaphragm, gastrocnemius, soleus, myocardium, and lungs of nonseptic and septic (cecal ligation and puncture 24 hours before MV) rats undergoing MV (n = 7 per group) for 150 minutes using 3 different strategies (low V(T) [V(T) = 9 mL/kg], moderate V(T) [V(T) = 15 mL/kg], and high V(T) [V(T) = 25 mL/kg]) and in nonventilated control animals. Compared with nonventilated control animals, in septic and nonseptic rodents (1) diaphragms, limb muscles, and myocardium of high-V(T) rats exhibited a decrease in protein oxidation and nitration levels, (2) antioxidant levels followed a specific fiber-type distribution in slow- and fast-twitch muscles, (3) tumor necrosis factor α (TNF-α) levels were higher in respiratory and limb muscles, whereas no differences were observed in myocardium, and (4) in lungs, protein oxidation was increased, antioxidants were rather decreased, and TNF-α remained unmodified. In this model of VILI, oxidative stress does not occur in distant organs or skeletal muscles of rodents after several hours of MV with moderate-to-high V(T), whereas protein oxidation levels were increased in the lungs of the animals. Inflammatory events were moderately expressed in skeletal muscles and lungs of the MV rats. Concomitant sepsis did not strongly affect the MV-induced effects on muscles, myocardium, or lungs in the rodents.

  1. Evaluation of a Mapleson D CPAP system for weaning of mechanical ventilation in pediatric patients

    PubMed Central

    Palomero-Rodríguez, Miguel Angel; de Arteaga, Héctor Chozas; Báez, Yolanda Laporta; de Vicente Sánchez, Jesús; Carretero, Pascual Sanabria; Conde, Pilar Sánchez; Ferrer, Antonio Pérez

    2016-01-01

    Background: Over the last years, we have used a flow-inflating bag circuit with a nasotracheal or nasopharyngeal tube as an interface to deliver effective CPAP support in infants (“Mapleson D CPAP system”). The primary goal of this study was to assess the usefulness of the “Mapleson D CPAP system” for weaning of mechanical ventilation (MV) in infants who received MV over 24 h. Materials and Methods: All infants who received MV for more than 24 h in the last year were enrolled in the study. Demographic data included age, gender, weight, and admission diagnosis. Heart rate, respiratory rate, blood pressure, and oxygen saturation were measured during MV, 2 h after the nasotracheal Mapleson D CPAP system and 2 h after extubation. Patients were classified into two groups: patients MV more than 48 h, and patients with MV fewer than 48 h. P < 0.05 was considered statistically significant. Results: A total of 50 children were enrolled in the study, with a median age was 34 ± 45 months (range, 1–59 months) and median weight was 11.98 ± 9.31 kg (range, 1–48 kg). Median duration of MV was 480 h (range, 2–570). There were no significant differences in PaO2, PaCO2, and pH among MV, 2 h after the nasotracheal Mapleson D CPAP system and 2 h after extubation and spontaneous ventilation with the nasopharyngeal Mapleson D CPAP system or with nasal prongs. The overall extubation failure rate was 26% (n = 13). Weight and age were significantly associated with extubation failure (P < 0.05). Conclusions: The Mapleson D CPAP system, in our opinion, is a useful and safe alternative to more complex and expensive noninvasive CPAP and BiPAP weaning from MV in infants. PMID:27625446

  2. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation

    SciTech Connect

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. )

    1989-10-01

    The reaction of cerebral blood flow to acute changes in arterial carbon dioxide pressure (PaCO2) and mean arterial blood pressure was determined in 57 preterm infants supported by mechanical ventilation (mean gestational age 30.1 weeks) during the first 48 hours of life. All infants had normal brain sonograms at the time of the investigation. In each infant, global cerebral blood flow was determined by xenon-133 clearance two to five times within a few hours at different levels of PaCO2. Changes in PaCO2 followed adjustments of the ventilator settings. Arterial oxygen pressure was intended to be kept constant, and mean arterial blood pressure fluctuated spontaneously between measurements. The data were analyzed by stepwise multiple regression, with changes in global cerebral blood flow, PaCO2, mean arterial blood pressure, and postnatal age or intracranial hemorrhage used as variables. In infants with persistently normal brain sonograms, the global cerebral blood flow-carbon dioxide reactivity was markedly lower during the first day of life (mean 11.2% to 11.8%/kPa PaCO2) compared with the second day of life (mean 32.6/kPa PaCO2), and pressure-flow autoregulation was preserved. Similarly, global cerebral blood flow-carbon dioxide reactivity and pressure-flow autoregulation were present in infants in whom mild intracranial hemorrhage developed after the study. In contrast, global cerebral blood flow reactivity to changes in PaCO2 and mean arterial blood pressure was absent in infants in whom ultrasonographic signs of severe intracranial hemorrhage subsequently developed. These infants also had about 20% lower global cerebral blood flow before hemorrhage, in comparison with infants whose sonograms were normal, a finding that suggests functional disturbances of cerebral blood flow regulation.

  3. Duration of salmeterol-induced bronchodilation in mechanically ventilated chronic obstructive pulmonary disease patients: a prospective clinical study

    PubMed Central

    Malliotakis, Polychronis; Linardakis, Manolis; Gavriilidis, George; Georgopoulos, Dimitris

    2008-01-01

    Introduction Delivery of bronchodilators with a metered-dose inhaler (MDI) and a spacer device in mechanically ventilated patients has become a widespread practice. However, except for the short-acting β2-agonist salbutamol, the duration of action of other bronchodilators, including long-acting β2-agonists, delivered with this technique is not well established. The purpose of this study was to examine the duration of bronchodilation induced by the long-acting β2-agonist salmeterol administered with an MDI and a spacer in a group of mechanically ventilated patients with exacerbation of chronic obstructive pulmonary disease (COPD). Methods Ten mechanically ventilated patients with acute exacerbation of COPD received four puffs of salmeterol (25 μg/puff). Salmeterol was administered with an MDI adapted to the inspiratory limb of the ventilator circuit using an aerosol cloud enhance spacer. Static and dynamic airway pressures, minimum (Rint) and maximum (Rrs) inspiratory resistance, and the difference between Rrs and Rint (ΔR) were measured before and at 15, 30, and 60 minutes as well as at 2, 3, 4, 6, 8, 10, and 12 hours after salmeterol administration. The overall effects of salmeterol on respiratory system mechanics and heart rate during the 12-hour study period were analyzed by nonparametric Wilcoxon signed rank test. Results Salmeterol caused a significant decrease in dynamic and static airway pressures, Rint, and Rrs. These changes were evident at 30 minutes and remained significant for 8 hours after salmeterol administration. The duration of bronchodilation varied significantly among patients, lasting in some patients more than 10 hours and wearing off in others in less than 6 hours. Conclusions It is concluded that four puffs of salmeterol delivered with an MDI and a spacer device induces significant bronchodilation in mechanically ventilated patients with COPD exacerbation, the duration of which is highly variable, precluding definite conclusions in

  4. [Impact of acute respiratory failure on survival of COPD patients managed with long-term non-invasive ventilation and oxygen therapy].

    PubMed

    Perrin, C; Vandenbos, F; Tamisier, R; Lemoigne, F; Blaive, B

    2000-02-01

    Our study aimed to assess the impact of acute respiratory failure (ARF) on survival of patients with chronic obstructive pulmonary disease (COPD) receiving long-term oxygen therapy (LTOT) plus nasal intermittent positive pressure ventilation (NIPPV). Survival was analysed retrospectively in 24 patients with severe COPD initiated to NIPPV in addition to LTOT. Fourteen patients were established on NIPPV following exacerbation of acute respiratory failure which has required mechanical ventilation (group 1). Ten patients (group 2) have never been hospitalized for ARF. Comparison of clinical details at baseline, 6 months, 1, 2, and 3 years for the two groups failed to reveal any difference with the exception of prior episodes of ARF. The probability of survival at 3 years was 65% (95% confidence interval [CI] 43-86) for the overall population, 46% (95% CI 15-77) in group 1, and 74% (95% CI 42-105) in group 2. The difference between the two groups was statistically significant. We show that ARF requiring mechanical ventilation appears to be a factor that is negatively correlated with survival for patients treated by LTOT plus NIPPV. This data suggests that NIPPV should be tried before ARF arising in COPD patients who present a deterioration in chronic respiratory failure with hypercapnia. PMID:10756560

  5. The effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation

    PubMed Central

    Bousarri, Mitra Payami; Shirvani, Yadolah; Agha-Hassan-Kashani, Saeed; Nasab, Nouredin Mousavi

    2014-01-01

    Background: In patients undergoing mechanical ventilation, mucus production and secretion is high as a result of the endotracheal tube. Because endotracheal suction in these patients is essential, chest physiotherapy techniques such as expiratory rib cage compression before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretion and improving alveolar ventilation. As one of the complications of mechanical ventilation and endotracheal suctioning is decrease of cardiac output, this study was carried out to determine the effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation. Materials and Methods: This study was a randomized clinical trial with a crossover design. The study subjects included 50 mechanically ventilated patients, hospitalized in intensive care wards of Valiasr and Mousavi hospitals in Zanjan, Iran. Subjects were selected by consecutive sampling and randomly allocated to groups 1 and 2. The patients received endotracheal suctioning with or without rib cage compression, with a minimum of 3 h interval between the two interventions. Expiratory rib cage compression was performed for 5 min before endotracheal suctioning. Vital signs were measured 5 min before and 15 and 25 min after endotracheal suctioning. Data were recorded on a data recording sheet. Data were analyzed using paired t-tests. Results: There were statistically significant differences in the means of vital signs measured 5 min before with 15 and 25 min after endotracheal suctioning with rib cage compression (P < 0. 01). There was no significant difference in the means of diastolic pressure measured 25 min after with baseline in this stage). But on the reverse mode, there was a significant difference between the means of pulse and respiratory rate 15 min after endotracheal suctioning and the baseline values (P < 0.002). This effect continued up to 25 min after endotracheal

  6. Measurement of condensed water mass during mechanical ventilation with heated wire humidifiers: experiments with and without pre-warming.

    PubMed

    Schena, E; Saccomandi, P; Giorgino, M; Silvestri, S

    2014-01-01

    Heated wire humidifiers (HWHs) are employed in mechanical ventilation with the objective of heating and humidifying the gases delivered to the mechanical ventilator. They use a control based on the adjustment of gas temperature at the chamber outlet. The condensation occurring within the breathing circuit is one of the most important concerns related to this control strategy. In the present study we focused on the measurement of the condensation amount within the breathing circuit during the employment of a commercial HWH (MR850, Fisher & Paykel). The measurement of the condensed vapor mass, performed during 7 h of ventilation, provides more objective information than the visual-based scale used in literature. Moreover, two solutions were proposed to minimize the condensation in the breathing circuit tract downward the heated chamber: i) a flexible insulating pipe was used to cover the mentioned breathing circuit tract, and ii) the air delivered by ventilator was heated before it passes through the chamber at different inlet temperature Ti obtained by employing pre-warming. To assess the improvement obtained by these two solutions, experiments have been carried out with and without their employment at two minute volumes. Results show that: i) insulation and pre-warming allows minimizing the condensation (e.g., at 8 L·min(-1) the mass of condensation after 7 h of ventilation decreases from 9.3 g to 2.5 g by using insulation and T(i)=27 °C); ii) the condensation mass decreases with T(i) (e.g., at 8 L·min(-1) the mass condensation was 2.5 g at T(i)= 27 °C and 1.1 g at T(i)= 30 °C); and iii) the amount of condensation linearly increases with time of ventilation.

  7. Bench-to-bedside review: weaning failure--should we rest the respiratory muscles with controlled mechanical ventilation?

    PubMed

    Vassilakopoulos, Theodoros; Zakynthinos, Spyros; Roussos, Charis

    2006-02-01

    The use of controlled mechanical ventilation (CMV) in patients who experience weaning failure after a spontaneous breathing trial or after extubation is a strategy based on the premise that respiratory muscle fatigue (requiring rest to recover) is the cause of weaning failure. Recent evidence, however, does not support the existence of low frequency fatigue (the type of fatigue that is long-lasting) in patients who fail to wean despite the excessive respiratory muscle load. This is because physicians have adopted criteria for the definition of spontaneous breathing trial failure and thus termination of unassisted breathing, which lead them to put patients back on the ventilator before the development of low frequency respiratory muscle fatigue. Thus, no reason exists to completely unload the respiratory muscles with CMV for low frequency fatigue reversal if weaning is terminated based on widely accepted predefined criteria. This is important, since experimental evidence suggests that CMV can induce dysfunction of the diaphragm, resulting in decreased diaphragmatic force generating capacity, which has been called ventilator-induced diaphragmatic dysfunction (VIDD). The mechanisms of VIDD are not fully elucidated, but include muscle atrophy, oxidative stress and structural injury. Partial modes of ventilatory support should be used whenever possible, since these modes attenuate the deleterious effects of mechanical ventilation on respiratory muscles. When CMV is used, concurrent administration of antioxidants (which decrease oxidative stress and thus attenuate VIDD) seems justified, since antioxidants may be beneficial (and are certainly not harmful) in critical care patients.

