NASA Astrophysics Data System (ADS)
Sheykhizadeh, Saheleh; Naseri, Abdolhossein
2018-04-01
Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.
Sheykhizadeh, Saheleh; Naseri, Abdolhossein
2018-04-05
Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Josiński, Henryk; Kostrzewa, Daniel; Michalczuk, Agnieszka; Switoński, Adam
2014-01-01
This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.
Optimal dynamic control of invasions: applying a systematic conservation approach.
Adams, Vanessa M; Setterfield, Samantha A
2015-06-01
The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it is more efficient to fund eradication efforts and reduces spread by ~65% compared to no control.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
NASA Astrophysics Data System (ADS)
Kostrzewa, Daniel; Josiński, Henryk
2016-06-01
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.
Bajwa, Ali Ahsan; Chauhan, Bhagirath Singh; Farooq, Muhammad; Shabbir, Asad; Adkins, Steve William
2016-07-01
This review provides an insight into alien plant invasion taking into account the invasion mechanism of parthenium weed ( Parthenium hysterophorus L.). A multi-lateral understanding of the invasion biology of this weed has pragmatic implications for weed ecology and management. Biological invasions are one of the major drivers of restructuring and malfunctioning of ecosystems. Invasive plant species not only change the dynamics of species composition and biodiversity but also hinder the system productivity and efficiency in invaded regions. Parthenium weed, a well-known noxious invasive species, has invaded diverse climatic and biogeographic regions in more than 40 countries across five continents. Efforts are under way to minimize the parthenium weed-induced environmental, agricultural, social, and economic impacts. However, insufficient information regarding its invasion mechanism and interference with ecosystem stability is available. It is hard to devise effective management strategies without understanding the invasion process. Here, we reviewed the mechanism of parthenium weed invasion. Our main conclusions are: (1) morphological advantages, unique reproductive biology, competitive ability, escape from natural enemies in non-native regions, and a C3/C4 photosynthesis are all likely to be involved in parthenium weed invasiveness. (2) Tolerance to abiotic stresses and ability to grow in wide range of edaphic conditions are thought to be additional invasion tools on a physiological front. (3) An allelopathic potential of parthenium weed against crop, weed and pasture species, with multiple modes of allelochemical expression, may also be responsible for its invasion success. Moreover, the release of novel allelochemicals in non-native environments might have a pivotal role in parthenium weed invasion. (4) Genetic diversity found among different populations and biotypes of parthenium weed, based on geographic, edaphic, climatic, and ecological ranges, might also be a strong contributor towards its invasion success. (5) Rising temperatures and atmospheric carbon dioxide (CO2) concentrations and changing rainfall patterns, all within the present day climate change prediction range are favorable for parthenium weed growth, its reproductive output, and therefore its future spread and infestation. (6) Parthenium weed invasion in South Asia depicts the relative and overlapping contribution of all the above-mentioned mechanisms. Such an understanding of the core phenomena regulating the invasion biology has pragmatic implications for its management. A better understanding of the interaction of physiological processes, ecological functions, and genetic makeup within a range of environments may help to devise appropriate management strategies for parthenium weed.
NASA Astrophysics Data System (ADS)
Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei
2018-04-01
By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.
USDA-ARS?s Scientific Manuscript database
Invasive teasels (Dipsacus spp.) are considered noxious in five states and listed as invasive in more than a dozen others, despite having little effect on agriculture. They are problematic in areas of limited weed management such as along highways and railroads and in ditches, wetlands and parks. A ...
USDA-ARS?s Scientific Manuscript database
Successful biological control can significantly reduce the competitive ability and population density and/or distribution of an invasive weed. However, in some cases the target weed is replaced by other nonnative weeds. If this “invasive treadmill effect” occurs, the biodiversity of the site will no...
USDA-ARS?s Scientific Manuscript database
The post-release impact of weed biological control agents on their target weeds is rarely assessed. This study focuses on the impacts of the univoltine broom psyllid Arytainilla spartiophila Forster on the growth of its target weed, the invasive shrub Scotch broom Cytisus scoparius (L.) Link (Fabace...
Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.).
Adkins, Steve; Shabbir, Asad
2014-07-01
Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry.
Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet
2016-01-01
Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.
Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk
2016-01-01
Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey. PMID:27741269
Competition for soil nitrate and invasive weed resistance of three shrub-steppe growth forms
Eamonn D. Leonard
2007-01-01
Determining mechanisms responsible for weed resistance and invasion success are two issues that have potential in aiding successful land management decisions. The first experiment evaluates the competitive effects of an invasive annual grass downy brome (Bromus tectorum L.), an invasive biennial forb dyer's woad (Isatis tinctoria...
Managing invasive plants in natural areas: Moving beyond weed control
Dean Pearson; Yvette Ortega
2009-01-01
Exotic invasive plants present one of the greatest challenges to natural resource management. These weeds can alter entire communities and ecosystems, substantially degrading important ecosystem services such as forage for wild and domestic herbivores, water and soil quality, recreational values, and wildlife habitat. Traditionally, weed management in natural areas has...
USDA-ARS?s Scientific Manuscript database
In a recently published study, Pardini et al. (2009, hereafter "PDCK" after the authors' initials) developed a demographic model of the invasive weed Alliaria petiolata (garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande). This was then used to identify optimal stages in the plant's life histo...
The role of plant-microbiome interactions in weed establishment and control.
Trognitz, Friederike; Hackl, Evelyn; Widhalm, Siegrid; Sessitsch, Angela
2016-10-01
The soil microbiome plays an important role in the establishment of weeds and invasive plants. They associate with microorganisms supporting their growth and health. Weed management strategies, like tillage and herbicide treatments, to control weeds generally alter soil structure going alongside with changes in the microbial community. Once a weed population establishes in the field, the plants build up a close relationship with the available microorganisms. Seeds or vegetative organs overwinter in soil and select early in the season their own microbiome before crop plants start to vegetate. Weed and crop plants compete for light, nutrition and water, but may differently interact with soil microorganisms. The development of new sequencing technologies for analyzing soil microbiomes has opened up the possibility for in depth analysis of the interaction between 'undesired' plants and crop plants under different management systems. These findings will help us to understand the functions of microorganisms involved in crop productivity and plant health, weed establishment and weed prevention. Exploitation of the knowledge offers the possibility to search for new biocontrol methods against weeds based on soil and plant-associated microorganisms. This review discusses the recent advances in understanding the functions of microbial communities for weed/invasive plant establishment and shows new ways to use plant-associated microorganisms to control weeds and invasive plants in different land management systems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Leafy spurge is an invasive perennial weed in the great plains of the US and Canada. The ability of this herbaceous weed to regenerate new shoot growth from an abundance of crown and root buds after severe abiotic stress is critical for survival. Due to its adaptable and aggressive nature, global cl...
Malmstrom, Carolyn M; Butterfield, H Scott; Planck, Laura; Long, Christopher W; Eviner, Valerie T
2017-01-01
Invasive weeds threaten the biodiversity and forage productivity of grasslands worldwide. However, management of these weeds is constrained by the practical difficulty of detecting small-scale infestations across large landscapes and by limits in understanding of landscape-scale invasion dynamics, including mechanisms that enable patches to expand, contract, or remain stable. While high-end hyperspectral remote sensing systems can effectively map vegetation cover, these systems are currently too costly and limited in availability for most land managers. We demonstrate application of a more accessible and cost-effective remote sensing approach, based on simple aerial imagery, for quantifying weed cover dynamics over time. In California annual grasslands, the target communities of interest include invasive weedy grasses (Aegilops triuncialis and Elymus caput-medusae) and desirable forage grass species (primarily Avena spp. and Bromus spp.). Detecting invasion of annual grasses into an annual-dominated community is particularly challenging, but we were able to consistently characterize these two communities based on their phenological differences in peak growth and senescence using maximum likelihood supervised classification of imagery acquired twice per year (in mid- and end-of season). This approach permitted us to map weed-dominated cover at a 1-m scale (correctly detecting 93% of weed patches across the landscape) and to evaluate weed cover change over time. We found that weed cover was more pervasive and persistent in management units that had no significant grazing for several years than in those that were grazed, whereas forage cover was more abundant and stable in the grazed units. This application demonstrates the power of this method for assessing fine-scale vegetation transitions across heterogeneous landscapes. It thus provides means for small-scale early detection of invasive species and for testing fundamental questions about landscape dynamics.
Butterfield, H. Scott; Planck, Laura; Long, Christopher W.; Eviner, Valerie T.
2017-01-01
Invasive weeds threaten the biodiversity and forage productivity of grasslands worldwide. However, management of these weeds is constrained by the practical difficulty of detecting small-scale infestations across large landscapes and by limits in understanding of landscape-scale invasion dynamics, including mechanisms that enable patches to expand, contract, or remain stable. While high-end hyperspectral remote sensing systems can effectively map vegetation cover, these systems are currently too costly and limited in availability for most land managers. We demonstrate application of a more accessible and cost-effective remote sensing approach, based on simple aerial imagery, for quantifying weed cover dynamics over time. In California annual grasslands, the target communities of interest include invasive weedy grasses (Aegilops triuncialis and Elymus caput-medusae) and desirable forage grass species (primarily Avena spp. and Bromus spp.). Detecting invasion of annual grasses into an annual-dominated community is particularly challenging, but we were able to consistently characterize these two communities based on their phenological differences in peak growth and senescence using maximum likelihood supervised classification of imagery acquired twice per year (in mid- and end-of season). This approach permitted us to map weed-dominated cover at a 1-m scale (correctly detecting 93% of weed patches across the landscape) and to evaluate weed cover change over time. We found that weed cover was more pervasive and persistent in management units that had no significant grazing for several years than in those that were grazed, whereas forage cover was more abundant and stable in the grazed units. This application demonstrates the power of this method for assessing fine-scale vegetation transitions across heterogeneous landscapes. It thus provides means for small-scale early detection of invasive species and for testing fundamental questions about landscape dynamics. PMID:29016604
NASA Astrophysics Data System (ADS)
Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul
2016-10-01
Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
[Fast catalogue of alien invasive weeds by Vis/NIR spectroscopy].
Yu, Jia-Jia; Zou, Wei; He, Yong; Xu, Zheng-Hao
2009-11-01
The feasibility of visible and short-wave near-infrared spectroscopy (VIS/WNIR) techniques as means for the nondestructive and fast detection of alien invasive weeds was evaluated. Selected sensitive bands were found validated. In the present study, 3 kinds of alien invasive weeds, Veronica persica, Veronica polita, and Veronica arvensis Linn, and one kind of local weed, Lamiaceae amplexicaule Linn, were employed. The results showed that visible and NIR (Vis/NIR) technology could be introduced in classification of the alien invasive weeds or local weed with the similar outline. Thirty x 4 weeds samples were randomly selected for the calibration set, while the remaining 20 x 4 samples for the prediction set. Smoothing methods of moving average and standard normal variate (SNV) were used to pretreat spectra data. Based on principal components analysis, soft independent models of class analogy (SIMCA) were applied to make the model. Four frontal principal components of each catalogues were applied as the input of SIMCA, and with a significance level of 0.05, recognition ratio of 78.75% was obtained. The average prediction result is 90% except for Veronica polita. According to the modeling power of each spectra data in SIMCA, some possible sensitive bands, 496-521, 589-626 and 789-926 nm, were founded. By using these possible sensitive bands as the inputs of least squares support vector machine (LS-SVM), and setting the result of LS-SVM as the object function value of genetic algorithm (GA), mutational rate, crossover rate and population size were set up as 0.9, 0.5 and 50 respectively. Finally recognition ratio of 95.63% was obtained. The prediction results of 95.63% indicated that the selected wavelengths reflected the main characteristics of the four weeds, which proposed a new way to accelerate the research on cataloguing alien invasive weeds.
2007-04-01
philoxeroides Alligatorweed Alabama Class C noxious weed Imperata cylindrica Cogongrass Alabama Class A noxious weed; Mississippi noxious weed Ipomoea...Invasive Species Alternanthera philoxeroides Phragmites australis Cuscuta spp. Imperata cylindrica ...weed Cuscuta spp. Dodder Alabama Class A noxious weed Imperata cylindrica Cogongrass Alabama Class A noxious weed; MS noxious weed Ipomoea
Mapping invasive weeds and their control with spatial information technologies
USDA-ARS?s Scientific Manuscript database
We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...
Long-term effects of weed control with picloram along a gradient of spotted knapweed invasion
Yvette K. Ortega; Dean E. Pearson
2011-01-01
Broadleaf herbicides are commonly used in rangelands to suppress exotic weeds and release native communities from negative impacts of invasion. However, few studies have comprehensively evaluated treatment effects on differing community components across a gradient of initial invasion levels.We conducted a 6-yr experiment within grasslands of western Montana to measure...
Coutts, Shaun R; Yokomizo, Hiroyuki; Buckley, Yvonne M
2013-04-01
Management of damaging invasive plants is often undertaken by multiple decision makers, each managing only a small part of the invader's population. As weeds can move between properties and re-infest eradicated sites from unmanaged sources, the dynamics of multiple decision makers plays a significant role in weed prevalence and invasion risk at the landscape scale. We used a spatially explicit agent-based simulation to determine how individual agent behavior, in concert with weed population ecology, determined weed prevalence. We compared two invasive grass species that differ in ecology, control methods, and costs: Nassella trichotoma (serrated tussock) and Eragrostis curvula (African love grass). The way decision makers reacted to the benefit of management had a large effect on the extent of a weed. If benefits of weed control outweighed the costs, and either net benefit was very large or all agents were very sensitive to net benefits, then agents tended to act synchronously, reducing the pool of infested agents available to spread the weed. As N. trichotoma was more damaging than E. curvula and had more effective control methods, agents chose to manage it more often, which resulted in lower prevalence of N. trichotoma. A relatively low number of agents who were intrinsically less motivated to control weeds led to increased prevalence of both species. This was particularly apparent when long-distance dispersal meant each infested agent increased the invasion risk for a large portion of the landscape. In this case, a small proportion of land mangers reluctant to control, regardless of costs and benefits, could lead to the whole landscape being infested, even when local control stopped new infestations. Social pressure was important, but only if it was independent of weed prevalence, suggesting that early access to information, and incentives to act on that information, may be crucial in stopping a weed from infesting large areas. The response of our model to both behavioral and ecological parameters was highly nonlinear. This implies that the outcomes of weed management programs that deal with multiple land mangers could be highly variable in both space and through time.
Pandiyan, K.; Tiwari, Rameshwar; Singh, Surender; Nain, Pawan K. S.; Rana, Sarika; Arora, Anju; Singh, Shashi B.; Nain, Lata
2014-01-01
Parthenium sp. is a noxious weed which threatens the environment and biodiversity due to its rapid invasion. This lignocellulosic weed was investigated for its potential in biofuel production by subjecting it to mild alkali pretreatment followed by enzymatic saccharification which resulted in significant amount of fermentable sugar yield (76.6%). Optimization of enzymatic hydrolysis variables such as temperature, pH, enzyme, and substrate loading was carried out using central composite design (CCD) in response to surface methodology (RSM) to achieve the maximum saccharification yield. Data obtained from RSM was validated using ANOVA. After the optimization process, a model was proposed with predicted value of 80.08% saccharification yield under optimum conditions which was confirmed by the experimental value of 85.80%. This illustrated a good agreement between predicted and experimental response (saccharification yield). The saccharification yield was enhanced by enzyme loading and reduced by temperature and substrate loading. This study reveals that under optimized condition, sugar yield was significantly increased which was higher than earlier reports and promises the use of Parthenium sp. biomass as a feedstock for bioethanol production. PMID:24900917
High Concentrations of Condensed Tannins in Utah Trefoil (Lotus utahensis Ottley)
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems in the western USA are increasingly vulnerable to wildland fires, weed invasion, and misuse. For many of these rangelands, revegetation/restoration may be required to improve degraded conditions, speed recovery, combat invasive weeds, and minimize soil erosion. Utah trefoil (L...
Andersen, Trond; González, Orestes C Bello; Baars, Jan-Robert; Earle, William
2015-08-19
Polypedilum (Pentapedilum) tuburcinatum Andersen et Bello González sp. n. is described and figured as male, female, pupa and larva based on material collected in the Eastern Cape Province in South Africa, imported into quarantine in Ireland and reared in the laboratory. The species feeds on the aquatic weed Lagarosiphon major (Ridl.) Moss ex Wager and is regarded as a promising candidate agent for biological control of this invasive weed.
Evaluation of UAV imagery for mapping Silybum marianum weed patches
USDA-ARS?s Scientific Manuscript database
The invasive weed, milk thistle (Silybum marianum), has the tendency to grow in patches. In order to perform site-specific weed management, determining the spatial distribution of weeds is important for its eradication. Remote sensing has been used to perform species discrimination, and it offers pr...
Ellen C. Lake; Judith Hough-Goldstein; Vincent D' Amico
2014-01-01
Efforts to suppress an invasive weed are often undertaken with the goal of facilitating the recovery of a diverse native plant community. In some cases, however, reduction in the abundance of the target weed results in an increase in other exotic weeds. Mile-a-minute weed (Persicaria perfoliata (L.) H. Gross (Polygonaceae)) is an annual vine from...
Status of biological control projects on terrestrial invasive alien weeds in California
USDA-ARS?s Scientific Manuscript database
In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...
Evidence targeted grazing benefits to invaded rangelands can increase over extended time frames
USDA-ARS?s Scientific Manuscript database
Prescribed grazing uses livestock to address rangeland management issues such as woody plant encroachment, accumulations of flammable biomass and exotic weed invasions. Invasive weed responses to prescribed grazing have proven variable. For instance, a given livestock species can sharply reduce ab...
Revegetation Guidelines for the Great Basin: Considering Invasive Weeds
USDA-ARS?s Scientific Manuscript database
Large portions of the Great Basin become degraded and disturbed every day due to natural and human-induced causes. Some disturbed areas may recover naturally in time, but other areas may never recover naturally because invasive weeds establish quickly and prevent native plants from establishing. I...
DOT National Transportation Integrated Search
2009-01-01
Common cattail (Typha latifolia) is a native plant species listed as an invasive weed by some regulatory agencies. While it is not listed as a noxious weed by the Commonwealth of Virginia, control of cattail populations in created forested wetlands i...
Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions.
Truong, Tuyet T A; Hardy, Giles E St J; Andrew, Margaret E
2017-01-01
Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental scales are enabled by readily available downscaled climate surfaces together with an increasing number of digitized and georeferenced species occurrence records and species distribution modeling techniques. However, predictions at a finer scale and in landscapes with less topographic variation may require predictors that capture biotic processes and local abiotic conditions. Contemporary remote sensing (RS) data can enhance predictions by providing a range of spatial environmental data products at fine scale beyond climatic variables only. In this study, we used the Global Biodiversity Information Facility (GBIF) and empirical maximum entropy (MaxEnt) models to model the potential distributions of 14 invasive plant species across Southeast Asia (SEA), selected from regional and Vietnam's lists of priority weeds. Spatial environmental variables used to map invasion risk included bioclimatic layers and recent representations of global land cover, vegetation productivity (GPP), and soil properties developed from Earth observation data. Results showed that combining climate and RS data reduced predicted areas of suitable habitat compared with models using climate or RS data only, with no loss in model accuracy. However, contributions of RS variables were relatively limited, in part due to uncertainties in the land cover data. We strongly encourage greater adoption of quantitative remotely sensed estimates of ecosystem structure and function for habitat suitability modeling. Through comprehensive maps of overall predicted area and diversity of invasive species, we found that among lifeforms (herb, shrub, and vine), shrub species have higher potential invasion risk in SEA. Native invasive species, which are often overlooked in weed risk assessment, may be as serious a problem as non-native invasive species. Awareness of invasive weeds and their environmental impacts is still nascent in SEA and information is scarce. Freely available global spatial datasets, not least those provided by Earth observation programs, and the results of studies such as this one provide critical information that enables strategic management of environmental threats such as invasive species.
Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions
Truong, Tuyet T. A.; Hardy, Giles E. St. J.; Andrew, Margaret E.
2017-01-01
Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental scales are enabled by readily available downscaled climate surfaces together with an increasing number of digitized and georeferenced species occurrence records and species distribution modeling techniques. However, predictions at a finer scale and in landscapes with less topographic variation may require predictors that capture biotic processes and local abiotic conditions. Contemporary remote sensing (RS) data can enhance predictions by providing a range of spatial environmental data products at fine scale beyond climatic variables only. In this study, we used the Global Biodiversity Information Facility (GBIF) and empirical maximum entropy (MaxEnt) models to model the potential distributions of 14 invasive plant species across Southeast Asia (SEA), selected from regional and Vietnam’s lists of priority weeds. Spatial environmental variables used to map invasion risk included bioclimatic layers and recent representations of global land cover, vegetation productivity (GPP), and soil properties developed from Earth observation data. Results showed that combining climate and RS data reduced predicted areas of suitable habitat compared with models using climate or RS data only, with no loss in model accuracy. However, contributions of RS variables were relatively limited, in part due to uncertainties in the land cover data. We strongly encourage greater adoption of quantitative remotely sensed estimates of ecosystem structure and function for habitat suitability modeling. Through comprehensive maps of overall predicted area and diversity of invasive species, we found that among lifeforms (herb, shrub, and vine), shrub species have higher potential invasion risk in SEA. Native invasive species, which are often overlooked in weed risk assessment, may be as serious a problem as non-native invasive species. Awareness of invasive weeds and their environmental impacts is still nascent in SEA and information is scarce. Freely available global spatial datasets, not least those provided by Earth observation programs, and the results of studies such as this one provide critical information that enables strategic management of environmental threats such as invasive species. PMID:28555147
The Invasive American Weed Parthenium hysterophorus Can Negatively Impact Malaria Control in Africa.
Nyasembe, Vincent O; Cheseto, Xavier; Kaplan, Fatma; Foster, Woodbridge A; Teal, Peter E A; Tumlinson, James H; Borgemeister, Christian; Torto, Baldwyn
2015-01-01
The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants.
The Invasive American Weed Parthenium hysterophorus Can Negatively Impact Malaria Control in Africa
Nyasembe, Vincent O.; Cheseto, Xavier; Kaplan, Fatma; Foster, Woodbridge A.; Teal, Peter E. A.; Tumlinson, James H.; Borgemeister, Christian; Torto, Baldwyn
2015-01-01
The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants. PMID:26367123
EBIPM | Finding the Tools to Manage Invasive Annual Grasses
Grass Management How much could prevention save you? Guidelines to Implement EBIPM Weed Prevention Areas Grass Facts/ID The EBIPM Model Crooked River Weed Management Area Guide Tools for Educators EBIPM High Agricultural Research Center for more information on invasive plant research. Eastern Oregon Agricultural
Monitoring invasive plants using hand-held GIS technology
Theresa M. Mau-Crimmins; Barron J. Orr
2005-01-01
Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...
Funding needed for assessments of weed biological control
John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson
2010-01-01
Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...
USDA-ARS?s Scientific Manuscript database
During efforts to identify native herbivores of Parkinsonia aculeata L. (Fabaceae: Caesalpiniodeae) as potential biological control agents against this invasive weed in Australia, seven species of Tortricidae were reared in Mexico, Guatemala, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Pla...
USDA-ARS?s Scientific Manuscript database
The exotic rangeland perennial Lepidium draba occurs as a noxious weed in 22 states, mostly in the western U. S. Because chemical control measures against this invasive perennial have not achieved satisfactory results, biological control is being pursued. While inventories of arthropods that feed on...
A weed compaction roller system for use with mechanical herbicide application
Adam H. Wiese; Daniel A. Netzer; Don E. Riemenschneider; Ronald S., Jr. Zalesny
2006-01-01
We designed, constructed, and field-tested a versatile and unique weed compaction roller system that can be used with mechanical herbicide application for invasive weed control in tree plantations, agronomic settings, and areas where localized flora and fauna are in danger of elimination from the landscape. The weed compaction roller system combined with herbicide...
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Peter Rice
2000-01-01
Invasive alien weeds established themselves on the Sawmill Creek Research Natural Area, harming elk feeding grounds and threatening the integrity of the native plant community. Management enacted herbicide control over several growing seasons, resulting in greater elk winter forage on study plots. Monitoring the long-term effects of herbicide as a restoration tool...
USDA-ARS?s Scientific Manuscript database
Lepidium draba sp. draba, also named hoary cress, is a deep-rooted perennial plant in the family Brassicaceae. It is an invasive rangeland weed in the U.S. and Canada that originates from Eurasia. The collar gall weevil, Ceutorhynchus assimilis (Coleoptera: Curculionidae), has been identified as a ...
USDA-ARS?s Scientific Manuscript database
Integrating classical biological control with other management techniques such as herbicide, fire, mechanical control, grazing, or plant competition, can be the most effective way to manage invasive weeds in natural areas and rangelands. Biological control agents can be protected from potential nega...
USDA-ARS?s Scientific Manuscript database
The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of plant biomass. Thus searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ce...
Invasive plant species and the new bioeconomy
USDA-ARS?s Scientific Manuscript database
Simulation models of management effects on weed demography and the experience of successful organic and low-external-input farmers point in the same direction: long-term weed management success depends on diversified strategies that attack multiple weed life stages. In an era of declining research b...
USDA-ARS?s Scientific Manuscript database
In the U.S., introduced invasive weeds have catastrophic effects on agricultural, aquatic, rangeland, riparian, and natural ecosystems. Often the only economically feasible means for controlling these weeds is classical biological control through the introduction of natural enemies, including plant ...
Field Guide for the Biological Control of Weeds in Eastern North America
USDA-ARS?s Scientific Manuscript database
This field guide provides information about invasive weeds in Eastern North America and their associated biological control agents. Information about plant identification and ecology is provided through photographs and descriptions for each weed species. The guide also includes photographs of the bi...
Weed seeds on clothing: a global review.
Ansong, Michael; Pickering, Catherine
2014-11-01
Weeds are a major threat to biodiversity including in areas of high conservation value. Unfortunately, people may be unintentionally introducing and dispersing weed seeds on their clothing when they visit these areas. To inform the management of these areas, we conducted a systematic quantitative literature review to determine the diversity and characteristics of species with seeds that can attach and be dispersed from clothing. Across 21 studies identified from systematic literature searches on this topic, seeds from 449 species have been recorded on clothing, more than double the diversity found in a previous review. Nearly all of them, 391 species, are listed weeds in one or more countries, with 58 classified as internationally-recognised environmental weeds. When our database was compared with weed lists from different countries and continents we found that clothing can carry the seeds of important regional weeds. A total of 287 of the species are listed as aliens in one or more countries in Europe, 156 are invasive species/noxious weeds in North America, 211 are naturalized alien plants in Australia, 97 are alien species in India, 33 are invasive species in China and 5 are declared weeds/invaders in South Africa. Seeds on the clothing of hikers can be carried to an average distance of 13 km, and where people travel in cars, trains, planes and boats, the seeds on their clothing can be carried much further. Factors that affect this type of seed dispersal include the type of clothing, the type of material the clothing is made from, the number and location of the seeds on plants, and seed traits such as adhesive and attachment structures. With increasing use of protected areas by tourists, including in remote regions, popular protected areas may be at great risk of biological invasions by weeds with seeds carried on clothing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yvete K. Ortega; Dean E. Pearson
2010-01-01
Broadleaf herbicides are commonly used to suppress exotic weeds with the intent of releasing native species from negative impacts of invasion. However, weed control measures can also have unintended consequences that should be considered along with intended effects. We conducted a controlled field experiment within bunchgrass communities of western Montana to examine...
Phil S. Allen; Susan E. Meyer
2014-01-01
Ecological restoration of shrub-steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will...
Phytotoxic property of the invasive plant Tithonia diversifolia and a phytotoxic substance.
Suzuki, Masahiko; Iwasaki, Arihiro; Suenaga, Kiyotake; Kato-Noguchi, Hisashi
2017-06-01
Tithonia diversifolia (Hermsl.) A. Gray is a perennial invasive plant and spreads quickly in the invasive areas. The extracts of T. diversifolia were found to be toxic to several crop plant species such as rice, maize, sorghum, lettuce and cowpea, and several putative allelopathic substances were identified. However, there is limited information available for the effects of T. diversifolia on wild plants including weed plant species. We investigated the allelopathic potential of T. diversifolia extracts on weed plants, and searched for phytotoxic substances with allelopathic activity. An aqueous methanol extract of T. diversifolia leaves inhibited the growth of weed plants, Lolium multiflorum Lam., Phleum pretense L., Echinochloa crus-galli (L.) Beauv. The extract was then purified by several chromatographic runs and a phytotoxic substance with allelopathic activity was isolated and identified by spectral analysis as tagitinin C. The substance inhibited the growth of Lolium multiflorum, Phleum pratense and Echinochloa crus-galli at concentrations greater than 0.1 - 0.3 mM. The present results suggest that T. diversifolia may possess allelopathic potential on weed plants and tagitinin C may be responsible for the allelopathic effects of T. diversifolia. The allelopathic potential of T. diversifolia may contribute to its invasive characteristics.
Weed biocontrol in the EU: from serendipity to strategy
USDA-ARS?s Scientific Manuscript database
Biological control of weeds is a globally-recognized approach to the management of the worst invasive plants in the world. Unfortunately, accidental introduction of agents account for most weed biocontrol in the EU, but do include a number of current or emerging successes. From the redistribution of...
Improved understanding of weed biological control safety and impact with chemical ecology: a review
USDA-ARS?s Scientific Manuscript database
We review chemical ecology literature as it relates to weed biological control and discuss how this means of controlling invasive plants could be enhanced by the consideration of several well established research developments. The interface between chemical ecology and weed biological control presen...
Nguyen, Thi; Bajwa, Ali Ahsan; Belgeri, Amalia; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve
2017-12-01
Parthenium weed is a highly invasive alien species in more than 40 countries around the world. Along with severe negative effects on human and animal health and crop production, it also causes harm to ecosystem functioning by reducing the native plant species biodiversity. However, its impacts on native plant species, especially in pasture communities, are less known. Given parthenium weed causes substantial losses to Australian pastures' productivity, it is crucial to estimate its impact on pasture communities. This study evaluates the impact of parthenium weed upon species diversity in a pasture community at Kilcoy, south east Queensland, Australia. Sub-sites containing three levels of parthenium weed density (i.e. high, low and zero) were chosen to quantify the above- and below-ground plant community structure. Species richness, diversity and evenness were all found to be significantly reduced as the density of parthenium weed increased; an effect was evident even when parthenium weed was present at relatively low densities (i.e. two plants m -2 ). This trend was observed in the summer season as well as in winter season when this annual weed was absent from the above-ground plant community. This demonstrates the strong impact that parthenium weed has upon the community composition and functioning throughout the year. It also shows the long-term impact of parthenium weed on the soil seed bank where it had displaced several native species. So, management options used for parthenium weed should also consider the reduction of parthenium weed seed bank along with controlling its above-ground populations.
James S. Jacobs; Sharlene E. Sing; John M. Martin
2006-01-01
The root-feeding weevil Cyphocleonus achates (Fahraeus) is a promising biological control agent for managing the exotic, invasive weed spotted knapweed. The objective of this study was to compare the relative and potentially interactive effects of competition and specialized herbivory on spotted knapweed fitness. Competition was assessed through three grass seeding...
USDA-ARS?s Scientific Manuscript database
Annual domestic impacts associated with introduced weeds are conservatively estimated at $27 billion, incorporating costs of weed management, crop losses and displacement of productive rangeland, and displacement of some environmental services. Estimating the total economic damage of invasive weed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Jody K.
Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management tomore » maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol insects have been released to assist with control of different target weed species. Monitoring is conducted to evaluate the effectiveness of control efforts and to provide information for future control efforts. The effective implementation of this integrated approach has reduced the infestation levels of many species and has kept several newly discovered invasive species from spreading and becoming larger problems at the site. (authors)« less
Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.).