  8. Preoxygenation using invasive ventilator in volume control mode in patients with emergency intubation can shorten the time of preoxygenation and improve the quality of preoxygenation

    PubMed Central

    Wang, Hai; Sun, Jiang-Li; Bai, Zheng-Hai; Wang, Xiao-Bo; Zhang, Zheng-Liang; Pei, Hong-Hong

    2016-01-01

    Abstract Preoxygenation can rapidly improve oxygenation and enhance the security of endotracheal intubation, so it is very essential before endotracheal intubation. The conventional preoxygenation method self-inflating bag (SIB) is not very effective in case of emergency. So our study aims to find a more effective method of preoxygenation in a critical situation. We retrospectively analyzed data of 105 patients in this study. A total of 49 patients with preoxygenation with invasive ventilator in volume control mode (VCM) and 56 patients with preoxygenation with SIB were included. No significant differences were detected in the baseline data of the 2 groups (P > 0.05). Time of preoxygenation (95%) was 174 (168–180) seconds in group VCM and 205 (199–212) seconds in group SIB (P < 0.05), and multifactor linear regression showed that its main risk factors were the methods of preoxygenation and PO2 before preoxygenation (P < 0.05). Immediate SPO2 after preoxygenation was 91 (89–92)% in group VCM and 85 (83–86)% in group SIB (P < 0.05). Total time of preoxygenation and intubation was 266 (252–280) seconds in group VCM and 318 (298–338) seconds in group SIB (P < 0.05). The 24-hour and overall survival rate in group SIB were lower than in group VCM (P > 0.05). Cox regression showed that SaO2 at 5 minutes after intubation was the major risk factor for the survival rate. Invasive ventilator with volume control mode can shorten the time of preoxygenation and improve the quality of preoxygenation in patients with emergency intubation and may be a better method of preoxygenation in a critical situation. PMID:27749553

  9. Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of end-inspiratory pause.

    PubMed

    Mouloudi, E; Katsanoulas, K; Anastasaki, M; Askitopoulou, E; Georgopoulos, D

    1998-07-01

    The delivery of bronchodilators with a metered-dose inhaler (MDI) and a spacer in mechanically ventilated patients has become widespread practice. However, the various ventilator settings that influence the efficacy of MDI are not well established. Application of an end-inspiratory pause (EIP) during drug delivery has been suggested as one of the factors that might increase the effectiveness of this therapy. To test this, the effect of EIP on the bronchodilation induced by beta2-agonists administered with MDI and a spacer in a group of mechanically ventilated patients with chronic obstructive pulmonary disease (COPD) was examined. Twelve patients with COPD, mechanically ventilated on volume-controlled mode, were prospectively randomized to receive six puffs of salbutamol (100 microg x puff(-1)) either with or without EIP of 5 s duration. Salbutamol was administered with an MDI adapted to the inspiratory limb of the ventilator circuit using an aerosol cloud-enhancer spacer. After a 6 h wash-out, patients were crossed over to receive salbutamol by the alternative mode of administration. Static and dynamic airway pressures, minimum (Rmin) and maximum (Rmax) airflow resistance, the difference between Rmax and Rmin (deltaR), static end-inspiratory respiratory system compliance (Cst,rs) and cardiac frequency (fc) were measured before and at 15, 30 and 60 min after salbutamol administration. Salbutamol caused a significant decrease in dynamic and static airway pressures, Rmin and Rmax. These changes were not influenced by application of EIP and were evident at 15, 30 and 60 min after salbutamol. With and without EIP, Cst,rs,deltaR and fc did not change after salbutamol. In conclusion, salbutamol delivered with a metered-dose inhaler and a spacer device induced significant bronchodilation in mechanically ventilated patients with chronic obstructive pulmonary disease, the magnitude of which was not affected by an end-expiratory pause of 5 s. These results do not support the

  10. Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change.

    PubMed

    Dreyfuss, D; Djedaini, K; Weber, P; Brun, P; Lanore, J J; Rahmani, J; Boussougant, Y; Coste, F

    1991-04-01

    Circuits on mechanical ventilators with cascade humidifiers are routinely changed every day or every other day, although humidifying cascades have been considered unlikely to increase the risk of respiratory infection because they do not generate aerosols. Moreover, changing ventilator tubings every 24 rather than every 48 h increases the risk of ventilator-associated pneumonia. To study the effects of ventilator circuit changes on the rate of nosocomial pneumonia and on patient and circuit colonization, 73 consecutive patients requiring continuous mechanical ventilation for more than 48 h were randomly assigned to either ventilator circuit changes every 48 h (Group 1, n = 38) or no change (Group 2, n = 35). Patients dying or being weaned before 96 h were not analyzed (Group 1 n = 3; Group 2 n = 7; leaving Group 1 n = 35 and Group 2 n = 28; p = 0.13). Ventilator-associated pneumonia was defined as the occurrence during mechanical ventilation or within 48 h after weaning of a new and persistent infiltrate on chest X-ray, purulent tracheal secretions, and a positive culture of a protected brush specimen (greater than or equal to 10(3) cfu/ml). Bacterial colonization was assessed every 48 h by quantitative cultures of pharyngeal swab, tracheal aspirate, humidifying cascade, and expiratory tubing trap. The two groups were similar in terms of age, indication for and duration of ventilation, and severity of illness.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    PubMed

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  12. Duration of salbutamol-induced bronchodilation delivered by metered-dose inhaler in mechanically ventilated COPD patients.

    PubMed

    Mouloudi, E; Maliotakis, C; Kondili, E; Kafetzakis, A; Georgopoulos, D

    2001-06-01

    The delivery of bronchodilators with metered-dose inhaler (MDI) and a spacer in mechanically ventilated patients has become a widespread practice. However, the duration of action of bronchodilators delivered with this technique is not well established. The purpose of the study was to examine the duration of bronchodilation induced by short-term beta 2-agonists administered with an MDI and a spacer in a group of mechanically ventilated patients with exacerbation of chronic obstructive pulmonary disease (COPD). Ten patients with COPD, mechanically ventilated on volume-controlled mode, received 6 puffs of salbutamol (S, 100 micrograms/puff). S was administered with an MDI adapted to the inspiratory limb of the ventilator circuit using an aerosol cloud enhance spacer. Static and dynamic airway pressures, minimum (Rint) and maximum (Rrs) inspiratory resistance, the difference between Rrs and Rint (delta R), static end-inspiratory system compliance (Cst, rs), intrinsic positive end-expiratory pressure (PEEPi) and heart rate (HR) were measured before and at 15, 30, 60, 120, 180, 240, 300, 360 min after S. S caused a significant decrease in dynamic and static airway pressures, PEEPi, Rint and Rrs. These changes were evident at 15 minutes and remained significant for 2 hours after S. The duration of bronchodilation was highly variable and unpredictable among patients, lasting in some patients more than 4 hours while in others wearing off in less than 2 hours. We conclude that 6 puffs of S delivered with an MDI and a spacer device induces significant bronchodilation in mechanically ventilated patients with COPD, the duration of which is highly variable precluding guidelines regarding the time scheduled for dosing.

  13. The effect of an upper respiratory care program on incidence of ventilator-associated pneumonia in mechanically ventilated patients hospitalized in intensive care units

    PubMed Central

    Bakhtiari, Soheila; Yazdannik, Ahmadreza; Abbasi, Saeid; Bahrami, Nasim

    2015-01-01

    Background: Ventilator-associated pneumonia (VAP) is a common side effect in patients with an endotracheal tube. This study aimed to evaluate the effect of an upper respiratory care program on the incidence of VAP in mechanically ventilated patients. Materials and Methods: In this clinical trial, 62 patients with endotracheal tube were selected and randomly allocated to intervention or control group. In the intervention group, an upper respiratory care program was performed and in the control group, routine care was done. Modified Clinical Pulmonary Infection Questionnaire was completed before, and on the third, fourth, and fifth day after intervention. Data were analyzed by repeated measure analysis of variance (ANOVA), chi-square, and independent t-test through SPSS 13. Results: The results of this study showed that until the fourth day, the incidence of VAP was similar in both intervention and control groups (P > 0.05), but on the fifth day, the incidence of VAP in the intervention group was significantly lower than in the control group (P < 0.05). Conclusions: The results of this study showed that in patients with an endotracheal tube, an upper respiratory care program may reduce the incidence of VAP. Therefore, in order to prevent VAP, nurses are recommended to perform this upper respiratory care program. PMID:26120336

  14. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    PubMed Central

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables. PMID:22399898

  15. Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation.

    PubMed

    Bodenstein, Marc; Wang, Hemei; Boehme, Stefan; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2012-07-01

    Electrical impedance tomography (EIT) is considered useful for monitoring regional ventilation and aeration in intensive-care patients during mechanical ventilation. Changes in their body fluid state modify the electrical properties of lung tissue and may interfere with the EIT measurements of lung aeration. The aim of our study was to assess the effects of crystalloid and colloid infusion and blood withdrawal on bioimpedance determined by EIT in a chest cross-section. Fourteen anaesthetized mechanically ventilated pigs were subjected to interventions affecting the volume state (crystalloid and colloid infusion, blood withdrawal). Six animals received additional crystalloid fluids (fluid group) whereas eight did not (no-fluid group). Global and regional relative impedance changes (RIC, dimensionless unit) were determined by backprojection at end-expiration. Regional ventilation distribution was analyzed by calculating the tidal RIC in the same regions. Colloid infusion led to a significant fall in the global end-expiratory RIC (mean differences: fluid: -91.2, p < 0.001, no-fluid: -38.9, p < 0.001), which was partially reversed after blood withdrawal (mean differences, fluid: +45.1, p = 0.047 and no-fluid: +26.2, p = 0.009). The RIC was significantly lower in the animals with additional crystalloids (mean group difference: 45.5, p < 0.001). Global and regional tidal volumes were not significantly affected by the fluid and volume states.

  16. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).

    PubMed

    Nieman, Gary F; Satalin, Joshua; Andrews, Penny; Habashi, Nader M; Gatto, Louis A

    2016-12-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical breath on dynamic and static global lung strain and energy load. Strain is the change in lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded a number of exciting new concepts including the following: (1) Individual mechanical breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but rather any combination of parameters that subject the lung to excessive dynamic strain and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept merits attention since our current protective ventilation strategies are fixated on the priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection. PMID:27316442

  17. Comparison between a clinical diagnosis method and the surveillance technique of the Center for Disease Control and Prevention for identification of mechanical ventilator-associated pneumonia

    PubMed Central

    Waltrick, Renata; Possamai, Dimitri Sauter; de Aguiar, Fernanda Perito; Dadam, Micheli; de Souza, Valmir João; Ramos, Lucas Rocker; Laurett, Renata da Silva; Fujiwara, Kênia; Caldeira, Milton; Koenig, Álvaro; Westphal, Glauco Adrieno

    2015-01-01

    Objective >To evaluate the agreement between a new epidemiological surveillance method of the Center for Disease Control and Prevention and the clinical pulmonary infection score for mechanical ventilator-associated pneumonia detection. Methods This was a prospective cohort study that evaluated patients in the intensive care units of two hospitals who were intubated for more than 48 hours between August 2013 and June 2014. Patients were evaluated daily by physical therapist using the clinical pulmonary infection score. A nurse independently applied the new surveillance method proposed by the Center for Disease Control and Prevention. The diagnostic agreement between the methods was evaluated. A clinical pulmonary infection score of ≥ 7 indicated a clinical diagnosis of mechanical ventilator-associated pneumonia, and the association of a clinical pulmonary infection score ≥ 7 with an isolated semiquantitative culture consisting of ≥ 104 colony-forming units indicated a definitive diagnosis. Results Of the 801 patients admitted to the intensive care units, 198 required mechanical ventilation. Of these, 168 were intubated for more than 48 hours. A total of 18 (10.7%) cases of mechanical ventilation-associated infectious conditions were identified, 14 (8.3%) of which exhibited possible or probable mechanical ventilatorassociated pneumonia, which represented 35% (14/38) of mechanical ventilator-associated pneumonia cases. The Center for Disease Control and Prevention method identified cases of mechanical ventilator-associated pneumonia with a sensitivity of 0.37, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.84. The differences resulted in discrepancies in the mechanical ventilator-associated pneumonia incidence density (CDC, 5.2/1000 days of mechanical ventilation; clinical pulmonary infection score ≥ 7, 13.1/1000 days of mechanical ventilation). Conclusion The Center for Disease Control and Prevention method failed to

  18. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia.