Xuan, Tran Dang; Toyama, Tsuneaki; Fukuta, Masakazu; Khanh, Tran Dang; Tawata, Shinkichi
2009-10-28
From gas chromatography-mass spectrometry (GC-MS), numerous plant growth inhibitors were found in the rhizome and root exudates of cogongrass, one of the most problematic weeds in the world. iso-Eugenol, iso-ferulic acid, linoleic acid, ferulic acid, and vanillin were the major chemicals in the rhizome (88.1-392.2 microg/g of fresh root), while 4-acetyl-2-methoxyphenol was the principle substance (872.6 microg/plant) in the root exudates. In fields, the use of cutting and plowing reduced weed biomass and weed density of cogongrass >70%. However, the alternative invasion of beggar tick might be a problem, because its density and biomass increased 33.3 and 62.5%, respectively. Chemicals from cogongrass showed selective effects against tested invasive species. Of them, 2,4-di-tert-butylphenol was the most potent (78.3-100% of inhibition), followed by iso-eugenol and 4-acetyl-2-methoxyphenol. These compounds may play important roles in the invasiveness of cogongrass and might be promising parent constituents of synthesis to develop novel herbicides for control of invasive plants.
Westbrooks, Randy G.
2011-01-01
The U.S. Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW) is a formal partnership between 16 federal agencies that have invasive plant management and regulatory responsibilities for the United States and its territories. Efforts to develop a national level federal interagency committee to coordinate federal activities were initiated by national weed program managers with the USDA Forest Service and the Bureau of Land Management in 1989. FICMNEW was formally established through a Memorandum of Understanding that was signed by agency administrators of member agencies in August, 1994.
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them
NASA Astrophysics Data System (ADS)
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-06-01
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-01-01
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica. PMID:26047489
A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them.
Li, Weihua; Luo, Jianning; Tian, Xingshan; Soon Chow, Wah; Sun, Zhongyu; Zhang, Taijie; Peng, Shaolin; Peng, Changlian
2015-06-05
To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO2-fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica.
New pasture plants intensify invasive species risk.
Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon
2014-11-18
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.
New pasture plants intensify invasive species risk
Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon
2014-01-01
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175
USDA-ARS?s Scientific Manuscript database
Benghal dayflower (BD) is an exotic weed that reduces yields in many agricultural crops. Potential dispersal of this weed by migratory Mourning doves was investigated in this study. Evidence shows that doves feed on BD seeds, with some birds containing hundreds of seeds. Seeds extracted from harvest...
USDA-ARS?s Scientific Manuscript database
Pre-release efficacy assessments can identify agents with the most potential to impact the target weed. Experiments typically occur within a single generation of the agent, however, and strong impacts on target weeds may take longer to emerge. This study examined the effects of the prospective agent...
USDA-ARS?s Scientific Manuscript database
Old World climbing fern, Lygodium microphyllum is one of the most problematic invasive weeds affecting natural areas in southern and central Florida. Management of this weed using fire or mechanical methods is ineffective, because the weed rapidly regrows from rhizomes, while herbicidal management i...
Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis
2012-01-01
Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.
Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis
2012-01-01
Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362
Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël
2010-01-01
Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926
USDA-ARS?s Scientific Manuscript database
An invasive grass, Arundo donax, occupies thousands of hectares of arid riparian habitat along the Rio Grande and was the first perennial grass to be targeted with biological control, due to the great negative impacts of this weed on water resources and riparian ecosystems. The shoot-tip galling was...
Barbara Goodrich Phillips; Debra Crisp
2001-01-01
Many noxious weed infestations are initiated or increased by soil disturbance. With the recent emphasis on reintroduction of fire into natural ecosystems there has been increased interest in the effects of noxious weeds following fires. This paper discusses the effects of fire on Flagstaff pennyroyal, a Forest Service Region 3 sensitive plant, and the subsequent...
Releases of natural enemies in Hawaii since 1980 for classical biological control of weeds
P. Conant; J. N. Garcia; M. T. Johnson; W. T. Nagamine; C. K. Hirayama; G. P. Markin; R. L. Hill
2013-01-01
A comprehensive review of biological control of weeds in Hawaii was last published in 1992, covering 74 natural enemy species released from 1902 through 1980. The present review summarizes releases of 21 natural enemies targeting seven invasive weeds from 1981 to 2010. These projects were carried out by Hawaii Department of Agriculture (HDOA), USDA Forest Service (USFS...
Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.
Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A
2010-09-01
River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and reservoirs may also interrupt hydrochory, the downstream flow of seeds and clonal fragments. We thus conclude that with some operational patterns, dams and reservoirs can impede the downstream expansion of riparian weeds.
Magarey, Roger; Newton, Leslie; Hong, Seung C.; Takeuchi, Yu; Christie, Dave; Jarnevich, Catherine S.; Kohl, Lisa; Damus, Martin; Higgins, Steven I.; Miller, Leah; Castro, Karen; West, Amanda; Hastings, John; Cook, Gericke; Kartesz, John; Koop, Anthony
2018-01-01
This study compares four models for predicting the potential distribution of non-indigenous weed species in the conterminous U.S. The comparison focused on evaluating modeling tools and protocols as currently used for weed risk assessment or for predicting the potential distribution of invasive weeds. We used six weed species (three highly invasive and three less invasive non-indigenous species) that have been established in the U.S. for more than 75 years. The experiment involved providing non-U. S. location data to users familiar with one of the four evaluated techniques, who then developed predictive models that were applied to the United States without knowing the identity of the species or its U.S. distribution. We compared a simple GIS climate matching technique known as Proto3, a simple climate matching tool CLIMEX Match Climates, the correlative model MaxEnt, and a process model known as the Thornley Transport Resistance (TTR) model. Two experienced users ran each modeling tool except TTR, which had one user. Models were trained with global species distribution data excluding any U.S. data, and then were evaluated using the current known U.S. distribution. The influence of weed species identity and modeling tool on prevalence and sensitivity effects was compared using a generalized linear mixed model. Each modeling tool itself had a low statistical significance, while weed species alone accounted for 69.1 and 48.5% of the variance for prevalence and sensitivity, respectively. These results suggest that simple modeling tools might perform as well as complex ones in the case of predicting potential distribution for a weed not yet present in the United States. Considerations of model accuracy should also be balanced with those of reproducibility and ease of use. More important than the choice of modeling tool is the construction of robust protocols and testing both new and experienced users under blind test conditions that approximate operational conditions.
Fingerprint recognition of alien invasive weeds based on the texture character and machine learning
NASA Astrophysics Data System (ADS)
Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao
2008-11-01
Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.
Are Weeds Hitchhiking a Ride on Your Car? A Systematic Review of Seed Dispersal on Cars
Ansong, Michael; Pickering, Catherine
2013-01-01
When traveling in cars, we can unintentionally carry and disperse weed seed; but which species, and where are they a problem? To answer these questions, we systematically searched the scientific literature to identify all original research studies that assess seed transported by cars and listed the species with seed on/in cars. From the 13 studies that fit these criteria, we found 626 species from 75 families that have seed that can be dispersed by cars. Of these, 599 are listed as weeds in some part of the world, with 439 listed as invasive or naturalized alien species in one or more European countries, 248 are invasive/noxious weeds in North America, 370 are naturalized alien species in Australia, 167 are alien species in India, 77 are invasive species in China and 23 are declared weeds/invaders in South Africa. One hundred and one are classified as internationally important environmental weeds. Although most (487) were only recorded once, some species such as Chenopodium album, Poa pratensis and Trifolium repens were common among studies. Perennial graminoids seem to be favoured over annual graminoids while annual forbs are favoured over perennial forbs. Species characteristics including seed size and morphology and where the plants grew affected the probability that their seed was transported by cars. Seeds can be found in many different places on cars including under the chassis, front and rear bumpers, wheel wells and rims, front and back mudguards, wheel arches, tyres and on interior floor mats. With increasing numbers of cars and expanding road networks in many regions, these results highlight the importance of cars as a dispersal mechanism, and how it may favour invasions by some species over others. Strategies to reduce the risk of seed dispersal by cars include reducing seed on cars by mowing road verges and cleaning cars. PMID:24265803
Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars.
Ansong, Michael; Pickering, Catherine
2013-01-01
When traveling in cars, we can unintentionally carry and disperse weed seed; but which species, and where are they a problem? To answer these questions, we systematically searched the scientific literature to identify all original research studies that assess seed transported by cars and listed the species with seed on/in cars. From the 13 studies that fit these criteria, we found 626 species from 75 families that have seed that can be dispersed by cars. Of these, 599 are listed as weeds in some part of the world, with 439 listed as invasive or naturalized alien species in one or more European countries, 248 are invasive/noxious weeds in North America, 370 are naturalized alien species in Australia, 167 are alien species in India, 77 are invasive species in China and 23 are declared weeds/invaders in South Africa. One hundred and one are classified as internationally important environmental weeds. Although most (487) were only recorded once, some species such as Chenopodium album, Poa pratensis and Trifolium repens were common among studies. Perennial graminoids seem to be favoured over annual graminoids while annual forbs are favoured over perennial forbs. Species characteristics including seed size and morphology and where the plants grew affected the probability that their seed was transported by cars. Seeds can be found in many different places on cars including under the chassis, front and rear bumpers, wheel wells and rims, front and back mudguards, wheel arches, tyres and on interior floor mats. With increasing numbers of cars and expanding road networks in many regions, these results highlight the importance of cars as a dispersal mechanism, and how it may favour invasions by some species over others. Strategies to reduce the risk of seed dispersal by cars include reducing seed on cars by mowing road verges and cleaning cars.
Spatio-temporal heterogeneity and habitat invasibility in sagebrush steppe ecosystems
Monica B. Mazzola
2008-01-01
Bromus tectorum L. (cheatgrass) is the most widespread invasive weed in sagebrushsteppe ecosystems. Invasion by Bromus tectorum produces large-scale changes ecosystem that negatively affect seedling establishment processes. Establishment of invasive and native species plays a key role in determining community invasibility and restoration potential. This study examined...
Weed seed spread and its prevention: The role of roadside wash down.
Bajwa, Ali Ahsan; Nguyen, Thi; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve
2018-02-15
Vehicles are one of the major vectors of long-distance weed seed spread. Viable seed removed from vehicles at roadside wash down facilities was studied at five locations in central Queensland, Australia over a 3-year period. Seed from 145 plant species, belonging to 34 different families, were identified in the sludge samples obtained from the wet particulate matter collection pit of the wash down facilities. Most of the species were annual forbs (50%) with small or very small seed size (<2 mm in diameter). A significant amount of seed from the highly invasive, parthenium weed was observed in these samples. More parthenium weed seed were found in the Rolleston facility and in the spring, but its seed was present in all facilities and in all seasons. The average number of viable seed found within every ton of dry particulate matter removed from vehicles was ca. 68,000. Thus, a typical wash down facility was removing up to ca. 335,000 viable seed from vehicles per week, of which ca. 6700 were parthenium weed seed. Furthermore, 61% of these seed (ca. 200,000) were from introduced species, and about half of these (35% of total) were from species considered to be weeds. Therefore, the roadside wash down facilities found throughout Queensland can remove a substantial amount of viable weed seed from vehicles, including the invasive parthenium weed, and the use of such facilities should be strongly encouraged. Copyright © 2017 Elsevier Ltd. All rights reserved.
Addressing the threat to biodiversity from botanic gardens.
Hulme, Philip E
2011-04-01
Increasing evidence highlights the role that botanic gardens might have in plant invasions across the globe. Botanic gardens, often in global biodiversity hotspots, have been implicated in the early cultivation and/or introduction of most environmental weeds listed by IUCN as among the worst invasive species worldwide. Furthermore, most of the popular ornamental species in living collections around the globe have records as alien weeds. Voluntary codes of conduct to prevent the dissemination of invasive plants from botanic gardens have had limited uptake, with few risk assessments undertaken of individual living collections. A stronger global networking of botanic gardens to tackle biological invasions involving public outreach, information sharing and capacity building is a priority to prevent the problems of the past occurring in the future.
Westbrooks, R.; Westbrooks, R.
2011-01-01
Over the past 50 years, experience has shown that interagency groups provide an effective forum for addressing various invasive species issues and challenges on multiple land units. However, more importantly, they can also provide a coordinated framework for early detection, reporting, identification and vouchering, rapid assessment, and rapid response to new and emerging invasive plants in the United States. Interagency collaboration maximizes the use of available expertise, resources, and authority for promoting early detection and rapid response (EDRR) as the preferred management option for addressing new and emerging invasive plants. Currently, an interagency effort is underway to develop a National EDRR System for Invasive Plants in the United States. The proposed system will include structural and informational elements. Structural elements of the system include a network of interagency partner groups to facilitate early detection and rapid response to new invasive plants, including the Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), State Invasive Species Councils, State Early Detection and Rapid Response Coordinating Committees, State Volunteer Detection and Reporting Networks, Invasive Plant Task Forces, and Cooperative Weed Management Areas. Informational elements and products being developed include Regional Invasive Plant Atlases, and EDRR Guidelines for EDRR Volunteer Network Training, Rapid Assessment and Rapid Response, and Criteria for Selection of EDRR Species. System science and technical support elements which are provided by cooperating state and federal scientists, include EDRR guidelines, training curriculum for EDRR volunteers and agency field personnel, plant identification and vouchering, rapid assessments, as well as predictive modeling and ecological range studies for invasive plant species.
DOT National Transportation Integrated Search
2017-06-01
Transportation departments are challenged by the invasion of downy brome (cheatgrass) and medusahead. The reduction of downy brome (cheat grass) by Weed Suppressive Bacteria (WSB) Pseudomonas fluorescens strain ACK55 was evaluated on roadsides of I-8...
Mintesnot, Birara; Ayalew, Amare; Kebede, Ameha
2014-01-15
This study assessed the bioconversion of Agriculture wastes like invasive weeds species (Lantana camara, Prosopis juliflora, Parthenium hysterophorus) as a substrate for oyster mushroom (Pleurotus species) cultivation together with wheat straw as a control. The experiment was laid out in factorial combination of substrates and three edible oyster mushroom species in a Completely Randomized Design (CRD) with three replications. Pleurotus ostreatus gave significantly (p < 0.01) total yield of 840 g kg(-1) on P. hysterophorus, Significantly (p < 0.01) biological efficiency (83.87%) and production rate of 3.13 was recorded for P. ostreatus grown on P. hysterophorus. The highest total ash content (13.90%) was recorded for P. florida grown on L. camara. while the lowest (6.92%) was for P. sajor-caju grown on the P. juliflora. Crude protein ranged from 40.51-41.48% for P. florida grown on P. hysterophorus and L. camara. Lowest crude protein content (30.11%) was recorded for P. ostreatus grown on wheat straw. The crude fiber content (12.73%) of P. sajor-caju grown on wheat straw was the highest. The lowest crude fiber (5.19%) was recorded for P. ostreatus on P. juliflora. Total yield had a positive and significant correlation with biological efficiency and production. Utilization of the plant biomass for mushroom cultivation could contribute to alleviating ecological impact of invasive weed species while offering practical option to mitigating hunger and malnutrition in areas where the invasive weeds became dominant.
Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.
Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M
2007-12-01
Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere.
Can hyperspectral remote sensing detect species specific biochemicals?
USDA-ARS?s Scientific Manuscript database
Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds and invasive species. Detection of clandestinely grown Cannabis sativa L. is in many ways a special case of weed detection. Remote sensing technology provides an automated, computer based,...
Buffalo calves intoxicated with Ageratum houstonianum mill
USDA-ARS?s Scientific Manuscript database
Ageratum houstonianum Mill, a noxious weed has been reported to contain pyrrolizidine alkaloids, saponins, triterpens and coumarin. It is an invasive weed that is commonly found in the pasturelands of tropical and subtropical regions. The objectives of this work were to verify the toxicity of A. ho...
Improving Soil Seed Bank Management.
Haring, Steven C; Flessner, Michael L
2018-05-08
Problems associated with simplified weed management motivate efforts for diversification. Integrated weed management uses fundamentals of weed biology and applied ecology to provide a framework for diversified weed management programs; the soil seed bank comprises a necessary part of this framework. By targeting seeds, growers can inhibit the propagule pressure on which annual weeds depend for agricultural invasion. Some current management practices affect weed seed banks, such as crop rotation and tillage, but these tools are often used without specific intention to manage weed seeds. Difficulties quantifying the weed seed bank, understanding seed bank phenology, and linking seed banks to emerged weed communities challenge existing soil seed bank management practices. Improved seed bank quantification methods could include DNA profiling of the soil seed bank, mark and recapture, or 3D LIDAR mapping. Successful and sustainable soil seed bank management must constrain functionally diverse and changing weed communities. Harvest weed seed controls represent a step forward, but over-reliance on this singular technique could make it short-lived. Researchers must explore tools inspired by other pest management disciplines, such as gene drives or habitat modification for predatory organisms. Future weed seed bank management will combine multiple complementary practices that enhance diverse agroecosystems. This article is protected by copyright. All rights reserved.
Secondary invasion: The bane of weed management
Dean E. Pearson; Yvette K. Ortega; Justin B. Runyon; Jack L. Butler
2016-01-01
Exotic plant invasions present a global threat to natural ecosystems, yet the efficacy of management efforts in mitigating invader impacts remains unclear. A rapidly emerging problem is that of secondary invasion â an increase in abundance of non-target exotics following treatment of targeted invasive plants. Here, we present a global literature review and...
USDA-ARS?s Scientific Manuscript database
Invasive species and acid rain cause global environmental problems. Limited information exists, however, concerning the effects of acid rain on the invasiveness of these plants. For example, creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China where acid ra...
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
Yellow starthistle rust: summary of release, establishment and biology in California
USDA-ARS?s Scientific Manuscript database
The rust pathogen, Puccinia jaceae var. solstitialis, was collected in Turkey for use as a classical biological control of yellow starthistle, which is an invasive alien weed. During pre-release evaluation of risk to 65 nontarget plant species, the rust infected only the target weed and bachelor's b...
Natural enemies associated with the invasive weed, Lepidium latifolium L., in its introduced range
USDA-ARS?s Scientific Manuscript database
Perennial pepperweed, Lepidium latifolium L., is a perennial mustard (Brassicaceae) native to Eurasia. It was unintentionally introduced to North America in the early 1900s, and has since spread over millions of acres. This weed is an aggressive invader of wetlands, meadows, roadsides, and agricul...
Potential geographic distribution of Palmer amaranth under current and future climates
USDA-ARS?s Scientific Manuscript database
Herbicide resistant weeds are increasingly becoming a major challenge for agricultural production worldwide. Palmer amaranth is an invasive annual forb that has recently emerged as one of the most widespread and severe agronomic weeds in the US, due in part to its facility for evolving herbicide res...
Halogeton (Halogeton glomeratus) poisoning in cattle.
USDA-ARS?s Scientific Manuscript database
Halogeton (Halogeton glomeratus) is a foreign invasive noxious weed from Eurasia, first collected and identified in the United States at Wells, NV in 1934. It is unclear how this weed was introduced but it spread rapidly on overgrazed and depleted desert range. Within 40 years it infested 11.2 mill...
USDA-ARS?s Scientific Manuscript database
The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...
USDA-ARS?s Scientific Manuscript database
Pale and black swallow-wort (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae) are perennial vines from Europe that are invasive in various terrestrial habitats in the northeastern USA and southeastern Canada. A classical weed biological control program has been in develop...
Connolly, John; Sebastià, Maria-Teresa; Kirwan, Laura; Finn, John Anthony; Llurba, Rosa; Suter, Matthias; Collins, Rosemary P; Porqueddu, Claudio; Helgadóttir, Áslaug; Baadshaug, Ole H; Bélanger, Gilles; Black, Alistair; Brophy, Caroline; Čop, Jure; Dalmannsdóttir, Sigridur; Delgado, Ignacio; Elgersma, Anjo; Fothergill, Michael; Frankow-Lindberg, Bodil E; Ghesquiere, An; Golinski, Piotr; Grieu, Philippe; Gustavsson, Anne-Maj; Höglind, Mats; Huguenin-Elie, Olivier; Jørgensen, Marit; Kadziuliene, Zydre; Lunnan, Tor; Nykanen-Kurki, Paivi; Ribas, Angela; Taube, Friedhelm; Thumm, Ulrich; De Vliegher, Alex; Lüscher, Andreas
2018-03-01
Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment.At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, "method of nitrogen acquisition" and "pattern of temporal development".Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha -1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity.Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture.Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). Synthesis and applications . Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.
Mapping invasive weeds using airborne hyperspectral imagery
USDA-ARS?s Scientific Manuscript database
Invasive plant species present a serious problem to the natural environment and have adverse ecological and economic impacts on both terrestrial and aquatic ecosystems they invade. This article provides a brief overview on the use of remote sensing for mapping invasive plant species in both terrestr...
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.
2018-01-01
Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and phenology. Initial utilization of remote sensing tools developed for mapping of aquatic invasive plants improved operational efficiency in management practices. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta.
Nguyen, Thi; Bajwa, Ali Ahsan; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve
2017-04-01
Climate change will have a considerable impact upon the processes that moderate weed invasion, in particular to that of parthenium weed (Parthenium hysterophorus L.). This study evaluated the performance of two Australian biotypes of parthenium weed under a range of environmental conditions including soil moisture (100 and 50% of field capacity), atmospheric carbon dioxide (CO 2 ) concentration (390 and 550 ppm), and temperature (35/20 and 30/15 °C/day/night). Measurements were taken upon growth, reproductive output, seed biology (fill, viability and dormancy) and soil seed longevity. Parthenium weed growth and seed output were significantly increased under the elevated CO 2 concentration (550 ppm) and in the cooler (30/15 °C) and wetter (field capacity) conditions. However, elevated CO 2 concentration could not promote growth or seed output when the plants were grown under the warmer (35/20 °C) and wetter conditions. Warm temperatures accelerated the growth of parthenium weed, producing plants with greater height biomass but with a shorter life span. Warm temperatures also affected the reproductive output by promoting both seed production and fill, and promoting seed longevity. Dryer soil conditions (50% of field capacity) also promoted the reproductive output, but did not retain high seed fill or promote seed longevity. Therefore, the rising temperatures, the increased atmospheric CO 2 concentration and the longer periods of drought predicted under climate change scenarios are likely to substantially enhance the growth and reproductive output of these two Australian parthenium weed biotypes. This may facilitate the further invasion of this noxious weed in tropical and sub-tropical natural and agro-ecosystems.
Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M
2007-05-24
The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.
Early detection and rapid response
Westbrooks, Randy G.; Eplee, Robert E.; Simberloff, Daniel; Rejmánek, Marcel
2011-01-01
Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.
USDA-ARS?s Scientific Manuscript database
Russian knapweed (Rhaponticum repens (L.) Hidalgo) is an herbaceous perennial weed that was introduced and has become invasive in the United States, particularly in the semi-arid west. It is characterized by its extensive root system, low seed production, and persistence. The weed has caused serious...
USDA-ARS?s Scientific Manuscript database
Chinese tallow Triadica sebifera (L.) Small (Malpighiales: Euphorbiaceae) is an invasive weed from southern China that invades the Gulf states of the southeastern U.S.A. One significant factor for the success of this weed has been the historical lack of herbivore species in the invaded range. Howeve...
USDA-ARS?s Scientific Manuscript database
The stem-boring weevil, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was imported from Asia to North America and approved for release as a classical biological control agent for the invasive annual vine Persicaria perfoliata (L.) H. Gross (Polygonaceae) in 2004. Its impact on the weed...
2005-01-01
native groundcover vegetation. Specifically, natalgrass (Rhynchelytrum repens) and Cogan grass ( Imperata cylindrica ), both invasive exotics, have the...stability creates an environment conducive for noxious weeds. If noxious weeds establish, the EA acknowledges that they can be chemically treated
Dean Pearson; Deborah Finch
2011-01-01
Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...
What magnitude are observed non-target impacts from weed biocontrol?
Suckling, David Maxwell; Sforza, René François Henri
2014-01-01
A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>99% of 512 agents released) have had no known significant adverse effects on non-target plants thus far; major effects suppressing non-target plant populations could be expected to be detectable. Most direct non-target impacts on plants (91.6%) were categorized as minimal or minor in magnitude with no known adverse long-term impact on non-target plant populations, but a few cacti and thistles are affected at moderate (n = 3), major (n = 7) to massive (n = 1) scale. The largest direct impacts are from two agents (Cactoblastis cactorum on native cacti and Rhinocyllus conicus on native thistles), but these introductions would not be permitted today as more balanced attitudes exist to plant biodiversity, driven by both society and the scientific community. Our analysis shows (as far as is known), weed biological control agents have a biosafety track record of >99% of cases avoiding significant non-target impacts on plant populations. Some impacts could have been overlooked, but this seems unlikely to change the basic distribution of very limited adverse effects. Fewer non-target impacts can be expected in future because of improved science and incorporation of wider values. Failure to use biological control represents a significant opportunity cost from the certainty of ongoing adverse impacts from invasive weeds. It is recommended that a simple five-step scale be used to better communicate the risk of consequences from both action (classical biological control) and no action (ongoing impacts from invasive weeds).
What Magnitude Are Observed Non-Target Impacts from Weed Biocontrol?
Suckling, David Maxwell; Sforza, René François Henri
2014-01-01
A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>99% of 512 agents released) have had no known significant adverse effects on non-target plants thus far; major effects suppressing non-target plant populations could be expected to be detectable. Most direct non-target impacts on plants (91.6%) were categorized as minimal or minor in magnitude with no known adverse long-term impact on non-target plant populations, but a few cacti and thistles are affected at moderate (n = 3), major (n = 7) to massive (n = 1) scale. The largest direct impacts are from two agents (Cactoblastis cactorum on native cacti and Rhinocyllus conicus on native thistles), but these introductions would not be permitted today as more balanced attitudes exist to plant biodiversity, driven by both society and the scientific community. Our analysis shows (as far as is known), weed biological control agents have a biosafety track record of >99% of cases avoiding significant non-target impacts on plant populations. Some impacts could have been overlooked, but this seems unlikely to change the basic distribution of very limited adverse effects. Fewer non-target impacts can be expected in future because of improved science and incorporation of wider values. Failure to use biological control represents a significant opportunity cost from the certainty of ongoing adverse impacts from invasive weeds. It is recommended that a simple five-step scale be used to better communicate the risk of consequences from both action (classical biological control) and no action (ongoing impacts from invasive weeds). PMID:24454755
Control of invasive weeds with prescribed burning
DiTomaso, Joseph M.; Brooks, Matthew L.; Allen, Edith B.; Minnich, Ralph; Rice, Peter M.; Kyser, Guy B.
2006-01-01
Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also has been successful. In many cases, the effectiveness of prescribed burning can be enhanced when incorporated into an integrated vegetation management program. Although there are some excellent examples of successful use of prescribed burning for the control of invasive species, a limited number of species have been evaluated. In addition, few studies have measured the impact of prescribed burning on the long-term changes in plant communities, impacts to endangered plant species, effects on wildlife and insect populations, and alterations in soil biology, including nutrition, mycorrhizae, and hydrology. In this review, we evaluate the current state of knowledge on prescribed burning as a tool for invasive weed management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Mark C.; Ketchum, Sarah
Noxious weeds threaten fish and wildlife habitat by contributing to increased sedimentation rates, diminishing riparian structure and function, and reducing forage quality and quantity. Wallowa Resources Wallowa Canyonlands Partnership (WCP) protects the unique ecological and economic values of the Hells Canyon grasslands along lower Joseph Creek, the lower Grande Ronde and Imnaha Rivers from invasion and degradation by noxious weeds using Integrated Weed Management techniques. Objectives of this grant were to inventory and map high priority weeds, coordinate treatment of those weeds, release and monitor bio-control agents, educate the public as to the dangers of noxious weeds and how tomore » deal with them, and restore lands to productive plant communities after treatment. With collaborative help from partners, WCP inventoried {approx} 215,000 upland acres and 52.2 miles of riparian habitat, released bio-controls at 23 sites, and educated the public through posters, weed profiles, newspaper articles, and radio advertisements. Additionally, WCP used other sources of funding to finance the treatment of 1,802 acres during the course of this grant.« less
Invasive Species Science Update (No. 10)
Justin Runyon
2018-01-01
In this issue, we cover new research on wide-ranging topics from the longterm effects of drought on competition between native and invasive plant species, to the effects of drought on pollinator visitation to invasive plants, to a novel use of insect pheromones to improve biocontrol of invasive saltcedar. Thereâs also big news to report in weed biocontrol: two new...
GSD Update: What are invasive species? ... And do we really need to worry about them?
Catherine Dold
2011-01-01
Invasive species are the focus of the September 2011 issue of GSDUpdate: What Are Invasive Species? And Do We Really Need to Worry About Them? An invasive species is any species - non-native or native to a region - that could cause economic or ecological harm to an area. Invasives can be weeds, shrubs and trees, insects, mollusks, vertebrates and even microorganisms...
Sharlene E. Sing; Robert K. D. Peterson
2011-01-01
Environmental risk assessments characterizing potential environmental impacts of exotic weeds are more abundant and comprehensive for potential or new invaders than for widespread and well-established species such as Dalmatian (Linaria dalmatica [L.] Mill.) and yellow (L. vulgaris Mill.) toadflax. Specific effects evaluated in our assessment of environmental risks...
USDA-ARS?s Scientific Manuscript database
The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...
Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State
ERIC Educational Resources Information Center
Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.
2015-01-01
Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…
Biological control of cattle fever ticks
USDA-ARS?s Scientific Manuscript database
Cattle fever ticks (CFT) Rhipicephalus microplus and Rhipicephalus annulatus are invasive livestock pests that are endemic to Mexico and invasive along the Texas – Mexico border. Acaricide resistance, alternate wildlife hosts, and pathogenic landscape forming weeds present challenges for sustainable...
The invasive alien tree Falcataria moluccana: its impacts and management
Flint Hughes; Tracy Johnson; Amanda Uowolo
2013-01-01
Falcataria moluccana (Miq.) Barneby and Grimes is a large tree that has become invasive in forests and developed landscapes across many Pacific islands. A fast-growing nitrogenfixing species, it transforms invaded ecosystems by dramatically increasing nutrient inputs, suppressing native species and facilitating invasion by other weeds. Individuals rapidly reach heights...
Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M
2007-01-01
Background The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. Results As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. Conclusion The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur. PMID:17524143
Development of beneficial biological agents for invasive species control.
DOT National Transportation Integrated Search
2013-05-01
Noxious and invasive weeds readily colonize disturbed areas and outcompete and displace native and other desirable vegetation. This can result in a loss of pollinators (i.e. animals such as birds, bees, and other insects that move pollen between plan...
USDA-ARS?s Scientific Manuscript database
The arundo wasp, Tetramesa romana, is a specialist, plant-feeding insect biological control agent for the invasive weed - Arundo donax, also known as giant reed, carrizo cane, and in Mexico, carrizo gigante and el ladron de agua. This weed, which is native to Spain, grows along the banks of rivers, ...
USDA-ARS?s Scientific Manuscript database
Russian thistle, Salsola tragus L. (sensu lato), (Chenopodiaceae) is a weed native to Central Asia that was accidentally introduced in the U.S. in the early 1870s with seeds imported from Russia. Due to the dramatic impacts of its invasiveness on ecology and human activities, the weed has been targe...
Herbicides: an unexpected ally for native plants in the war against invasive species
Andrea Watts; Tim Harrington; Dave Peter
2015-01-01
Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...
N. L. Shaw; A. L. Hild; C. L. Kinter
2008-01-01
Chondrilla juncea L. (Asteraceae), an invasive Eurasian apomictic perennial weed that increases vegetatively and from seed, as spread from the Pacific Northwest, USA into Artemisia tridentata communities of the northern Great Basin. Over the last 150 years this region has been heavily impacted by excessive livestock grazing, the invasion of exotic annual grasses,...
Native plant community composition and genetic diversity associated with long-term weed invasions
Brian A. Mealor; Ann L. Hild; Nancy L. Shaw
2004-01-01
Many studies have assessed genetic changes in exotic plant species in their native and introduced ranges, but none have focused on genetic variation in native plant species in response to exotic invasion. We examine characteristics of native plant communities within and outside old (>25 year) invasions of Acroptilon repens (Russian knapweed) and Cardaria draba (...
The Politics of Invasive Weed Management: Gender, Race, and Risk Perception in Rural California
ERIC Educational Resources Information Center
Norgaard, Kari Marie
2007-01-01
"Biological invasions" are now recognized as the cause of significant ecological and economic damage. They also raise a series of less visible social issues. Management of invasive species is often a political process raising questions such as who decides which organisms are to be managed, and who benefits or is affected by different…
Stemeseder, Teresa; Hemmer, Wolfgang; Hawranek, Thomas; Gadermaier, Gabriele
The term weed is referring to plants used as culinary herbs and medicinal plants as well as ecologically adaptive and invasive segetal plants. In Europe, pollen of ragweed, mugwort, English plantain and pellitory are the main elicitors of weed pollen allergies. Presently, 35 weed pollen allergens have been identified. The most relevant belong to the protein families of pectate lyases, defensin-like proteins, non-specific lipid transfer proteins, and Ole e 1-like proteins. The sensitization frequency depends on geographic regions and might affect more than 50 % of pollen allergic patients in distinct regions. Due to overlapping flowering seasons, similar habitats, polysensitizations and cross-reactive (pan)-allergens, it is difficult to diagnose genuine weed pollen sensitization using pollen extracts. Marker allergens for component-resolved diagnostics are available for the important weed pollen. These are Amb a 1 (ragweed), Art v 1 (mugwort), Pla l 1 (English plantain) and Par j 2 (pellitory). Molecule-based approaches can be used to identify the primary sensitizer and thus enable selection of the appropriate weed pollen extracts for allergen immunotherapy.
DOT National Transportation Integrated Search
2015-05-01
Current DOT management practices could be contributing to the release of invasive : weeds, such as broomsedge and vaseygrass, on Georgia roadsides. The herbicide imazapic, used to : reduce mowing requirements of roadside grasses, injured bermudagrass...
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds.
Rial, Carlos; Novaes, Paula; Varela, Rosa M; Molinillo, José M G; Macias, Francisco A
2014-07-16
Cardoon (Cynara cardunculus L.) is a native plant to the Iberian Peninsula and the European Atlantic coast and invasive in American environments. Different solvents were used to perform cardoon extracts that were tested in phytotoxic bioassays. The ethyl acetate extract had the highest inhibitory activity so this was tested on the germination and growth of standard target species (lettuce, watercress, tomato, and onion) and weeds (barnyardgrass and brachiaria). The ethyl acetate extract was very active on root growth in both standard target species and weeds and it was therefore fractionated by chromatography. The spectroscopic data showed that the major compounds were sesquiterpene lactones. Aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The presence of these compounds explains the bioactivity of the ethyl acetate extract. The strong phytotoxicity of these compounds on important weeds shows the potential of these compounds as natural herbicide models.
USDA-ARS?s Scientific Manuscript database
Infection by Xanthomonas axonopodis pv. manihotis (Xam)of the model perennial range land weed leafy spurge was tested to see if Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered with 21 days after inocula...
Spotted knapweed: Effects of climate change on the invasiveness and biological control
Yvette Ortega; Dean Pearson
2013-01-01
Exotic weeds have invaded vast stretches of forest and rangeland, yet as highlighted by the previous review by Runyon and others in this issue, little is known about the factors driving the success of these invaders or how factors such as climate change may alter outcomes. Spotted knapweed (Centaurea stoebe) is one of the worst weeds in the Western U.S., infesting over...
Economic effects on invasive weeds on land values
Charles Weiser
1998-01-01
The year was 1954, four young 4-H members were traveling to a livestock judging workout. Ben Barrett, the county agent, stopped the car and escorted the young men to a weed patch located on the adjacent railroad right-of-way. "Take a good look-this is leafy spurge. If you ever see it in your area, let me know. It is almost impossible to control."
Robert K. D. Peterson; Sharlene E. Sing; David K. Weaver
2005-01-01
Successful biological control of invasive weeds with specialist herbivorous insects is predicated on the assumption that the injury stresses the weeds sufficiently to cause reductions in individual fitness. Because plant gas exchange directly impacts growth and fitness, characterizing how injury affects these primary processes may provide a key indicator of...
A barrage of beetles: controlling leafy spurge through beetle inundation
Paul Meznarich; Rob Progar
2012-01-01
Leafy spurge is an invasive weed that has appeared along streams throughout much of the country. Riparian ecosystems are particularly sensitive areas that can be threatened by nonnative invasive species. These areas also can be damaged by herbicides commonly used in uplands to control invasive plants. In a collaborative effort by the U.S. Forest Service, Bureau of Land...
Elizabeth A. Leger; Erin K. Espeland; Keith R. Merrill; Susan E. Meyer
2009-01-01
Cheatgrass (Bromus tectorum) is an invasive weed in western North America found primarily growing at elevations less than 2200 m. We asked whether cheatgrass is capable of becoming adapted to a marginal habitat, by investigating a population at a high elevation invasion edge. We used a combination of methods, including reciprocal field transplants, controlled...
USDA-ARS?s Scientific Manuscript database
Rhodomyrtus tomentosa (RT) a native plant to Southeastern Asia, commonly known as downy rose myrtle, is invasive to the regions of Central and South Florida. Introduced in the early 1920’s, this weed is currently considered a Category I invasive species by the Florida Exotic Pest Plant Council. RT...
Patterns and consequences of re-invasion into a Hawaiian dry forest restoration
Erin J. Questad; Jarrod M. Thaxton; Susan Cordell
2012-01-01
The restoration of native plant diversity may be an effective tool for weed control, but its use has not been tested in the heavily invaded Hawaiian dry forest ecosystem. In addition, the ecological mechanisms by which invasive plants may cause declines in native plant diversity are generally not well understood. We examined invasion resistance and the relationships...
USDA-ARS?s Scientific Manuscript database
A field survey, three outdoor cage enclosure experiments, and laboratory studies were conducted to elucidate the impact of the invasive aquatic weeds Eichhornia crassipes (floating water hyacinth), Ludwigia hexapetala (emergent water yellow-primrose), and Egeria densa (submersed Brazilian waterweed)...
Impact of Abrostola asclepiadis and plant competition on invasive swallow-worts (Vincetoxicum spp.)
USDA-ARS?s Scientific Manuscript database
Pale and black swallow-wort (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae) are perennial vines from Europe that have become invasive in various terrestrial habitats in the northeastern USA and southeastern Canada. A classical weed biological control program has been in...
Liu, Hong; Pemberton, Robert W
2009-03-01
Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.
USDA-ARS?s Scientific Manuscript database
Global climate change is already occurring and may affect biogenic volatile organic compounds (VOCs) involved in plant communication. Whether climate change will promote expansion of invasive species is still unclear. Centaurea solstitialis (yellow starthistle) is a major invasive weed in western No...
Weed biocontrol insects reduce native plant recruitment through second-order apparent competition
Dean E. Pearson; Ragan M. Callaway
2008-01-01
Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea...
Knocking out knotweed: research pins down a rogue invasive
Natasha Vizcarra; Shannon Claeson
2015-01-01
Bohemian knotweed spreads aggressively along rivers. This invasive weed chokes waterways, displaces native plants, erodes riverbanks, and keeps tree seedlings from growing. Communities in the Pacific Northwest spend millions of dollars to eradicate it on the assumption that it harms fish habitats.But knotweed is difficult to kill. It takes...
The effects of downy brome invasion on mule deer habitat
USDA-ARS?s Scientific Manuscript database
Downy brome (Bromus tectorum), also widely known as cheatgrass, is a highly invasive exotic weed that has spread over millions of hectares of rangelands throughout the Intermountain West. Native to Eurasia, this early maturing annual provides a fine textured fuel that increases the chance, rate, sea...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
..., mechanical, biological, and ground and aerial herbicide control methods. ``Invasive species'' are defined as... and aerial application of herbicides, mechanical, biological, and cultural weed treatments. The MBRTB... include analysis of the effects of new herbicides, new invasive plant populations, or aerial application...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... development, livestock grazing, invasive weeds, small population sizes, and climate change are threats to... with climate change (see IX. Climate Change, below), will facilitate the invasion and spread of... Graham's beardtongue has changed considerably since 2006, when the proposed rule was published and then...
Classical biological control of invasive species: fighting fire with fire
USDA-ARS?s Scientific Manuscript database
Invasive species cost the US over $130 billion in losses and control costs every year. Exotic insects, weeds and pathogens are the primary invaders that frequently move across continents, exploding in numbers in areas where they have been newly introduced. There are many reasons that these pests r...
The invasive American weed parthenium hysterophorus can negatively impact malaria control in Africa
USDA-ARS?s Scientific Manuscript database
The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasiv...
Rueda-Ayala, Victor; Weis, Martin; Keller, Martina; Andújar, Dionisio; Gerhards, Roland
2013-01-01
Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow. PMID:23669712
Laboratory tests to assess optimal agricultural residue traits for an abrasive weed control system
USDA-ARS?s Scientific Manuscript database
One of the biggest challenges to organic agricultural production and herbicide resistant crops in industrialized countries today is the non-chemical control of weed plants. Studies of new tools and methods for weed control have been motivated by an increased consumer demand for organic produce and c...
Sharifi, Zohreh; Atlasbaf, Zahra
2016-10-01
A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.
Kamble, Prajakta P; Kore, Maheshkumar V; Patil, Sushama A; Jadhav, Jyoti P; Attar, Yasmin C
2018-06-01
Tithonia rotundifolia is an easily available and abundant inulin rich weed reported to be competitive and allelopathic. This weed inulin is hydrolyzed by inulinase into fructose. Response surface methodology was employed to optimize culture conditions for the inulinase production from Arthrobacter mysorens strain no.1 isolated from rhizospheric area of Tithonia weed. Initially, Plackett- Burman design was used for screening 11 nutritional parameters for inulinase production including inulin containing weeds as cost effective substrate. The experiment shows that amongst the 11 parameters studied, K 2 HPO 4 , Inulin, Agave sisalana extract and Tithonia rotundifolia were the most significant variables for inulinase production. Quantitative effects of these 4 factors were further investigated using Box Behnken design. The medium having 0.27% K 2 HPO 4 , 2.54% Inulin, 6.57% Agave sisalana extract and 7.27% Tithonia rotundifolia extract were found to be optimum for maximum inulinase production. The optimization strategies used showed 2.12 fold increase in inulinase yield (1669.45 EU/ml) compared to non-optimized medium (787 EU/ml). Fructose produced by the action of inulinase was further confirmed by spectrophotometer, osazone, HPTLC and FTIR methods. Thus Tithonia rotundifolia can be used as an eco-friendly, economically feasible and promising alternative substrate for commercial inulinase production yielding fructose from Arthrobacter mysorens strain no.1. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Remote detection of invasive plant species using geospatial imagery may significantly improve monitoring, planning, and management practices by eliminating shortfalls such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion ex...
Biogeography of plant invasions
Dean Pearson; Yvette Ortega
2013-01-01
The fact that most of our worst animal and weed pests come from other continents is no coincidence. Biological invasions are fundamentally a biogeographic phenomenon. That is to say, there is something rather significant about taking an organism from a specific evolutionary history and ecological context and casting it into an entirely new environment that can...
Passive reestablishment of riparian vegetation following removal of invasive knotweed (Polygonum)
Shannon M. Claeson; Peter A. Bisson
2013-01-01
Japanese knotweed and congeners are invasive to North America and Europe and spread aggressively along rivers establishing dense monotypic stands, thereby reducing native riparian plant diversity, structure, and function. Noxious weed control programs attempt to eradicate the knotweed with repeated herbicide applications under the assumption that the system will...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Los Padres National Forest (LPNF) proposes to control the invasive species tamarisk in portions of the... infestations become any larger. Successful invasive species control programs are implemented at the landscape... Impact Statement for the Removal of the Noxious Weed Tamarisk on the Los Padres National Forest AGENCY...
Indirect effects of host-specific biological control agents
Dean E. Pearson; Ragan M. Callaway
2003-01-01
Biological control is a crucial tool in the battle against biological invasions, but biocontrol agents can have a deleterious impact on native species. Recognition of risks associated with host shifting has increased the emphasis on host specificity of biocontrol agents for invasive weeds. However, recent studies indicate host-specific biocontrol agents can...
A field guide for the identification of invasive plants in southern forests
James H. Miller; Erwin B. Chambliss; Nancy J. Loewenstein
2010-01-01
Invasions of nonnative plants into forests of the Southern United States continue to go unchecked and only partially unmonitored. These infestations increasingly erode forest productivity, hindering forest use and management activities, and degrading diversity and wildlife habitat. Often called nonnative, exotic, nonindigenous, alien, or noxious weeds, they occur as...
USDA-ARS?s Scientific Manuscript database
An inadvertent biological control agent of the invasive weed Chinese tallowtree (Triadica sebifera) first appeared in North America in 2004. Identified as a Caloptilia triadicae, this leaf miner was found damaging T. sebifera saplings. In Gainesville, FL we exposed naturalized populations of C. tria...
USDA-ARS?s Scientific Manuscript database
The Everglades is a unique ecosystem of slow flowing fresh waters and minute changes in topography coupled with a convergence of species at the limits of their ranges. Invasive plants overrun extensive swaths of this bastion of North American biodiversity – a consequence of climate and cultivation. ...
USDA-ARS?s Scientific Manuscript database
Russian knapweed is an outcrossing perennial invasive weed in North America that can spread by both seed and horizontal rhizome growth leading to new shoots. The predominant mode of spread at the local and long-distance scales has not been quantitatively researched. We used Amplified Fragment Length...
2008-07-01
exotic plant species. Specifically, natalgrass (Rhynchelytrum repens), cogon grass ( Imperata cylindrica ), both invasive exotics have the potential to...maintenance, the potential for exotic, invasive weeds is likely, especially cogon grass ( Imperata cylindrical). The main concern is that if exotic
USDA-ARS?s Scientific Manuscript database
Integrated weed management (IWM) strategies are being advocated and employed to control invasive plants species. Prescribed fire, mechanical removal, and biological control (seed predator Exapion fuscirostre) are used to manage the invasive plant, Cytisus scoparius, in prairies at Fort Lewis, Washi...
Anderson, Lars W J
2003-01-01
Ever-increasing demand for water to irrigate crops, support aquaculture, provide domestic water needs and to protect natural aquatic and riparian habitats has necessitated research to reduce impacts from a parallel increase in invasive aquatic weeds. This paper reviews the past 4-5 years of research by USDA-ARS covering such areas as weed biology, ecology, physiology and management strategies, including herbicides, biological control and potential for use of natural products. Research approaches range from field-level studies to highly specific molecular and biochemical work, spanning several disciplines and encompassing the most problematic weeds in these systems. This research has led to new insights into plant competition, host-specificity, and the fate of aquatic herbicides, their modes of action and effects on the environment. Another hallmark of USDA-ARS research has been its many collaborations with other federal, state action and regulatory agencies and private industry to develop new solutions to aquatic weed problems that affect our public natural resources and commercial enterprises.
van Wilgen, B W; Moran, V C; Hoffmann, J H
2013-09-01
Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.
NASA Astrophysics Data System (ADS)
van Wilgen, B. W.; Moran, V. C.; Hoffmann, J. H.
2013-09-01
Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.
An ecological and evolutionary perspective on the parallel invasion of two cross-compatible trees
Besnard, Guillaume; Cuneo, Peter
2016-01-01
Invasive trees are generally seen as ecosystem-transforming plants that can have significant impacts on native vegetation, and often require management and control. Understanding their history and biology is essential to guide actions of land managers. Here, we present a summary of recent research into the ecology, phylogeography and management of invasive olives, which are now established outside of their native range as high ecological impact invasive trees. The parallel invasion of European and African olive in different climatic zones of Australia provides an interesting case study of invasion, characterized by early genetic admixture between domesticated and wild taxa. Today, the impact of the invasive olives on native vegetation and ecosystem function is of conservation concern, with European olive a declared weed in areas of South Australia, and African olive a declared weed in New South Wales and Pacific islands. Population genetics was used to trace the origins and invasion of both subspecies in Australia, indicating that both olive subspecies have hybridized early after introduction. Research also indicates that African olive populations can establish from a low number of founder individuals even after successive bottlenecks. Modelling based on distributional data from the native and invasive range identified a shift of the realized ecological niche in the Australian invasive range for both olive subspecies, which was particularly marked for African olive. As highly successful and long-lived invaders, olives offer further opportunities to understand the genetic basis of invasion, and we propose that future research examines the history of introduction and admixture, the genetic basis of adaptability and the role of biotic interactions during invasion. Advances on these questions will ultimately improve predictions on the future olive expansion and provide a solid basis for better management of invasive populations. PMID:27519914
Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Potter, Chris
2018-01-01
Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.
Invasive plants often emanate from southern gardens
J.H. Miller; A. Miller
2009-01-01
Did you know that heavenly bamboo, thorny olive, English ivy, Boston fern, privets and many garden favorites are invading forests to their and thus our detriment? Garden clubs should band together to protect our natural vegetation against invasive plants that take over the habitat of the native flora. Often called non-native, exotic, or noxious weeds, they...
Effects of biological control agents and exotic plant invasion on deer mouse populations
Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey
2004-01-01
Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...
Barriers to exotic weed management
Faith T. Campbell
1998-01-01
In order to increase effective efforts to reduce the impacts of invasive alien plant species· on our natural areas, we must overcome numerous barriers. Some of these are technical in nature, e.g., determining the most appropriate control method for a specific species in a particular ecosystem, or devising a better program to exclude new invasive plant species from our...
Biological Control of Introduced Weeds of Native Hawaiian Forests
George P. Markin; Roddy F. Nagata; Donald E. Gardner
1992-01-01
Among the many threats to the continued existence of the remaining native forests and other native ecosystems of the Hawaiian Islands, the most severe and the most difficult to control are the invasion and replacement by induced species of plants. Because conventional methods of plant management have faild to control this invasion, a multiagency, state and federal...
The effect of disturbance history on hawkweed invasion (Montana)
Alexis Jones; Elizabeth Crone
2009-01-01
Orange hawkweed (Hieracium aurantiacum) is listed as a noxious weed in five states (USDA 2007), including Montana, where it is still in the early - and possibly controllable - stages of invasion. The species forms dense clonal mats that exclude natives from the area; moreover, the wind-borne seeds are viable in the soil for seven years and have a...
USDA-ARS?s Scientific Manuscript database
Invasive plants are one of the strongest drivers of species extinctions. Weed biological control offers a sustainable and safe means of long-term population reduction of their target. Herbivores introduced for the control of invasive plants interact with the native community in addition to the top-d...
75 FR 27981 - Southwest Montana Resource Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... and Grade Realignments, Yellow Star Thistle and Knapweed, Invasive Species Education and Awareness... Creek Weed Treatment, Maud-S Canyon Trail Reconstruction, Maverick Mountain Hazard Tree Removal, and...
Vang, Le Van; Khanh, Chau Nguyen Quoc; Shibasaki, Hiroshi; Ando, Tetsu
2012-01-01
Larvae of the clearwing moth, Carmenta mimosa (Lepidoptera: Sesiidae), bore into the trunk of Mimosa pigra L., which is one of the most invasive weeds in Vietnam. GC-EAD and GC-MS analyses of a pheromone gland extract revealed that the female moths produced (3Z,13Z)-3,13-octadecadienyl acetate. A lure baited with the synthetic acetate alone successfully attracted C. mimosa males in a field test. While the addition of a small amount of the corresponding alcohol did not strongly diminish the number of captured males, a trace of the aldehyde derivative or the (3E,13Z)-isomer markedly inhibited the attractiveness of the acetate. The diurnal males were mainly attracted from 6:00 am to 12:00 am.
Atmospheric Science Data Center
2013-04-22
... control has been tested as a means of combatting an invasive aquatic weed that threatens wetland habitats in the island's vicinity. 9. Species of Avicennia are found in the island's coastal regions. ...
Multi-Phase US Spread and Habitat Switching of a Post-Columbian Invasive, Sorghum halepense
Barney, Jacob N.; Atwater, Daniel Z.; Pederson, Gary A.; Pederson, Jeffrey F.; Chandler, J. Mike; Cox, T. Stan; Cox, Sheila; Dotray, Peter; Kopec, David; Smith, Steven E.; Schroeder, Jill; Wright, Steven D.; Jiao, Yuannian; Kong, Wenqian; Goff, Valorie; Auckland, Susan; Rainville, Lisa K.; Pierce, Gary J.; Lemke, Cornelia; Compton, Rosana; Phillips, Christine; Kerr, Alexandra; Mettler, Matthew; Paterson, Andrew H.
2016-01-01
Johnsongrass (Sorghum halepense) is a striking example of a post-Columbian founder event. This natural experiment within ecological time-scales provides a unique opportunity for understanding patterns of continent-wide genetic diversity following range expansion. Microsatellite markers were used for population genetic analyses including leaf-optimized Neighbor-Joining tree, pairwise FST, mismatch analysis, principle coordinate analysis, Tajima’s D, Fu’s F and Bayesian clusterings of population structure. Evidence indicates two geographically distant introductions of divergent genotypes, which spread across much of the US in <200 years. Based on geophylogeny, gene flow patterns can be inferred to have involved five phases. Centers of genetic diversity have shifted from two introduction sites separated by ~2000 miles toward the middle of the range, consistent with admixture between genotypes from the respective introductions. Genotyping provides evidence for a ‘habitat switch’ from agricultural to non-agricultural systems and may contribute to both Johnsongrass ubiquity and aggressiveness. Despite lower and more structured diversity at the invasion front, Johnsongrass continues to advance northward into cooler and drier habitats. Association genetic approaches may permit identification of alleles contributing to the habitat switch or other traits important to weed/invasive management and/or crop improvement. PMID:27755565
Effects of invasive plants on public land management of pinyon-juniper woodlands in Arizona
Patti Fenner
2008-01-01
After a short discussion of terminology used in the fairly new discipline of weed science, specific examples are given to illustrate effects of invasive plants on recreation and scenic values, biodiversity, forage for domestic animals and wildlife, soil stability, fire hazard and frequency, maintenance costs for roads and highways, property values, and funding for...
Nancy Shaw; Beth Newingham; Amy C. Ganguli; Ann L. Hild; Robert D. Cox; Jim Truax; Mike Pellant; David Pyke; Dan Ogle
2011-01-01
Annual grass invasion in the Great Basin has increased fire size, frequency and severity. Post-fire restoration to provide functional native plant communities is critical to improve resistance to weed invasion. Our ability to successfully re-establish mixtures of native grasses, forbs and shrubs, however, is limited. We examined the effects of the standard rangeland...
USDA-ARS?s Scientific Manuscript database
Brazilian peppertree, Schinus terebinthifolia (Anacardiaceae), is a South American plant that has become invasive in many countries around the world. It was introduced into the USA about 100 years ago as an ornamental. Escaping cultivation, it now occurs in three southeastern states of the USA, Cali...
Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities
Preston R. Aldrich; Joseph S. Briguglio; Shyam N. Kapadia; Minesh U. Morker; Ankit Rawal; Preeti Kalra; Cynthia D. Huebner; Gary K. Greer
2010-01-01
Ailanthus altissima is an invasive tree from Asia. It now occurs in most US states, and although primarily an urban weed, it has become a problem in forested areas especially in the eastern states. Little is known about its genetic structure. We explore its naturalized gene pool from 28 populations, mostly of the eastern US where infestations are...
USDA-ARS?s Scientific Manuscript database
The invasive leafy spurge, Euphorbia esula L (Euphorbiaceae) is an The invasive leafy spurge, Euphorbia esula L (Euphorbiaceae) is an emerging weed in the floodplains of the Val de Saône France, that displaces native flora and desirable forage species by forming dense monotypic stands. It is conside...
Wang, N; Yu, F-H; Li, P-X; He, W-M; Liu, J; Yu, G-L; Song, Y-B; Dong, M
2009-05-01
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed (Alternanthera philoxeroides) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.
Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan
2017-01-01
Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE—petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations. PMID:28399170
González, Eduardo; Sher, Anna A.; Anderson, Robert M.; Bay, Robin F.; Bean, Daniel W.; Bissonnete, Gabriel J.; Cooper, David J.; Dohrenwend, Kara; Eichhorst, Kim D.; El Waer, Hisham; Kennard, Deborah K.; Harms-Weissinger, Rebecca; Henry, Annie L.; Makarick, Lori J.; Ostoja, Steven M.; Reynolds, Lindsay V.; Robinson, W. Wright; Shafroth, Patrick B.; Tabacchi, Erich
2017-01-01
Control of invasive species within ecosystems may induce secondary invasions of non-target invaders replacing the first alien. We used four plant species listed as noxious by local authorities in riparian systems to discern whether 1) the severity of these secondary invasions was related to the control method applied to the first alien; and 2) which species that were secondary invaders persisted over time. In a collaborative study by 16 research institutions, we monitored plant species composition following control of non-native Tamarix trees along southwestern U.S. rivers using defoliation by an introduced biocontrol beetle, and three physical removal methods: mechanical using saws, heavy machinery, and burning in 244 treated and 79 untreated sites across six U.S. states. Physical removal favored secondary invasions immediately after Tamarix removal (0–3 yrs.), while in the biocontrol treatment, secondary invasions manifested later (> 5 yrs.). Within this general trend, the response of weeds to control was idiosyncratic; dependent on treatment type and invader. Two annual tumbleweeds that only reproduce by seed (Bassia scoparia and Salsola tragus) peaked immediately after physical Tamarix removal and persisted over time, even after herbicide application. Acroptilon repens, a perennial forb that vigorously reproduces by rhizomes, and Bromus tectorum, a very frequent annual grass before removal that only reproduces by seed, were most successful at biocontrol sites, and progressively spread as the canopy layer opened. These results demonstrate that strategies to control Tamarix affect secondary invasions differently among species and that time since disturbance is an important, generally overlooked, factor affecting response.
Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan
2017-01-01
Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.
Beck, John J; Smith, Lincoln; Baig, Nausheena
2014-01-01
The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.
Ailanthus, tree-of-heaven update, a northeast regional biological control project
Scott M. Salom; Loke T. Kok; Nathan Herrick; Tom McAvoy; Donald Davis; Mark Schall; Matt Kasson; Du Yu-Zhou; Ji Hailong; He Xiao; Richard Reardon
2009-01-01
The tree-of-heaven (TOH), Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), is an invasive weed tree distributed throughout most of the continental United States. It is a hardy pioneer species that...
USDA-ARS?s Scientific Manuscript database
This chapter covers the use of wild beets in sugar beet improvement, including the basic botany of the species, its distribution; geographical locations of genetic diversity; morphology; cytology and karyotype; genome size; taxonomic position; agricultural status (model plant/weeds/invasive species/...
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
Can Global Weed Assemblages Be Used to Predict Future Weeds?
Morin, Louise; Paini, Dean R.; Randall, Roderick P.
2013-01-01
Predicting which plant taxa are more likely to become weeds in a region presents significant challenges to both researchers and government agencies. Often it is done in a qualitative or semi-quantitative way. In this study, we explored the potential of using the quantitative self-organising map (SOM) approach to analyse global weed assemblages and estimate likelihoods of plant taxa becoming weeds before and after they have been moved to a new region. The SOM approach examines plant taxa associations by analysing where a taxon is recorded as a weed and what other taxa are recorded as weeds in those regions. The dataset analysed was extracted from a pre-existing, extensive worldwide database of plant taxa recorded as weeds or other related status and, following reformatting, included 187 regions and 6690 plant taxa. To assess the value of the SOM approach we selected Australia as a case study. We found that the key and most important limitation in using such analytical approach lies with the dataset used. The classification of a taxon as a weed in the literature is not often based on actual data that document the economic, environmental and/or social impact of the taxon, but mostly based on human perceptions that the taxon is troublesome or simply not wanted in a particular situation. The adoption of consistent and objective criteria that incorporate a standardized approach for impact assessment of plant taxa will be necessary to develop a new global database suitable to make predictions regarding weediness using methods like SOM. It may however, be more realistic to opt for a classification system that focuses on the invasive characteristics of plant taxa without any inference to impacts, which to be defined would require some level of research to avoid bias from human perceptions and value systems. PMID:23393591
The evolution of flowering strategies in US weedy rice.
Thurber, Carrie S; Reagon, Michael; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L
2014-10-01
• Local adaptation in plants often involves changes in flowering time in response to day length and temperature. Many crops have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading the agricultural environment. Given the shared species designation of cultivated rice (Oryza sativa) and its the invasive conspecific weed, weedy rice, we assessed the extent to which flowering time differed between these groups. We further assessed whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the United States.• We quantified flowering time under day-neutral conditions in weedy, cultivated, and wild Oryza groups. We also sequenced two candidate gene regions: Hd1, a locus involved in promotion of flowering under short days, and the promoter of Hd3a, a locus encoding the mobile signal that induces flowering.• We found that flowering time has diverged between two distinct weedy rice groups, such that straw-hull weeds tend to flower earlier and black-hull awned weeds tend to flower later than cultivated rice. These differences are consistent with weed Hd1 alleles. At both loci, weeds share haplotypes with their cultivated progenitors, despite significantly different flowering times.• Our phenotypic data indicate the existence of multiple flowering strategies in weedy rice. Flowering differences between weeds and ancestors suggest this trait has evolved rapidly. From a weed management standpoint, there is the potential for overlap in flowering of black-hull awned weeds and crops in the United States, permitting hybridization and the potential escape of genes from crops. © 2014 Botanical Society of America, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... further tidal marsh improvements, more aggressive control of invasive weeds, revegetation of grassland areas, and more aggressive enhancement and restoration of the marsh-upland ecotone. All priority public...
Sing, Sharlene E.; Peterson, Robert K. D.
2011-01-01
Environmental risk assessments characterizing potential environmental impacts of exotic weeds are more abundant and comprehensive for potential or new invaders than for widespread and well-established species such as Dalmatian (Linaria dalmatica [L.] Mill.) and yellow (L. vulgaris Mill.) toadflax. Specific effects evaluated in our assessment of environmental risks posed by yellow and Dalmatian toadflax included competitive displacement of other plant species, reservoirs of plant disease, animal and insect use, animal toxicity, human toxicity and allergenicity, erosion, and wildfire. Effect and exposure uncertainties for potential impacts of toadflax on human and ecological receptors were rated. Using publicly available information we were able to characterize ecological and human health impacts associated with toadflax, and to identify specific data gaps contributing to a high uncertainty of risk. Evidence supporting perceived negative environmental impacts of invasive toadflax was scarce. PMID:21845161
Sing, Sharlene E; Peterson, Robert K D
2011-07-01
Environmental risk assessments characterizing potential environmental impacts of exotic weeds are more abundant and comprehensive for potential or new invaders than for widespread and well-established species such as Dalmatian (Linaria dalmatica [L.] Mill.) and yellow (L. vulgaris Mill.) toadflax. Specific effects evaluated in our assessment of environmental risks posed by yellow and Dalmatian toadflax included competitive displacement of other plant species, reservoirs of plant disease, animal and insect use, animal toxicity, human toxicity and allergenicity, erosion, and wildfire. Effect and exposure uncertainties for potential impacts of toadflax on human and ecological receptors were rated. Using publicly available information we were able to characterize ecological and human health impacts associated with toadflax, and to identify specific data gaps contributing to a high uncertainty of risk. Evidence supporting perceived negative environmental impacts of invasive toadflax was scarce.
Forecasting weed distributions using climate data: a GIS early warning tool
Jarnevich, Catherine S.; Holcombe, Tracy R.; Barnett, David T.; Stohlgren, Thomas J.; Kartesz, John T.