    PubMed

    de Beer, F M; Aslami, H; Hoeksma, J; van Mierlo, G; Wouters, D; Zeerleder, S; Roelofs, J J T H; Juffermans, N P; Schultz, M J; Lagrand, W K

    2014-11-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury. PMID:24760631

  19. Management of Ventilatory Insufficiency in Neuromuscular Patients Using Mechanical Ventilator Supported by the Korean Government.

    PubMed

    Kang, Seong-Woong; Choi, Won Ah; Cho, Han Eol; Lee, Jang Woo; Park, Jung Hyun

    2016-06-01

    Since 2001, financial support has been provided for all patients with neuromuscular disease (NMD) who require ventilatory support due to the paralysis of respiratory muscles in Korea. The purpose of this study was to identify ventilator usage status and appropriateness in these patients. We included 992 subjects with rare and incurable NMD registered for ventilator rental fee support. From 21 February 2011 to 17 January 2013, ventilator usage information, regular follow-up observation, and symptoms of chronic hypoventilation were surveyed by phone. Home visits were conducted for patients judged by an expert medical team to require medical examination. Abnormal ventilatory status was assessed by respiratory evaluation. Chronic respiratory insufficiency symptoms were reported by 169 of 992 subjects (17%), while 565 subjects (57%) did not receive regular respiratory evaluation. Ventilatory status was abnormal in 102 of 343 home-visit subjects (29.7%). Although 556 subjects (56%) reported 24-hour ventilator use, only 458 (46%) had an oxygen saturation monitoring device, and 305 (31%) performed an airstacking exercise. A management system that integrates ventilator usage monitoring, counselling and advice, and home visits for patients who receive ventilator support could improve the efficiency of the ventilator support project.

  20. Management of Ventilatory Insufficiency in Neuromuscular Patients Using Mechanical Ventilator Supported by the Korean Government

    PubMed Central

    2016-01-01

    Since 2001, financial support has been provided for all patients with neuromuscular disease (NMD) who require ventilatory support due to the paralysis of respiratory muscles in Korea. The purpose of this study was to identify ventilator usage status and appropriateness in these patients. We included 992 subjects with rare and incurable NMD registered for ventilator rental fee support. From 21 February 2011 to 17 January 2013, ventilator usage information, regular follow-up observation, and symptoms of chronic hypoventilation were surveyed by phone. Home visits were conducted for patients judged by an expert medical team to require medical examination. Abnormal ventilatory status was assessed by respiratory evaluation. Chronic respiratory insufficiency symptoms were reported by 169 of 992 subjects (17%), while 565 subjects (57%) did not receive regular respiratory evaluation. Ventilatory status was abnormal in 102 of 343 home-visit subjects (29.7%). Although 556 subjects (56%) reported 24-hour ventilator use, only 458 (46%) had an oxygen saturation monitoring device, and 305 (31%) performed an airstacking exercise. A management system that integrates ventilator usage monitoring, counselling and advice, and home visits for patients who receive ventilator support could improve the efficiency of the ventilator support project. PMID:27247509

  1. Pursuing excellence: development of an oral hygiene protocol for mechanically ventilated patients.

    PubMed

    Browne, Jennifer A; Evans, Diana; Christmas, Lauren A; Rodriguez, Maria

    2011-01-01

    Oral hygiene in seriously ill patients is a nursing responsibility. Oral hygiene regimens in conjunction with standardized ventilator-associated pneumonia "bundles" reduce the incidence of pneumonia, length of stay, and associated costs in critical care. Following strict adherence to the recommended ventilator-associated pneumonia bundle, the ventilator-associated pneumonia rate at the Northeast Baptist Hospital intensive care units has remained 0% for 36 months. Oral care in this patient population, however, has remained vague based on ritual and nurse preference. This article describes the development of an oral care protocol based on best evidence, providing a rationale for standardization of oral hygiene and the plan for surveillance and updating.

  2. Frequent Transmission of Enterococcal Strains between Mechanically Ventilated Patients Treated at an Intensive Care Unit

    PubMed Central

    Lund, Bodil; Agvald-Öhman, Christina; Hultberg, Anna; Edlund, Charlotta

    2002-01-01

    The objectives of this investigation were to study the respiratory tract colonization and transmission of enterococci between 20 patients treated with mechanical ventilation at an intensive care unit (ICU), to compare genotyping with phenotyping, and to determine the antibiotic susceptibilities of the isolated enterococci. Samples were collected from the oropharynx, stomach, subglottic space, and trachea within 24 h of intubation, every third day until day 18, and thereafter every fifth day until day 33. Enterococcal isolates (n = 170) were analyzed by pulsed-field gel electrophoresis and with the PhenePlate (PhP) system. The antimicrobial susceptibilities to five agents were determined. Seventeen of the 20 subjects were colonized with enterococci in the respiratory tract; 12 were colonized in the lower respiratory tract. Genotype analyses suggested that 13 patients were involved in a transmission event, including all patients intubated more than 12 days. In conclusion, colonization of resistant enterococci in the respiratory tract of intubated patients treated at an ICU was common. Transmission of enterococci between patients occurred frequently. Prolonged intubation period seems to be a risk factor for enterococcal cross-transmission. PMID:12037069

  3. Building a Comprehensive System of Services to Support Adults Living with Long-Term Mechanical Ventilation.

    PubMed

    Leasa, David; Elson, Stephen

    2016-01-01

    Background. Increasing numbers of individuals require long-term mechanical ventilation (LTMV) in the community. In the South West Local Health Integration Network (LHIN) in Ontario, multiple organizations have come together to design, build, and operate a system to serve adults living with LTMV. Objective. The goal was to develop an integrated approach to meet the health and supportive care needs of adults living with LTMV. Methods. The project was undertaken in three phases: System Design, Implementation Planning, and Implementation. Results. There are both qualitative and quantitative evidences that a multiorganizational system of care is now operational and functioning in a way that previously did not exist. An Oversight Committee and an Operations Management Committee currently support the system of services. A Memorandum of Understanding has been signed by the participating organizations. There is case-based evidence that hospital admissions are being avoided, transitions in care are being thoughtfully planned and executed collaboratively among service providers, and new roles and responsibilities are being accepted within the overall system of care. Conclusion. Addressing the complex and variable needs of adults living with LTMV requires a systems response involving the full continuum of care. PMID:27445527

  4. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice.

    PubMed

    Smith, Lincoln S; Gharib, Sina A; Frevert, Charles W; Martin, Thomas R

    2010-10-01

    Children have a lower incidence and mortality from acute lung injury (ALI) than adults, and infections are the most common event associated with ALI. To study the effects of age on susceptibility to ALI, we investigated the responses to microbial products combined with mechanical ventilation (MV) in juvenile (21-d-old) and adult (16-wk-old) mice. Juvenile and adult C57BL/6 mice were treated with inhaled Escherichia coli 0111:B4 lipopolysaccharide (LPS) and MV using tidal volume = 15 ml/kg. Comparison groups included mice treated with LPS or MV alone and untreated age-matched control mice. In adult animals treated for 3 hours, LPS plus MV caused synergistic increases in neutrophils (P < 0.01) and IgM in bronchoalveolar lavage fluid (P = 0.03) and IL-1β in whole lung homogenates (P < 0.01) as compared with either modality alone. Although juvenile and adult mice had similar responses to LPS or MV alone, the synergistic interactions between LPS and MV did not occur in juvenile mice. Computational analysis of gene expression array data suggest that the acquisition of synergy with increasing age results, in part, from the loss of antiapoptotic responses and the acquisition of proinflammatory responses to the combination of LPS and MV. These data suggest that the synergistic inflammatory and injury responses to inhaled LPS combined with MV are acquired with age as a result of coordinated changes in gene expression of inflammatory, apoptotic, and TGF-β pathways.

  5. Prediction of mortality from respiratory distress among long-term mechanically ventilated patients.

    PubMed

    Boverman, Gregory; Genc, Sahika

    2014-01-01

    With the advent of inexpensive storage, pervasive networking, and wireless devices, it is now possible to store a large proportion of the medical data that is collected in the intensive care unit (ICU). These data sets can be used as valuable resources for developing and validating predictive analytics. In this report, we focus on the problem of prediction of mortality from respiratory distress among long-term mechanically ventilated patients using data from the publicly-available MIMIC-II database. Rather than only reporting p-values for univariate or multivariate regression, as in previous work, we seek to generate sparsest possible model that will predict mortality. We find that the presence of severe sepsis is highly associated with mortality. We also find that variables related to respiration rate have more predictive accuracy than variables related to oxygenation status. Ultimately, we have developed a model which predicts mortality from respiratory distress in the ICU with a cross-validated area-under-the-curve (AUC) of approximately 0.74. Four methodologies are utilized for model dimensionality-reduction: univariate logistic regression, multivariate logistic regression, decision trees, and penalized logistic regression.

  6. Building a Comprehensive System of Services to Support Adults Living with Long-Term Mechanical Ventilation

    PubMed Central

    Leasa, David; Elson, Stephen

    2016-01-01

    Background. Increasing numbers of individuals require long-term mechanical ventilation (LTMV) in the community. In the South West Local Health Integration Network (LHIN) in Ontario, multiple organizations have come together to design, build, and operate a system to serve adults living with LTMV. Objective. The goal was to develop an integrated approach to meet the health and supportive care needs of adults living with LTMV. Methods. The project was undertaken in three phases: System Design, Implementation Planning, and Implementation. Results. There are both qualitative and quantitative evidences that a multiorganizational system of care is now operational and functioning in a way that previously did not exist. An Oversight Committee and an Operations Management Committee currently support the system of services. A Memorandum of Understanding has been signed by the participating organizations. There is case-based evidence that hospital admissions are being avoided, transitions in care are being thoughtfully planned and executed collaboratively among service providers, and new roles and responsibilities are being accepted within the overall system of care. Conclusion. Addressing the complex and variable needs of adults living with LTMV requires a systems response involving the full continuum of care. PMID:27445527

  7. Pain assessment during blood collection from sedated and mechanically ventilated children

    PubMed Central

    Dantas, Layra Viviane Rodrigues Pinto; Dantas, Thiago Silveira Pinto; Santana-Filho, Valter Joviniano; Azevedo-Santos, Isabela Freire; DeSantana, Josimari Melo

    2016-01-01

    Objective This study assessed pain and observed physiological parameters in sedated and mechanically ventilated children during a routine procedure. Methods This observational study was performed in a pediatric intensive care unit. Thirty-five children between 1 month and 12 years of age were assessed before, during, and five minutes after an arterial blood collection for gas analysis (painful procedure). Face, Legs, Activity, Cry and Consolability scale was used to assess pain. In addition, patients' heart rate, respiratory rate, peripheral saturation of oxygen and blood pressure (diastolic and systolic) were recorded. COMFORT-B scale was applied before the pain and physiological parameter assessments to verify sedation level of the subjects. Results There was an increase in Face, Legs, Activity, Cry and Consolability score (p = 0.0001) during painful stimuli. There was an increase in heart rate (p = 0.03), respiratory rate (p = 0.001) and diastolic blood pressure (p = 0.006) due to pain caused by the routine procedure. Conclusions This study suggests that assessments of pain using standard scales, such as Face, Legs, Activity, Cry and Consolability score, and other physiological parameters should be consistently executed to optimize pain management in pediatric intensive care units. PMID:27096676

  8. Prevalence of Delirium and Coma In Mechanically Ventilated Patients Sedated With Dexmedetomidine or Propofol

    PubMed Central

    Jiang, Yi Kai (Johnny); Wang, Shan; Lam, Timothy S.; Hanna, Adel; DeMuro, Jonas P.; Calixte, Rose; Brathwaite, Collin E.M.