2010-01-01
The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention of exotic species from entering into a country fails at the national level and the species establishes, reproduces, spreads, and becomes invasive, the most successful action at a local level is early detection followed eradication. We have developed a simple geographic information system (GIS) analysis for developing watch lists for early detection of invasive exotic plants that relies upon currently available species distribution data coupled with environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops environmental envelopes for species based upon the known distribution of a species thought to be invasive and represents the first approximation of its potential habitat while the necessary data are collected to perform more in-depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific Northwest, and northern Rocky Mountain counties. The time series analysis presented here did select counties that the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon bioclimaric envelopes to 100 invasive exotics with various levels of known distributions within continental U.S. counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability to invasion. Species with matching habitats in a county would be added to that county's list. These watch lists can influence management decisions for early warning, control prioritization, and targeted research to determine specific locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential distribution based upon climate envelopes of current distributions for new invasive exotic species.
Tamarisk control on public lands in the desert of southern California: two case studies
1994-01-01
As a land manager, the Federal Government faces enormous challenges from exotic pest invasions and associated changes to the structure and stability of native ecosystems (Bureau of Land Management, 1988). On public lands administered by the Bureau of Land Management (BLM) alone, it is estimated that almost three million hectares are occupied by invasive exotic plant species (weeds). Assuming an annual rate of invasion of 14 percent, 930 hectares of BLM-administered land are infested everyday by weeds (Jerry Asher, personal communication). When one considers the fact that BLM administers only about one-third of the public land in the United States (The Keystone Center, 1991), the magnitude of the problem assumes staggering proportions. The scenario described in the quote above portrays only some of the problems associated with the spread of the exotic plant tamarisk, a species on the California Exotic Pest Plant Council’s list of exotic pest plants of greatest concern (California Exotic Pest Plant Council, 1993). In this paper we review the threats posed by tamarisk invasion and proliferation and examine the traits that make the plant such a successful competitor. In addition, we highlight two tamarisk control efforts conducted by the Bureau of Land Management in the southern California desert.
Singh, Harminder Pal; Batish, Daizy R; Dogra, Kuldip Singh; Kaur, Shalinder; Kohli, Ravinder Kumar; Negi, Anjana
2014-06-01
Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants-Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.
Behera, Pratiksha; Vaishampayan, Parag; Singh, Nitin K; Mishra, Samir R; Raina, Vishakha; Suar, Mrutyunjay; Pattnaik, Ajit K; Rastogi, Gurdeep
2016-09-01
Till date, only one draft genome has been reported within the genus Mangrovibacter. Here, we report the second draft genome shotgun sequence of a Mangrovibacter sp. strain MP23 that was isolated from the roots of Phargmites karka (P. karka), an invasive weed growing in the Chilika Lagoon, Odisha, India. Strain MP23 is a facultative anaerobic, nitrogen-fixing endophytic bacteria that grows optimally at 37 °C, 7.0 pH, and 1% NaCl concentration. The draft genome sequence of strain MP23 contains 4,947,475 bp with an estimated G + C content of 49.9% and total 4392 protein coding genes. The genome sequence has provided information on putative genes that code for proteins involved in oxidative stress, uptake of nutrients, and nitrogen fixation that might offer niche specific ecological fitness and explain the invasive success of P. karka in Chilika Lagoon. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number LYRP00000000.
Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine
2017-05-01
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
Atmospheric Science Data Center
2013-04-16
... and Papua New Guinea). At least two languages within this group, Ndom and Riantana, are only used by people living on the island. ... flippers resembling those of marine turtles. Insect control has been tested as a means of combatting an invasive aquatic weed that ...
The critical period of weed control in soybean (Glycine max (L.) Merr.) in north of Iran conditions.
Keramati, Sara; Pirdashti, Hemmatollah; Esmaili, Mohammad Ali; Abbasian, Arastoo; Habibi, Marjaneh
2008-02-01
A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control.
Adapting geostatistics to analyze spatial and temporal trends in weed populations
USDA-ARS?s Scientific Manuscript database
Geostatistics were originally developed in mining to estimate the location, abundance and quality of ore over large areas from soil samples to optimize future mining efforts. Here, some of these methods were adapted to weeds to account for a limited distribution area (i.e., inside a field), variatio...
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2013-12-01
The impacts of atmospheric nitrogen deposition on biodiversity are widespread and profound; N-inputs have far exceeded any historical range of variability and are altering ecosystem structure and function worldwide. Overwhelming scientific evidence documents acute threats to numerous California ecosystems and imperiled species through increased growth of invasive annual grasses and forbs, yet policy responses lag far behind the science. Since 2001, a confluence of several projects (gas-fired powerplants and highway improvements) in Santa Clara County set powerful precedents for mitigation of N-deposition impacts on ecosystems via the Endangered Species Act, with a focus on the Bay checkerspot butterfly. These projects have culminated in the Santa Clara Valley Habitat Plan, a 50-year $665,000,000 mitigation plan to conserve and manage habitat for 19 target species. Elsewhere, powerplants in San Diego and Contra Costa Counties have provided mitigation funds for habitat restoration and weed management. Building on these precedents, the California Invasive Plant Council, California Native Plant Society, and other groups are forming a coalition to extend this mitigation across California to generate money for weed management. Key elements of this incipient campaign include: 1) education of regulatory agencies, activists, and decision-makers about the threat; 2) generation of standard EIR comments with project specifics for developments that increase traffic or generate nitrogen emissions; 3) encouraging state and federal wildlife agencies to raise the issue in consultations and Habitat Conservation Plans; 4) policy and legal research to chart a course through the regulatory and political landscape; 5) collating research on impacts and development of tools to document those impacts; 6) media outreach, and 7) coalition building. The main mitigation strategy is funding for local weed management and stewardship groups through fees. There is a desperate need for stable long-term funding of weed management on parks, preserves and other wildlands, and mitigating N-deposition could provide one major source.
Assessing the impact of revegetation and weed control on urban sensitive bird species.
Archibald, Carla L; McKinney, Matthew; Mustin, Karen; Shanahan, Danielle F; Possingham, Hugh P
2017-06-01
Nature in cities is concentrated in urban green spaces, which are key areas for urban biodiversity and also important areas to connect people with nature. To conserve urban biodiversity within these natural refugia, habitat restoration such as weed control and revegetation is often implemented. These actions are expected to benefit biodiversity, although species known to be affected by urbanization may not be interacting with restoration in the ways we anticipate. In this study, we use a case study to explore how urban restoration activities impact different bird species. Birds were grouped into urban sensitivity categories and species abundance, and richness was then calculated using a hierarchical species community model for individual species responses, with "urban class" used as the hierarchical parameter. We highlight variable responses of birds to revegetation and weed control based on their level of urban sensitivity. Revegetation of open grassy areas delivers significant bird conservation outcomes, but the effects of weed control are neutral or in some cases negative. Specifically, the species most reliant on remnant vegetation in cities seem to remain stable or decline in abundance in areas with weed control, which we suspect is the result of a simplification of the understorey. The literature reports mixed benefits of weed control between taxa and between locations. We recommend, in our case study site, that weed control be implemented in concert with replanting of native vegetation to provide the understory structure preferred by urban sensitive birds. Understanding the impacts of revegetation and weed control on different bird species is important information for practitioners to make restoration decisions about the allocation of funds for conservation action. This new knowledge can be used both for threatened species and invasive species management.
ERIC Educational Resources Information Center
Buczynski, Sandy
2007-01-01
In these activities, middle school and high school students examine the threat of nonnative plant species to Hawaiian ecosystems. Students explore different viewpoints on alien plants and consider how beliefs and attitudes may affect others' decisions concerning nonnative plant species. Students also identify invasive plant characteristics and…
Conditioned Aversion in Sheep Induced by Baccharis coridifolia
USDA-ARS?s Scientific Manuscript database
In Southern Brazil, Uruguay, Argentina, and Paraguay, the invasive weed Baccharis coridifolia often poisons naive animals. Farmers prevent B. coridifolia poisoning using several unconventional methods to reduce ingestion: (1) burning plant material under an animals’ nose, and having the animal inhal...
A Survey of the Invasive Aquatic and Riparian Plants of the Low Rio Grande
2005-04-01
many areas. In 2001 and 2003, surveys were conducted starting below Amistad Reservoir to immediately below Falcon Reservoir to assess the...River were surveyed from Amistad Reservoir to Anzulduas Dam for the presence of hydrilla and other invasive aquatic weed species (Grodowitz et al...to difficulties in accessing the river. During the 2001 survey, hydrilla was found in Amistad Reservoir and below Falcon Reservoir. In August 2002
USDA-ARS?s Scientific Manuscript database
Giant reed, Arundo donax L. (Poaceae; Arundinoideae), is a clonal reed grass that is native from the western Mediterranean to India and invasive in North America and other arid temperate/subtropical parts of the world, including the Rio Grande Basin of Texas and Mexico. A biological control of gian...
Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca
2015-03-06
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.
Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca
2015-01-01
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867
Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature
NASA Astrophysics Data System (ADS)
Li, Zhichen; An, Qiu; Ji, Changying
The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.
Genetic control of invasive plants species using selfish genetic elements
Hodgins, Kathryn A; Rieseberg, Loren; Otto, Sarah P
2009-01-01
Invasive plants cause substantial environmental damage and economic loss. Here, we explore the possibility that a selfish genetic element found in plants called cytoplasmic male sterility (CMS) could be exploited for weed control. CMS is caused by mutations in the mitochondrial genome that sterilize male reproductive organs. We developed an analytical model and a spatial simulation to assess the use of CMS alleles to manage weed populations. Specifically, we examined how fertility, selfing, pollen limitation and dispersal influenced extinction rate and time until extinction in populations where CMS arises. We found that the introduction of a CMS allele can cause rapid population extinction, but only under a restricted set of conditions. Both models suggest that the CMS strategy will be appropriate for species where pollen limitation is negligible, inbreeding depression is high and the fertility advantage of females over hermaphrodites is substantial. In general, spatial structure did not have a strong influence on the simulation outcome, although low pollen dispersal and intermediate levels of seed dispersal tended to reduce population extinction rates. Given these results, the introduction of CMS alleles into a population of invasive plants probably represents an effective control method for only a select number of species. PMID:25567898
Gopherus agassizii (Desert Tortoise). Non-native seed dispersal
Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.
2011-01-01
Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.
Root sssociations of Phytophthora ramorum and Phytophthora kernoviae in U.K. woodlands
Elizabeth Fichtner; David Rizzo; Susan Kirk; A. Whybrow; J. Webber.
2009-01-01
Phytophthora kernoviae and Phytophthora ramorum, two pathogens recently introduced to the U.K., incite foliar lesions, shoot necrosis, and death of Rhododendron ponticum, an invasive weed pervading U.K. woodlands. In infested woodlands, R. ponticum serves as an...
Weeds gone wild: a web-based public information project
Jil M. Swearingen
2003-01-01
The Plant Conservation Alliance's Alien Plant Working Group (APWG) was formed in August 1995 in order to address the problem of invasive exotic plants on a national level, to produce educational materials, and to forge cooperation with local and regional groups.
Meeting wild bees' needs on rangelands
USDA-ARS?s Scientific Manuscript database
Some arid rangeland regions, notably those with warm dry climates of the temperate zones, host great diversities of native bees, primarily non-social species among which are many floral specialists. Rangeland bee faunas are threatened indirectly by invasive exotic weeds wherever these displace nat...
Atmospheric Science Data Center
2013-04-22
... and Papua New Guinea). At least two languages within this group, Ndom and Riantana, are only used by people living on the island. 3. ... resembling those of marine turtles. 8. Insect control has been tested as a means of combatting an invasive aquatic weed that ...
NASA Technical Reports Server (NTRS)
Potter, Christopher
2016-01-01
Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed an 80 percent overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.
Yuan, Xia; Wen, Bin
2018-01-01
Crassocephalum crepidioides, Conyza canadensis, and Ageratum conyzoides are alien annuals naturalized in China, which produce a large number of viable seeds every year. They widely grow in Xishuangbanna, becoming troublesome weeds that compete with crops for water and nutrients. As seed germination is among the most important life-stages which contribute to plant distribution and invasiveness, its adaptation to temperature and water stress were investigated in these three species. Results showed that: (1) These three species have wide temperature ranges to allow seed germination, i.e., high germination and seedling percentages were achieved between 15°C and 30°C, but germination was seriously inhibited at 35°C; only A. conyzoides demonstrated relative preference for warmer temperatures with approximately 25% germination and seedling percentage at 35°C; (2) light was a vital germination prerequisite for C. crepidioides and A. conyzoides, whereas most C. canadensis seeds germinated in full darkness; (3) Although all three species have good adaptation to bare ground habitat characterized by high temperatures and water stress, including their tolerance to soil surface temperatures of 70°C in air-dried seeds, A. conyzoides seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 40°C, and to water restriction (e.g., ca. 65% seeds germinated to -0.8 MPa created by NaCl), which is consistent with their field behavior in Xishuangbanna. This study suggests that seed high-temperature tolerance contributes to the weed attributes of these three species, and that adaptation to local micro-habitats is a critical determinant for invasiveness of an alien plant.
Yuan, Xia
2018-01-01
Crassocephalum crepidioides, Conyza canadensis, and Ageratum conyzoides are alien annuals naturalized in China, which produce a large number of viable seeds every year. They widely grow in Xishuangbanna, becoming troublesome weeds that compete with crops for water and nutrients. As seed germination is among the most important life-stages which contribute to plant distribution and invasiveness, its adaptation to temperature and water stress were investigated in these three species. Results showed that: (1) These three species have wide temperature ranges to allow seed germination, i.e., high germination and seedling percentages were achieved between 15°C and 30°C, but germination was seriously inhibited at 35°C; only A. conyzoides demonstrated relative preference for warmer temperatures with approximately 25% germination and seedling percentage at 35°C; (2) light was a vital germination prerequisite for C. crepidioides and A. conyzoides, whereas most C. canadensis seeds germinated in full darkness; (3) Although all three species have good adaptation to bare ground habitat characterized by high temperatures and water stress, including their tolerance to soil surface temperatures of 70°C in air-dried seeds, A. conyzoides seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 40°C, and to water restriction (e.g., ca. 65% seeds germinated to -0.8 MPa created by NaCl), which is consistent with their field behavior in Xishuangbanna. This study suggests that seed high-temperature tolerance contributes to the weed attributes of these three species, and that adaptation to local micro-habitats is a critical determinant for invasiveness of an alien plant. PMID:29364942
Aquatic weeds as the next generation feedstock for sustainable bioenergy production.
Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K
2018-03-01
Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.
Predicting Plant Invasions Following China's Water Diversion Project.
Liu, Dasheng; Wang, Rui; Gordon, Doria R; Sun, Xihua; Chen, Lu; Wang, Yanwen
2017-02-07
China's South to North Water Diversion (SNWD) project connects portions of the Yangtze River in the south to the Yellow River system in the north, overcoming biogeographic barriers to water movement. The diversion will supply potable water to over 110 million people and provide multiple other socioeconomic benefits. However, an inadvertent negative impact of this connection includes creation of conduits for species invasions. Alligator weed (Alternanthera philoxeroides), water hyacinth (Eichhornia crassipes), and water lettuce (Pistia stratiotes) are the only aquatic plant species on China's shortlists for special control. These species are mainly invasive in the Yangtze River basin. If these species are able to invade the SNWD and further spread via the SNWD, they have the potential to alter water supply, including water quantity and quality, as well as local ecology and agriculture, threatening the goals of the diversion. Understanding the full potential for these species to invade northern China is critical to early management decisions to avoid costly negative impacts. We used Maxent modeling to evaluate the probability that each of these species might become invasive in the receiving water regions. The models predict that all three species will be able to expand their ranges northward, with alligator weed and water hyacinth having the greatest potential for range expansion. These results suggest the need for prevention, monitoring, and management strategies for these species to reduce the risk and costs of impacts.
Weirich, Jason W; Shaw, David R; Coble, Keith H; Owen, Micheal D K; Dixon, Philip M; Weller, Stephen C; Young, Bryan G; Wilson, Robert G; Jordan, David L
2011-07-01
The introduction of glyphosate-resistant (GR) crops in the late 1990s made weed control in maize, cotton and soybean simple. With the rapid adoption of GR crops, many growers began to rely solely on glyphosate for weed control. This eventually led to the evolution of GR weeds. Growers are often reluctant to adopt a weed resistance best management practice (BMP) because of the added cost of additional herbicides to weed control programs which would reduce short-term revenue. This study was designed to evaluate when a grower that is risk neutral (profit maximizing) or risk averse should adopt a weed resistance BMP. Whether a grower is risk neutral or risk averse, the optimal decision would be to adopt a weed resistance BMP when the expected loss in revenue is greater than 30% and the probability of resistance evolution is 0.1 or greater. However, if the probability of developing resistance increases to 0.3, then the best decision would be to adopt a weed resistance BMP when the expected loss is 10% or greater. Given the scenarios analyzed, risk-neutral or risk-averse growers should implement a weed resistance BMP with confidence that they have made the right decision economically and avoided the risk of lost revenue from resistance. If the grower wants to continue to see the same level of return, adoption of BMP is required. Copyright © 2011 Society of Chemical Industry.
Environmental influeneces on growth and reprodcution of invasive Commelina benghalensis
USDA-ARS?s Scientific Manuscript database
Commelina benghalensis (Benghal dayflower) is a noxious weed that is invading agricultural systems in the southeastern United States. We investigated the influences of nutrition, light, and photoperiod on growth and reproductive output of C. benghalensis. In the first experimental series, plants wer...
Management of Solanum elaeagnifolium in the Mediterranean Basin
USDA-ARS?s Scientific Manuscript database
Solanum elaeagnifolium Cav. (silverleaf nightshade, SOLEL) is a prominent invasive alien weed in many countries of the Mediterranean Basin since its introduction in the mid-20th century, originating from the southwestern United States and northern Mexico. It reproduces vegetatively and by seeds that...
USDA-ARS?s Scientific Manuscript database
Scotch thistle, Onopordum acanthium, is an invasive alien weed in North America that originates from Europe. Previous field observations in Bulgaria have confirmed the presence of prospective biological control agents including Cassida rubiginosa, Chaetostomella cylindrica, Eublemma amoena, Larinus ...
Yan Zhuo Zhang; James Hanula; Jiang Hua Sun
2008-01-01
Chinese privet, Ligustrum sinense Lour., is a perennial semi-evergreen shrub that is aserious invasive weed in the United States. Classical biological control offers the best hope forcontrolling it in an economic, effective, and persistent way. Host...
Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management
USDA-ARS?s Scientific Manuscript database
Invasive aquatic weeds negatively affect biodiversity, fluvial dynamics, water quality, and water storage and conveyance for a variety of human resource demands. In California’s Sacramento-San Joaquin River Delta one submersed species - Brazilian waterweed (Egeria densa) - and one floating species ...
Demographic Modelling in Weed Biocontrol
USDA-ARS?s Scientific Manuscript database
Demographic matrix modeling of plant populations can be a powerful tool to identify key life stage transitions that contribute the most to population growth of an invasive plant and hence should be targeted for disruption. Therefore, this approach has the potential to guide the pre-release selection...
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo; Sibanda, Mbulisi; Bangamwabo, Victor; Shoko, Cletah
2017-08-01
The remote sensing of freshwater resources is increasingly becoming important, due to increased patterns of water use and the current or projected impacts of climate change and the rapid invasion by lethal water weeds. This study therefore sought to explore the potential of the recently-launched Landsat 8 OLI/TIRS sensor in mapping invasive species in inland lakes. Specifically, the study compares the performance of the newly-launched Landsat 8 sensor, with more advanced sensor design and image acquisition approach to the traditional Landsat-7 ETM+ in detecting and mapping the water hyacinth (Eichhornia crassipes) invasive species across Lake Chivero, in Zimbabwe. The analysis of variance test was used to identify windows of spectral separability between water hyacinth and other land cover types. The results showed that portions of the visible (B3), NIR (B4), as well as the shortwave bands (Band 8, 9 and 10) of both Landsat 8 OLI and Landsat 7 ETM, exhibited windows of separability between water hyacinth and other land cover types. It was also observed that on the use of Landsat 8 OLI produced high overall classification accuracy of 72%, when compared Landsat 7 ETM, which yielded lower accuracy of 57%. Water hyacinth had optimal accuracies (i.e. 92%), when compared to other land cover types, based on Landsat 8 OLI data. However, when using Landsat 7 ETM data, classification accuracies of water hyacinth were relatively lower (i.e. 67%), when compared to other land cover types (i.e. water with accuracy of 100%). Spectral curves of the old, intermediate and the young water hyacinth in Lake Chivero based on: (a) Landsat 8 OLI, and (b) Landsat 7 ETM were derived. Overall, the findings of this study underscores the relevance of the new generation multispectral sensors in providing primary data-source required for mapping the spatial distribution, and even configuration of water weeds at lower or no cost over time and space.
Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S
2016-08-01
This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pea has been used to replace fallow and sustain dryland crop yields in arid and semiarid regions, but information to optimize its management is required. We evaluated pea growth, yield, and water use in response to tillage, crop rotation, and weed management practice from 2005 to 2010 in the norther...
Science and Management of the Introduced Seagrass Zostera ...
Healthy seagrass is considered a prime indicator of estuarine ecosystem function. On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Z. japonica. Z. japonica is considered “invasive” and therefore, ecologically and economically harmful by some, while others consider it benign or perhaps beneficial. Z. japonica does not appear on the Federal or the Oregon invasive species or noxious weed lists. However, the State of California lists it as both an invasive and noxious weed; Washington State recently listed it as a noxious weed. We describe the management dynamics in North America with respect to these congener species and highlight the science and policies behind these decisions. In recent years, management strategies at the state level have ranged from historical protection of Z. japonica as a priority habitat in Washington to eradication in California. In 2011, Washington State reversed its long standing policy to protect Z. japonica and is developing permits for chemical control of this plant. This fractured management approach contradicts efforts to conserve and protect seagrass in other regions of the US and around the world. Science must play a critical role in the assessment of Z. japonica ecology and the immediate and long-term effects of management actions. The information and recommendations provided here can serve as a basis for providing scientific data in order to develo
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Chauhan, Shivani; Katiyar, Jitendra Kumar
2018-04-01
In this study, a novel natural fiber i.e. Sour-weed botanically known as ‘Rumex acetosella’ has been first time introduced as natural reinforcements to polyester matrix. The natural fiber based polyester composites were fabricated by hand lay-up technique using different sizes and different weight percentages. In Sour-weed/Polyester composites, physical (density, water absorption and hardness), mechanical properties (tensile and impact properties) and wear properties (sand abrasion and sliding wear) were investigated for different sizes of sour weed of 0.6 mm, 5 mm, 10 mm, 15 mm and 20 mm at 3, 6 and 9 weight percent loading, respectively in polyester matrix. Furthermore, on average value of results, the multi-criteria optimization technique i.e. TOPSIS was employed to decide the ranking of the composites. From the optimized results, it was observed that Sour-weed composite reinforced with fiber’s size of 15 mm at 6 wt% loading demonstrated the best ranked composite exhibiting best overall properties as average tensile strength of 34.33 MPa, average impact strength of 10 Joule, average hardness of 12 Hv, average specific sand abrasion wear rate of 0.0607 mm3 N‑1m‑1, average specific sliding wear rate of 0.002 90 mm3 N‑1m‑1, average percentage of water absorption of 3.446% and average density of 1.013 among all fabricated composites.
Jacob, Samuel; Banerjee, Rintu
2016-08-01
A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ge, Changzi; Wang, Renqing; Chai, Yanchao; Wang, Haiqing; Kan, Manman; Liu, Jian
2017-01-01
Suaeda salsa community is a vegetation type in saline-alkali areas. Weed invasion and colonization in S. salsa communities lead to fragmentationsof S. salsa communities. The colonization of invaded weeds in S. salsa communities is related to community succession of saline-alkali zones. The fragmented S. salsa community may be restored if the mechanism of invaded weed colonization in S. salsa communities is clearly elucidated. Thus, we studied the ecological stoichiometric characteristics of soils and plants in a salt marsh to explain the high colonization possibility of invaded weeds in S. salsa communities. In October 2014, soils and plants were collected from Dongfeng Salt Marsh, Jiaozhou Bay, Shandong Province, China. The ratio of Ex-N/Ex-P in soil was less than 13, which suggests a relative nitrogen limitation for the primary production in the zone. The minimum phosphorus content in plants was higher than 1 mg g-1, whereas the maximum nitrogen content in plants was less than 13 mg g-1. These results imply that phosphorus was abundant, whereas nitrogen was deficient in the area. The plants in the salt marsh may be limited by nitrogen. Given the relatively lower nitrogen contents in Cyperus glomeratus, Echinochloa crusgalli, and Aster subulatus than that in S. salsa, these three species exhibited higher competitiveness than S. salsa did when nitrogen was limited in primary production. These weed species may colonize highly in S. salsa communities. Moreover, nitrogen fertilization might be effective to maintain S. salsa community in Dongfeng Salt Marsh, whereas its effects on controlling weeds colonization in S. salsa communities need more studies to verify. PMID:28135313
Ge, Changzi; Wang, Renqing; Chai, Yanchao; Wang, Haiqing; Kan, Manman; Liu, Jian
2017-01-01
Suaeda salsa community is a vegetation type in saline-alkali areas. Weed invasion and colonization in S. salsa communities lead to fragmentationsof S. salsa communities. The colonization of invaded weeds in S. salsa communities is related to community succession of saline-alkali zones. The fragmented S. salsa community may be restored if the mechanism of invaded weed colonization in S. salsa communities is clearly elucidated. Thus, we studied the ecological stoichiometric characteristics of soils and plants in a salt marsh to explain the high colonization possibility of invaded weeds in S. salsa communities. In October 2014, soils and plants were collected from Dongfeng Salt Marsh, Jiaozhou Bay, Shandong Province, China. The ratio of Ex-N/Ex-P in soil was less than 13, which suggests a relative nitrogen limitation for the primary production in the zone. The minimum phosphorus content in plants was higher than 1 mg g-1, whereas the maximum nitrogen content in plants was less than 13 mg g-1. These results imply that phosphorus was abundant, whereas nitrogen was deficient in the area. The plants in the salt marsh may be limited by nitrogen. Given the relatively lower nitrogen contents in Cyperus glomeratus, Echinochloa crusgalli, and Aster subulatus than that in S. salsa, these three species exhibited higher competitiveness than S. salsa did when nitrogen was limited in primary production. These weed species may colonize highly in S. salsa communities. Moreover, nitrogen fertilization might be effective to maintain S. salsa community in Dongfeng Salt Marsh, whereas its effects on controlling weeds colonization in S. salsa communities need more studies to verify.
Lotus utahensis: southern great basin legume for possible use in rangeland revegetation
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems in the western USA are increasingly vulnerable to wildland fires, weed invasion, and mismanagement. On many of these rangelands, revegetation/restoration may be required to improve degraded conditions, speed recovery, and minimize soil erosion. Legumes native to the Great Basi...
The suitability of select ferns as hosts for Archips machlopis (Lepidoptera: Tortricidae)
USDA-ARS?s Scientific Manuscript database
Surveys for natural enemies of invasive weed Lygodium microphyllum in Thailand resulted in the collection of lepidopteran Archips machlopis. Multiple generations of the tortricid were reared on L. microphyllum in a quarantine laboratory, demonstrating that the plant is a developmental host. Further ...
Plant genotype effects on a host specific thrips and the impact on biological control
USDA-ARS?s Scientific Manuscript database
A promising thrips, Pseudophilothrips ichini (Phlaeothripidae) has been considered for biological control of the invasive weed Brazilian pepper Schinus terebinthifolius. This thrips was originally collected from a southern region of Brazil where it was frequently found associated with significant da...
Evaluating Drosophila suzukii (Diptera: Drosophilidae) immunomarking for mark-capture research
USDA-ARS?s Scientific Manuscript database
Drosophila suzukii Matsumura readily utilizes wild Himalayan blackberry, Rubus armeniacus Focke as a host and is suspected of invading berry and stone fruit crops from field margins containing this invasive weed. This study was conducted to determine: (1) protein mark (10% chicken egg whites [albumi...
Duration of emission of volatile organic compounds from mechanically damaged plant leaves
USDA-ARS?s Scientific Manuscript database
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice...
7 CFR 650.6 - Categorical exclusions.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Snow Survey and Water Supply Forecasts—7 CFR part 612; (3) Plant Materials for Conservation—7 CFR part..., which does not include noxious weeds or invasive plants, on disturbed sites to restore and maintain the... purpose of restoring ecological processes; (6) Removing or relocating residential, commercial, and other...
7 CFR 650.6 - Categorical exclusions.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Snow Survey and Water Supply Forecasts—7 CFR part 612; (3) Plant Materials for Conservation—7 CFR part..., which does not include noxious weeds or invasive plants, on disturbed sites to restore and maintain the... purpose of restoring ecological processes; (6) Removing or relocating residential, commercial, and other...
7 CFR 650.6 - Categorical exclusions.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Snow Survey and Water Supply Forecasts—7 CFR part 612; (3) Plant Materials for Conservation—7 CFR part..., which does not include noxious weeds or invasive plants, on disturbed sites to restore and maintain the... purpose of restoring ecological processes; (6) Removing or relocating residential, commercial, and other...
7 CFR 650.6 - Categorical exclusions.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Snow Survey and Water Supply Forecasts—7 CFR part 612; (3) Plant Materials for Conservation—7 CFR part..., which does not include noxious weeds or invasive plants, on disturbed sites to restore and maintain the... purpose of restoring ecological processes; (6) Removing or relocating residential, commercial, and other...
Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.
2013-01-01
Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917
Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B
2013-01-01
Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
Capsule treatments to enhance seedling emergence of Gaura neomexicana ssp
Leah M. Burgess; Ann L. Hild; Nancy L. Shaw
2005-01-01
Management of riparian vegetation is difficult because these communities are frequently impacted by herbivores, invasive weeds, and altered hydrologic regimes. Multiple and intertwined factors affecting rare species recruitment are particularly difficult to identify. Gaura neomexicana ssp. coloradensis Munz (Gaura) is a short-lived perennial forb endemic to riparian...
First biological control agent released against Cape-ivy
USDA-ARS?s Scientific Manuscript database
Cape-ivy (Delairea odorata, Asteraceae) is one of the worst invasive weeds in California, colonizing riparian, forest, and scrub habitats along the California coast and East Bay hills. Cape-ivy can smother native oaks and other trees, displace native herbs and shrubs, and clog water flow along fresh...
Evaluation of Utah trefoil collections for rangeland restoration in the southern Great Basin
USDA-ARS?s Scientific Manuscript database
Wildfires, weed invasion, and various other land disturbances are common in rangeland ecosystems of the Intermountain Region in the western U.S. Revegetation/restoration may be required on many of these rangelands to improve degraded conditions, speed recovery, and minimize soil erosion. Legumes n...
USDA-ARS?s Scientific Manuscript database
Drylands comprise 40% of Earth’s land mass and are critical to imperiled wildlife species, food security and carbon sequestration. Exotic weed invasions, overgrazing, energy extraction, and other factors have left many of the planet’s drylands in various states of degradation, and this has prompted...
USDA-ARS?s Scientific Manuscript database
Among the most important and visible weeds in the Southeatern U.S. is the exotic invasive vine, kudzu (Pueraria montana var. lobata). Efforts to eradicate it typically involve many years of application of restricted-use pesticides. Recent availability of effective, non-restricted use pesticides and...
Is (-)-Catechin a "Novel Weapon" of Spotted Knapweed (Centaurea stoebe)?
USDA-ARS?s Scientific Manuscript database
The “novel weapons” hypothesis states that some invasive weed species owe part of their success as invaders to allelopathy mediated by allelochemicals that are new to the native species. Presumably, no resistance has evolved among the native species to this new allelochemical (i.e. the novel weapon...
USDA-ARS?s Scientific Manuscript database
With the increased emphasis to use native plant materials in range revegetation programs in the western US, it is critical to develop native grasses that are competitive with invasive weeds, easy to establish, persistent, and produce high seed yield. One such native grass species with appreciable d...
USDA-ARS?s Scientific Manuscript database
This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...
Research to Practical Use: On-The-Ground Successes
USDA-ARS?s Scientific Manuscript database
The U.S. Department of Agriculture, Agricultural Research Service, Exotic and Invasive Weeds Research Unit services a large area that runs from southern Nevada up to the Oregon border, and from northeastern California to the Utah Border. In this vast array of landscapes are a variety of stakeholders...
New prospects for biological control of Brazilian peppertree, Schinus terebinthifolius
USDA-ARS?s Scientific Manuscript database
Brazilian peppertree, Schinus terebinthifolius Raddi (Anacardiaceae), is an invasive weed from South America that has been spread to many countries. It was introduced into the USA about 100 years ago as an ornamental. Escaping cultivation, it now occurs in three south-eastern states of the USA, Cali...
Native plant conservation partnership with BLM and development of seed zones for restoration
USDA-ARS?s Scientific Manuscript database
Native forest and rangeland plant communities in the arid Western U.S. are increasingly threatened by overgrazing, uncharacteristically frequent wildfires, invasive weeds, and climate change. As a result, the need for conservation of native plant materials and their use in restoration has increased....
Badger (Taxidea taxus) disturbances increase soil heterogeneity in a degraded shrub-steppe ecosystem
USDA-ARS?s Scientific Manuscript database
In the western United States, overgrazing, weed invasion and wildfire have resulted in the conversion of shrub-steppe to annual grasslands, with substantial effects on ecosystem function. In these landscapes, badgers disturb large areas of soil while foraging for prey. Mounds created by badgers cont...
Growth and control of invasive weeds under elevated CO2
USDA-ARS?s Scientific Manuscript database
Atmospheric concentrations of CO2 have been increasing since the onset of the industrial revolution. Regardless of the debate on the effects of this rise on climate, most plants exhibit a positive growth response to elevated CO2 due to increased photosynthesis, resource use efficiency, and/or alloca...
USDA-ARS?s Scientific Manuscript database
The USDA-ARS quarantine laboratory in Albany, CA, in cooperation with foreign scientists, is currently developing classical biological control agents for five species of invasive alien terrestrial weeds. Host specificity testing of the yellow starthistle rosette weevil, Ceratapion basicorne, indica...
Increasing Native Forb Seed Supplies for the Great Basin
Nancy L. Shaw; Scott M. Lambert; Ann M. DeBolt; Mike Pellant
2005-01-01
Over the last 150 years, excessive grazing, annual weed invasions, increased wildfire frequency, and other human disturbances have negatively impacted native plant communities of the Great Basin. Native plant materials and appropriate planting strategies are needed to recreate diverse communities in areas requiring active restoration. Although native forbs are critical...
Efficacy of combinations of diquat or triclopyr with fluridone for control of flowering rush
USDA-ARS?s Scientific Manuscript database
Flowering rush (Butomus umbellatus L.) is an emerging invasive aquatic weed in the northern tier of the United States and southern Canada. While several management approaches have been tested, submersed treatment with diquat is the only use pattern substantiated with field efficacy data. We test...
Potential of Myrothecium species as bioherbicides for giant salvinia (Salvinia molesta)
USDA-ARS?s Scientific Manuscript database
Giant salvinia is an exotic, invasive floating weed that can be difficult to manage. We examined a previously described isolate of the Myrothecium verrucaria and three new isolates of Myrotheicum roridum for virulence against giant salvinia. These plant pathogens were grown on a standard medium, p...
Overview of saltcedar biological control
C. Jack DeLoach; Lindsey R. Milbrath; Ray Carruthers; Allen E. Knutson; Fred Nibling; Debra Eberts; David C. Thompson; David J. Kazmer; Tom L. Dudley; Dan W. Bean; Jeff B. Knight
2006-01-01
Biological control has successfully controlled 10 exotic, invasive weeds of rangelands and natural ecosystems in the United States since 1945, and control of others is in progress. We initiated biological control of saltcedar (Tamarix spp.) in 1987, using host-specific insect herbivores that regulate saltcedar populations in the Old World. We did a...
Effects of simulated acid rain on the allelopathic potential of invasive weed Wedelia trilobata
USDA-ARS?s Scientific Manuscript database
Acid rain continues to pose a major threat to natural ecosystems in rapidly-developing industrialized regions such as southern China. Despite the significant environmental impact of this phenomenon, relatively little is known concerning its effects on important aspects of ecosystem dynamics such as ...
Plant succession and approaches to community restoration
Bruce A. Roundy
2005-01-01
The processes of vegetation change over time, or plant succession, are also the processes involved in plant community restoration. Restoration efforts attempt to use designed disturbance, seedbed preparation and sowing methods, and selection of adapted and compatible native plant materials to enhance ecological function. The large scale of wildfires and weed invasion...
USDA-ARS?s Scientific Manuscript database
Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...
USDA-ARS?s Scientific Manuscript database
Biological control is an important and environmentally preferred management option for invasive insect pests and weeds. Implementation of new international regulations governing exchange of genetic materials impacts the availability of candidate biocontrol agents, and exchange policies need to be ca...
USDA-ARS?s Scientific Manuscript database
The armored scale biological control agent, Rhizaspidiotus donacis (Leonardi) (Hemiptera; Diaspididae) has established populations on the invasive weed, Arundo donax L. (Poaceae; Arundinoideae) in Del Rio (Val Verde, Co.) and in field plots at the USDA-APHIS-PPQ-Moore Airbase, Edinburg (Hidalgo Co.)...
T.A.M.E. Melaleuca: a regional approach for suppressing one of Florida’s worst weeds
USDA-ARS?s Scientific Manuscript database
The adventive Australian tree Melaleuca quinquenervia (Cav.) S.T. Blake is an invasive pest plant in the greater Everglades region of Florida. Public agencies and organizations responsible for natural areas management have developed effective chemical and mechanical strategies for treating infestati...
T.A.M.E. Melaleuca: a regional approach for suppressing one of Florida's worst weeds
USDA-ARS?s Scientific Manuscript database
The adventive Australian tree Melaleuca quinquenervia (Cav.) S.T. Blake is an invasive pest plant in the greater Everglades region of Florida. Public agencies and organizations responsible for natural areas management have developed effective chemical and mechanical strategies for treating infestati...
Nonmarket resource valuation in the postfire environment
David Calkin; Greg Jones; Kevin Hyde
2008-01-01
After the containment of large wildland fires, major onsite and downstream effects including lost soil productivity, watershed response, increased vulnerability to invasive weeds, and downstream sedimentation can cause threats to human life and property. Burned Area Emergency Response (BAER) teams are responsible for developing treatment plans to mitigate negative...
Biology and management of two important Conyza weeds: a global review.
Bajwa, Ali Ahsan; Sadia, Sehrish; Ali, Hafiz Haider; Jabran, Khawar; Peerzada, Arslan Masood; Chauhan, Bhagirath Singh
2016-12-01
Weed management is one of the prime concerns for sustainable crop production. Conyza bonariensis and Conyza canadensis are two of the most problematic, noxious, invasive and widespread weeds in modern-day agriculture. The biology, ecology and interference of C. bonariensis and C. canadensis have been reviewed here to highlight pragmatic management options. Both these species share a unique set of biological features, which enables them to invade and adapt a wide range of environmental conditions. Distinct reproductive biology and an efficient seed dispersal mechanism help these species to spread rapidly. Ability to interfere strongly and to host crop pests makes these two species worst weeds of cropping systems. These weed species cause 28-68 % yield loss in important field crops such as soybean and cotton every year. These weeds are more prevalent in no-till systems and, thus, becoming a major issue in conservation agriculture. Cultural practices such as crop rotations, seed rate manipulation, mulching, inter-row tillage and narrow row spacing may provide an effective control of these species. However, such methods are not feasible and applicable under all types of conditions. Different herbicides also provide a varying degree of control depending on crop, agronomic practices, herbicide dose, application time and season. However, both these species have evolved resistance against multiple herbicides, including glyphosate and paraquat. The use of alternative herbicides and integrated management strategies may provide better control of herbicide-resistant C. bonariensis and C. canadensis. Management plans based on the eco-biological interactions of these species may prove sustainable in the future.
Long-term trends in midwestern milkweed abundances and their relevance to monarch butterfly declines
Zaya, David N.; Pearse, Ian; Spyreas, Gregory
2017-01-01
Declines in monarch butterfly populations have prompted investigation into the sensitivity of their milkweed host plants to land-use change. Documented declines in milkweed abundance in croplands have spurred efforts to promote milkweeds in other habitats. Nevertheless, our current understanding of milkweed populations is poor. We used a long-term plant survey from Illinois to evaluate whether trends in milkweed abundance have caused monarch decline and to highlight the habitat-management practices that promote milkweeds. Milkweed abundance in natural areas has not declined precipitously, although when croplands are considered, changes in agricultural weed management have led to a 68% loss of milkweed available for monarchs across the region. Midsuccessional plant communities with few invasive species provide optimal milkweed habitat. The augmentation of natural areas and the management of existing grasslands, such as less frequent mowing and woody- and exotic-species control, may replace some of the milkweed that has been lost from croplands.
Dinitroaniline herbicide resistance and the microtubule cytoskeleton.
Anthony; Hussey
1999-03-01
Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.
Ye, Juan; Wen, Bin
2017-01-01
Both spiny and edible amaranths (Amaranthus spinosus and A. tricolor) are exotic annuals in China that produce numerous small seeds every year. Spiny amaranth has become a successful invader and a troublesome weed in Xishuangbanna, but edible amaranth has not, although it is widely grown as a vegetable there. As seed germination is one of the most important life-stages contributing to the ability of a plant to become invasive, we conducted experiments to compare the effects of high temperature and water stress on seed germination in two varieties each of spiny amaranth and edible amaranth. Overall, the seeds of both amaranth species exhibited adaptation to high temperature and water stress, including tolerance to ground temperatures of 70°C for air-dried seeds, which is consistent with their behavior in their native ranges in the tropics. As expected, the invasive spiny amaranth seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 45°C, and to imbibition-desiccation treatment, compared to edible amaranth seeds. Unexpectedly, edible amaranth seeds exhibited higher germination at extreme temperatures (10°C, 15°C, and 40°C), and at lower water potential (below -0.6 MPa). It is likely that cultivation of edible amaranth has selected seed traits that include rapid germination and germination under stressful conditions, either of which, under natural conditions, may result in the death of most germinating edible amaranth seeds and prevent them from becoming invasive weeds in Xishuangbanna. This study suggests that rapid germination and high germination under stress conditions—excellent seed traits for crops and for many invasive species—might be a disadvantage under natural conditions if these traits are asynchronous with natural local conditions that support successful germination. PMID:28414779
USDA-ARS?s Scientific Manuscript database
Wildfires, weed invasion, and various land uses have created a need for revegetation/restoration of rangeland ecosystems in the Intermountain Region of the western U.S.A. These rangelands may require revegetation/restoration to improve degraded conditions, speed recovery after wildfires, minimize s...
Assessing post-fire values-at-risk with a new calculation tool
David E. Calkin; Kevin D. Hyde; Peter R. Robichaud; J. Greg Jones; Louise E. Ashmun; Loeffler Dan
2007-01-01
Wildfire effects include loss of vegetative cover and changes to soil properties that may lead to secondary effects of increased runoff, erosion, flooding, sedimentation, and vulnerability to invasive weeds. These secondary effects may threaten human life and safety, cultural and ecological resources, land use, and existing infrastructure. Current Burned Area Emergency...
USDA-ARS?s Scientific Manuscript database
Population managers are frequently faced with the challenge of selecting the most effective management strategy from a set of available strategies. In the case of classical weed biological control, this requires predicting a priori which of a group of candidate biocontrol agent species has the great...
Daniel G. Neary; Will H. Moir; Steven T. Overby
2002-01-01
Harvesting for conventional forestry products, bioenergy, or fuels reduction creates varying levels of soil disturbance depending upon the felling and extraction systems used. Site preparation before replanting imposes additional soil disturbances depending on the mix of mechanical, chemical, and fire techniques used These inter-rotation disturbances usually affect...
43 CFR 6304.22 - What special provisions apply to control of fire, insects, and diseases?
Code of Federal Regulations, 2011 CFR
2011-10-01
... of fire, insects, and diseases? 6304.22 Section 6304.22 Public Lands: Interior Regulations Relating... apply to control of fire, insects, and diseases? BLM may prescribe measures to control fire, noxious weeds, non-native invasive plants, insects, and diseases. BLM may require restoration concurrent with or...
Mapping giant reed along the Rio Grande using airborne and satellite imagery
USDA-ARS?s Scientific Manuscript database
Giant reed (Arundo donax L.) is a perennial invasive weed that presents a severe threat to agroecosystems and riparian areas in the Texas and Mexican portions of the Rio Grande Basin. The objective of this presentation is to give an overview on the use of aerial photography, airborne multispectral a...
43 CFR 6304.22 - What special provisions apply to control of fire, insects, and diseases?
Code of Federal Regulations, 2013 CFR
2013-10-01
... of fire, insects, and diseases? 6304.22 Section 6304.22 Public Lands: Interior Regulations Relating... apply to control of fire, insects, and diseases? BLM may prescribe measures to control fire, noxious weeds, non-native invasive plants, insects, and diseases. BLM may require restoration concurrent with or...
43 CFR 6304.22 - What special provisions apply to control of fire, insects, and diseases?
Code of Federal Regulations, 2014 CFR
2014-10-01
... of fire, insects, and diseases? 6304.22 Section 6304.22 Public Lands: Interior Regulations Relating... apply to control of fire, insects, and diseases? BLM may prescribe measures to control fire, noxious weeds, non-native invasive plants, insects, and diseases. BLM may require restoration concurrent with or...
43 CFR 6304.22 - What special provisions apply to control of fire, insects, and diseases?
Code of Federal Regulations, 2012 CFR
2012-10-01
... of fire, insects, and diseases? 6304.22 Section 6304.22 Public Lands: Interior Regulations Relating... apply to control of fire, insects, and diseases? BLM may prescribe measures to control fire, noxious weeds, non-native invasive plants, insects, and diseases. BLM may require restoration concurrent with or...
USDA-ARS?s Scientific Manuscript database
Invasive aquatic weeds, such as water hyacinth (Eichhornia crassipes), severely limit the ecosystem services provided by the Sacramento-San Joaquin River Delta. As part of the biological control program in the Delta, two weevils, Neochetina bruchi and N. eichhorniae (Coleoptera: Curculionidae) and a...
USDA-ARS?s Scientific Manuscript database
Abstract. Heteroperreyia hubrichi Malaise (Hymenoptera: Pergidae), a foliage feeding sawfly of Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), was studied to assess its suitability as a classical biological control agent of this invasive weed in Hawaii. Nochoice host-specificity tests we...
USDA-ARS?s Scientific Manuscript database
Surveys for biological control agents of the invasive weed Schinus terebinthifolius (Anacardiaceae) discovered two Omolabus weevils (Coleoptera: Attelabidae) feeding on the plant in its native range. Molecular and morphological analysis indicated that one of these species consistently fed on the tar...
USDA-ARS?s Scientific Manuscript database
The suitability of Oxydia vesulia (Cramer) (Lepidoptera: Geometridae) was assessed as a potential biological control agent of the invasive weed Brazilian Peppertree Schinus terebinthifolia. Larvae were collected in Brazil feeding on the plant in its native range and colonized in quarantine where lif...
First report of stem canker of Salsola tragus caused by Diaporthe eres in Russia
USDA-ARS?s Scientific Manuscript database
Salsola tragus L. (Russian thistle, tumbleweed), family Chenopodiaceae, is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying Salsola tragus plants were found along the Azov Sea at Chushka, Russia. About 30 plants in the...
USDA-ARS?s Scientific Manuscript database
A species of Notodontidae, Nystalea ebalea was discovered feeding on leaflets of the invasive weed Schinus terebinthifolius in south Florida. The larvae of this species have generally 5 instars and require 20-22 d to reach the pupal stage. Discovery of wild populations of this Neotropical species in...
USDA-ARS?s Scientific Manuscript database
Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...
USDA-ARS?s Scientific Manuscript database
We report large induction (> 65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC ble...
USDA-ARS?s Scientific Manuscript database
The performance and impacts of weed biological control agents may vary with plant ontogeny. As plants grow, profound structural and chemical changes can alter plant resistance, which may reduce herbivory via chemical or structural defenses, and plant tolerance, which may enable plants to maintain fi...
USDA-ARS?s Scientific Manuscript database
During 2011-2013 plants of the invasive weed species Alliaria petiolata (garlic mustard) were observed with virus-like disease symptoms in three separate locations in Ramsey and Anoka counties, Minnesota. Symptoms consisted of conspicuous mosaic, leaf deformation and stunting. Numerous virus-like pa...
USDA-ARS?s Scientific Manuscript database
Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola spp., Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western U.S. Prior laboratory host range testing under artificial lighting indicated reprodu...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... registered herbicides is one of the various treatment methods that are proposed. The overall project goal is... insects; and herbicides that target specific invasive plant species. The application of herbicides would... spraying would be the primary method of applying herbicide in order to target individual and groups of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... cyanobacteria, green algae, lichens, mosses, liverworts, and microorganisms that colonize the surface of bare soil), degrading soil conditions, and increasing invasive weeds and wildfires (Forest Guardians et al... prairie dog weight gain and survival, particularly during drought conditions (Ritchie 1998, p. 9...
Remote Sensing of Saltcedar Biological Control Effectiveness
Ray Carruthers; Gerald Anderson; Jack DeLoach; Jeff Knight; Shaokui Ge; Peng Gong
2006-01-01
Saltcedar (Tamarix spp.) is a major invasive weed found throughout the Western United States and Mexico. Introduced into North America in the 1800s, this shrub to small tree, now infests many riparian areas where it displaces native vegetation, increases fire hazards, uses extensive amounts of water, increases flooding during high water events and...
USDA-ARS?s Scientific Manuscript database
Prescribed fire can be used to return wild lands to their natural fire cycle, control invasive weeds, and reduce fuel loads, but there are gaps in the understanding of post-disturbance responses of vegetation and hydrology. The impact of a prescribed fire and subsequent aspen cutting on evapotransp...
Varied growth response of cogongrass ecotypes to elevated CO2
USDA-ARS?s Scientific Manuscript database
Cogongrass [Imperata cylindrica (L.) P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes (Florida, Hybrid, Louisiana, Mobile, and North Alabama) collected across the Southeast ...
USDA-ARS?s Scientific Manuscript database
The host race of Ceutorhynchus assimilis (Coleoptera: Curculionidae) that specifically develops on Lepidium draba (Brassicales: Brassicaceae), an invasive weed in North America, is being considered for use as a biocontrol agent. Because there are other races that attack other plants, it is important...
USDA-ARS?s Scientific Manuscript database
The fundamental host range of the arundo leafminer, Lasioptera donacis a candidate agent for the invasive weed, Arundo donax was evaluated. Lasioptera donacis collects and inserts spores of a saprophytic fungus, Arthrinium arundinis, during oviposition. Larvae feed and develop in the decomposing le...
USDA-ARS?s Scientific Manuscript database
The Asian shrub Rhodomyrtus tomentosa is an invasive weed in Florida and Hawaii, USA. Surveys for natural enemies of this exotic shrub in Hong Kong, China resulted in the development of a laboratory colony and host range testing of Neostauropus alternus (Walker 1855) as a potential biological contro...
Development rate, consumption and host specificity of Carea varipes (Lepidoptera: Nolidae)
USDA-ARS?s Scientific Manuscript database
The Asian shrub Rhodomyrtus tomentosa is an invasive weed in Florida and Hawaii, USA. Surveys for natural enemies of this exotic shrub in Hong Kong, China resulted in the development of a laboratory colony and initial host range testing of Carea varipes as a potential biological control agent of R. ...
Effects of two citrus-based commercial herbicides on giant reed, Arundo donax L. (Poaceae)
USDA-ARS?s Scientific Manuscript database
The giant reed, Arundo donax L. (Poaceae), is an invasive weed pest in the United States and other parts of the world, particularly in riparian habitats where it can hinder the flow of water and choke out indigenous vegetation. Conventional approaches to controlling A. donax have not been particular...
Crested wheatgrass control and native plant establishment in Utah
April Hulet; Bruce A. Roundy; Brad Jessop
2010-01-01
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and...
Monica B. Mazzola; Kimberly G. Allcock; Jeanne C. Chambers; Robert R. Blank; Eugene W. Schupp; Paul S. Doescher; Robert S. Nowak
2008-01-01
Cheatgrass (Bromus tectorum L.) is the most widespread invasive weed in sagebrush ecosystems of North America. Restoration of perennial vegetation is difficult and land managers have often used introduced bunchgrasses to restore degraded sagebrush communities. Our objective was to evaluate the potential of 'Vavilov' Siberian wheatgrass (Agropyron fragile [...
USDA-ARS?s Scientific Manuscript database
In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae) was collected in China in 2014, introduced under quarantine in Florida, USA and tested against related species to determine its host range and suitability ...
Ecology and management of Sheoak (Casuarina spp.), an invader of coastal Florida, U.S.A.
USDA-ARS?s Scientific Manuscript database
The Casuarina spp. are invasive weeds in Florida that threaten biological diversity and beach integrity of coastal habitats. The trees include three species and their hybrids that aggressively invade riverine and coastal areas. Of the three species, C. equisetifolia and C. glauca are highly salt tol...
In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, April Lea
Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less
In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development
Pope, April Lea
2015-05-01
Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less
Wheeler, G S; Hight, S D; Wright, S A
2017-12-08
Chinese tallowtree, Triadica sebifera (L.) Small (Euphoriaceae), is one of the most aggressive weeds of coastal wetlands and forests of the southeastern United States. The lack of specialist herbivores in the invaded range may be one of the factors that contribute to the invasive nature of this weed. Chinese tallowtree has been the target of a classical biological control project since 2006. Several herbivore species are being tested for biological control of Chinese tallowtree. Concurrently, an adventive herbivore, Caloptilia triadicae Davis (Lepidoptera: Gracillariidae), was found feeding on Chinese tallowtree in the southeastern United States in 2004 and now occurs throughout the invaded range. Field populations of C. triadicae from two sites caused extensive mining damage to the Chinese tallowtree leaves. The greatest damage occurred after 30 d of exposure to C. triadicae in the herbivory treatment and amounted to about 25-30 leaf mines (early instars) and leaf rolls (late instars) per plant. Insecticide-treated plants had atmost 5-10 leaf mines and rolls per plant. Despite this difference, plant growth in height, number of new branches, and leaves did not differ significantly from plants protected from herbivory. Analysis of harvested plant results suggested that, in general, herbivory had little impact on biomass. However, there was a slight reduction in trunk weights in the unrestriced herbivory treatment compared with the insecticide-treated plants. Although this study exposed experimental plants to only 60 d of herbivory, these results suggested that C. triadicae alone will not exert sufficient control of invasive populations of Chinese tallowtree. Furthermore, they indicated that continued development of biological control agents that target Chinese tallowtree are needed. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Vegetable Seedling Breeding with Biochar Produced from Invasive Plant Biomass in South West of China
NASA Astrophysics Data System (ADS)
Li, Guitong; Tian, Yanfang; Liu, Cheng; Cao, Jianhua; Lin, Qimei; Zhao, Xiaorong
2015-04-01
Crofton Weed (Ageratina adenophora) is an invasive plant widely colonized in the southwest part of China, such as Yunnan, Guizhou, and Sichuan. It is estimated that the total biomass of this small shrub in China can be as much as 30 million tones. Many methods have been developed to control its malignant expansion, mostly by using its leaves as feed for livestock. Its stem is difficult to use, although it accounts for more than 90% of its total biomass. A biochar production system, using the stems of Crofton Weed as feedstock, was established at Xi-Yu Biological Science and Technology Company, Pan-Zhi-hua, Sichuan Province, China. The system is composed of feeder, hot-air dryer, pyrolyser, activator, steam producer, and biochar-based fertilizer producer. The energy for producing hot-air to pre-dry the feedstock and steam to activate the carbonized material comes from the re-use of the heat yielded from the pyrolysis process. The whole system is in a high level of automation and energy efficiency. With this system, local farmers can improve their income by collecting stems of Crofton Weed and selling them to the producer. It is a practical way to control this kind of invasive plant by offering economic value for the local people. The biochar can be used to produce new seedling substrate by replacing peat to protect wetland resource. The biochar seedling media was produced in a simple way and the effects on growth of vegetable seedlings was evaluated. Results showed that the response of vegetable seeds to the biochar seedling media was different, meaning more detailed studies need to done to find the reasons for some kinds of seeds failed to germinate in the tested biochar seedling media. This research was supported by the Ministry of Science and Technology of China under the Public Industry Science and Technology Project (201103027).
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOHNSON, A.R.
Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the qualitymore » of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOHNSON, A.R.
Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the qualitymore » of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.« less
NASA Technical Reports Server (NTRS)
Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John
2017-01-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.
USDA-ARS?s Scientific Manuscript database
Rangelands represent the dominant land use systems in many countries of the world and provide sociological and cultural benefits to millions of people in both rural and urban areas. The undesirable impacts of rangeland weeds have been recognized for well over 100 years and infest between 41 and 51 ...
USDA-ARS?s Scientific Manuscript database
Yellow starthistle (Centaurea solstitialis) is an invasive annual weed in the western USA that is native to the Mediterranean Region and is a target for classical biological control. Aceria solstitialis is an eriophyid mite that has been found exclusively in association with yellow starthistle in I...
Yvette K. Ortega; Dean E. Pearson; Lauren P. Waller; Nancy J. Sturdevant; John L. Maron
2012-01-01
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a...
USDA-ARS?s Scientific Manuscript database
Water hyacinth (Eichhornia crassipes (Martius) Solms-Laubach) is a non-native, invasive floating aquatic weed in the Sacramento San Joaquin Delta and associated river watersheds of northern California. Prior efforts to control water hyacinth biologically in this region have not led to sustained cont...
USDA-ARS?s Scientific Manuscript database
During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches’-broom...
USDA-ARS?s Scientific Manuscript database
Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy sp...
USDA-ARS?s Scientific Manuscript database
As part of a biological control program for the invasive weed, Arundo donax, several genotypically unique populations of the parthenogenetic stem-galling wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae), from Spain and France were released in the infested riparian zone along the Rio Grande f...
USDA-ARS?s Scientific Manuscript database
Arundo donax, giant reed, is an invasive weed in the riparian habitats of the Rio Grande Basin. A biological control program using specialist insects from the native range in Mediterranean Europe, including the arundo scale, Rhizaspidiotus donacis, has been implemented. The arundo scale is a sessile...
USDA-ARS?s Scientific Manuscript database
Brazilian peppertree (Schinus terebinthifolia Raddi; Sapindales: Anacardiaceae), native to South America, is considered one of the worst upland invasive species in Florida. It is estimated that approx. 283,000 hectare in Florida have been invaded by this weed. Its aggressive growth, in addition to a...
USDA-ARS?s Scientific Manuscript database
Imperata cylindrica (Cogongrass, Speargrass) is a diploid C4 grass that is a noxious weed in 73 countries and constitutes a significant threat to global biodiversity and sustainable agriculture. We used a cost-effective genotyping-by-sequencing (GBS)approach to identify the reproductive system, gene...
USDA-ARS?s Scientific Manuscript database
Lepidopteran larvae were discovered boring in the basal stems of Imperata cylindrica (L.) Beauv. (Poaceae) in Itoshima city, Fukuoka Prefecture, Kyushu, Japan. Adults reared from these larvae were identified as Acrapex azumai Sugi (Lepidoptera: Noctuidae). Sequencing of the CO1 (cytochrome oxidase 1...
Polysaccharide gel coating of the leaves of Brasenia schreberi lowers plasma cholesterol in hamsters
USDA-ARS?s Scientific Manuscript database
Brasenia schreberi is an invasive aquatic weed in the U.S. but the plant has economic value in Asia where it is cultivated for food. The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose and ot...
USDA-ARS?s Scientific Manuscript database
The biology and taxonomy of a white rust that is commonly found on the exotic invasive weed Lepidium latifolium were studied in order to assess its potential as a bioherbicide. Previously assumed to be Albugo candida, a common disease of Brassicaceae crops, comparisons of spore morphology and DNA s...
Impact of native grasses and cheatgrass (Bromus tectorum) on Great Basin forb seedling growth
Hilary Parkinson; Cathy Zabinski; Nancy Shaw
2013-01-01
Re-establishing native communities that resist exotic weed invasion and provide diverse habitat for wildlife are high priorities for restoration in sagebrush ecosystems. Native forbs are an important component of healthy rangelands in this system, but they are rarely included in seedings. Understanding competitive interactions between forb and grass seedlings is...
Irrigation to enhance native seed production for Great Basin restoration
Clinton C. Shock; Erik B. G. Feibert; Nancy L. Shaw; Myrtle P. Shock; Lamont D. Saunders
2015-01-01
Native shrublands and their associated grasses and forbs have been disappearing from the Great Basin as a result of grazing practices, exotic weed invasions, altered fire regimes, climate change and other human impacts. Native forb seed is needed to restore these areas. The irrigation requirements for maximum seed production of four key native forb species (Eriogonum...
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-08-12
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-01-01
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960
Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.
Bani, Aida; Echevarria, Guillaume; Sulçe, Sulejman; Morel, Jean Louis
2015-01-01
Large ultramafic areas exist in Albania, which could be suitable for phytomining with native Alyssum murale. We undertook a five-year field experiment on an ultramafic Vertisol, aimed at optimizing a low-cost Ni-phytoextraction crop of A. murale which is adapted to the Balkans. The following aspects were studied on 18-m2 plots in natural conditions: the effect of (i) plant phenology and element distribution, (ii) plant nutrition and fertilization, (iii) plant cover and weed control and (iv), planting technique (natural cover vs. sown crop). The optimal harvest time was set at the mid-flowering stage when Ni concentration and biomass yield were highest. The application of N, P, and K fertilizers, and especially a split 100-kg ha(-1) N application, increased the density of A. murale against all other species. It significantly increased shoot yield, without reducing Ni concentration. In natural stands, the control of graminaceous weeds required the use of an anti-monocots herbicide. However, after the optimization of fertilization and harvest time, weed control procured little benefit. Finally, cropping sown A. murale was more efficient than enhancing native stands and gave higher biomass and phytoextraction yields; biomass yields progressively improved from 0.3 to 9.0 t ha(-1) and phytoextracted Ni increased from 1.7 to 105 kg ha(-1).
Carruthers, Raymond I
2003-01-01
Invasive pests cause huge losses both to agricultural production systems and to the natural environment through displacing native species and decreasing biodiversity. It is now estimated that many thousand exotic insect, weed and pathogen species have been established in the USA and that these invasive species are responsible for a large portion of the $130 billion losses estimated to be caused by pests each year. The Agricultural Research Service (ARS) has responded with extensive research and action programs aimed at understanding these problems and developing new management approaches for their control. This paper provides an overview of some of the ARS research that has been conducted on invasive species over the past few years and addresses both different categories of research and some specific pest systems of high interest to the US Department of Agriculture.
[Research on spectra recognition method for cabbages and weeds based on PCA and SIMCA].
Zu, Qin; Deng, Wei; Wang, Xiu; Zhao, Chun-Jiang
2013-10-01
In order to improve the accuracy and efficiency of weed identification, the difference of spectral reflectance was employed to distinguish between crops and weeds. Firstly, the different combinations of Savitzky-Golay (SG) convolutional derivation and multiplicative scattering correction (MSC) method were applied to preprocess the raw spectral data. Then the clustering analysis of various types of plants was completed by using principal component analysis (PCA) method, and the feature wavelengths which were sensitive for classifying various types of plants were extracted according to the corresponding loading plots of the optimal principal components in PCA results. Finally, setting the feature wavelengths as the input variables, the soft independent modeling of class analogy (SIMCA) classification method was used to identify the various types of plants. The experimental results of classifying cabbages and weeds showed that on the basis of the optimal pretreatment by a synthetic application of MSC and SG convolutional derivation with SG's parameters set as 1rd order derivation, 3th degree polynomial and 51 smoothing points, 23 feature wavelengths were extracted in accordance with the top three principal components in PCA results. When SIMCA method was used for classification while the previously selected 23 feature wavelengths were set as the input variables, the classification rates of the modeling set and the prediction set were respectively up to 98.6% and 100%.