    2016-01-01

    Objective: To assess the prevalence of delirium and coma in mechanically ventilated patients sedated with dexmedetomidine or propofol alone; to evaluate the hospital length of stay for both treatment groups; and to evaluate the level of sedation, adverse effects, and hospital outcomes. Methods: Medical records were reviewed retrospectively for patients who were admitted to the medical or surgical intensive care units (ICUs) in a 591-bed teaching hospital and who received either dexmedetomidine or propofol alone for 24 hours or more for sedation. Results: A total of 111 patients were included in the study, with 56 patients in the dexmedetomidine group and 55 patients in the propofol group. Results of the analysis showed that the propofol group had a higher prevalence of coma (43.6% versus 12.5%; P < 0.001). Dexmedetomidine patients had a longer median hospital length of stay of 23.5 days (interquartile range [IQR], 11.5–39.5 days) versus 15.0 days (IQR, 7.0–24.0 days; P = 0.01). The rates of delirium were similar in both groups, with 16% in dexmedetomidine-treated patients versus 20% in propofol-treated patients (P = 0.63). Conclusion: No difference in the prevalence of delirium was found when comparing the dexmedetomidine- and propofol-treated groups. Propofol was associated with more coma and oversedation; dexmedetomidine was associated with longer time to extubation, longer length of stay in the ICU, and longer hospital length of stay. PMID:27408521

  9. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  10. Intermittent noninvasive ventilation at San José Hospital in Chile: report of a German donation.

    PubMed

    Arellano Maric, M P; Roldán Toledo, R; Huttmann, S E; Storre, J H; Windisch, W

    2015-03-01

    Home mechanical ventilation is currently expanding in Chile, but its application along the country is hindered by financial and geographical reasons. In 2006 the San José Hospital in Santiago de Chile developed a non-invasive ventilation (NIV) center as a strategy to overcome the limitations of ventilator availability from public resources. Since then, this center provides intermittent diurnal sessions of NIV to patients with chronic hypercapnic respiratory failure. In 2013, a collaboratory work between the Chilean doctors, the German Interdisciplinary Society of Home Mechanical Ventilation (DIGAB = Deutsche Interdisziplinäre Gesellschaft für Außerklinische Beatmung) and the German non-invasive (NIV) home care provider "Heinen und Löwenstein" organized a donation of 100 second-hand ventilators (BiPAP Synchrony; Respironics, USA) including masks and tubing systems, which were provided by Heinen und Löwenstein. The ventilator devices arrived in Santiago in January 2014. Since then, the following initiatives have been launched: 1) the establishment of a domiciliary mechanical ventilation program independent of governmental founding, 2) NIV setting-titration, 3) renewal of ventilators at the hospital's intermittent NIV unit. Future goals are the establishment of a rehabilitation unit with concomitant NIV therapy and a clinical research program. Therefore, the German donation of ventilators and equipment has a reported impact on the development of NIV in Chile. PMID:25629262

  11. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  12. Proportional mechanical ventilation through PWM driven on/off solenoid valve.

    PubMed

    Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G

    2010-01-01

    Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.

  13. An observational cohort study to determine efficacy, adherence and outcome of the early initiation of pressure support ventilation during mechanical ventilation

    PubMed Central

    Glover, Guy; Connolly, Bronwen; Di Gangi, Stefania; Ayers, Lisa; Terblanche, Marius; Beale, Richard; Hart, Nicholas

    2014-01-01

    Background Timely initiation of weaning from mechanical ventilation (MV) is important. Non-validated screening criteria may delay weaning if too prescriptive. This study observed physician-led utilisation of pressure support ventilation (PSV), referenced to four reported conventional screening criteria hypothesising that these criteria would have delayed the weaning progress. Methods A prospective observational cohort study of adult patients receiving MV in a 30-bed university hospital intensive care unit (ICU). Logistic regression analysis identified factors associated with PSV failure. Outcome is reported according to adherence to the screening criteria. Results 209 patients were included (age 62.6±15.9 years, male:female 115:94, Acute Physiology and Chronic Health Evaluation (APACHE) II 16.7±6.1). Median (IQR) time to initiate PSV was 11.0 (5.0–22.0) h, and duration of weaning to extubation was 43.0 (13.0–121.5) h. PSV weaning was initiated despite significant hypoxia (partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2:FiO2) 35.8±15.9 kPa), moderate positive end-expiratory pressure levels (7.5±2.5 cm H2O), deep sedation (44% Richmond Agitation and Sedation Scale (RASS) ≤−3) and cardiovascular instability (48.8%). At PSV initiation, 85% of patients violated at least one screening criterion, yet 74.6% of patients remained stable for 24 h and 25.4% of patients were successfully extubated within 12 h. There was no association between individual screening criteria and PSV failure. Failure to sustain a PSV trial was associated with ventilation >7 days (RR=2.12 (1.33 to 3.38), p=0.002) and ICU mortality (RR=2.94 (1.46 to 5.94), p=0.002). Conclusions Physician-led transition to PSV and weaning was often initiated early and successfully before patients fulfilled conventional screening criteria. Failure to sustain a PSV trial could be an early indicator of prolonged MV and ICU mortality and warrants further

  14. Tracheostomy and mechanical ventilation weaning in children affected by respiratory virus according to a weaning protocol in a pediatric intensive care unit in Argentina: an observational restrospective trial

    PubMed Central

    2011-01-01

    We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV). Intervening factors in the capabilities and loads of the respiratory system were considered and optimized. The average MV time was 69 days and weaning time 31 days. We report satisfactory results within the context of a directed weaning protocol. PMID:21244710

  15. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  16. Music therapy as an adjunctive treatment in the management of stress for patients being weaned from mechanical ventilation.

    PubMed

    Hunter, Bryan C; Oliva, Rosemary; Sahler, Olle Jane Z; Gaisser, D'Arcy; Salipante, Diane M; Arezina, Clare H

    2010-01-01

    This project investigated music therapy (MT) in managing anxiety associated with weaning from mechanical ventilation. The use of sedation to treat anxiety during weaning is problematic because side effects (e.g., respiratory depression) are precisely the symptoms that cause the weaning process to be interrupted and consequently prolonged. Study goals were to determine the feasibility of incorporating MT into the weaning process and to evaluate the efficacy of the intervention, based on levels of anxiety, Days to Wean (DTW), and patient/nurse satisfaction. Adult patients received multiple MT sessions per week while undergoing weaning trials from mechanical ventilation. Feasibility was determined by successful enrollment in the study and nurse survey. Efficacy was evaluated through anxiety, as measured by heart rate, respiratory rate, and patient/nurse survey; DTW; and patient/nurse satisfaction. Nurse surveys reported that MT was successfully incorporated into the milieu and 61 subjects were enrolled. Significant differences in heart rate and respiratory rate were found from the beginning to the end of MT sessions (p < .05 and p < .0001, respectively), indicating a more relaxed state. No significant difference in mean DTW was found between study and control subjects. Patient/nurse satisfaction was high. Music therapy can be used successfully to treat anxiety associated with weaning from mechanical ventilation. Limitations and suggestions for further research are discussed.

  17. Effect of technique and timing of tracheostomy in patients with acute traumatic spinal cord injury undergoing mechanical ventilation

    PubMed Central

    Ganuza, Javier Romero; Forcada, Angel Garcia; Gambarrutta, Claudia; De La Lastra Buigues, Elena Diez; Gonzalez, Victoria Eugenia Merlo; Fuentes, Fátima Paz; Luciani, Alejandro A.

    2011-01-01

    Objective To assess the effect of timing and techniques of tracheostomy on morbidity, mortality, and the burden of resources in patients with acute traumatic spinal cord injuries (SCIs) undergoing mechanical ventilation. Design Review of a prospectively collected database. Setting Intensive and intermediate care units of a monographic hospital for the treatment of SCI. Participants Consecutive patients admitted to the intensive care unit (ICU) during their first inpatient rehabilitation for cervical and thoracic traumatic SCI. A total of 323 patients were included: 297 required mechanical ventilation and 215 underwent tracheostomy. Outcome measures Demographic data, data relevant to the patients’ neurological injuries (level and grade of spinal cord damage), tracheostomy technique and timing, duration of mechanical ventilation, length of stay at ICU, incidence of pneumonia, incidence of perioperative and early postoperative complications, and mortality. Results Early tracheostomy (<7 days after orotracheal intubation) tracheostomy was performed in 101 patients (47%) and late (≥7 days) in 114 (53%). Surgical tracheostomy was employed in 119 cases (55%) and percutaneous tracheostomy in 96 (45%). There were 61 complications in 53 patients related to all tracheostomy procedures. Two were qualified as serious (tracheoesophageal fistula and mediastinal abscess). Other complications were mild. Bleeding was moderate in one case (late, percutaneous tracheostomy). Postoperative infection rate was low. Mortality of all causes was also low. Conclusion Early tracheostomy may have favorable effects in patients with acute traumatic SC. Both techniques, percutaneous and surgical tracheostomy, can be performed safely in the ICU. PMID:21528630

  18. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma.

    PubMed

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce R; Berend, Norbert; King, Gregory G

    2013-03-15

    The forced oscillation technique (FOT) and multiple-breath nitrogen washout (MBNW) are noninvasive tests that are potentially sensitive to peripheral airways, with MBNW indexes being especially sensitive to heterogeneous changes in ventilation. The objective was to study methacholine-induced changes in the lung periphery of asthmatic patients and determine how changes in FOT variables of respiratory system reactance (Xrs) and resistance (Rrs) and frequency dependence of resistance (Rrs5-Rrs19) can be linked to changes in ventilation heterogeneity. The contributions of air trapping and airway closure, as extreme forms of heterogeneity, were also investigated. Xrs5, Rrs5, Rrs19, Rrs5-Rrs19, and inspiratory capacity (IC) were calculated from the FOT. Ventilation heterogeneity in acinar and conducting airways, and trapped gas (percent volume of trapped gas at functional residual capacity/vital capacity), were calculated from the MBNW. Measurements were repeated following methacholine. Methacholine-induced airway closure (percent change in forced vital capacity) and hyperinflation (change in IC) were also recorded. In 40 mild to moderate asthmatic patients, increase in Xrs5 after methacholine was predicted by increases in ventilation heterogeneity in acinar airways and forced vital capacity (r(2) = 0.37, P < 0.001), but had no correlation with ventilation heterogeneity in conducting airway increase or IC decrease. Increases in Rrs5 and Rrs5-Rrs19 after methacholine were not correlated with increases in ventilation heterogeneity, trapped gas, hyperinflation, or airway closure. Increased reactance in asthmatic patients after methacholine was indicative of heterogeneous changes in the lung periphery and airway closure. By contrast, increases in resistance and frequency dependence of resistance were not related to ventilation heterogeneity or airway closure and were more indicative of changes in central airway caliber than of heterogeneity. PMID:23372144

  19. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion

    PubMed Central

    Dang, Tuyen T.; Prechtl, Amanda M.; Pearson, Gray W.

    2011-01-01

    Most ductal breast carcinoma cells are weakly invasive in vitro and in vivo, suggesting that components of their microenvironment may facilitate a transition from in situ to invasive stages during progression. Here we report that co-culture of mammary fibroblasts specifically triggers invasive behavior in basal-type breast cancer cells through a ligand independent mechanism. When cultured alone in organotypic culture, both basal and luminal-type breast cancer cells formed noninvasive spheroids with characteristics of ductal carcinoma in situ (DCIS). In contrast, when co-cultured with mammary fibroblasts, basal-type spheroids exhibited invasive character whereas the luminal-type spheroids retained a benign and noninvasive duct-like architecture. Real-time imaging and functional studies revealed that the specificity of invasion was linked to a unique capacity of basal-type breast cancer cells to move within spheroids. Mammary fibroblasts induced invasion by triggering basal-type breast cancer cells to convert from a noninvasive program of mammary epithelial morphogenesis, to an invasive program of sprouting endothelial angiogenesis. Contrary to existing invasion models, soluble ligands produced by the fibroblasts were not sufficient to trigger invasion. Instead, basal-type invasion relied upon a Cdc42-dependent reorganization of collagen fibers in the extracellular matrix by fibroblasts. Inhibiting basal-type cell movement with clinically relevant drugs blocked invasion in organotypic culture and in animals, suggesting a new treatment strategy for early-stage patients. Together our findings establish that fibroblast recruitment by basal-type breast cancer cells into early-stage tumors is sufficient to trigger their conversion from a benign, non-invasive DCIS-like stage to a malignant invasive stage. Further, our findings suggest that different subtypes of breast cancer may require distinct types of contributions from the microenvironment to undergo malignant

  20. Nutrition assessment: the reproducibility of Subjective Global Assessment in patients requiring mechanical ventilation

    PubMed Central

    Peterson, Sarah J.; Gurka, David P.; Braunschweig, Carol A.