Wang, Neng Wei; Ge, Xiu Li; Li, Sheng Dong
2017-03-18
Conservation tillage and the weed diversity are two hot issues in the modern ecological agriculture. Although it is known that the diversity of weed would increase slightly in the farmland under conservation tillage, the interaction effects between the tillage and the nutrient management on the weed community are not clear. In this study, one wheat-maize rotation field located in Ji'nan, Shandong Province, was selected as the studying site. Different tillage methods (no-tillage, deep subsoiling, rotary tillage, deep tillage) and different nutrient managements (farmers routine, 480 kg N hm -2 per year; high production and efficiency, 360 kg N hm -2 per year; optimal management, 300 kg N hm -2 per year) were carried out for 3 years. The characteristics of the spring weed communities under different managements were investigated and compared. The results showed that there were 15 species in the spring weed communities in the test filed and Digitaria sanguinalis and Echinochloa crusgalli were the dominant species. The plots under no-tillage or deep subsoiling had higher weed densities compared with those under the deep tillage or rotary tillage. In terms of the effect of tillage on the weed community diversity, both species richness index and species evenness index were lowest but the community dominance index was highest in the plots under deep tillage. In terms of the effect of the nutrient management, with the increase of fertilizer application, both species richness and evenness index increased under the different tillage methods. The community dominance increased with the increasing fertilizer application under deep tillage or rotary tillage and vice versa under no-tillage, deep subsoiling. In terms of weed biomass, the plots under no-tillage or deep subsoiling had significantly higher weed biomass than those under the other two tillage methods. The plots under routine nutrient management had higher weed biomass than those under the other two nutrient managements. Among all these treatments, the plots under the combination treatment of no-tillage and routine nutrient management had the highest weed biomass. According to these results, it was implied that no-tillage and fertilization would improve species richness index, species evenness index, and the productivity of spring weed community in the wheat-maize farmland.
The Politics and Science of Tamarisk
Philip Westra
2006-01-01
Tamarisk is a woody invasive weed of riparian areas which has galvanized an amazing array of scientists, politicians, ranchers, farmers, tribal people, and many other interested parties because of its devastating impacts on natural ecosystems and valuable water ways in the west. Rarely has a single plant become such a catalyst for so many people to use as a âposter...
USDA-ARS?s Scientific Manuscript database
Yellow starthistle (Centaurea solstitialis) is an invasive noxious weed originating from the Mediterranean region that is now widely established in Chile, Australia, and western North America. It arrived in California as a contaminant in alfalfa seed in 1859 and by 2002 had infested over 19 million...
USDA-ARS?s Scientific Manuscript database
Spotted knapweed (SKW) (Centaurea maculosa Lamarck) is a non-indigenous species that is invasive over large areas in the U.S., especially in the western U. S. and Canada. It has been estimated that infestations of SKW cause $42 million in direct and indirect economic losses annually and the weed cou...
USDA-ARS?s Scientific Manuscript database
Giant reed (Arundo donax L.) is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and...
USDA-ARS?s Scientific Manuscript database
Giant reed is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and estimate infested...
Marjolein Schat; Sharlene E. Sing; Robert K. D. Peterson
2007-01-01
The stem-boring weevil, Mecinus janthinus (Germar), is a promising, well established classical biological control agent for the exotic invasive weed Dalmatian toadflax (Linaria dalmatica (L.) Mill.) (Scrophulariaceae). In this paper we present readily apparent rostral characters that can be used for sex differentiation of live stem-boring weevils at low magnification....
Megan M. Taylor; Ann L. Hild; Nancy L. Shaw; Urszula Norton; Timothy R. Collier
2014-01-01
One goal of post-fire native species seeding is to increase plant community resistance to exotic weed invasions, yet few studies address the impacts of seeding on exotic annual establishment and persistence. In 2010 and 2011, we investigated the influence of seedings on exotic annuals and the underlying microbial communities. The wildfire site in northern Utah was...
Darren J. Kriticos; Robert C. Venette; Richard H.A. Baker; Sarah Brunel; Frank H. Koch; Trond Rafoss; Wopke van der Werf; Susan P. Worner
2013-01-01
Economic globalization depends on the movement of people and goods between countries. As these exchanges increase, so does the potential for translocation of harmful pests, weeds, and pathogens capable of impacting our crops, livestock and natural resources (Hulme 2009), with concomitant impacts on global food security (Cook et al. 2011).
USDA-ARS?s Scientific Manuscript database
Lasioptera donacis is a biological control agent of Arundo donax, which is an invasive weed in the riparian habitats of the Rio Grande Basin of Texas and Northern Mexico. Field research was conducted in the native range of L. donacis in Mediterranean Europe to evaluate the biotic and abiotic factor...
Ecology and management of Dalmatian toadflax (Linaria dalmatica (L.) Mill.)
Jim Jacobs; Sharlene Sing
2006-01-01
Dalmatian toadflax is a short-lived perennial herb native to the Mediterranean coastal regions of Europe and western Asia. Its name is derived from the Dalmatian Coast of the Adriatic Sea located within its native range. This species has escaped cultivation as an ornamental, a source of fabric dye, and as a medicinal plant to become an invasive weed. Dalmatian toadflax...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... Prepare an Environmental Impact Statement To Evaluate the Use of Three New Herbicides on Public Lands in..., and rimsulfuron herbicides as part of the its vegetation treatment programs on public lands in 17... rimsulfuron to the BLM's approved list of herbicides for (1) Controlling noxious weeds and other invasive...
Cheating cheatgrass: New research to combat a wily invasive weed
Gail Wells
2012-01-01
Cheatgrass and its cousin, red brome, are exotic annual grasses that have invaded and altered ecosystem dynamics in more than 41 million acres of desert shrublands between the Rockies and the Cascade-Sierra chain. A fungus naturally associated with these Bromus species has been found lethal to the plants' soil-banked dormant seeds. Supported by the Joint Fire...
USDA-ARS?s Scientific Manuscript database
Leafy spurge is an invasive perennial weed infesting range and recreational lands of North America. Previous research and omics projects with leafy spurge have helped develop it as a model for studying numerous aspects of perennial plant development and response to abiotic stress. However, the lack ...
Varied Growth Response of Cogongrass Ecotypes to Elevated CO2.
Runion, G Brett; Prior, Stephen A; Capo-Chichi, Ludovic J A; Torbert, H Allen; van Santen, Edzard
2015-01-01
Cogongrass [Imperata cylindrica (L.) P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes [Florida (FL), Hybrid (HY), Louisiana (LA), Mobile (MB), and North Alabama (NA)] collected across the Southeast and a red-tip (RT) ornamental variety were container grown for 6 months in open top chambers under ambient and elevated (ambient plus 200 ppm) atmospheric CO2. Elevated CO2 increased average dry weight (13%) which is typical for grasses. Elevated CO2 increased height growth and both nitrogen and water use efficiencies, but lowered tissue nitrogen concentration; again, these are typical plant responses to elevated CO2. The HY ecotype tended to exhibit the greatest growth (followed by LA, NA, and FL ecotypes) whiles the RT and MB ecotypes were smallest. Interactions of CO2 with ecotype generally showed that the HY, LA, FL, and/or NA ecotypes showed a positive response to CO2 while the MB and RT ecotypes did not. Cogongrass is a problematic invasive weed in the southeastern U.S. and some ecotypes may become more so as atmospheric CO2 continues to rise.
Pradhan, Sushobhan; Borah, Arup Jyoti; Poddar, Maneesh Kumar; Dikshit, Pritam Kumar; Rohidas, Lilendar; Moholkar, Vijayanand S
2017-10-01
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1 H and 13 C NMR and XRD. PHB content of dry cell mass was 8.1-21.6% w/w, and the PHB yield was 6.85×10 -3 -36.41×10 -3 % w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°-9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°-389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Allelopathic effects of invasive weed Solidago canadensis on native plants].
Mei, Lingxiao; Chen, Xin; Tang, Jianjun
2005-12-01
With growth chamber method, this paper studied the allelopathic potential of invasive weed Solidago canadensis on native plant species. Different concentration S. canadensis root and rhizome extracts were examined, and the test plants were Trifolium repens, Trifolium pretense, Medicago lupulina, Lolium perenne, Suaeda glauca, Plantago virginica, Kummerowia stipulacea, Festuca arundinacea, Ageratum conyzoides, Portulaca oleracea, and Amaranthus spinosus. The results showed that the allelopathic inhibitory effect of the extracts from both S. canadensis root and rhizome was enhanced with increasing concentration, and rhizome extracts had a higher effect than root extracts. At the lowest concentration (1:60), root extract had little effect on the seed germination and seedling growth of T. repens, but rhizome extract could inhibit the germination of all test plants though the inhibitory effect varied with different species. The inhibition was the greatest for grass, followed by forb and legume. 1:60 (m:m) rhizome extract had similar effects on seed germination and radicel growth, but for outgrowth, the extract could inhibit Kummerowia stipulacea, Amaranthus spinosus and Festuca arundinacea, had no significant impact on Lolium perenne, Plantago virginica, Ageratum conyzoides, Portulaca oleracea and Amaranthus spinosus, and stimulated Trifolium repens, Trifolium pretense and Medicago lupulina.
Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala
2017-04-01
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.
Efffect of Aeroallergen Sensitization on Asthma Control in ...
In African-American adolescents with persistent asthma, allergic profile predicted the likelihood of having poorly controlled asthma despite guidelines-directed therapies. Our results suggest that tree and weed pollen sensitization are independent risk factors for poorly controlled asthma in this at-risk population. The study examined African-American children with difficult to treat asthma. The findings suggest that in addition to guidelines-directed asthma therapies, targeting the allergic component, particularly tree and weed pollen, is critical to achieving optimal asthma control in this at-risk population.
NASA Astrophysics Data System (ADS)
Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.
2017-12-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.
Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media
De Long, Jonathan R.; Swarts, Nigel D.; Dixon, Kingsley W.; Egerton-Warburton, Louise M.
2013-01-01
Background and Aims Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed. Methods Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken. Key Results It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media–mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility. Conclusions The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats. PMID:23275632
Osawa, Takeshi; Okawa, Shigenori; Kurokawa, Shunji; Ando, Shinichiro
2016-12-01
In this study, we propose a method for estimating the risk of agricultural damage caused by an invasive species when species-specific information is lacking. We defined the "risk" as the product of the invasion probability and the area of potentially damaged crop for production. As a case study, we estimated the risk imposed by an invasive weed, Sicyos angulatus, based on simple cellular simulations and governmental data on the area of crop that could potentially be damaged in Miyagi Prefecture, Japan. Simulation results revealed that the current distribution range was sufficiently accurate for practical purposes. Using these results and records of crop areas, we present risk maps for S. angulatus in agricultural fields. Managers will be able to use these maps to rapidly establish a management plan with minimal cost. Our approach will be valuable for establishing a management plan before or during the early stages of invasion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chicoine, T.K.; Fay, P.K.; Nielsen, G.A.
Soil characteristics, elevation, annual precipitation, potential evapotranspiration, length of frost-free season, and mean maximum July temperature were estimated for 116 established infestations of spotted knapweed (Centaurea maculosa Lam. number/sup 3/ CENMA) in Montana using basic land resource maps. Areas potentially vulnerable to invasion by the plant were delineated on the basis of representative edaphic and climatic characteristics. No single environmental variable was an effective predictor of sites vulnerable to invasion by spotted knapweed. Only a combination of variables was effective, indicating that the factors that regulate adaptability of this plant are complex. This technique provides a first approximation map ofmore » the regions most similar environmentally to infested sites and; therefore, most vulnerable to further invasion. This weed migration prediction technique shows promise for predicting suitable habitats of other invader species. 6 references, 4 figures, 1 table.« less
Toward Improved Hyperspectral Analysis in Semiarid Systems
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Mitchell, J.
2012-12-01
Idaho State University's Boise Center Aerospace Laboratory (BCAL) has processed and applied hyperspectral data for a variety of biophysical sciences in semiarid systems over the past 10 years. HyMap hyperspectral data have been used in most of these studies, along with AVIRIS, CASI, and PIKA-II data. Our studies began with the detection of individual weed species, such as leafy spurge, corroborated with extensive field analysis, including spectrometer data. Early contributions to the field of hyperspectral analysis included the use of: time-series datasets and classification threshold methods for target detection, and subpixel analysis for characterizing weed invasions and post-fire vegetation and soil conditions. Subsequent studies optimized subpixel unmixing performance using spectral subsetting and vegetation abundance investigations. More recent studies have extended the application of hyperspectral data from individual plant species detection to identification of biochemical constituents. We demonstrated field and airborne hyperspectral Nitrogen absorption in sagebrush using combinations of data reduction and spectral transformation techniques (i.e., continuum removal, derivative analysis, partial least squares regression). In spite of these and many other successful demonstrations, gaps still exist in effective species level discrimination due to the high complexity of soil and nonlinear mixing in semiarid shrubland. BCAL studies are currently focusing on complimenting narrowband vegetation indices with LiDAR (light detection and ranging, both airborne and ground-based) derivatives to improve vegetation cover predictions. Future combinations of LiDAR and hyperspectral data will involve exploring the full range spectral information and serve as an integral step in scaling shrub biomass estimates from plot to landscape and regional scales.
USDA-ARS?s Scientific Manuscript database
Tumbleweed or Russian thistle (Salsola tragus L.) is an introduced invasive weed in N. America. It is widely distributed in the U.S. and is a target of biological control efforts. The facultative parasitic fungus Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. f. sp. salsolae is a po...
NASA Technical Reports Server (NTRS)
Potter, Christopher
2018-01-01
This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.
USDA-ARS?s Scientific Manuscript database
Tropical soda apple (Solanum viarum Dunal) is a perennial invasive weed species which has become a serious problem in both agricultural and natural areas of the southeastern United States. A field survey was conducted at a ranch in Madison County, Florida, to assess the effect of sun and shade condi...
Introduction history and population genetics of Falcaria vulgaris (Apiaceae) in the United States
Sarbottam Piya
2013-01-01
Falcaria vulgaris Bernh. (sickleweed), native to Eurasia, occurs disjunctly in the Midwest and the East Coast of the United States. In parts of Iowa, Nebraska and South Dakota, it is an aggressive weed potentially turning to invasive. The main objectives of this study were (1) to reconstruct the introduction history and spread of the plant, (2) to develop and apply...
USDA-ARS?s Scientific Manuscript database
Leafy spurge (Euphorbia esula) is an invasive weed of North America and its perennial nature is attributed to underground adventitious buds (UABs) that undergo seasonal cycles of para-, endo- and eco-dormancy. Recommended field rates of glyphosate (~1 kg/ha) destroys above-ground shoots of leafy spu...
Marco Masi; Susan Meyer; Suzette Clement; Alessio Cimmino; Massimo Cristofaro; Antonio Evidente
2017-01-01
Buffelgrass (Pennisetum ciliare or Cenchrus ciliaris) is a perennial grass that has become highly invasive in the Sonoran Desert of southern Arizona. In the search for novel control strategies against this weed, strains of the foliar fungal pathogen Cochliobolus australiensis from buffelgrass have been screened for their ability to produce phytotoxic metabolites that...
Using Science Skills to Understand Ecophysiology and Manage Resources
NASA Technical Reports Server (NTRS)
Bubenheim, David
2015-01-01
Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the redistribution of water and disrupt the ecology of the Bay Delta food web. Filling current science gaps in the Delta Plan and improving management practices within the Delta are important to achieving the mission of improved Delta health. Methods developed can become routine land and water management tools. New high-resolution NASA sensor systems could be used to provide data packages specifically designed for water system The presenter will also speak about his personal experience and the role Delaware Valley College played in preparation for a professional career science.
Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.
2014-01-01
Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) has potential as an alternative to chemical-fumigation for controlling soilborne pathogens and pests. Previously, control of nutsedge was sub-optimal and the quantity of inputs for commercial production was an impediment to adoption. Field studies were conducted i...
Current Status of Mimosa pigra L. Infestation in Peninsular Malaysia
Mansor, Asyraf; Crawley, Micheal J.
2011-01-01
The status and distribution of Mimosa pigra L., a semi-aquatic invasive species in Peninsular Malaysia, were continuously assessed between 2004 and 2007. This assessment investigated its population stand density and related weed management activities. In total, 106 sites of 6 main habitat types i.e., construction site (CS), dam/ reservoir (DM), forest reserve (FR), plantation (PL), river bank/waterway (RB) and roadside (RD) were assessed, and 55 sites were recorded with M. pigra populations. A CS is the most likely habitat to be infested with M. pigra (16 out of 18 assessed sites have this weed), whereas none of the FR visited were found to harbour M. pigra. In terms of population stand density, 41 populations were in the low range of stand density (individual plant of ≤5 m−2), compared to only 9 populations in the high range of stand density (individual plant of >10 m−2). In general, the current impact of M. pigra infestation on natural habitats is relatively low, as its distribution is only confined to disturbed areas. However, continuous monitoring of this weed species is highly recommended, especially in the riparian zone and wetland habitats. PMID:24575208
Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji
2010-11-01
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.
Modelling tropical forests response to logging
NASA Astrophysics Data System (ADS)
Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco
2013-04-01
Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.
Taye, T; Gossmann, M; Einhorn, G; Büttner, C; Metz, R; Abate, D
2002-01-01
P. hsyterophorus is an exotic invasive annual weed now causing severe infestation in Ethiopia. Studies on diagnosis, incidence and distribution of pathogens associated with parthenium weed in Ethiopia were carried out from 1998-2002. Several fungal isolates were obtained from seed and other parts of parthenium plants. Among them were putative pathogenic fungal species of the genus Helminthosporium, Phoma, Curvularia, Chaetomium, Alternaria, and Fusarium. However, pathogenecity test of the isolates obtained showed no or non-specific symptoms. It was concluded that these pathogens could be opportunistic with insignificant potential for biological control of parthenium. Two most important diseases associated with parthenium were a rust disease, caused by Puccinia abrupta var. partheniicola, and a phyllody disease, caused by a phytoplasma of fababean phyllody (PBP) phytoplasma group. The rust was commonly found in cool mid altitude (1500-2500 m) areas while phyllody was observed in low to mid altitude regions (900-2500 m) of Ethiopia, with a disease incidence up to 100% and 75%, respectively, in some locations. Study of the individual effects of the rust and phyllody diseases under field conditions showed a reduction on weed morphological parameters (plant height, leaf area, and dry matter yield). Parthenium seed production was reduced by 42% and 85% due to rust and phyllody, respectively. Phyllody and rust diseases of parthenium showed significant potential for classical biological control of parthenium after further confirmation of insect vectors that transmit phyllody and host range of phyllody disease to the related economic plants in Ethiopia.
Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri
2017-04-01
Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.
Jennifer L. Birdsall; George P. Markin
2010-01-01
Yellow starthistle is an invasive, annual, spiny forb that, for the past 30 yr has been steadily advancing up the Salmon River Canyon in west central Idaho. In 1994, a decision was made to attempt to manage yellow starthistle by establishing a complex of biological control agents in a containment zone where the weed was most dense. Between 1995 and 1997, six species of...
Justin B. Runyon; Jennifer L. Birdsall
2016-01-01
Inducible plant defenses - those produced in response to herbivore feeding - are thought to have evolved as a cost-saving tactic that allows plants to enact defenses only when needed. The costs of defense can be significant, and loss of plant fitness due to commitment of resources to induced defenses could affect plant populations and play a role in...
2013-03-01
flumioxazin is efficacious against the floating weeds water lettuce (Pistia stratiotes L.) and giant salvinia (Salvinia molesta Mitchell...use pattern for flumioxazin in areas where water lettuce is intermixed with emergent species (Netherland 2011). The endangered snail kite...herbicide diquat, while highly effective at controlling water lettuce , generally results in significant visual injury symptoms on numerous emergent plant
Nie, Xiaojun; Lv, Shuzuo; Zhang, Yingxin; Du, Xianghong; Wang, Le; Biradar, Siddanagouda S; Tan, Xiufang; Wan, Fanghao; Weining, Song
2012-01-01
Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing. The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.
Sorensen, Mary A; Parker, David R; Trumble, John T
2009-02-01
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
Chiang, Yu-Chung; Tsai, Chi-Chu; Hsu, Tsai-Wen; Chou, Chang-Hung
2012-11-01
Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.
Quimby, Paul C; DeLoach, C Jack; Wineriter, Susan A; Goolsby, John A; Sobhian, Rouhollah; Boyette, C Douglas; Abbas, Hamed K
2003-01-01
Research by the USDA-Agricultural Research Service (ARS) on biological control of weeds has been practiced for many years because of its inherent ecological and economic advantages. Today, it is further driven by ARS adherence to Presidential Executive Order 13112 (3 February 1999) on invasive species and to USDA-ARS policy toward developing technology in support of sustainable agriculture with reduced dependence on non-renewable petrochemical resources. This paper reports examples or case studies selected to demonstrate the traditional or classical approach for biological control programs using Old World arthropods against Tamarix spp, Melaleuca quinquenervia (Cav) ST Blake and Galium spurium L/G aparine L, and the augmentative approach with a native plant pathogen against Pueraria lobata Ohwi = P montana. The examples illustrated various conflicts of interest with endangered species and ecological complexities of arthropods with associated microbes such as nematodes.
George P. Markin; Carol J. Horning
2010-01-01
Scotch broom (Cytisus scoparius: (L.) Link), a native European perennial shrub, was introduced to the U.S. before the turn of the century as an ornamental for its bright yellow, pea-like flower. The plant found the western U.S. maritime zone to be an ideal habitat, thus it soon escaped from cultivation, and became an invasive weed now widely distributed from northern...
Renton, Michael
2011-01-01
Background and aims Simulations that integrate sub-models of important biological processes can be used to ask questions about optimal management strategies in agricultural and ecological systems. Building sub-models with more detail and aiming for greater accuracy and realism may seem attractive, but is likely to be more expensive and time-consuming and result in more complicated models that lack transparency. This paper illustrates a general integrated approach for constructing models of agricultural and ecological systems that is based on the principle of starting simple and then directly testing for the need to add additional detail and complexity. Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural system analysis framework based on simulation and optimization. A simple sensitivity analysis and functional perturbation analysis is used to test to what extent LUSO's crop–weed competition sub-model affects the answers to a number of questions at the scale of the whole farming system regarding optimal land-use sequencing strategies and resulting profitability. Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to a small extent on the parameter being varied, but more importantly and interestingly on the type of question being addressed with the model. Only a small part of the crop–weed competition model actually affects the answers to these questions. Conclusions This study illustrates an example application of the proposed integrated approach for constructing models of agricultural and ecological systems based on testing whether complexity needs to be added to address particular questions of interest. We conclude that this example clearly demonstrates the potential value of the general approach. Advantages of this approach include minimizing costs and resources required for model construction, keeping models transparent and easy to analyse, and ensuring the model is well suited to address the question of interest. PMID:22476477
How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?
Padalia, Hitendra; Srivastava, Vivek; Kushwaha, S P S
2015-04-01
Invasive species and climate change are considered as the most serious global environmental threats. In this study, we investigated the influence of projected global climate change on the potential distribution of one of the world's most successful invader weed, bushmint (Hyptis suaveolens (L.) Poit.). We used spatial data on 20 environmental variables at a grid resolution of 5 km, and 564 presence records of bushmint from its native and introduced range. The climatic profiles of the native and invaded sites were analyzed in a multi-variate space in order to examine the differences in the position of climatic niches. Maximum Entropy (MaxEnt) model was used to predict the potential distribution of bushmint using presence records from entire range (invaded and native) along with 14 eco-physiologically relevant predictor variables. Subsequently, the trained MaxEnt model was fed with Hadley Centre Coupled Model (HadCM3) climate projections to predict potential distribution of bushmint by the year 2050 under A2a and B2a emission scenarios. MaxEnt predictions were very accurate with an Area Under Curve (AUC) value of 0.95. The results of Principal Component Analysis (PCA) indicated that climatic niche of bushmint on the invaded sites is not entirely similar to its climatic niche in the native range. A vast area spread between 34 ° 02' north and 28 ° 18' south latitudes in tropics was predicted climatically suitable for bushmint. West and middle Africa, tropical southeast Asia, and northern Australia were predicted at high invasion risk. Study indicates enlargement, retreat, or shift across bushmint's invasion range under the influence of climate change. Globally, bushmint's potential distribution might shrink in future with more shrinkage for A2a scenario than B2a. The study outcome has immense potential for undertaking effective preventive/control measures and long-term management strategies for regions/countries, which are at higher risk of bushmint's invasion.
iMAR: An Interactive Web-Based Application for Mapping Herbicide Resistant Weeds.
Panozzo, Silvia; Colauzzi, Michele; Scarabel, Laura; Collavo, Alberto; Rosan, Valentina; Sattin, Maurizio
2015-01-01
Herbicides are the major weed control tool in most cropping systems worldwide. However, the high reliance on herbicides has led to environmental issues as well as to the evolution of herbicide-resistant biotypes. Resistance is a major concern in modern agriculture and early detection of resistant biotypes is therefore crucial for its management and prevention. In this context, a timely update of resistance biotypes distribution is fundamental to devise and implement efficient resistance management strategies. Here we present an innovative web-based application called iMAR (interactive MApping of Resistance) for the mapping of herbicide resistant biotypes. It is based on open source software tools and translates into maps the data reported in the GIRE (Italian herbicide resistance working group) database of herbicide resistance at national level. iMAR allows an automatic, easy and cost-effective updating of the maps a nd provides two different systems, "static" and "dynamic". In the first one, the user choices are guided by a hierarchical tree menu, whereas the latter is more flexible and includes a multiple choice criteria (type of resistance, weed species, region, cropping systems) that permits customized maps to be created. The generated information can be useful to various stakeholders who are involved in weed resistance management: farmers, advisors, national and local decision makers as well as the agrochemical industry. iMAR is freely available, and the system has the potential to handle large datasets and to be used for other purposes with geographical implications, such as the mapping of invasive plants or pests.
Low-impact chemical weed control techniques in UNESCO World Heritage Sites of Cuba.
Hernandez-Enriquez, O; Alvarez, R; Morelli, F; Bastida, F; Camacho, D; Menendez, J
2012-01-01
Dichrostachys cinerea is a thorny, acacia-like, fast-growing woody bush which invades fields, wasteland, road sides and other disturbed areas. This gregarious species has become a very aggressive invasive weed in Cuba, where no native predators or pathogens are found. It often encroaches in fallows, overgrazed areas and mismanaged veld. D. cinerea is a very difficult weed to eliminate because of its active suckering, and is liable to produce dense thickets which are quite impenetrable on account of the density and abundance of its long, stiff, sharp thorns. In the Valle de los Ingenios area (Cuba Central), the tree is unchecked and forms veritable forests in areas on which cane growing has been discontinued. Physical management by cutting and burning the plants is not a very efficient control method, since the seeds survive in the soil, and they grow very fast. Therefore, chemical methods via the use of herbicides are often necessary to eradicate this weed. A preliminary study using glyphosate and auxin-like herbicides (2,4-D + picloram, MCPA, and MCPA + 2,4-D) plus adjuvants has been carried out in order to elucidate the best mixtures rendering maximum weed control with minimum herbicide rate and environmental stress. None of the herbicides used except glyphosate and 2,4-D + picloram showed acceptable mortality rates (75-80%) at the recommended doses tested. In the failed herbicide treatments, only the use of double herbicide rates succeeded in controlling marabou. The herbicide mixture of 2,4-D + picloram formulated with either a non-ionic surfactant or a mixture of fatty acid esters was the best option to control D. cinerea in terms of maximum effectiveness and minimum environmental stress, as the reduction in active ingredients applied to the environment was x3 in these two adjuvant-amended formulations compared to 2,4-D + picloram alone.
NASA Technical Reports Server (NTRS)
Potter, Christopher
2017-01-01
Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed a 80% overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.
Ngondya, Issakwisa B; Munishi, Linus K; Treydte, Anna C; Ndakidemi, Patrick A
2016-01-01
The invasive weed species Gutenbergia cordifolia has been observed to suppress native plants and to dominate more than half of the entire crater floor (250 km 2 ) in the Ngorongoro Conservation Area (NCA). As this species has been found to be toxic to ruminants it might strongly impact animal populations in this ecologically diverse ecosystem. Hence, a nature-based approach is urgently needed to manage its spread. We tested two Desmodium spp extracts applied to G. cordifolia and assessed the latter's germination rate, height, fresh weight and leaf total chlorophyll content after 30 days in both laboratory and screen house experiments. Seedling germination rate was halved by Desmodium uncinatum leaf extract (DuL), particularly under higher concentrations (≥75 %) rather than lower concentrations (≤62.5 %). Likewise, in both laboratory and screen house experiments, germination rate under DuL treatments declined with increasing concentrations. Seedling height, fresh weight and leaf total chlorophyll content (Chl) were also most strongly affected by DuL treatments rather than D. uncinatum root extract, Desmodium intortum leaf extract or D. intortum root extract treatments. Generally, seedlings treated with higher DuL concentrations were half as tall, had one-third the weight and half the leaf Chl content compared to those treated with lower concentrations. Our study shows a novel technique that can be applied where G. cordifolia may be driving native flora and fauna to local extinction. Our data further suggest that this innovative approach is both ecologically safe and effective and that D. uncinatum can be sustainably used to manage invasive plants, and thus, to improve rangeland productivity.
Skoneczny, Dominik; Weston, Paul A; Zhu, Xiaocheng; Gurr, Geoff M; Callaway, Ragan M; Barrow, Russel A; Weston, Leslie A
2017-02-21
Metabolic profiling can be successfully implemented to analyse a living system's response to environmental conditions by providing critical information on an organism's physiological state at a particular point in time and allowing for both quantitative and qualitative assessment of a specific subset(s) of key metabolites. Shikonins are highly reactive chemicals that affect various cell signalling pathways and possess antifungal, antibacterial and allelopathic activity. Based on previous bioassay results, bioactive shikonins, are likely to play important roles in the regulation of rhizosphere interactions with neighbouring plants, microbes and herbivores. An effective platform allowing for rapid identification and accurate profiling of numerous structurally similar, difficult-to-separate bioactive isohexenylnaphthazarins (shikonins) was developed using UHPLC Q-TOF MS. Root periderm tissues of the invasive Australian weeds Echium plantagineum and its congener E. vulgare were extracted overnight in ethanol for shikonin profiling. Shikonin production was evaluated at seedling, rosette and flowering stages. Five populations of each species were compared for qualitative and quantitative differences in shikonin formation. Each species showed little populational variation in qualitative shikonin production; however, shikonin was considerably low in one population of E. plantagineum from Western New South Wales . Seedlings of all populations produced the bioactive metabolite acetylshikonin and production was upregulated over time. Mature plants of both species produced significantly higher total levels of shikonins and isovalerylshikonin > dimethylacrylshikonin > shikonin > acetylshikonin in mature E. plantagineum . Although qualitative metabolic profiles in both Echium spp. were nearly identical, shikonin abundance in mature plant periderm was approximately 2.5 times higher in perennial E. vulgare extracts in comparison to those of the annual E. plantagineum. These findings contribute to our understanding of the biosynthesis of shikonins in roots of two related invasive plants and their expression in relation to plant phenological stage.