    2010-01-01

    Background/Objective The detection of malnutrition in the intensive care unit (ICU) is critical to appropriately address its contribution on outcomes. The primary objective of this investigation was to determine if nutritional status could be reliably classified using Subjective Global Assessment (SGA) in mechanically ventilated (MV) patients. Subjects/Methods Fifty-seven patients requiring MV greater than 48 hours in a university-affiliated medical ICU were evaluated in this cross-sectional study over a 3 month period. Nutritional status was categorized independently by two Registered Dietitians using SGA. Frequencies, means (± standard deviations), Chi square and T tests were used to describe the population characteristics; agreement between raters was evaluated using the κ statistic. Results On admission, the average patient was 50.4 (± 14.2) years of age, overweight (body mass index: 29.0 ± 9.2), had an APACHE II score of 24 (± 10) and respiratory failure. Fifty percent (n=29) of patients were categorized as malnourished. Agreement between raters was 95% prior to consensus, reflecting near perfect agreement (κ =0.90) and excellent reliability. Patients categorized as malnourished were more often admitted to the hospital floor prior to the ICU (n=32; 56%), reported decreased dietary intake (69% vs. 46%, p=0.02) and exhibited signs of muscle wasting (45% vs. 7%, p<0.001, respectively) and fat loss (52% vs. 7%, p<0.001, respectively) on physical exam when compared to normally nourished individuals. Conclusions SGA can serve as a reliable nutrition assessment technique for detecting malnutrition in patients requiring MV. Its routine use should be incorporated into future studies and clinical practice. PMID:20700137

  1. Blockage of the Ryanodine Receptor via Azumolene Does Not Prevent Mechanical Ventilation-Induced Diaphragm Atrophy.

    PubMed

    Talbert, Erin E; Smuder, Ashley J; Kwon, Oh Sung; Sollanek, Kurt J; Wiggs, Michael P; Powers, Scott K

    2016-01-01

    Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to protect against MV-induced diaphragmatic atrophy is important. MV-induced diaphragm atrophy is due, at least in part, to increased production of reactive oxygen species (ROS) from diaphragm mitochondria and the activation of key muscle proteases (i.e., calpain and caspase-3). In this regard, leakage of calcium through the ryanodine receptor (RyR1) in diaphragm muscle fibers during MV could result in increased mitochondrial ROS emission, protease activation, and diaphragm atrophy. Therefore, these experiments tested the hypothesis that a pharmacological blockade of the RyR1 in diaphragm fibers with azumolene (AZ) would prevent MV-induced increases in mitochondrial ROS production, protease activation, and diaphragmatic atrophy. Adult female Sprague-Dawley rats underwent 12 hours of full-support MV while receiving either AZ or vehicle. At the end of the experiment, mitochondrial ROS emission, protease activation, and fiber cross-sectional area were determined in diaphragm muscle fibers. Decreases in muscle force production following MV indicate that the diaphragm took up a sufficient quantity of AZ to block calcium release through the RyR1. However, our findings reveal that AZ treatment did not prevent the MV-induced increase in mitochondrial ROS emission or protease activation in the diaphragm. Importantly, AZ treatment did not prevent MV-induced diaphragm fiber atrophy. Thus, pharmacological inhibition of the RyR1 in diaphragm muscle fibers is not sufficient to prevent MV-induced diaphragm atrophy. PMID:26849371

  2. Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chao, Christopher Y.; Chan, George Y.

    Information of volatile organic compounds (VOCs) in buildings in Hong Kong is relatively scared compared to other countries. Information of how much VOC accumulation comes from occupants themselves, from building materials and other outdoor sources are scarce even on a global basis. This study aimed at collecting information of the levels of individual VOCs using US-EPA Method TO-14. Twenty building premises including offices and public places such as customer service centers, shopping centers, etc. were studied. Samples were taken during the time slots when the mechanical ventilation system was operating. The 43 VOCs were grouped into three categories, i.e. aromatic hydrocarbons, chlorinated hydrocarbons and organohalogen. The most dominant VOCs found in the indoor samples were benzene, toluene, ethylbenzene, xylenes (BETX), chloroform and trichloroethylene as 100% of the samples were found to contain these VOCs. Besides, more than 75% of the samples were found to contain 1,3,5-trimethylbenzene, methylchloride and dichloromethane. The wt% of chlorinated hydrocarbons (48%) and the wt% of aromatic hydrocarbons (38%) only differed by about 10% in the office sector. Organohalogen (14%) contributed to the smallest fraction of the total on all the premises in the office sector on weight basis. A completely different distribution pattern was found in the non-office sector. The most abundant class of VOCs in terms of weight was aromatic hydrocarbons (80%). The second abundant class of VOCs was chlorinated hydrocarbons (14%) and was much less than the level of aromatic hydrocarbons in terms of weight. Organohalogen (6%) contributed to the smallest fraction of the total on all the premises in the non-office sector on weight basis.

  3. Obesity might be a good prognosis factor for COPD patients using domiciliary noninvasive mechanical ventilation.

    PubMed

    Altinoz, Hilal; Adiguzel, Nalan; Salturk, Cuneyt; Gungor, Gokay; Mocin, Ozlem; Berk Takir, Huriye; Kargin, Feyza; Balci, Merih; Dikensoy, Oner; Karakurt, Zuhal

    2016-01-01

    Cachexia is known to be a deteriorating factor for survival of patients with chronic obstructive pulmonary disease (COPD), but data related to obesity are limited. We observed that obese patients with COPD prescribed long-term noninvasive mechanical ventilation (NIMV) had better survival rate compared to nonobese patients. Therefore, we conducted a retrospective observational cohort study. Archives of Thoracic Diseases Training Hospital were sought between 2008 and 2013. All the subjects were prescribed domiciliary NIMV for chronic respiratory failure secondary to COPD. Subjects were grouped according to their body mass index (BMI). The first group consisted of subjects with BMI between 20 and 30 kg/m(2), and the second group consisted of subjects with BMI >30 kg/m(2). Data obtained at the first month's visit for the following parameters were recorded: age, sex, comorbid diseases, smoking history, pulmonary function test, 6-minute walk test (6-MWT), and arterial blood gas analysis. Hospital admissions were recorded before and after the domiciliary NIMV usage. Mortality rate was searched from the electronic database. Overall, 118 subjects were enrolled. Thirty-eight subjects had BMI between 20 and 30 kg/m(2), while 80 subjects had BMI >30 kg/m(2). The mean age was 65.8±9.4 years, and 81% were male. The median follow-up time was 26 months and mortality rates were 32% and 34% for obese and nonobese subjects (P=0.67). Improvement in 6-MWT was protective against mortality. In conclusion, survival of obese patients with COPD using domiciliary NIMV was found to be better than those of nonobese patients, and the improvement in 6-MWT in such patients was found to be related to a better survival. PMID:27578969

  4. Obesity might be a good prognosis factor for COPD patients using domiciliary noninvasive mechanical ventilation

    PubMed Central

    Altinoz, Hilal; Adiguzel, Nalan; Salturk, Cuneyt; Gungor, Gokay; Mocin, Ozlem; Berk Takir, Huriye; Kargin, Feyza; Balci, Merih; Dikensoy, Oner; Karakurt, Zuhal

    2016-01-01

    Cachexia is known to be a deteriorating factor for survival of patients with chronic obstructive pulmonary disease (COPD), but data related to obesity are limited. We observed that obese patients with COPD prescribed long-term noninvasive mechanical ventilation (NIMV) had better survival rate compared to nonobese patients. Therefore, we conducted a retrospective observational cohort study. Archives of Thoracic Diseases Training Hospital were sought between 2008 and 2013. All the subjects were prescribed domiciliary NIMV for chronic respiratory failure secondary to COPD. Subjects were grouped according to their body mass index (BMI). The first group consisted of subjects with BMI between 20 and 30 kg/m2, and the second group consisted of subjects with BMI >30 kg/m2. Data obtained at the first month’s visit for the following parameters were recorded: age, sex, comorbid diseases, smoking history, pulmonary function test, 6-minute walk test (6-MWT), and arterial blood gas analysis. Hospital admissions were recorded before and after the domiciliary NIMV usage. Mortality rate was searched from the electronic database. Overall, 118 subjects were enrolled. Thirty-eight subjects had BMI between 20 and 30 kg/m2, while 80 subjects had BMI >30 kg/m2. The mean age was 65.8±9.4 years, and 81% were male. The median follow-up time was 26 months and mortality rates were 32% and 34% for obese and nonobese subjects (P=0.67). Improvement in 6-MWT was protective against mortality. In conclusion, survival of obese patients with COPD using domiciliary NIMV was found to be better than those of nonobese patients, and the improvement in 6-MWT in such patients was found to be related to a better survival. PMID:27578969

  5. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    PubMed Central

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  6. 15. NAVFAC Drawing 1,174,312(463AM4)(1970), 'Alterations for Laboratory FacilityHood VentilationMechanical' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NAVFAC Drawing 1,174,312(463A-M-4)(1970), 'Alterations for Laboratory Facility-Hood Ventilation-Mechanical' - Mare Island Naval Shipyard, Battery Test Office & Storage Facility, California Avenue & E Street, Vallejo, Solano County, CA

  7. Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome.

    PubMed

    Richecoeur, J; Lu, Q; Vieira, S R; Puybasset, L; Kalfon, P; Coriat, P; Rouby, J J

    1999-07-01

    The aim of this study was to compare three ventilatory techniques for reducing PaCO2 in patients with severe acute respiratory distress syndrome treated with permissive hypercapnia: (1) expiratory washout alone at a flow of 15 L/min, (2) optimized mechanical ventilation defined as an increase in the respiratory frequency to the maximal rate possible without development of intrinsic positive end- expiratory pressure (PEEP) combined with a reduction of the instrumental dead space, and (3) the combination of both methods. Tidal volume was set according to the pressure-volume curve in order to obtain an inspiratory plateau airway pressure equal to the upper inflection point minus 2 cm H2O after setting the PEEP at 2 cm H2O above the lower inflection point and was kept constant throughout the study. The three modalities were compared at the same inspiratory plateau airway pressure through an adjustment of the extrinsic PEEP. During conventional mechanical ventilation using a respiratory frequency of 18 breaths/min, respiratory acidosis (PaCO2 = 84 +/- 24 mm Hg and pH = 7.21 +/- 0.12) was observed. Expiratory washout and optimized mechanical ventilation (respiratory frequency of 30 +/- 4 breaths/min) had similar effects on CO2 elimination (DeltaPaCO2 = -28 +/- 11% versus -27 +/- 12%). A further decrease in PaCO2 was observed when both methods were combined (DeltaPaCO2 = -46 +/- 7%). Extrinsic PEEP had to be reduced by 5.3 +/- 2.1 cm H2O during expiratory washout and by 7.3 +/- 1.3 cm H2O during the combination of the two modes, whereas it remained unchanged during optimized mechanical ventilation alone. In conclusion, increasing respiratory rate and reducing instrumental dead space during conventional mechanical ventilation is as efficient as expiratory washout to reduce PaCO2 in patients with severe ARDS and permissive hypercapnia. When used in combination, both techniques have additive effects and result in PaCO2 levels close to normal values. PMID:10390383

  8. Prevention of ventilator-associated pneumonia.

    PubMed

    Oliveira, J; Zagalo, C; Cavaco-Silva, P

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critical patient and increases the total cost of hospitalization. The introduction of preventive measures has become imperative, to ensure control and to reduce the incidence of VAP. Preventive measures focus on modifiable risk factors, mediated by non-pharmacological and pharmacological evidence based strategies recommended by guidelines. These measures are intended to reduce the risk associated with endotracheal intubation and to prevent microaspiration of pathogens to the lower airways.

  9. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  10. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    NASA Astrophysics Data System (ADS)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  11. Effect of salmeterol/fluticasone combination on the dynamic changes of lung mechanics in mechanically ventilated COPD patients: a prospective pilot study

    PubMed Central

    Chen, Wei-Chih; Chen, Hung-Hsing; Chiang, Chi-Huei; Lee, Yu-Chin; Yang, Kuang-Yao

    2016-01-01

    Background The combined therapy of inhaled corticosteroids and long-acting beta-2 agonists for mechanically ventilated patients with COPD has never been explored. Therefore, the aim of this study was to investigate their dynamic effects on lung mechanics and gas exchange. Materials and methods Ten mechanically ventilated patients with resolution of the causes of acute exacerbations of COPD were included. Four puffs of salmeterol 25 μg/fluticasone 125 μg combination therapy were administered. Lung mechanics, including maximum resistance of the respiratory system (Rrs), end-inspiratory static compliance, peak inspiratory pressure (PIP), plateau pressure, and mean airway pressure along with gas exchange function were measured and analyzed. Results Salmeterol/fluticasone produced a significant improvement in Rrs and PIP after 30 minutes. With regard to changes in baseline values, salmeterol/fluticasone inhalation had a greater effect on PIP than Rrs. However, the therapeutic effects seemed to lose significance after 3 hours of inhaled corticosteroid/long-acting beta-2 agonist administration. Conclusion The combination of salmeterol/fluticasone-inhaled therapy in mechanically ventilated patients with COPD had a significant benefit in reducing Rrs and PIP. PMID:26869782

  12. External work output and force generation during synchronized intermittent mechanical ventilation. Effect of machine assistance on breathing effort.

    PubMed

    Marini, J J; Smith, T C; Lamb, V J

    1988-11-01

    We measured the mechanical work performed by 12 acutely ill patients during synchronized intermittent mandatory ventilation to determine the influence of volume-cycled machine assistance on inspiratory timing, respiratory muscle force development, and external work output. The frequency and tidal volume of spontaneous breaths increased at lower levels of mechanical ventilation, but inspiratory time fraction did not vary across the spectrum of machine support. As machine support was withdrawn, inspiratory work and pressure-time product increased progressively for both spontaneous and assisted breathing cycles. On a per cycle basis, work output was greater for assisted than for spontaneous breaths at all levels of comparison. Although the mean pressure developed by the patient during assisted cycles averaged approximately equal to 20% less than during adjacent unassisted cycles, contraction time averaged approximately equal to 20% longer, so that the pressure-time products were nearly equivalent for both types of cycle. Two indices of force reserve indicated that our patients taxed their maximal ventilatory capability at all but the highest levels of support. We conclude that under the conditions of this study the ventilatory pump continued to be active at all levels of machine assistance. Although work per liter related linearly to the proportion of minute ventilation borne by the patient, force generation differed little for spontaneous and machine-aided breaths at any specified level of support. Whether judged on the basis of mean developed pressure (work per liter of ventilation) or pressure-time product, little effort adaptation to volume-cycled machine assistance appears to occur on a breath-by-breath basis.

  13. Mid- and Long-Term Efficacy of Non-Invasive Ventilation in Obesity Hypoventilation Syndrome: The Pickwick's Study.

    PubMed

    López-Jiménez, María José; Masa, Juan F; Corral, Jaime; Terán, Joaquín; Ordaz, Estrella; Troncoso, Maria F; González-Mangado, Nicolás; González, Mónica; Lopez-Martínez, Soledad; De Lucas, Pilar; Marín, José M; Martí, Sergi; Díaz-Cambriles, Trinidad; Díaz-de-Atauri, Josefa; Chiner, Eusebi; Aizpuru, Felipe; Egea, Carlos; Romero, Auxiliadora; Benítez, José M; Sánchez-Gómez, Jesús; Golpe, Rafael; Santiago-Recuerda, Ana; Gómez, Silvia; Barbe, Ferrán; Bengoa, Mónica

    2016-03-01

    The Pickwick project was a prospective, randomized and controlled study, which addressed the issue of obesity hypoventilation syndrome (OHS), a growing problem in developed countries. OHS patients were divided according to apnea-hypopnea index (AHI) ≥30 and <30 determined by polysomnography. The group with AHI≥30 was randomized to intervention with lifestyle changes, noninvasive ventilation (NIV) or continuous positive airway pressure (CPAP); the group with AHI<30 received NIV or lifestyle changes. The aim of the study was to evaluate the efficacy of NIV treatment, CPAP and lifestyle changes (control) in the medium and long-term management of patients with OHS. The primary variables were PaCO2 and days of hospitalization, and operating variables were the percentage of dropouts for medical reasons and mortality. Secondary medium-term objectives were: (i)to evaluate clinical-functional effectiveness on quality of life, echocardiographic and polysomnographic variables; (ii)to investigate the importance of apneic events and leptin in the pathogenesis of daytime alveolar hypoventilation and change according to the different treatments; (ii)to investigate whether metabolic, biochemical and vascular endothelial dysfunction disorders depend on the presence of apneas and hypopneasm and (iv)changes in inflammatory markers and endothelial damage according to treatment. Secondary long-term objectives were to evaluate: (i)clinical and functional effectiveness and quality of life with NIV and CPAP; (ii)changes in leptin, inflammatory markers and endothelial damage according to treatment; (iii)changes in pulmonary hypertension and other echocardiographic variables, as well as blood pressure and incidence of cardiovascular events, and (iv)dropout rate and mortality.

  14. Mid- and Long-Term Efficacy of Non-Invasive Ventilation in Obesity Hypoventilation Syndrome: The Pickwick's Study.

    PubMed

    López-Jiménez, María José; Masa, Juan F; Corral, Jaime; Terán, Joaquín; Ordaz, Estrella; Troncoso, Maria F; González-Mangado, Nicolás; González, Mónica; Lopez-Martínez, Soledad; De Lucas, Pilar; Marín, José M; Martí, Sergi; Díaz-Cambriles, Trinidad; Díaz-de-Atauri, Josefa; Chiner, Eusebi; Aizpuru, Felipe; Egea, Carlos; Romero, Auxiliadora; Benítez, José M; Sánchez-Gómez, Jesús; Golpe, Rafael; Santiago-Recuerda, Ana; Gómez, Silvia; Barbe, Ferrán; Bengoa, Mónica

    2016-03-01

    The Pickwick project was a prospective, randomized and controlled study, which addressed the issue of obesity hypoventilation syndrome (OHS), a growing problem in developed countries. OHS patients were divided according to apnea-hypopnea index (AHI) ≥30 and <30 determined by polysomnography. The group with AHI≥30 was randomized to intervention with lifestyle changes, noninvasive ventilation (NIV) or continuous positive airway pressure (CPAP); the group with AHI<30 received NIV or lifestyle changes. The aim of the study was to evaluate the efficacy of NIV treatment, CPAP and lifestyle changes (control) in the medium and long-term management of patients with OHS. The primary variables were PaCO2 and days of hospitalization, and operating variables were the percentage of dropouts for medical reasons and mortality. Secondary medium-term objectives were: (i)to evaluate clinical-functional effectiveness on quality of life, echocardiographic and polysomnographic variables; (ii)to investigate the importance of apneic events and leptin in the pathogenesis of daytime alveolar hypoventilation and change according to the different treatments; (ii)to investigate whether metabolic, biochemical and vascular endothelial dysfunction disorders depend on the presence of apneas and hypopneasm and (iv)changes in inflammatory markers and endothelial damage according to treatment. Secondary long-term objectives were to evaluate: (i)clinical and functional effectiveness and quality of life with NIV and CPAP; (ii)changes in leptin, inflammatory markers and endothelial damage according to treatment; (iii)changes in pulmonary hypertension and other echocardiographic variables, as well as blood pressure and incidence of cardiovascular events, and (iv)dropout rate and mortality. PMID:26656679

  15. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion.

    PubMed

    Dang, Tuyen T; Prechtl, Amanda M; Pearson, Gray W

    2011-11-01

    Most ductal breast carcinoma cells are weakly invasive in vitro and in vivo, suggesting that components of their microenvironment may facilitate a transition from in situ to invasive stages during progression. Here, we report that coculture of mammary fibroblasts specifically triggers invasive behavior in basal-type breast cancer cells through a ligand independent mechanism. When cultured alone in organotypic culture, both basal- and luminal-type breast cancer cells formed noninvasive spheroids with characteristics of ductal carcinoma in situ (DCIS). In contrast, when cocultured with mammary fibroblasts, basal-type spheroids exhibited invasive character whereas the luminal-type spheroids retained a benign and noninvasive duct-like architecture. Real-time imaging and functional studies revealed that the specificity of invasion was linked to a unique capacity of basal-type breast cancer cells to move within spheroids. Mammary fibroblasts induced invasion by triggering basal-type breast cancer cells to convert from a noninvasive program of mammary epithelial morphogenesis to an invasive program of sprouting endothelial angiogenesis. Contrary to the existing invasion models, soluble ligands produced by the fibroblasts were not sufficient to trigger invasion. Instead, basal-type invasion relied upon a Cdc42-dependent reorganization of collagen fibers in the extracellular matrix by fibroblasts. Inhibiting basal-type cell movement with clinically relevant drugs blocked invasion both in organotypic culture and in animals, suggesting a new treatment strategy for early-stage patients. Together our findings establish that fibroblast recruitment by basal-type breast cancer cells into early-stage tumors is sufficient to trigger their conversion from a benign, noninvasive DCIS-like stage to a malignant invasive stage. Furthermore, our findings suggest that different subtypes of breast cancer may require distinct types of contributions from the microenvironment to undergo

  16. Facial skin breakdown in patients with non-invasive ventilation devices: report of two cases and indications for treatment and prevention.

    PubMed

    Maruccia, Michele; Ruggieri, Martina; Onesti, Maria G

    2015-08-01

    Non-invasive ventilation (NIV) provides an effective ventilatory support in patients with respiratory failure without endotracheal intubation. However, there are potential problems with its clinical application and the development of pressure ulcers represents a common complication. Often several intensive care units treat facial skin breakdown related to NIV. In this article, we report our experience in treatment and prevention of these lesions, emphasising the higher risk of certain age groups to develop them, such as preterm infants and elderly patients with comorbidities. We performed daily disinfection of the lesions followed by application of topical cream containing hyaluronic acid (HA) sodium salt. In addition, in order to prevent worsening of injury, we applied a cushion made of gauze pad containing HA sodium salt between the skin and the masks, so as to reduce friction between the NIV devices and the skin. Local medical treatment allowed complete reepithelialisation of the injured skin areas. Systematic monitoring of patients' faces is essential to detect early damages and to intervene with appropriate therapy, especially in preterm infants and elderly. Moreover, refining the devices with the proposed protective cushion can reduce pressure ulcers and increase comfort for the patients.

  17. Does the use of primary continuous positive airway pressure reduce the need for intubation and mechanical ventilation in infants ≤32 weeks’ gestation?

    PubMed Central

    Yee, Wendy H; Scotland, Jeanne; Pham, Yung; Finch, Robert

    2011-01-01

    BACKGROUND: Ventilator-induced lung injury is a recognized risk factor for bronchopulmonary dysplasia. OBJECTIVE: To determine whether primary continuous positive airway pressure (CPAP), defined as CPAP without previous endotracheal intubation for any indication, can reduce the need for intubation and mechanical ventilation in infants born at ≤32 weeks’ gestational age. METHODS: The literature was reviewed using the methodology for systematic reviews for the Consensus on Resuscitation Science adapted from the American Heart Association’s International Liaison Committee on Resuscitation. RESULTS: Fourteen studies were reviewed. Eleven studies provided varying degrees of supportive evidence (level of evidence 3 to 4) that the use of primary CPAP can reduce the need for intubation and mechanical ventilation. CONCLUSION: The use of CPAP as a primary intervention and mode of respiratory support is an option for infants ≤32 weeks’ gestation, but avoidance of intubation and mechanical ventilation is more likely in mature infants >27 weeks’ gestation. PMID:23204903

  18. Role of oral care to prevent VAP in mechanically ventilated Intensive Care Unit patients

    PubMed Central

    Gupta, A; Gupta, A; Singh, TK; Saxsena, A

    2016-01-01

    Ventilator associated pneumonia (VAP) is the most common nosocomial infection in Intensive Care Unit. One major factor causing VAP is the aspiration of oral colonization because of poor oral care practices. We feel the role of simple measure like oral care is neglected, despite the ample evidence of it being instrumental in preventing VAP. PMID:26955317

  19. Role of oral care to prevent VAP in mechanically ventilated Intensive Care Unit patients.

    PubMed

    Gupta, A; Gupta, A; Singh, T K; Saxsena, A

    2016-01-01

    Ventilator associated pneumonia (VAP) is the most common nosocomial infection in Intensive Care Unit. One major factor causing VAP is the aspiration of oral colonization because of poor oral care practices. We feel the role of simple measure like oral care is neglected, despite the ample evidence of it being instrumental in preventing VAP.

  20. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect

    Logue, Jennifer M.; Turner, William J. N.; Walker, Iain S.; Singer, Brett C.

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  1. Pulmonary and Systemic Pharmacokinetics of Colistin Following a Single Dose of Nebulized Colistimethate in Mechanically Ventilated Neonates.