Lehan, Nora E; Murphy, Julia R; Thorburn, Lukas P; Bradley, Bethany A
2013-07-01
Preventing new plant invasions is critical for reducing large-scale ecological change. Most studies have focused on the deliberate introduction of nonnatives via the ornamental plant trade. However, accidental introduction may be an important source of nonnative, invasive plants. Using Web and literature searches, we compiled pathways of introduction to the United States for 1112 nonnative plants identified as invasive in the continental United States. We assessed how the proportion of accidentally and deliberately introduced invasive plants varies over time and space and by growth habit across the lower 48 states. Deliberate introductions of ornamentals are the primary source of invasive plants in the United States, but accidental introductions through seed contaminants are an important secondary source. Invasive forbs and grasses are the most likely to have arrived accidentally through seed contaminants, while almost all nonnative, invasive trees were introduced deliberately. Nonnative plants invading eastern states primarily arrived deliberately as ornamentals, while a high proportion of invasive plants in western states arrived accidentally as seed contaminants. Accidental introductions may be increasing in importance through time. Before 1850, 10 of 89 (11%) of invasive plants arrived accidentally. After 1900, 20 of 65 (31%) arrived accidentally. Recently enacted screening protocols and weed risk assessments aim to reduce the number of potentially invasive species arriving to the United States via deliberate introduction pathways. Increasing proportions of accidentally introduced invasive plants, particularly associated with contaminated seed imports across the western states, suggest that accidental introduction pathways also need to be considered in future regulatory decisions.
2006-08-16
invasive weeds present in lower densities. In addition, cogon grass , melaleuca, mistletoe (Phoradendron serotinum), and small populations of thistles...area. Adverse impacts to indigos are not expected since the area consists of mowed grass only. To ensure potential impacts are reduced, the 45 SW...inside the Trident Basin, is primarily grass with rock revetment. The security activities would require boat operations in other areas of the Port as
Native Plant and Microbial Contributions to a Negative Plant-Plant Interaction1[OA
Bains, Gurdeep; Sampath Kumar, Amutha; Rudrappa, Thimmaraju; Alff, Emily; Hanson, Thomas E.; Bais, Harsh P.
2009-01-01
A number of hypotheses have been suggested to explain why invasive exotic plants dramatically increase their abundance upon transport to a new range. The novel weapons hypothesis argues that phytotoxins secreted by roots of an exotic plant are more effective against naïve resident competitors in the range being invaded. The common reed Phragmites australis has a diverse population structure including invasive populations that are noxious weeds in North America. P. australis exudes the common phenolic gallic acid, which restricts the growth of native plants. However, the pathway for free gallic acid production in soils colonized by P. australis requires further elucidation. Here, we show that exotic, invasive P. australis contain elevated levels of polymeric gallotannin relative to native, noninvasive P. australis. We hypothesized that polymeric gallotannin can be attacked by tannase, an enzymatic activity produced by native plant and microbial community members, to release gallic acid in the rhizosphere and exacerbate the noxiousness of P. australis. Native plants and microbes were found to produce high levels of tannase while invasive P. australis produced very little tannase. These results suggest that both invasive and native species participate in signaling events that initiate the execution of allelopathy potentially linking native plant and microbial biochemistry to the invasive traits of an exotic species. PMID:19776161
Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil
Queiroz, Renan Batista; Silva, Fábio Nascimento; Al-Mahmmoli, Issa Hashil; Al-Sadi, Abdullah Mohammed; Carvalho, Claudine Márcia; Elliot, Simon L.
2016-01-01
Complex multi-trophic interactions in vectorborne diseases limit our understanding and ability to predict outbreaks. Arthropod-vectored pathogens are especially problematic, with the potential for novel interspecific interactions during invasions. Variations and novelties in plant–arthropod–pathogen triumvirates present significant threats to global food security. We examined aspects of a phytoplasma pathogen of citrus across two continents. ‘Candidatus Phytoplasma aurantifolia’ causes Witches' Broom Disease of Lime (WBDL) and has devastated citrus production in the Middle East. A variant of this phytoplasma currently displays asymptomatic or ‘silent’ infections in Brazil. We first studied vector capacity and fitness impacts of the pathogen on its vectors. The potential for co-occurring weed species to act as pathogen reservoirs was analysed and key transmission periods in the year were also studied. We demonstrate that two invasive hemipteran insects—Diaphorina citri and Hishimonus phycitis—can vector the phytoplasma. Feeding on phytoplasma-infected hosts greatly increased reproduction of its invasive vector D. citri both in Oman and Brazil; suggesting that increased fitness of invasive insect vectors thereby further increases the pathogen's capacity to spread. Based on our findings, this is a robust system for studying the effects of invasions on vectorborne diseases and highlights concerns about its spread to warmer, drier regions of Brazil. PMID:28083099
Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla
2015-05-01
Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.
Fairchild, J.F.; Feltz, K.P.; Allert, A.L.; Sappington, L.C.; Nelson, K.J.; Valle, J.A.
2009-01-01
Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334-668 mg/L; 96-h ALC50). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in a 30-day safety factor of 559 (e.g., 76/0.163). Assessment of the exposure and response data presented herein indicates that use of 2,4-D acid for invasive weed control in aquatic and terrestrial habitats poses no substantial risk to growth or survival of rainbow trout or other salmonids, including the threatened bull trout (Salvelinus confluentus). ?? 2009 US Government.
Assessing Biofuel Crop Invasiveness: A Case Study
Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti
2009-01-01
Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412
Optimizing Alternative Fumigant Applications for Ornamental Production in Florida
USDA-ARS?s Scientific Manuscript database
In Florida, cut flower and other ornamental crop producers have a very limited number of alternatives to methyl bromide for several reasons including the lack of registered herbicides available for these crops, and the need to control previously planted cultivars volunteering as weeds within the sam...
Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah
NASA Astrophysics Data System (ADS)
Jin, Zhenyu
Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates that the model could successfully simulate the spatial-temporal dynamics of cheatgrass in a simple cheatgrass-dominant environment. The simulation of the functional response of different prescribed fire rates also shows that this model is helpful to answer management questions like, "What are the effects of prescribed fire to invasive species?" It demonstrates that a medium fire rate of 10% can successfully prevent cheatgrass invasion.
Association mapping of rice cold germination with the USDA mini-core
USDA-ARS?s Scientific Manuscript database
Assuring stand establishment is a critical first step in optimizing rice crop yields. Plant stand density can impact yield potential, incidence of some diseases, weed competition, and grain quality. Most rice production in the Southern USA is drill seeded in the spring. Planting can occur as early a...
Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L
Taylor, Subhashni; Kumar, Lalit; Reid, Nick; Kriticos, Darren J.
2012-01-01
The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios. PMID:22536408
2012-09-01
Indiana Crane Naval Warfare Center Jefferson Proving Ground Camp Atterbury 62,473 1,033 33,484 ERDC/CRREL TR-12-10 4 State and Facility Land...2012). They include seeding wildflowers and forbs as well as planting woody materials. Equipment used in the planting process is not included in...on invasive weeds by state can be found at http://www.fs.fed.us/rm/boise/research/ shrub /links.shtml ERDC/CRREL TR-12-10 18 3 Selecting the Seed
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031
Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming
2015-01-01
To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats.
DPSIR Framework - A Decision - Making Tool for Municipalities
NASA Astrophysics Data System (ADS)
Majorošová, M.
2016-12-01
Many municipalities in Central Europe deal with the problem of invasive species in their natural ecosystems. Invasive vegetation eradicates native species and causes dense stands that damage the natural environment. This work shows how important it is to have an informative tool for municipalities to be successful in their struggles with invasive species. A Driver - Pressure - State - Impact - Response (DPSIR) framework is a decision - making tool, and this one is particularly applied to the species Fallopia japonica. Fallopia japonica is an extremely invasive and aggressive weed, and it is very often found in riverbank vegetation. This specific framework can be used as a tool for municipal managers to highlight all the problems with Fallopia japonica and define all the responses that should be provided by the municipalities. The work points out the steps that show how important it is to have a strategy or a clear concept of how to begin with such a serious issue as the presence of Fallopia japonica in riverbank vegetation and its eradication. This framework provides simple steps that cannot be excluded when a municipality start actions against Fallopia japonica. All the indicators used in the model are based on the information known about Fallopia japonica that are presented in the literature.
Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.
2011-01-01
Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of soil conditions needed for efficient establishment of diversified grasslands.
Kriticos, Darren J; Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.
Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336
Effects of pollination timing and distance on seed production in a dioecious weed Silene latifolia
NASA Astrophysics Data System (ADS)
Anderson, Jay F.; Duddu, Hema S. N.; Shirtliffe, Steven J.; Benaragama, Dilshan; Syrovy, Lena D.; Stanley, Katherine A.; Haile, Teketel A.
2015-11-01
Silene latifolia Poir. (white cockle or white campion) is an important invasive weed in North American agriculture. It exhibits dioecy, therefore, both male and female plants are required in order for seed production to occur. However, dioecious species being invasive is not common because of their limitations in pollination and subsequent seed production. The objective of this study is to determine the effect of pollination timing and distance on seed production of Silene latifolia. A series of experiments including pollination exclusion, timing and pollination distance were conducted in 2009 and 2010 at or around Saskatoon, Saskatchewan. For pollination exclusion, exclosures were built around the natural female plants for exclosure, sham-exclosure, and male and female combined treatments. Pollination timing was studied by applying exclosure, non-exclosure, night-exclosure, and day-exclosure treatments to individual female plants. Female plants were transplanted along a linear interval at six different distances from the pollen source to study the effect of pollination distance. S. latifolia was exclusively insect-pollinated and pollination occurred both day and night; however, in one year, pollination occurred mainly at night. Female plants that were in the range of 0-4 m from a compatible pollen source experienced no limitation to pollination. However, when the distance was increased further up to 128 m, pollination levels and subsequent seed production were declined. Moreover, there were differences in seed production between years suggesting that pollination was affected by the environmental conditions during pollination and the crop that white cockle was grown in. These experiments indicate that seed production in S. latifolia is limited by insect-pollination. Although there was pollination limitation for seed production at greater distances from a pollen source, the high fecundity rate (3000-18000 seeds per plant) resulted in a large seed output. Thus, we believe that a dioecious species may require characteristics that compensate the pollination limitation for a successful invasion.
Huotari, Tea; Korpelainen, Helena
2013-01-01
Non-indigenous species (NIS) are species living outside their historic or native range. Invasive NIS often cause severe environmental impacts, and may have large economical and social consequences. Elodea (Hydrocharitaceae) is a New World genus with at least five submerged aquatic angiosperm species living in fresh water environments. Our aim was to survey the geographical distribution of cpDNA haplotypes within the native and introduced ranges of invasive aquatic weeds Elodea canadensis and E. nuttallii and to reconstruct the spreading histories of these invasive species. In order to reveal informative chloroplast (cp) genome regions for phylogeographic analyses, we compared the plastid sequences of native and introduced individuals of E. canadensis. In total, we found 235 variable sites (186 SNPs, 47 indels and two inversions) between the two plastid sequences consisting of 112,193 bp and developed primers flanking the most variable genomic areas. These 29 primer pairs were used to compare the level and pattern of intraspecific variation within E. canadensis to interspecific variation between E. canadensis and E. nuttallii. Nine potentially informative primer pairs were used to analyze the phylogeographic structure of both Elodea species, based on 70 E. canadensis and 25 E. nuttallii individuals covering native and introduced distributions. On the whole, the level of variation between the two Elodea species was 53% higher than that within E. canadensis. In our phylogeographic analysis, only a single haplotype was found in the introduced range in both species. These haplotypes H1 (E. canadensis) and A (E. nuttallii) were also widespread in the native range, covering the majority of native populations analyzed. Therefore, we were not able to identify either the geographic origin of the introduced populations or test the hypothesis of single versus multiple introductions. The divergence between E. canadensis haplotypes was surprisingly high, and future research may clarify mechanisms that structure native E. canadensis populations. PMID:23620722
Forcella, Frank
2003-01-01
Over 125 permanent full-time scientists conduct research within the USDA Agricultural Research Service (ARS) on issues related to weeds. The research emphasis of most of these scientists involves ecology and management or biological control of weeds. Many scientists perform research on weed biology as components of their primary projects on weed control and integrated crop and soil management. Describing all ARS projects involved with weed biology is impossible, and consequently only research that falls within the following arbitrarily chosen topics is highlighted in this article: dormancy mechanisms; cell division; diversity of rangeland weeds; soil resources and rangeland weeds; poisonous rangeland plants; horticultural weeds; weed traits limiting chemical control; aquatic and semi-aquatic weeds; weed/transgenic wheat hybrids; seedbanks, seedling emergence and seedling populations; and weed seed production. Within these topics, and others not highlighted, the desire of ARS is that good information on weed biology currently translates or eventually will translate into practical advice for those who must manage weeds.
Interference of allelopathic wheat with different weeds.
Zhang, Song-Zhu; Li, Yong-Hua; Kong, Chui-Hua; Xu, Xiao-Hua
2016-01-01
Interference of allelopathic wheat with weeds involves a broad spectrum of species either independently or synergistically with competitive factors. This study examined the interference of allelopathic wheat with 38 weeds in relation to the production of allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in wheat with and without root-root interactions. There were substantial differences in weed biomass and DIMBOA concentration in wheat-weed coexisting systems. Among 38 weeds, nine weeds were inhibited significantly by allelopathic wheat but the other 29 weeds were not. DIMBOA levels in wheat varied greatly with weed species. There was no significant relationship between DIMBOA levels and weed suppression effects. Root segregation led to great changes in weed inhibition and DIMBOA level. Compared with root contact, the inhibition of eight weeds was lowered significantly, while significantly increased inhibition occurred in 11 weeds with an increased DIMBOA concentration under root segregation. Furthermore, the production of DIMBOA in wheat was induced by the root exudates from weeds. Interference of allelopathic wheat with weeds not only is determined by the specificity of the weeds but also depends on root-root interactions. In particular, allelopathic wheat may detect certain weeds through the root exudates and respond by increasing the allelochemical, resulting in weed identity recognition. © 2015 Society of Chemical Industry.
Hussain, N; Abbasi, Tasneem; Abbasi, S A
2015-11-15
In evidently the first study of its kind, vermicompost derived solely from a weed known to possess plant and animal toxicity was used to assess its impact on the germination and early growth of several plant species. No pre-composting or supplementation of animal manure was done to generate the vermicompost in order to ensure that the impact is clearly attributable to the weed. Whereas the weed used in this study, Lantana (Lantana camara), is known to possess strong negative allelopathy, besides plant/animal toxicity in other forms, its vermicompost was seen to be a good organic fertilizer as it increased germination success and encouraged growth of all the three botanical species explored by the authors - green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). In terms of several physical, chemical and biochemical attributes that were studied, the vermicompost appeared plant-friendly, giving best results in general when employed at concentrations of 1.5% in soil (w/w). Fourier transform infrared spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the allelopathic impact of Lantana were largely destroyed in the course of vermicomposting. There is also an indication that lignin content of Lantana was reduced during its vermicomposting. The findings open up the possibility that the billions of tons of phytomass that is generated annually by Lantana and other invasives can be gainfully utilized in generating organic fertilizer via vermicomposting. Copyright © 2015 Elsevier B.V. All rights reserved.
Hitting the right target: taxonomic challenges for, and of, plant invasions
Pyšek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarošík, Vojtěch; Richardson, David M.; Suda, Jan; Wilson, John R. U.
2013-01-01
This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W; Reichard, Sarah; DiTomaso, Joseph M
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when "needs further evaluation" classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When "needs further evaluation" classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W.; Reichard, Sarah; DiTomaso, Joseph M.
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when “needs further evaluation” classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When “needs further evaluation” classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program. PMID:25803830
Yang, P.; Foote, D.; Alyokhin, A.V.; Lenz, L.; Messing, R.H.
2002-01-01
The abundance of mymarid parasitoids attacking the two-spotted leafhopper (Sophonia rufofascia [Kuoh and Kuoh]), a polyphagous pest recently adventive to Hawaii, was monitored using yellow sticky cards deployed in several areas on the islands of Kauai and Hawaii. The yellow cards captured Chaetomymar sp. nr bagicha Narayanan, Subba Rao, & Kaur and Schizophragma bicolor (Dozier), both adventive species, and Polynema sp. Haliday, which is endemic to Hawaii (Hymenoptera: Mymaridae). The former two species were most abundant at all sites. On Kauai, there was a negative correlation between the captures of C. sp. nr bagicha and those of Polynema sp. Throughout the season, the increase in parasitoid numbers generally followed the increase in leafhopper numbers. C. sp. nr. bagicha and S. bicolor showed distinct habitat preferences. Removal of Myrica faya Aiton, an invasive weed that is a highly preferred two-spotted leafhopper host, decreased the overall numbers of captured parasitoids, but led to a twofold increase in the ratio of trapped parasitoids/hosts in weed-free areas. ?? 2002 Elsevier Science (USA).
Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L.
Molinaro, Francesco; Monterumici, Chiara Mozzetti; Ferrero, Aldo; Tabasso, Silvia; Negre, Michèle
2016-12-01
Ambrosia artemisiifolia L. (common ragweed) is an invasive plant whose allelopathic properties have been suggested by its field behaviour and demonstrated through phytotoxicity bioassays. However, the nature of the molecules responsible for the allelopathic activity of common ragweed has not been explored. The main objective of this study was to identify the phytotoxic molecules produced by A. artemisiifolia. A preliminary investigation has indicated that a methanol extract of A. artemisiifolia completely inhibited the germination of cress and radish. Semi-preparative fractionation of the methanol extract allowed separating of phytotoxic fraction which contained a single compound. The structure of this compound was elucidated by liquid chromatography-mass spectrometry (LC-MS)/MS, high-resolution mass spectral, nuclear magnetic resonance, and Fourier transform infrared spectra as sesquiterpene lactone isabelin (C 15 H 16 O 4 ). The effect of pure isabelin was tested on four different weed species, confirming the inhibitory activity of molecule. The results indicate directions for the future studies about herbicidal specific activity of isabelin, as pure molecule or in the crude extract, as a potential candidate for biological weed control.
Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel
2016-12-01
The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.
Syrett, P; Smith, L A; Bourner, T C; Fowler, S V; Wilcox, A
2000-04-01
Heather, Calluna vulgaris (L.) Hull, is a serious invasive weed in the central North Island of New Zealand, especially in Tongariro National Park, a World Heritage Area. Heather beetle, Lochmaea suturalis (Thomson), is a foliage-feeding pest of Calluna in Europe, that was selected as the most promising biological control agent for introduction into New Zealand, because it causes high levels of damage to Calluna in Europe. Host-range tests indicated that L. suturalis poses a negligible threat to native New Zealand plants. Cultivars of Calluna grown as ornamentals are suitable food plants, but are unlikely to be severely affected because L. suturalis requires a damp understorey of moss or litter for successful oviposition and pupation, which is rarely present in gardens. However, mosses and litter occurring under Calluna stands in Tongariro National Park are suitable substrates for eggs and pupae. Lochmaea suturalis released in New Zealand has been freed of parasitoids and a microsporidian disease that attack the beetles in Europe.
Brown, John W.; Segura, Ricardo; Santiago-Jiménez, Quiyari; Rota, Jadranka; Heard, Tim A.
2011-01-01
As part of efforts to identify native herbivores of Mexican palo verde, Parkinsonia aculeata L. (Leguminosae: Caesalpinioideae), as potential biological control agents against this invasive weed in Australia, ten species of Tortricidae (Lepidoptera) were reared from Guatemala, Mexico, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Platynota rostrana (Walker), Platynota helianthes (Meyrick), Platynota stultana Walsingham (all Tortricinae: Sparganothini), Rudenia leguminana (Busck), Cochylis sp. (both Tortricinae: Cochylini), Ofatulena duodecemstriata (Walsingham), O. luminosa Heinrich, Ofatulena sp. (all Olethreutinae: Grapholitini), and Crocidosema lantana Busck (Olethreutinae: Eucosmini). Significant geographic range extensions are provided for O. duodecemstriata and R. leguminana. These are the first documented records of P. aculeata as a host plant for all but O. luminosa. The four species of Sparganothini are polyphagous; in contrast, the two Cochylini and three Grapholitini likely are specialists on Leguminosae. Ofatulena luminosa is possibly host specific on P. aculeata. Host trials with Rudenia leguminana also provide some evidence of specificity, in contrast to historical rearing records. To examine the possibility that R. leguminana is a complex of species, two data sets of molecular markers were examined: (1) a combined data set of two mitochondrial markers (a 781-basepair region of cytochrome c oxidase I (COI) and a 685-basepair region of cytochrome c oxidase II) and one nuclear marker (a 531-basepair region of the 28S domain 2); and (2) the 650-basepair “barcode” region of COI. Analyses of both data sets strongly suggest that individuals examined in this study belong to more than one species. PMID:21521138
Weed control in rose-scented geranium (Pelargonium spp).
Kothari, Sushil K; Singh, Chandra P; Singh, Kamla
2002-12-01
Abstract: Field investigations were carried out during 1999 and 2000 to identify effective chemical/ cultural methods of weed control in rose-scented geranium (Pelargonium spp). The treatments comprised pre-emergence applications of oxyfluorfen (0.15, 0.20 and 0.25 kg AI ha(-1)) and pendimethalin (0.50, 0.75 and 1.00kg AI ha(-1)), successive hand weeding, hoeing and mulching using spent of lemon grass (at 5 tonnes ha(-1)) 45 days after planting (DAP), three hand-weedings 30, 60 and 90 DAP, weed-free (frequent manual weeding) and weedy control. Broad-leaf weeds were more predominant than grass and sedge weeds, accounting for 85.8% weed density and 93.0% weed dry weight in 1999 and 77.2% weed density and 93.9% weed dry weight in 2000. Unrestricted weed growth significantly reduced geranium oil yield, by 61.6% and 70.6% in 1999 and 2000, respectively. Pre-emergence application of pendimethalin (0.75-1.00 kgAI ha(-1)) or oxyfluorfen (0.25 kg AI ha(-1)), successive hand-weeding, hoeing and mulching and three hand-weedings were highly effective in reducing weed density and dry weight and gave oil yield comparable to the weed-free check. Application of oxyfluorfen (0.15 or 0.20 kg AI ha(-1)) and pendimethalin (0.50 kg AI ha(-1)) were less effective in controlling the weed species in geranium. None of the herbicides impaired the quality of rose-scented geranium oil measured in terms of citronellol and geraniol content.
Direct and indirect effects of invasive plants on soil chemistry and ecosystem function.
Weidenhamer, Jeffrey D; Callaway, Ragan M
2010-01-01
Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.
What's a Weed? Knowledge, Attitude and Behaviour of Park Visitors about Weeds.
Ansong, Michael; Pickering, Catherine
2015-01-01
Weeds are a major threat to biodiversity globally degrading natural areas of high conservation value. But what are our attitudes about weeds and their management including weeds in national parks? Do we know what a weed is? Do we consider weeds a problem? Do we support their management? Are we unintentionally spreading weeds in parks? To answer these questions, we surveyed visitors entering a large popular national park near the city of Brisbane, Australia. Park visitors were knowledgeable about weeds; with >75% correctly defining weeds as 'plants that grow where they are not wanted'. About 10% of the visitors, however, provided their own sophisticated definitions. This capacity to define weeds did not vary with people's age, sex or level of education. We constructed a scale measuring visitors' overall concern about weeds in parks using the responses to ten Likert scale statements. Over 85% of visitors were concerned about weeds with older visitors, hikers, and those who could correctly define weeds more concerned than their counterparts. The majority think visitors unintentionally introduce seeds into parks, with many (63%) having found seeds on their own clothing. However, over a third disposed of these seeds in ways that could facilitate weed spread. Therefore, although most visitors were knowledgeable and concerned about weeds, and support their control, there is a clear need for more effective communication regarding the risk of visitors unintentionally dispersing weed seeds in parks.
Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Rafii, Mohd Y; Ismail, Mohd Razi; Karim, S M Rezaul; Kausar, H
2015-11-01
The pot experiment was conducted to select appropriate integrated weed management method in rice under different salinity levels (0, 4 and 8 dS m(-1)). All the parameters including rice and weed measured were significantly influenced by weed control treatments at all salinity levels. Treatments including weed-free condition, Pretilachlor @0.375 kg ai ha(-1) + hand weeding, Propanil + Thiobencarb @ 0.9 kg ai ha(-1) and 1.8 kg ai ha(-1)+ hand weeding performed better under all salinity levels. Pretilachlor @ 0.375 kg ai ha(-1) with one round of hand weeding and propanil + thiobencarb 0.9 kg ai ha(-1) + 1.8 kg ai ha(-1) with one round of hand weeding were comparable to weed-free yields, and were superior to other treatments under salinity condition. Considering all the parameters, pretilachlor @ 0.375 kg ai ha(-1) + one round of hand weeding (at 65 DAT), propanil + thiobencarb 0.9 kg ai ha(-1) +1.8 kg ai ha(-1) + one round of hand weeding (at 65 DAT) gave the most effective control of weeds in rice under saline environments.
NASA Astrophysics Data System (ADS)
Sidik, S.; Purba, E.; Yakub, E. N.
2018-02-01
Weed problems in oil palm field were mainly overcomed by herbicide application. The application certain herbicides may lead to rapid population dynamic of certain species due to their different response to herbicides. Some species may less susceptible to certain herbicide whereas other species more susceptible. The objective of this study was to determine the population dynamic of weed species in circle weeding of oil palm in Serdang Bedagai, North Sumatra. Six treatments using glyphosate singly and mixture compared with manual weeding were evaluated for weed control. The treatments were arranged in a randomized block design with four replicates. Each treatment consisted of four circle weedings. The results showed that glyphosate 720 g a.i/ha + indaziflam 50 g a.i/hareduced seedbank and regrowth of weeds. Up to 12 weeks after application glyphosate 720 g a.i/ha + indaziflam 50 g a.i/ha is 29.46% total weeds dry weight compared to manual weeding. The effect of herbicide application on changes on the weed composition and weed seedbank are affected by the characteristic of herbicides and weed response to herbicide application.
An Ultrasonic System for Weed Detection in Cereal Crops
Andújar, Dionisio; Weis, Martin; Gerhards, Roland
2012-01-01
Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were assessed by discriminant analysis. The ultrasonic readings permitted the separation between weed infested zones and non-infested areas with up to 92.8% of success. This system will potentially reduce the cost of weed detection and offers an opportunity to its use in non-selective methods for weed control. PMID:23443401
An ultrasonic system for weed detection in cereal crops.
Andújar, Dionisio; Weis, Martin; Gerhards, Roland
2012-12-13
Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were assessed by discriminant analysis. The ultrasonic readings permitted the separation between weed infested zones and non-infested areas with up to 92.8% of success. This system will potentially reduce the cost of weed detection and offers an opportunity to its use in non-selective methods for weed control.
Medieros, Arthur C.; Loope, Lloyd L.; Conant, P.; McElvaney, S.
1997-01-01
Miconia calvescens (Melastomataceae), native to montane forests of the neotropics, has now invaded wet forests of both the Society and Hawaiian Islands. This tree, which grows up to 15 m tall, is potentially the most invasive and damaging weed of rainforests of Pacific islands. In moist conditions, it grows rapidly, tolerates shade, and produces abundant seed that is effectively dispersed by birds and accumulates in a large, persistent soil seed-bank. Introduced to the Hawaiian Islands in 1961, M. calvescens appears to threaten much of the biological diversity in native forests receiving 1800–2000 mm or more annual precipitation. Currently, M. calvescens is found on 4 Hawaiian islands— Hawaii, Maui, Oahu, and Kauai. Widespread awareness of this invader began in the early 1990s. Although biological control is being pursued, conventional control techniques (mechanical and chemical) to contain and eradicate it locally are underway.
Optimal detection and control strategies for invasive species management
Shefali V. Mehta; Robert G. Haight; Frances R. Homans; Stephen Polasky; Robert C. Venette
2007-01-01
The increasing economic and environmental losses caused by non-native invasive species amplify the value of identifying and implementing optimal management options to prevent, detect, and control invasive species. Previous literature has focused largely on preventing introductions of invasive species and post-detection control activities; few have addressed the role of...
What’s a Weed? Knowledge, Attitude and Behaviour of Park Visitors about Weeds
Ansong, Michael; Pickering, Catherine
2015-01-01
Weeds are a major threat to biodiversity globally degrading natural areas of high conservation value. But what are our attitudes about weeds and their management including weeds in national parks? Do we know what a weed is? Do we consider weeds a problem? Do we support their management? Are we unintentionally spreading weeds in parks? To answer these questions, we surveyed visitors entering a large popular national park near the city of Brisbane, Australia. Park visitors were knowledgeable about weeds; with >75% correctly defining weeds as ‘plants that grow where they are not wanted’. About 10% of the visitors, however, provided their own sophisticated definitions. This capacity to define weeds did not vary with people’s age, sex or level of education. We constructed a scale measuring visitors’ overall concern about weeds in parks using the responses to ten Likert scale statements. Over 85% of visitors were concerned about weeds with older visitors, hikers, and those who could correctly define weeds more concerned than their counterparts. The majority think visitors unintentionally introduce seeds into parks, with many (63%) having found seeds on their own clothing. However, over a third disposed of these seeds in ways that could facilitate weed spread. Therefore, although most visitors were knowledgeable and concerned about weeds, and support their control, there is a clear need for more effective communication regarding the risk of visitors unintentionally dispersing weed seeds in parks. PMID:26252004
Weed control without herbicides
USDA-ARS?s Scientific Manuscript database
Managing weeds without herbicides is challenging and requires an integration of tactics and a change in how weeds problems are approached. Weeds should be managed in a holistic, intentional and proactive manner. Growers that successfully manage weeds in organic systems examine why certain weed speci...
[Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].
Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming
2014-02-01
The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.
Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).
Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R
2016-03-01
Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).
"Blame it on the weeds": politics, poverty, and ecology in the new South Africa.
Neely, Abigail H
2010-01-01
In January of 2000, spectacular fires burned in the natural veld of Cape Town, South Africa. As the fire-fighting effort finished, a theory emerged: invasive alien species, trees from other countries, such as Australia and the United States, were to blame for the fires. While the invasive alien hypothesis captured the attention of media and policy makers alike, there was little ecological evidence to support it. This article places the fires of 2000 in a longer history of post-apartheid policy and science surrounding invasive alien floral species, arguing that the fires allowed for a synergy between concerns over poverty relief, nature conservation, and scientific research. The most visible example of this synergy was an increased commitment to the Working for Water programme on the Cape Peninsula, a large-scale employment programme utilising unskilled labour to clear invasive alien species in order to conserve South African water resources. In addition to providing employment for South Africa's poorest citizens, Working for Water provided funding for ecological research about invasive alien species. The studies that resulted from this funding focused on gathering information to make practical suggestions for invasive species control. Although the focus of these studies was on management, the science used was itself as rigorous as it had ever been. In the post-apartheid era, as poverty relief and nature conservation came together, scientists ensured that they would continue to play a role in nature conservation by making their research relevant to both invasive species control and to poverty relief.
Emerging Challenges and Opportunities for Education and Research in Weed Science
Chauhan, Bhagirath S.; Matloob, Amar; Mahajan, Gulshan; Aslam, Farhena; Florentine, Singarayer K.; Jha, Prashant
2017-01-01
In modern agriculture, with more emphasis on high input systems, weed problems are likely to increase and become more complex. With heightened awareness of adverse effects of herbicide residues on human health and environment and the evolution of herbicide-resistant weed biotypes, a significant focus within weed science has now shifted to the development of eco-friendly technologies with reduced reliance on herbicides. Further, with the large-scale adoption of herbicide-resistant crops, and uncertain climatic optima under climate change, the problems for weed science have become multi-faceted. To handle these complex weed problems, a holistic line of action with multi-disciplinary approaches is required, including adjustments to technology, management practices, and legislation. Improved knowledge of weed ecology, biology, genetics, and molecular biology is essential for developing sustainable weed control practices. Additionally, judicious use of advanced technologies, such as site-specific weed management systems and decision support modeling, will play a significant role in reducing costs associated with weed control. Further, effective linkages between farmers and weed researchers will be necessary to facilitate the adoption of technological developments. To meet these challenges, priorities in research need to be determined and the education system for weed science needs to be reoriented. In respect of the latter imperative, closer collaboration between weed scientists and other disciplines can help in defining and solving the complex weed management challenges of the 21st century. This consensus will provide more versatile and diverse approaches to innovative teaching and training practices, which will be needed to prepare future weed science graduates who are capable of handling the anticipated challenges of weed science facing in contemporary agriculture. To build this capacity, mobilizing additional funding for both weed research and weed management education is essential. PMID:28928765
Emerging Challenges and Opportunities for Education and Research in Weed Science.