    PubMed

    Nakwan, Narongsak; Lertpichaluk, Pichaya; Chokephaibulkit, Kulkanya; Villani, Paola; Regazzi, Mario; Imberti, Roberto

    2015-09-01

    The purpose of this study was to evaluate the pulmonary and systemic pharmacokinetics of colistin following a single dose of nebulized colistimethate sodium (CMS) in mechanically ventilated neonates. We administered a single dose of nebulized CMS (approximately 120,000 IU/kg of CMS, equivalent to 4 mg/kg colistin base activity) to 6 ventilated neonates with ventilator-associated pneumonia. The median gestational age was 39 weeks (range, 32-39 weeks). Mean (± SD) tracheal aspirate colistin maximum concentration (Cmax), area under the concentration-time curve (AUC 0-24) and t1/2 were 24.0 ± 8.2 μg/mL, 147.6 ± 53.5 μg · hours/mL and 9.8 ± 5.5 hours, respectively. The plasma concentrations of colistin were low. In neonates, a single nebulized dose of CMS (120,000 IU) resulted in high local concentrations for at least 12 hours and low systemic concentrations of colistin. Twice daily nebulization might be more appropriate. PMID:26065861

  2. Pulmonary and Systemic Pharmacokinetics of Colistin Following a Single Dose of Nebulized Colistimethate in Mechanically Ventilated Neonates.

    PubMed

    Nakwan, Narongsak; Lertpichaluk, Pichaya; Chokephaibulkit, Kulkanya; Villani, Paola; Regazzi, Mario; Imberti, Roberto

    2015-09-01

    The purpose of this study was to evaluate the pulmonary and systemic pharmacokinetics of colistin following a single dose of nebulized colistimethate sodium (CMS) in mechanically ventilated neonates. We administered a single dose of nebulized CMS (approximately 120,000 IU/kg of CMS, equivalent to 4 mg/kg colistin base activity) to 6 ventilated neonates with ventilator-associated pneumonia. The median gestational age was 39 weeks (range, 32-39 weeks). Mean (± SD) tracheal aspirate colistin maximum concentration (Cmax), area under the concentration-time curve (AUC 0-24) and t1/2 were 24.0 ± 8.2 μg/mL, 147.6 ± 53.5 μg · hours/mL and 9.8 ± 5.5 hours, respectively. The plasma concentrations of colistin were low. In neonates, a single nebulized dose of CMS (120,000 IU) resulted in high local concentrations for at least 12 hours and low systemic concentrations of colistin. Twice daily nebulization might be more appropriate.

  3. Influence of hyperoxia and mechanical ventilation in lung inflammation and diaphragm function in aged versus adult rats.

    PubMed

    Andrade, P V; dos Santos, J M; Silva, H C A; Wilbert, D D; Cavassani, S S; Oliveira-Júnior, I S

    2014-04-01

    Although assist ventilation with FIO2 0.21 is the preferable mode of ventilation in the intensive care unit, sometimes controlled ventilation with hyperoxia is needed. But the impact of this setting has not been extensively studied in elderly subjects. We hypothesized that a high fraction of inspired oxygen (FiO(2)) and controlled mechanical ventilation (CMV) is associated with greater deleterious effects in old compared to adult subjects. Adult and old rats were submitted to CMV with low tidal volume (6 ml/kg) and FiO(2) 1 during 3 or 6 h. Arterial blood gas samples were measured at 0, 60 and 180 min (four groups: old and adult rats, 3 or 6 h of CMV), and additionally at 360 min (two groups: old and adult rats, 6 h of CMV). Furthermore, total protein content (TPC) and tumor necrosis factor-alpha (TNF-α) in bronchoalveolar lavage were assessed; lung tissue was used for malondialdehyde and histological analyses, and the diaphragm for measurement of contractile function. Arterial blood gas analysis showed an initial (60 min) greater PaO(2) in elderly versus adult animals; after that time, elderly animals had lowers pH and PaO(2), and greater PaCO(2). After 3 h of CMV, TPC and TNF-α levels were higher in the old compared with the adult group (P < 0.05). After 6 h of MV, malondialdehyde was significantly higher in elderly compared with the adult animals (P < 0.05). Histological analysis showed leukocyte infiltration and edema, greater in old animals. In diaphragm, twitch contraction with caffeine significantly declined after 6 h of CMV only for the elderly group. These data support the hypothesis that relatively short-term CMV with low tidal volume and hyperoxia has greatest impact in elderly rats, decreasing diaphragmatic contractile function and increasing lung inflammation.

  4. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  5. Mechanisms of host cell invasion by Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Burleigh, Barbara A

    2011-01-01

    One of the more accepted concepts in our understanding of the biology of early Trypanosoma cruzi-host cell interactions is that the mammalian-infective trypomastigote forms of the parasite must transit the host cell lysosomal compartment in order to establish a productive intracellular infection. The acidic environment of the lysosome provides the appropriate conditions for parasite-mediated disruption of the parasitophorous vacuole and release of T. cruzi into the host cell cytosol, where replication of intracellular amastigotes occurs. Recent findings indicate a level of redundancy in the lysosome-targeting process where T. cruzi trypomastigotes exploit different cellular pathways to access host cell lysosomes in non-professional phagocytic cells. In addition, the reversible nature of the host cell penetration process was recently demonstrated when conditions for fusion of the nascent parasite vacuole with the host endosomal-lysosomal system were not met. Thus, the concept of parasite retention as a critical component of the T. cruzi invasion process was introduced. Although it is clear that host cell recognition, attachment and signalling are required to initiate invasion, integration of this knowledge with our understanding of the different routes of parasite entry is largely lacking. In this chapter, we focus on current knowledge of the cellular pathways exploited by T. cruzi trypomastigotes to invade non-professional phagocytic cells and to gain access to the host cell lysosome compartment. PMID:21884886

  6. Early intervention of patients at risk for acute respiratory failure and prolonged mechanical ventilation with a checklist aimed at the prevention of organ failure: protocol for a pragmatic stepped-wedged cluster trial of PROOFCheck

    PubMed Central

    Gong, M N; Schenk, L; Gajic, O; Mirhaji, P; Sloan, J; Dong, Y; Festic, E; Herasevich, V

    2016-01-01

    Introduction Acute respiratory failure (ARF) often presents and progresses outside of the intensive care unit. However, recognition and treatment of acute critical illness is often delayed with inconsistent adherence to evidence-based care known to decrease the duration of mechanical ventilation (MV) and complications of critical illness. The goal of this trial is to determine whether the implementation of an electronic medical record-based early alert for progressive respiratory failure coupled with a checklist to promote early compliance to best practice in respiratory failure can improve the outcomes of patients at risk for prolonged respiratory failure and death. Methods and analysis A pragmatic stepped-wedged cluster clinical trial involving 6 hospitals is planned. The study will include adult hospitalised patients identified as high risk for MV >48 hours or death because they were mechanically ventilated outside of the operating room or they were identified as high risk for ARF on the Accurate Prediction of PROlonged VEntilation (APPROVE) score. Patients with advanced directives limiting intubation will be excluded. The intervention will consist of (1) automated identification and notification of clinician of high-risk patients by APPROVE or by invasive MV and (2) checklist of evidence-based practices in ARF (Prevention of Organ Failure Checklist—PROOFCheck). APPROVE and PROOFCheck will be developed in the pretrial period. Primary outcome is hospital mortality. Secondary outcomes include length of stay, ventilator and organ failure-free days and 6-month and 12-month mortality. Predefined subgroup analysis of patients with limitation of aggressive care after study entry is planned. Generalised estimating equations will be used to compare patients in the intervention phase with the control phase, adjusting for clustering within hospitals and time. Ethics and dissemination The study was approved by the institutional review boards. Results will be published

  7. Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    PubMed Central

    Zerebecki, Robyn A.; Sorte, Cascade J. B.

    2011-01-01

    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism

  8. Foreign body blocking closed circuit suction catheter: An unusual cause of retained tracheal secretions in a mechanically ventilated patient.

    PubMed

    Kaur, Shubhdeep; Singh, Sukeerat; Gupta, Ruchi; Bindra, Tripat

    2014-01-01

    Closed circuit suction system (CCSS) has become a standard of care for the tracheal suctioning of mechanically ventilated patients. The advantages of CCSS over the open suction system include decreased environmental, personnel and patient contamination, preservation of lung volumes and oxygenation especially in the severely hypoxemic patients. On the other hand, CCSS has lower efficacy in removal of secretions and it may have certain other disadvantages due to the invisibility of its tip. We report an unusual case of an airway foreign body causing blockage of the CCSS leading to retained secretions and deterioration of patient. Timely changing over to open suction system helped in its detection and improvement of patient.

  9. Indoor ozone concentrations: Ventilation rate impacts and mechanisms of outdoor concentration attenuation

    SciTech Connect

    Cano-Ruiz, J.A.; Modera, M.P.; Nazaroff, W.W.

    1992-07-01

    The classification of outdoor (ambient) air as fresh for the purposes of ventilation is not always appropriate, particularly in urban areas. In many cities of the world, urban air frequently violates health-based air quality standards due to high ozone concentrations. The degree of protection from exposure to ozone offered by the indoor environment depends on the relationship between indoor and outdoor ozone levels. Existing concentration data indicates that indoor/outdoor ozone ratios range between 10 and 80%. This paper analyzes several of the key issues influencing indoor ozone concentrations, including: (1) the degree of penetration of outdoor ozone indoors, (2) removal within the indoor environment (removal at surfaces and within air distribution systems), and (3) the correlation in time between outdoor ozone levels and ventilation rates. A model for calculating the degree of ozone removal in typical building leaks and air distribution systems is described and applied to a range of typical cases. This model indicates that the degree of removal is minimal for most wooden building cracks, but could be significant in leaks in concrete or brick structures, and is strongly dependent on the lining material for air distribution systems. Indoor ozone exposure estimates based on hourly outdoor ozone monitoring data and hour-by-hour weather-based simulations of infiltration rates and building operation are reported for a few residential scenarios. These estimates serve as a basis for exploring the impact of energy-efficient ventilation strategies on indoor ozone exposures.

  10. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant.

  11. Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise.

    PubMed

    Gallagher, C G; Younes, M

    1989-04-01

    To assess the effect of the normal respiratory resistive load on ventilation (VE) and respiratory motor output during exercise, we studied the effect of flow-proportional pressure assist (PA) (2.2 cmH2O.l-1.s) on various ventilatory parameters during progressive exercise to maximum in six healthy young men. We also measured dynamic lung compliance (Cdyn) and lung resistance (RL) and calculated the time course of respiratory muscle pressure (Pmus) during the breath in the assisted and unassisted states at a sustained exercise level corresponding to 70-80% of the subject's maximum O2 consumption. Unlike helium breathing, resistive PA had no effect on VE or any of its subdivisions partly as the result of an offsetting increase in RL (0.78 cmH2O.1-1.s) and partly to a reduction in Pmus. These results indicate that the normal resistive load does not constrain ventilation during heavy exercise. Furthermore, the increase in exercise ventilation observed with helium breathing, which is associated with much smaller degrees of resistive unloading (ca. -0.6 cmH2O.l-1.s), is likely the result of factors other than respiratory muscle unloading. The pattern of Pmus during exercise with and without unloading indicates that the use of P0.1 as an index of respiratory motor output under these conditions may result in misleading conclusions.

  12. Survival pattern in patients with acute organophosphate poisoning on mechanical ventilation: A retrospective intensive care unit-based study in a tertiary care teaching hospital

    PubMed Central

    Ahmed, Syed M; Das, Bikramjit; Nadeem, Abu; Samal, Rajiv K

    2014-01-01

    Background and Aims: Organophosphorus (OP) compound poisoning is one of the most common poisonings in India. The aim of the study was to study the outcomes and predictors of mortality in patients with acute OP poisoning requiring mechanical ventilation. Methods: A retrospective study was conducted in the intensive care unit and 117 patients were included. Diagnosis was performed from the history taken either from the patient or from the patient's relatives. Demographic data, month of the year, mode of poisoning, common age group, duration of mechanical ventilation, time of starting pralidoxime (PAM), and mortality were recorded. Chi square test, Pearson correlation test, and multivariate binary logistic regression analysis was used. Data are presented as mean ± SD. Results: 91.86% (79/86) of cases were suicidal and remaining cases were accidental. Duration of mechanical ventilation varied from less than 48 hours to more than 7 days. Mortality rate was 33.3%, 7.2%, and 100% in those who required mechanical ventilation for more than 7 days, 5 to 7 days, and 2 to 4 days, respectively. Lag time was less than 6 hrs in 13 patients and all of them survived. 17.1% and 28.1% patients died in whom PAM was started 6 to 12 hrs and 13 to 24 hrs after poisoning, respectively. There was statistically significant positive correlation between lag time of starting of PAM with duration of mechanical ventilation and total dose of PAM (P < 0.0001). None of the predictors age, lag time, severity of poisoning, and duration of ventilation were independent predictors of death. Overall mortality rate was 18.6%. Conclusion: Mortality from OP compound poisoning is directly proportionate to the severity of poisoning, delay in starting PAM, and duration of mechanical ventilation. Death is not dependent on a single factor, rather contributory to these factors working simultaneously. PMID:24700893

  13. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series

    PubMed Central

    Magalhães, Cristiana M.; Fregonezi, Guilherme A.; Vidigal-Lopes, Mauro; Vieira, Bruna S. P. P.; Vieira, Danielle S. R.; Parreira, Verônica F.

    2016-01-01

    ABSTRACT Background The effects of non-invasive ventilation (NIV) on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS) are unknown. Objectives 1) To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2) to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV). Method Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Results Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16)L versus 0.57 (SD=0.19)L (p=0.04). No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05)L/s versus 0.21 (SD=0.05)L/s (p<0.01), and abdominal muscles, mean=0.09 (SD=0.02)L/s versus 0.14 (SD=0.06)L/s (p<0.01), increased during NIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13) versus 69 (SD=10) (p=0.02). Conclusions NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction. PMID:27556390

  14. Natural history and risk stratification of patients undergoing non-invasive ventilation in a non-ICU setting for severe COPD exacerbations.

    PubMed

    Sainaghi, Pier Paolo; Colombo, Davide; Re, Azzurra; Bellan, Mattia; Sola, Daniele; Balbo, Piero Emilio; Campanini, Mauro; Della Corte, Francesco; Navalesi, Paolo; Pirisi, Mario

    2016-10-01

    Non-invasive ventilation (NIV) delivered in an intensive care unit (ICU) has become the cornerstone in the treatment of patients with severe chronic obstructive pulmonary disease (COPD) exacerbations. A trend towards managing these patients in non-ICU setting has emerged in recent years, although out-of-hospital survival by this approach and how to prognosticate it is unknown. We aimed to investigate these issues. We consecutively recruited 100 patients (49 males; median age 82 years) who received NIV treatment for acute respiratory failure due to COPD exacerbation in non-ICU medical wards of our hospital, between November 2008 and July 2012. We assessed survival (both in-hospital and out-of-hospital) of all these patients, and analyzed baseline parameters in a Cox proportional hazards model to develop a prognostic score. The median survival in the study population was 383 days (240-980). Overall survival rates were 71.0, 65.3, and 52.7 % at 1, 3, and 12 months, respectively. Age >85 years, a history of heart disorders and a neutrophil count ≥10 × 10(9) were associated with higher mortality at Cox's analysis (χ (2) = 35.766, p = 0.0001), and were used to build a prognostic score (NC85). The presence of two or more factors determined the deepest drop in survival (when NC85 ≥2, mortality at 1, 3, and 12 was 60.7, 70.4, and 77.2 %, respectively, while when NC85 = 0 were 4.0, 4.0, and 14.0 %). A simple model, based on three variables (age, neutrophil count and history of heart disease), accurately predicts survival of COPD patients receiving NIV in a non-ICU setting.

  15. Impact of intra-abdominal pressure on retrohepatic vena cava shape and flow in mechanically ventilated pigs.

    PubMed

    Bendjelid, Karim; Viale, Jean-Paul; Duperret, Serge; Colling, Joëlle; Piriou, Vincent; Merlani, Paolo; Jacques, Didier

    2012-04-01

    Conflicting results have been found regarding correlations between right atrial pressure (RAP) and inferior vena cava (IVC) diameter in mechanically ventilated patients. This finding could be related to an increase in intra-abdominal pressure (IAP). This study was designed to clarify whether variations in IVC flow rate caused by positive pressure ventilation are associated with changes in the retrohepatic IVC cross-section (ΔIVC) during major changes in volume status and IAP. Nine pigs were anesthetized, mechanically ventilated and equipped. IAP was set at 0, 15 and 30 mmHg during two conditions, i.e. normovolemia and hypovolemia, generated by blood removal to obtain a mean arterial pressure value lower than 60 mmHg. At each IAP increment, cardiac output, IVC flow and surface area were respectively assessed by flowmeters and transesophageal echocardiography. At normal IAP, even in presence of respiratory changes in IVC flows, no ΔIVC were observed during the two conditions. At high IAP, neither ΔIVC nor modulations of IVC flow were observed whatever the volemic status. The majority of animals with an IVC area of less than 0.65 cm(2) showed evidence of IAP greater than RAP values. Negative RAP-IAP pressure gradients were found to occur with an IVC area of less than 0.65 cm(2), suggesting that IVC dimensions determined using standard ultrasound techniques may indicate the direction of the RAP-IAP gradient. The clinical relevance of the present findings is that volume status should not be estimated from retrohepatic IVC dimensions in cases of high IAP. PMID:22418601

  16. Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring

    NASA Astrophysics Data System (ADS)

    Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon

    2014-10-01

    Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.

  17. Four-dimensional visualization of subpleural alveolar dynamics in vivo during uninterrupted mechanical ventilation of living swine

    PubMed Central

    Namati, Eman; Warger, William C.; Unglert, Carolin I.; Eckert, Jocelyn E.; Hostens, Jeroen; Bouma, Brett E.; Tearney, Guillermo J.

    2013-01-01

    Pulmonary alveoli have been studied for many years, yet no unifying hypothesis exists for their dynamic mechanics during respiration due to their miniature size (100-300 μm dimater in humans) and constant motion, which prevent standard imaging techniques from visualizing four-dimensional dynamics of individual alveoli in vivo. Here we report a new platform to image the first layer of air-filled subpleural alveoli through the use of a lightweight optical frequency domain imaging (OFDI) probe that can be placed upon the pleura to move with the lung over the complete range of respiratory motion. This device enables in-vivo acquisition of four-dimensional microscopic images of alveolar airspaces (alveoli and ducts), within the same field of view, during continuous ventilation without restricting the motion or modifying the structure of the alveoli. Results from an exploratory study including three live swine suggest that subpleural alveolar air spaces are best fit with a uniform expansion (r 2 = 0.98) over a recruitment model (r 2 = 0.72). Simultaneously, however, the percentage change in volume shows heterogeneous alveolar expansion within just a 1 mm x 1 mm field of view. These results signify the importance of four-dimensional imaging tools, such as the device presented here. Quantification of the dynamic response of the lung during ventilation may help create more accurate modeling techniques and move toward a more complete understanding of alveolar mechanics. PMID:24298409

  18. Bronchial aspirates glucose level as indicator for methicillin-resistant Staphylococcus aureus (MRSA) in intubated mechanically ventilated patients.

    PubMed

    Alsayed, Sherif; Marzouk, Samar; Mousa, Essam; Ragab, Ashraf

    2014-08-01

    This study evaluated if the level of glucose in bronchial aspirate serves as indicator for the risk of MRSA infection in intubated mechanically ventilated ICU patients. A total of 50 critically ill patients was enrolled and were under tight glycemic control to abolish the effect of hyperglycemia on bronchial secretion, if they were expected to require mechanical ventilation for more than 48 hours. Bronchial aspirates were detected for glucose and sent twice weekly for microbiological analysis and whenever an MRSA was expected. The results showed that all the patients had glucose tested in bronchial aspirates. Glucose was detected in bronchial aspirates of 28 of the 50 patients. Glucose in bronchial aspirates in these patients ranged between (2.9-5.1 mmol/l). MRSA was detected in 22 patients where 28 were MRSA free of the MRSA patients 19 had positive glucose where glucose was positive in 28 patients of them 19 (86.4%) where MRSA positive to 9 with no MRSA (32.1%).The risk of having MRSA present markedly increased significantly in the presence of glucose: (p value .001). PMID:25597152

  19. Correlation between central venous pressure and peripheral venous pressure with passive leg raise in patients on mechanical ventilation

    PubMed Central

    Kumar, Dharmendra; Ahmed, Syed Moied; Ali, Shahna; Ray, Utpal; Varshney, Ankur; Doley, Kashmiri

    2015-01-01

    Background: Central venous pressure (CVP) assesses the volume status of patients. However, this technique is not without complications. We, therefore, measured peripheral venous pressure (PVP) to see whether it can replace CVP. Aims: To evaluate the correlation and agreement between CVP and PVP after passive leg raise (PLR) in critically ill patients on mechanical ventilation. Setting and Design: Prospective observational study in Intensive Care Unit. Methods: Fifty critically ill patients on mechanical ventilation were included in the study. CVP and PVP measurements were taken using a water column manometer. Measurements were taken in the supine position and subsequently after a PLR of 45°. Statistical Analysis: Pearson's correlation and Bland–Altman's analysis. Results: This study showed a fair correlation between CVP and PVP after a PLR of 45° (correlation coefficient, r = 0.479; P = 0.0004) when the CVP was <10 cmH2O. However, the correlation was good when the CVP was >10 cmH2O. Bland–Altman analysis showed 95% limits of agreement to be −2.912–9.472. Conclusion: PVP can replace CVP for guiding fluid therapy in critically ill patients. PMID:26730115

  20. Analyzing small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following mechanical ventilation in burn survivors

    PubMed Central

    van de Schoot, Rens; Broere, Joris J.; Perryck, Koen H.; Zondervan-Zwijnenburg, Mariëlle; van Loey, Nancy E.

    2015-01-01

    Background The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis. PMID:25765534

  1. Increased interleukin-8 and monocyte chemoattractant protein-1 concentrations in mechanically ventilated preterm infants with pulmonary hemorrhage.

    PubMed

    Baier, R John; Loggins, John; Kruger, Thomas E

    2002-08-01

    Pulmonary hemorrhage (PH) is a serious complication causing acute respiratory distress in the premature infant, and it is associated with significant mortality and morbidity. The role of inflammatory mediators in this condition is largely undefined. Serial tracheal aspirates (TA) were obtained at intervals from 65 mechanically ventilated infants with birth weights less than 1,250 g during the first 21 days of life. Clinically significant PH developed in 15 infants. TA concentrations of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were determined by enzyme-linked immunosorbent assay (ELISA).PH was associated with an increased risk of death, bronchopulmonary dysplasia, intraventricular hemorrhage, and prolonged need for mechanical ventilation and supplemental oxygen. TA aspirate concentrations of IL-8 and MCP-1 (P = 0.001, ANOVA) were significantly increased in infants with PH compared to infants who did not develop this condition. TA cytokine concentrations were also significantly increased in infants who developed bronchopulmonary dysplasia (BPD). Peak TA concentrations of IL-8 and MCP-1 were significantly higher in infants with poor outcome (BPD or death). TA MCP-1 but not IL-8 concentrations were significantly higher in infants who were oxygen-dependent at 36 weeks postconceptional age. These data suggest a pathogenic role for IL-8 and MCP-1 in the development of adverse pulmonary outcome in preterm infants with clinically significant PH.

  2. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    NASA Astrophysics Data System (ADS)

    Augustine, Starrlight; Jaspers, Cornelia; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe; Freitas, Vânia; van der Veer, Henk; van Walraven, Lodewijk

    2014-11-01

    Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.

  3. [Diuretic resistance and mechanical ventilation in decompensated cor pulmonale: successful treatment by slow continuous ultrafiltration].

    PubMed

    Ries, W; Schenzer, A; Lüken, J; Ries, C; Machraoui, A

    2012-08-01

    We report on a 53-year-old male patient who presented with severe dyspnea at rest and massive volume overload because of decompensated cor pulmonale. Furthermore he suffered from stage 3 chronic kidney disease. As there was diuretics resistance and carbon dioxide narcosis, he had to be intubated and ventilated. The massive volume overload could be successfully treated with slow continuous ultrafiltration (SCUF) with removal of a volume of 27.5 l within 3 days. The SCUF therapy is an effective and gentle method to treat even an excessive volume overload based on diuretics resistance.

  4. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury

    PubMed Central

    2010-01-01

    Background Although mechanical ventilation (MV) is a major supportive therapy for patients with acute respiratory distress syndrome, it may result in side effects including lung injury. In this study we hypothesize that MMP-9 inhibition by doxycycline might reduce MV-related lung damage. Using a proteomic approach we identified the pulmonary proteins altered in high volume ventilation-induced lung injury (VILI). Forty Wistar rats were randomized to an orally pretreated with doxycycline group (n = 20) or to a placebo group (n = 20) each of which was followed by instrumentation prior to either low or high tidal volume mechanical ventilation. Afterwards, animals were euthanized and lungs were harvested for subsequent analyses. Results Mechanical function and gas exchange parameters improved following treatment with doxycycline in the high volume ventilated group as compared to the placebo group. Nine pulmonary proteins have shown significant changes between the two biochemically analysed (high volume ventilated) groups. Treatment with doxycycline resul