Chauhan, Bhagirath S; Matloob, Amar; Mahajan, Gulshan; Aslam, Farhena; Florentine, Singarayer K; Jha, Prashant
2017-01-01
In modern agriculture, with more emphasis on high input systems, weed problems are likely to increase and become more complex. With heightened awareness of adverse effects of herbicide residues on human health and environment and the evolution of herbicide-resistant weed biotypes, a significant focus within weed science has now shifted to the development of eco-friendly technologies with reduced reliance on herbicides. Further, with the large-scale adoption of herbicide-resistant crops, and uncertain climatic optima under climate change, the problems for weed science have become multi-faceted. To handle these complex weed problems, a holistic line of action with multi-disciplinary approaches is required, including adjustments to technology, management practices, and legislation. Improved knowledge of weed ecology, biology, genetics, and molecular biology is essential for developing sustainable weed control practices. Additionally, judicious use of advanced technologies, such as site-specific weed management systems and decision support modeling, will play a significant role in reducing costs associated with weed control. Further, effective linkages between farmers and weed researchers will be necessary to facilitate the adoption of technological developments. To meet these challenges, priorities in research need to be determined and the education system for weed science needs to be reoriented. In respect of the latter imperative, closer collaboration between weed scientists and other disciplines can help in defining and solving the complex weed management challenges of the 21st century. This consensus will provide more versatile and diverse approaches to innovative teaching and training practices, which will be needed to prepare future weed science graduates who are capable of handling the anticipated challenges of weed science facing in contemporary agriculture. To build this capacity, mobilizing additional funding for both weed research and weed management education is essential.
NASA Astrophysics Data System (ADS)
Mischler, J. A.; Abdalati, W.; Hussein, K.; Townsend, A. R.
2013-12-01
The Kafue River is the longest river in Zambia and is a major tributary of the Zambezi River. It is a vital source of fish, transportation, drinking water, and hydropower for much of Zambia's population, over half of whom live in the Kafue River basin. Like many important water bodies in developing countries the Kafue and its ecosystems face pollution from industrial, mining, agricultural, and domestic/sewage discharge. The Kafue River forms a wide and shallow wetland (the Kafue Flats) during the rainy season (Nov. - Apr.) which serves as habitat for diverse groups of birds and mammals. In recent years the unprecedented emergence of invasive aquatic vegetation such as the water hyacinth (Eichhornia crassipes) and Salvinia molesta have choked the river, degrading its ability to provide adequate habitat to promote biodiversity, ecosystem services, and hydropower. In addition, these plants provide additional habitat for mosquitoes (vectors for malaria) and aquatic snails (vectors of schistosomiasis). Nutrient-rich effluents are widely believed to contribute to the proliferation and explosive growth of this floating aquatic vegetation. The general methods for managing these aquatic weeds have included mechanical and physical removal, herbicides, and bio-control agents which have had very little impact. However, as in neighboring Lake Victoria, total weed coverage has fluctuated dramatically from year to year making evaluation of the efficacy of management programs difficult. The objectives of this study were to (1) generate the first record of aquatic plant coverage for a section of the Kafue River which is immediately downstream of a sugar plantation (a major source of nitrogen and phosphorus to the river) and (2) determine if plant coverage is correlated with any major climatic (ENSO, temperature, rainfall) or management (introduction of bio-control agents) indices. We utilized remote sensing techniques in conjunction with Landsat 4-5 TM and Landsat 7 ETM imagery for the time range 1990 to 2013 to identify the extent of aquatic vegetation in the dry season for all years available within the time range using spectral data. We derived rainfall for the time period from TRMM data and temperature from MODIS LST data. Overall weed coverage tended to increase from 1990 to 2013. There was no significant correlation between rainfall (as measured by TRMM) and water hyacinth coverage. However there was a significant positive correlation between minimum October temperatures (the warmest month of the year) and weed coverage (exponential fit, R2 = 0.81). There was no indication that the release of bio-control agents reduced weed coverage. Water hyacinth is known to be sensitive to temperature, with cooler temperatures retarding growth. In the Kafue River, aquatic plant coverage varies mainly with October low temperatures indicating an overall control of temperature on weed coverage. Increasing low temperatures in the region would be expected to exacerbate problems associated with aquatic weeds.
Introduction to Weeds and Herbicides.
ERIC Educational Resources Information Center
Hartwig, Nathan L.
This agriculture extension service publication from Pennsylvania State University is an introduction to weed control and herbicide use. An initial discussion of the characteristics of weeds includes scientific naming, weed competition with crops, weed dispersal and dormancy, and conditions affecting weed seed germination. The main body of the…
Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S.
2011-12-01
Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.
VisTrails SAHM: visualization and workflow management for species habitat modeling
Morisette, Jeffrey T.; Jarnevich, Catherine S.; Holcombe, Tracy R.; Talbert, Colin B.; Ignizio, Drew A.; Talbert, Marian; Silva, Claudio; Koop, David; Swanson, Alan; Young, Nicholas E.
2013-01-01
The Software for Assisted Habitat Modeling (SAHM) has been created to both expedite habitat modeling and help maintain a record of the various input data, pre- and post-processing steps and modeling options incorporated in the construction of a species distribution model through the established workflow management and visualization VisTrails software. This paper provides an overview of the VisTrails:SAHM software including a link to the open source code, a table detailing the current SAHM modules, and a simple example modeling an invasive weed species in Rocky Mountain National Park, USA.
USDA-ARS?s Scientific Manuscript database
Weeds reduce crop yield even when there is no competition for resources. A phenomena known as the critical weed-free period (CWFP), which occurs early in the crop’s life cycle, is the essential interval when weed presence can reduce crop growth and yield. Even when weeds are removed after the CWFP, ...
Robust surveillance and control of invasive species using a scenario optimization approach
Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert C. Venette; Ronald E. Fournier; Jean J. Turgeon
2017-01-01
Uncertainty about future outcomes of invasions is a major hurdle in the planning of invasive species management programs. We present a scenario optimization model that incorporates uncertainty about the spread of an invasive species and allocates survey and eradication measures to minimize the number of infested or potentially infested host plants on the landscape. We...
Weed Identification and Control in Vegetable Crops.
ERIC Educational Resources Information Center
Ferretti, Peter A., Comp.
This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…
Wei, Shouhui; Qiang, Sheng; Ma, Bo; Wei, Jiguang; Chen, Jianwei; Wu, Jianqiang; Xie, Tongzhou; Shen, Xiaokun
2005-06-01
By the methods of community ecology, field studies were conducted to evaluate the control effects of three weed management strategies, i. e., rice-duck farming (RD), manual weeding (MW) and chemical weeding (CW), on the weed communities in paddy fields. The results showed that under rice-duck farming, the weed density in paddy fields decreased significantly, and the control effects on dominant weed species such as Monochoria vaginalis, Cyperus difformis, Sagittaria pygmaea were all above 95%, with an overall effect higher than CW and MW. Under RD, the species richness and Shannon-Wiener diversity indices decreased slightly, while Pielou community evenness indices increased markedly, indicating that the species composition of weed community was greatly improved, and the infestation of former dominant weed species was reduced. The structure of weed communities in paddy fields varied with different weed management strategies, e. g., under RD, Lindernia procumbens, Cyperus difformis and Fimbristylis miliacea constituted the major weed community, and the Whittaker index was significant higher than that of CW, MW and CK, which indicated that rice-duck farming had a greater effect on the structure of the weed communities. The same conclusion could be drawn from Sorensen's similarity indices and cluster analysis with Sorensen's index as the distance measurement.
Ramesh, Kulasekaran; Matloob, Amar; Aslam, Farhena; Florentine, Singarayer K.; Chauhan, Bhagirath S.
2017-01-01
Whilst it is agreed that climate change will impact on the long-term interactions between crops and weeds, the results of this impact are far from clear. We suggest that a thorough understanding of weed dominance and weed interactions, depending on crop and weed ecosystems and crop sequences in the ecosystem, will be the key determining factor for successful weed management. Indeed, we claim that recent changes observed throughout the world within the weed spectrum in different cropping systems which were ostensibly related to climate change, warrant a deeper examination of weed vulnerabilities before a full understanding is reached. For example, the uncontrolled establishment of weeds in crops leads to a mixed population, in terms of C3 and C4 pathways, and this poses a considerable level of complexity for weed management. There is a need to include all possible combinations of crops and weeds while studying the impact of climate change on crop-weed competitive interactions, since, from a weed management perspective, C4 weeds would flourish in the increased temperature scenario and pose serious yield penalties. This is particularly alarming as a majority of the most competitive weeds are C4 plants. Although CO2 is considered as a main contributing factor for climate change, a few Australian studies have also predicted differing responses of weed species due to shifts in rainfall patterns. Reduced water availability, due to recurrent and unforeseen droughts, would alter the competitive balance between crops and some weed species, intensifying the crop-weed competition pressure. Although it is recognized that the weed pressure associated with climate change is a significant threat to crop production, either through increased temperatures, rainfall shift, and elevated CO2 levels, the current knowledge of this effect is very sparse. A few models that have attempted to predict these interactions are discussed in this paper, since these models could play an integral role in developing future management programs for future weed threats. This review has presented a comprehensive discussion of the recent research in this area, and has identified key deficiencies which need further research in crop-weed eco-systems to formulate suitable control measures before the real impacts of climate change set in. PMID:28243245
Ramesh, Kulasekaran; Matloob, Amar; Aslam, Farhena; Florentine, Singarayer K; Chauhan, Bhagirath S
2017-01-01
Whilst it is agreed that climate change will impact on the long-term interactions between crops and weeds, the results of this impact are far from clear. We suggest that a thorough understanding of weed dominance and weed interactions, depending on crop and weed ecosystems and crop sequences in the ecosystem, will be the key determining factor for successful weed management. Indeed, we claim that recent changes observed throughout the world within the weed spectrum in different cropping systems which were ostensibly related to climate change, warrant a deeper examination of weed vulnerabilities before a full understanding is reached. For example, the uncontrolled establishment of weeds in crops leads to a mixed population, in terms of C 3 and C 4 pathways, and this poses a considerable level of complexity for weed management. There is a need to include all possible combinations of crops and weeds while studying the impact of climate change on crop-weed competitive interactions, since, from a weed management perspective, C 4 weeds would flourish in the increased temperature scenario and pose serious yield penalties. This is particularly alarming as a majority of the most competitive weeds are C 4 plants. Although CO 2 is considered as a main contributing factor for climate change, a few Australian studies have also predicted differing responses of weed species due to shifts in rainfall patterns. Reduced water availability, due to recurrent and unforeseen droughts, would alter the competitive balance between crops and some weed species, intensifying the crop-weed competition pressure. Although it is recognized that the weed pressure associated with climate change is a significant threat to crop production, either through increased temperatures, rainfall shift, and elevated CO 2 levels, the current knowledge of this effect is very sparse. A few models that have attempted to predict these interactions are discussed in this paper, since these models could play an integral role in developing future management programs for future weed threats. This review has presented a comprehensive discussion of the recent research in this area, and has identified key deficiencies which need further research in crop-weed eco-systems to formulate suitable control measures before the real impacts of climate change set in.
Wei, Hui; Yan, Wenbin; Quan, Guoming; Zhang, Jiaen; Liang, Kaiming
2017-09-12
Two Bidens species (Bidens pilosa and B. bipinnata) that originate from America have been introduced widely in pan-tropics, with the former regarded as a noxious invasive weed whereas the latter naturalized as a plant resource. Whether the two species exhibit different effects on the belowground system remains rarely studied. This study was conducted to investigate soil microbial carbon (C) utilization, enzyme activities and available nitrogen, phosphorus and potassium contents under the two species in a subtropical garden soil of southern China under different levels of light intensity. Results showed that the microbial C utilization and enzyme activities were not significantly different under the two species, implying that the strong invasiveness of B. pilosa could not be due to the plant-soil microbe interactions, at least plant-induced alterations of microbial community function to utilize C substrates. Alternatively, available soil nitrogen and potassium contents were significantly higher under B. pilosa than under B. bipinnata in full sun, indicating that the strong invasiveness of B. pilosa could result from rapid nutrient mobilizations by B. pilosa. However, the differences turned non-significant as light intensity decreased, suggesting that light availability could substantially alter the plant effects on soil nutrient mobilizations.
Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M
2016-09-01
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion. © 2016 John Wiley & Sons Ltd.
Bhagwat, Shonil A.; Breman, Elinor; Thekaekara, Tarsh; Thornton, Thomas F.; Willis, Katherine J.
2012-01-01
Recent discussion on invasive species has invigorated the debate on strategies to manage these species. Lantana camara L., a shrub native to the American tropics, has become one of the worst weeds in recorded history. In Australia, India and South Africa, Lantana has become very widespread occupying millions of hectares of land. Here, we examine historical records to reconstruct invasion and management of Lantana over two centuries and ask: Can we fight the spread of invasive species or do we need to develop strategies for their adaptive management? We carried out extensive research of historical records constituting over 75% of records on invasion and management of this species in the three countries. The records indicate that governments in Australia, India and South Africa have taken aggressive measures to eradicate Lantana over the last two centuries, but these efforts have been largely unsuccessful. We found that despite control measures, the invasion trajectory of Lantana has continued upwards and that post-war land-use change might have been a possible trigger for this spread. A large majority of studies on invasive species address timescales of less than one year; and even fewer address timescales of >10 years. An understanding of species invasions over long time-scales is of paramount importance. While archival records may give only a partial picture of the spread and management of invasive species, in the absence of any other long-term dataset on the ecology of Lantana, our study provides an important insight into its invasion, spread and management over two centuries and across three continents. While the established paradigm is to expend available resources on attempting to eradicate invasive species, our findings suggest that in the future, conservationists will need to develop strategies for their adaptive management rather than fighting a losing battle. PMID:22403653
Kurokawa, S; Shibaike, H; Akiyama, H; Yoshimura, Y
2004-12-01
A comparison of chloroplast DNA (cpDNA) sequences was carried out between the crop and weed types of Abutilon theophrasti to clarify the seed source of the present weedy velvetleaf in Japan. A sequencing analysis of approx. 6% of the chloroplast genome (ca 10 kbp) detected three nucleotide substitutions, one six-base-pair insertion/deletion (indel) and one 30-base pair inversion, which distinguish two haplotypes of cpDNA. A PCR-based survey of the indel and the inversion revealed that the 93 accessions of velvetleaf collected from the world could be divided into two groups. A morphological marker (capsule color) could be used to discriminate the crop type and the weed type, and hence, along with cpDNA haplotype, to distinguish three genotypes (Type I, II, and III). All Japanese cultivars and crop accessions from other countries were Type I. Weed types were divided into Type II and III. All of the samples from the USA, and the samples taken from grain imports to Japan were Type III. Since most of the weedy types distributed in Japan were of Type III, it is argued that they were introduced as seeds in the imported grain. We also found that the Type II plants sporadically occurred in Japan. It is suggested that they originated as hybrids, with indigenous cultivars as the maternal ancestor. Such hybrids must have survived since the cessation of velvetleaf cultivation about a century ago.
Cooling off health security hot spots: getting on top of it down under.
Murray, Kris A; Skerratt, Lee F; Speare, Rick; Ritchie, Scott; Smout, Felicity; Hedlefs, Robert; Lee, Jonathan
2012-11-01
Australia is free of many diseases, pests and weeds found elsewhere in the world due to its geographical isolation and relatively good health security practices. However, its health security is under increasing pressure due to a number of ecological, climatic, demographic and behavioural changes occurring globally. North Queensland is a high risk area (a health security hot spot) for Australia, due in part to its connection to neighbouring countries via the Torres Strait and the Indo-Papuan conduit, its high diversity of wildlife reservoirs and its environmental characteristics. Major outbreaks of exotic diseases, pests and weeds in Australia can cost in excess of $1 billion; however, most expenditure on health security is reactive apart from preventive measures undertaken for a few high profile diseases, pests and weeds. Large gains in health security could therefore be made by spending more on pre-emptive approaches to reduce the risk of outbreaks, invasion/spread and establishment, despite these gains being difficult to quantify. Although biosecurity threats may initially have regional impacts (e.g. Hendra virus), a break down in security in health security hot spots can have national and international consequences, as has been seen recently in other regions with the emergence of SARS and pandemic avian influenza. Novel approaches should be driven by building research and management capacity, particularly in the regions where threats arise, a model that is applicable both in Australia and in other regions of the world that value and therefore aim to improve their strategies for maintaining health security. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bedford, A. P.; Moore, P. G.
1985-01-01
Psammechinus miliaris occurs in the Clyde Sea area in large numbers (<18 individuals per 100 g -1 weed dry wt) on sublittoral beds of detached Laminaria saccharina. Its rôle in weed decomposition has been examined by comparing its responses (behavioural choice, growth rate, absorption efficiencies of both carbon and protein, gut retention times and rate of faecal output) to fresh and rotting weed. Younger urchins grew faster than older individuals on a diet of rotting weed but not on fresh weed. Large seasonal variation existed, however, with fast growth occurring in June-August and little, or no, growth in December-February, irrespective of diet. Starved controls did not grow. Correcting for seasonality, rotting kelp still promoted faster growth of young urchins than did fresh weed. Larger (older) individuals showed no difference. Urchins fed fresh weed had significantly longer gut retention times. Protein absorption efficiency was higher on fresh than rotting weed, varying with weed protein content and size of urchin. Very young individuals can only digest high protein weed efficiently, eg. material derived from near the frond meristem. Organic carbon content of rotting weed was significantly lower than fresh weed. Carbon absorption efficiencies were significantly higher on fresh weed which related to organic carbon content. Standard-sized urchins fed rotting weed produced larger dry weights of faeces per day, reflecting increased ingestion rate. In closed-system choice experiments urchins preferred rotting weed kinetically. Size-frequency analysis of field populations suggested that weed beds are principally colonized by larval settlement from the plankton. Mature Psammechinus have evolved different 'strategies' for exploiting fresh and rotting weed. Fresh weed is relatively difficult to digest and long gut retention times allow high protein absorption efficiencies to be attained. Rotting weed has microbial protein in quantities and a lower organic carbon fraction. Some bacterial protein is seemingly unavailable though and lower protein absorption efficiencies result. Thus gut retention time is shortened and more food passed through the gut. Growth remains equivalent. Substratum digestion is of paramount importance for Psammechinus feeding on either fresh or rotting weed, cf. the 'classical' microbe-stripping detritivore of Fenchel.
High-residue cultivation timing impact on organic no-till soybean weed management
USDA-ARS?s Scientific Manuscript database
A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can b...
Effect of long-term fertilisation on the weed community of a winter wheat field.
Jiang, Min; Liu, Tao; Huang, Niansheng; Shen, Xinping; Shen, Mingxing; Dai, Qigen
2018-03-05
Effects of fertilisation and other management techniques on a weed community were evaluated during wheat growth in a rice-wheat cropping system. Fertiliser treatments were C0 (C means chemical, C0 means zero chemical fertiliser.), CN (N fertiliser), CNK (N plus K fertiliser), CNPK (N plus P and K fertiliser), CNP (N plus P fertiliser), and CPK (P plus K fertiliser). Weed density, biomass, and bio-diversity were determined. Redundancy analysis (RDA) was used to investigate the relationship between fertiliser management, weed species, and weed density. The overall weed densities in the C0 and CPK treatments were the greatest during wheat seeding and ripening periods and were significantly greater than densities in the other treatments. N, P and organic matter in soil were highly correlated with weed species and density, whereas K in soil was not significantly correlated with weed species and weed density. N fertiliser significantly reduced weed density. Balanced fertilisation maintained weed species richness and resulting in a high yield of wheat. CNPK application reduced weed damage and improved the productivity and stability of the farmland ecosystem.
Impact of the timing and duration of weed control on the establishment of a rubber tree plantation.
Guzzo, Caio D; Carvalho, Leonardo B de; Giancotti, Paulo R F; Alves, Pedro L C A; Gonçalves, Elaine C P; Martins, José V F
2014-03-01
Rubber tree production is reduced by weeds that compete for environmental resources; therefore, the timing and duration of weed control influences weed interference. The objectives of this study were to evaluate the growth of rubber tree (Hevea brasiliensis) plants, to determine the critical period for weed control, and to evaluate the growth recovery of rubber trees that coexisted with weeds for different periods of time after planting. Two groups of treatments were established under field conditions in the first year of the investigation: one group contained crescent periods of weed infestation, while the other contained crescent periods of weed control, also including a weed-free check and a total weedy check. In the second year of the investigation, the weeds were totally controlled. Urochloa decumbens was the dominant weed (over 90% groundcover). Crop growth was greatly reduced due to the weed interference. Plant height decreased more rapidly than did any other characteristic. Plant height, leaf dry mass, and leaf area decreased by 99%, 97% and 96%, respectively, and were the most reduced characteristics. Plant height also recovered more rapidly than did any characteristic when the period of weed control was lengthened. However, stem dry mass increased by 750%, making it the most recovered characteristic. The critical period for weed control was between 4 and 9½ months after planting in the first year; however, the rubber trees showed an expressive growth recovery when the weeds were controlled throughout the second year.
Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.
Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L
2017-01-01
Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.
Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA
Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.
2017-01-01
Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability. PMID:28286509
Wilson, Robert G; Young, Bryan G; Matthews, Joseph L; Weller, Stephen C; Johnson, William G; Jordan, David L; Owen, Micheal D K; Dixon, Philip M; Shaw, David R
2011-07-01
Weed management in glyphosate-resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field-scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post-emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate-resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non-GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry.
Gibson, David J; Young, Bryan G; Owen, Micheal D K; Gage, Karla L; Matthews, Joseph L; Jordan, David L; Shaw, David R; Weller, Stephen C; Wilson, Robert G
2016-04-01
Shifts in weed species composition and richness resulting from near-exclusive reliance on herbicides in glyphosate-resistant (GR) cropping systems has necessitated the implementation of alternative weed management tactics to reduce selection pressures of herbicides. We contrasted the response of the weed soil seedbank to effects of weed management strategy, comparing grower practices with academic recommendations for best management practices (BMPs) over 6 years and across five weed hardiness zones in the US Midwest at sites subject to GR cropping systems. Total weed population density and species richness varied according to cropping system, location and prior year's crop, but less so to weed management strategy. The seedbank population density for 11 of the 14 most frequent weed species was affected by weed management strategy either alone or in an interaction with hardiness zone or year, or both. In only 29% of comparisons was weed population density lower following academic recommendations, and this depended upon prior crop and cropping system. The population density of high-risk weed species was reduced by academic recommendations, but only in two of six years and under continuous GR maize. Overall, the weed population density was decreasing in field halves subject to the BMPs in the academic recommendations relative to grower practices. The soil seedbank is slow to respond to academic recommendations to mitigate glyphosate-resistant weeds, but represents a biological legacy that growers need to keep in mind even when management practices reduce emerged field weed population densities. © 2015 Society of Chemical Industry.
Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun
2014-06-01
In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.
Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A
2015-07-01
Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.
Airborne hyperspectral and LiDAR data integration for weed detection
NASA Astrophysics Data System (ADS)
Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter
2014-05-01
Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.
The Power and Potential of Genomics in Weed Biology and Management.
Ravet, Karl; Patterson, Eric L; Krähmer, Hansjörg; Hamouzová, Kateřina; Fan, Longjiang; Jasieniuk, Marie; Lawton-Rauh, Amy; Malone, Jenna M; Scott McElroy, J; Merotto, Aldo; Westra, Philip; Preston, Christopher; Vila-Aiub, Martin M; Busi, Roberto; Tranel, Patrick J; Reinhardt, Carl; Saski, Christopher; Beffa, Roland; Neve, Paul; Gaines, Todd A
2018-04-24
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. This article is protected by copyright. All rights reserved.
Han, Feng; Xiao, Jie-yi; Cao, Hou-qiang; Luo, Chuan; Yang, Tian-jian; Lin, Mao-xiang
2015-10-01
To investigate the damage and community structure of weeds in Scrophularia ningpoensis fields in Nanchuan, Chongqing. From 2013 to 2014, an investigation was carried out by inverted W-9 point sampling method to study the weed species. 96 weed species belonged to 75 genera of 30 families were observed, including 18 species of Asteraceae weeds (accounted for 18.75%), 10 species of Poaceae weeds (accounted for 10.42%). Moreover, there were 57 species of annual weeds (accounted for 59.38%) and 39 species of perennial weeds (accounted for 40.63%). The overall abundance of Erigeron annuus, Digitaria adscendens, Torilis scabra, Polygonum nepalense, Ranunculus japonicas, Stellaria media and Commelina communis were relatively higher than that of the others. The difference of weed species and community structure might result from the physical and chemical characteristics of soil, moisture content, cropping system, tillage type, environmental and climatic conditions, crop distribution and weed control.
Native weeds and exotic plants: Relationships to disturbance in mixed-grass prairie
Larson, D.L.
2003-01-01
Disturbance frequently is implicated in the spread of invasive exotic plants. Disturbances may be broadly categorized as endogenous (e.g., digging by fossorial animals) or exogenous (e.g., construction and maintenance of roads and trails), just as weedy species may be native or exotic in origin. The objective of this study was to characterize and compare exotic and native weedy plant occurrence in and near three classes of disturbance -digging by prairie dogs (an endogenous disturbance to which native plants have had the opportunity to adapt), paved or gravel roads (an exogenous disturbance without natural precedent), and constructed trails (an exogenous disturbance with a natural precedent in trails created by movement of large mammals) - in three geographically separate national park units. I used plant survey data from the North and South Units of Theodore Roosevelt National Park and Wind Cave National Park in the northern mixed-grass prairie of western North and South Dakota, USA, to characterize the distribution of weedy native and exotic plants with respect to the three disturbance classes as well as areas adjacent to them. There were differences both in the susceptibility of the disturbance classes to invasion and in the distributions of native weeds and exotic species among the disturbance classes. Both exotic and native weedy species richness were greatest in prairie dog towns and community composition there differed most from undisturbed areas. Exotic species were more likely to thrive near roadways, where native weedy species were infrequently encountered. Exotic species were more likely to have spread beyond the disturbed areas into native prairie than were weedy native species. The response of individual exotic plant species to the three types of disturbance was less consistent than that of native weedy species across the three park units.
Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource
NASA Technical Reports Server (NTRS)
Bubenheim, David
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H
2009-12-01
Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine.
Remote Sensing and Modeling for Improving Operational Aquatic Plant Management
NASA Technical Reports Server (NTRS)
Bubenheim, Dave
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
Yun, Lan; Larson, Steve R; Mott, Ivan W; Jensen, Kevin B; Staub, Jack E
2014-06-01
Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens).
Belnap, J.; Reynolds, R.L.; Reheis, M.C.; Phillips, S.L.; Urban, F.E.; Goldstein, H.L.
2009-01-01
Large sediment fluxes can have significant impacts on ecosystems. We measured incoming and outgoing sediment across a gradient of soil disturbance (livestock grazing, plowing) and annual plant invasion for 9 years. Our sites included two currently ungrazed sites: one never grazed by livestock and dominated by perennial grasses/well-developed biocrusts and one not grazed since 1974 and dominated by annual weeds with little biocrusts. We used two currently grazed sites: one dominated by annual weeds and the other dominated by perennial plants, both with little biocrusts. Precipitation was highly variable, with years of average, above-average, and extremely low precipitation. During years with average and above-average precipitation, the disturbed sites consistently produced 2.8 times more sediment than the currently undisturbed sites. The never grazed site always produced the least sediment of all the sites. During the drought years, we observed a 5600-fold increase in sediment production from the most disturbed site (dominated by annual grasses, plowed about 50 years previously and currently grazed by livestock) relative to the never grazed site dominated by perennial grasses and well-developed biocrusts, indicating a non-linear, synergistic response to increasing disturbance types and levels. Comparing sediment losses among the sites, biocrusts were most important in predicting site stability, followed by perennial plant cover. Incoming sediment was similar among the sites, and while inputs were up to 9-fold higher at the most heavily disturbed site during drought years compared to average years, the change during the drought conditions was small relative to the large change seen in the sediment outputs. ?? 2009 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Duke, James
2001-01-01
Explains the value of harvesting garden weeds and eating them. Discusses antioxidant and other nutritional qualities of weeds, weeds that are especially useful as raw or cooked vegetables, the importance of weed identification, and the dangers of weed-killing herbicides. Highlights purslane. (PVD)
Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model
Wendell P. Cropper; N.B. Comerford
2005-01-01
Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...
Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J
2014-04-01
Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.
Gallagher, R V; Randall, R P; Leishman, M R
2015-04-01
The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion of quantitative traits, in particular SLA, into the WRA schemes. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu
2016-01-01
To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.
Weed ecology and population dynamics
USDA-ARS?s Scientific Manuscript database
A global rise in herbicide resistant weed genotypes, coupled with a growing demand for food produced with minimal external synthetic inputs, is driving producer interest in reducing reliance on herbicides for weed management. An improved understanding of weed ecology can support the design of weed s...
Managing weeds in potato rotations without herbicides
USDA-ARS?s Scientific Manuscript database
Managing weeds without herbicides requires an integration of methods and strategies and a change in how weeds are perceived. Weeds should be managed in a holistic, intentional and proactive manner. Successful weed management in organic systems attempts to understand the interactions between the crop...
Weir, Tiffany L; Bais, Harsh Pal; Stull, Valerie J; Callaway, Ragan M; Thelen, Giles C; Ridenour, Wendy M; Bhamidi, Suresh; Stermitz, Frank R; Vivanco, Jorge M
2006-03-01
Centaurea maculosa Lam. is a noxious weed in western North America that produces a phytotoxin, (+/-)-catechin, which is thought to contribute to its invasiveness. Areas invaded by C. maculosa often result in monocultures of the weed, however; in some areas, North American natives stand their ground against C. maculosa and show varying degrees of resistance to its phytotoxin. Two of these resistant native species, Lupinus sericeus Pursh and Gaillardia grandiflora Van Houtte, were found to secrete increased amounts of oxalate in response to catechin exposure. Mechanistically, we found that oxalate works exogenously by blocking generation of reactive oxygen species in susceptible plants and reducing oxidative damage generated in response to catechin. Furthermore, field experiments show that L. sericeus indirectly facilitates native grasses in grasslands invaded by C. maculosa, and this facilitation can be correlated with the presence of oxalate in soil. Addition of exogenous oxalate to native grasses and Arabidopsis thaliana (L.) Heynh grown in vitro alleviated the phytotoxic effects of catechin, supporting the field experiments and suggesting that root-secreted oxalate may also act as a chemical facilitator for plant species that do not secrete the compound.
Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S
2011-06-01
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.
Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin
2013-09-01
Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... noxious weed; cancelation of a permit to move a noxious weed. 360.304 Section 360.304 Agriculture..., DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.304 Denial of an application for a permit to move a noxious weed; cancelation of a permit to move a noxious weed. (a) The Administrator may deny an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... noxious weed; cancelation of a permit to move a noxious weed. 360.304 Section 360.304 Agriculture..., DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.304 Denial of an application for a permit to move a noxious weed; cancelation of a permit to move a noxious weed. (a) The Administrator may deny an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... noxious weed; cancelation of a permit to move a noxious weed. 360.304 Section 360.304 Agriculture..., DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.304 Denial of an application for a permit to move a noxious weed; cancelation of a permit to move a noxious weed. (a) The Administrator may deny an...
Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi
2015-01-28
There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P < 0.05). The relative yield (RY) of mile-a-minute and sweet potato was less than 1.0 in mixed culture, indicating that intraspecific competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P < 0.05) in mile-a-minute monoculture soil than in sweet potato monoculture soil, and were reduced by the competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems.
Applicator Training Manual for: Aquatic Weed Control.
ERIC Educational Resources Information Center
Herron, James W.
The aquatic weeds discussed in this manual include algae, floating weeds, emersed weeds, and submerged weeds. Specific requirements for pesticide application are given for static water, limited flow, and moving water situations. Secondary effects of improper application rates and faulty application are described. Finally, techniques of limited…