NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Krivoshei, F. A.
1985-01-01
The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
Numerical recovery of certain discontinuous electrical conductivities
NASA Technical Reports Server (NTRS)
Bryan, Kurt
1991-01-01
The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.
Conduct symptoms and emotion recognition in adolescent boys with externalization problems.
Aspan, Nikoletta; Vida, Peter; Gadoros, Julia; Halasz, Jozsef
2013-01-01
In adults with antisocial personality disorder, marked alterations in the recognition of facial affect were described. Less consistent data are available on the emotion recognition in adolescents with externalization problems. The aim of the present study was to assess the relation between the recognition of emotions and conduct symptoms in adolescent boys with externalization problems. Adolescent boys with externalization problems referred to Vadaskert Child Psychiatry Hospital participated in the study after informed consent (N = 114, 11-17 years, mean = 13.4). The conduct problems scale of the strengths and difficulties questionnaire (parent and self-report) was used. The performance in a facial emotion recognition test was assessed. Conduct problems score (parent and self-report) was inversely correlated with the overall emotion recognition. In the self-report, conduct problems score was inversely correlated with the recognition of anger, fear, and sadness. Adolescents with high conduct problems scores were significantly worse in the recognition of fear, sadness, and overall recognition than adolescents with low conduct scores, irrespective of age and IQ. Our results suggest that impaired emotion recognition is dimensionally related to conduct problems and might have importance in the development of antisocial behavior.
NASA Astrophysics Data System (ADS)
Alessandrini, Giovanni; de Hoop, Maarten V.; Gaburro, Romina
2017-12-01
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω\\subset{R}n when the so-called Neumann-to-Dirichlet map is locally given on a non-empty curved portion Σ of the boundary \\partialΩ . We prove that anisotropic conductivities that are a priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.
The 2-D magnetotelluric inverse problem solved with optimization
NASA Astrophysics Data System (ADS)
van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven
2011-02-01
The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.
Radiative-conductive inverse problem for lumped parameter systems
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2008-11-01
The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.
ERIC Educational Resources Information Center
Simons, Leslie Gordon; Simons, Ronald L.; Conger, Rand D.; Brody, Gene H.
2004-01-01
This article uses hierarchical linear modeling with a sample of African American children and their primary caregivers to examine the association between various community factors and child conduct problems. The analysis revealed a rather strong inverse association between level of collective socialization and conduct problems. This relationship…
Identification of subsurface structures using electromagnetic data and shape priors
NASA Astrophysics Data System (ADS)
Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond
2015-03-01
We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.
An optimization method for the problems of thermal cloaking of material bodies
NASA Astrophysics Data System (ADS)
Alekseev, G. V.; Levin, V. A.
2016-11-01
Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.
NASA Astrophysics Data System (ADS)
Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.
2013-12-01
Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.
2017-11-01
The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.
Regolith thermal property inversion in the LUNAR-A heat-flow experiment
NASA Astrophysics Data System (ADS)
Hagermann, A.; Tanaka, S.; Yoshida, S.; Fujimura, A.; Mizutani, H.
2001-11-01
In 2003, two penetrators of the LUNAR--A mission of ISAS will investigate the internal structure of the Moon by conducting seismic and heat--flow experiments. Heat-flow is the product of thermal gradient tial T / tial z, and thermal conductivity λ of the lunar regolith. For measuring the thermal conductivity (or dissusivity), each penetrator will carry five thermal property sensors, consisting of small disc heaters. The thermal response Ts(t) of the heater itself to the constant known power supply of approx. 50 mW serves as the data for the subsequent data interpretation. Horai et al. (1991) found a forward analytical solution to the problem of determining the thermal inertia λ ρ c of the regolith for constant thermal properties and a simplyfied geometry. In the inversion, the problem of deriving the unknown thermal properties of a medium from known heat sources and temperatures is an Identification Heat Conduction Problem (IDHCP), an ill--posed inverse problem. Assuming that thermal conductivity λ and heat capacity ρ c are linear functions of temperature (which is reasonable in most cases), one can apply a Kirchhoff transformation to linearize the heat conduction equation, which minimizes computing time. Then the error functional, i.e. the difference between the measured temperature response of the heater and the predicted temperature response, can be minimized, thus solving for thermal dissusivity κ = λ / (ρ c), wich will complete the set of parameters needed for a detailed description of thermal properties of the lunar regolith. Results of model calculations will be presented, in which synthetic data and calibration data are used to invert the unknown thermal diffusivity of the unknown medium by means of a modified Newton Method. Due to the ill-posedness of the problem, the number of parameters to be solved for should be limited. As the model calculations reveal, a homogeneous regolith allows for a fast and accurate inversion.
Study of multilayer thermal insulation by inverse problems method
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2009-11-01
The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
Optimization method for an evolutional type inverse heat conduction problem
NASA Astrophysics Data System (ADS)
Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu
2008-01-01
This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.
Effects of adaptive refinement on the inverse EEG solution
NASA Astrophysics Data System (ADS)
Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.
1995-10-01
One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.
Inversion of Robin coefficient by a spectral stochastic finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Bangti; Zou Jun
2008-03-01
This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.
2009-12-01
The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.
NASA Astrophysics Data System (ADS)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.
NASA Technical Reports Server (NTRS)
Oliver, A. Brandon
2017-01-01
Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.
NASA Astrophysics Data System (ADS)
Ren, Qianci
2018-04-01
Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.
Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction
NASA Technical Reports Server (NTRS)
Oliver, A. Brandon; Amar, Adam J.
2016-01-01
Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.
Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction
NASA Technical Reports Server (NTRS)
Oliver, A Brandon; Amar, Adam J.
2016-01-01
Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems
Inverse problem of the vibrational band gap of periodically supported beam
NASA Astrophysics Data System (ADS)
Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei
2017-04-01
The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
NASA Astrophysics Data System (ADS)
Kelbert, A.; Egbert, G. D.; Sun, J.
2011-12-01
Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Exploring L1 model space in search of conductivity bounds for the MT problem
NASA Astrophysics Data System (ADS)
Wheelock, B. D.; Parker, R. L.
2013-12-01
Geophysical inverse problems of the type encountered in electromagnetic techniques are highly non-unique. As a result, any single inverted model, though feasible, is at best inconclusive and at worst misleading. In this paper, we use modified inversion methods to establish bounds on electrical conductivity within a model of the earth. Our method consists of two steps, each making use of the 1-norm in model regularization. Both 1-norm minimization problems are framed without approximation as non-negative least-squares (NNLS) problems. First, we must identify a parsimonious set of regions within the model for which upper and lower bounds on average conductivity will be sought. This is accomplished by minimizing the 1-norm of spatial variation, which produces a model with a limited number of homogeneous regions; in fact, the number of homogeneous regions will never be greater than the number of data, regardless of the number of free parameters supplied. The second step establishes bounds for each of these regions with pairs of inversions. The new suite of inversions also uses a 1-norm penalty, but applied to the conductivity values themselves, rather than the spatial variation thereof. In the bounding step we use the 1-norm of our model parameters because it is proportional to average conductivity. For a lower bound on average conductivity, the 1-norm within a bounding region is minimized. For an upper bound on average conductivity, the 1-norm everywhere outside a bounding region is minimized. The latter minimization has the effect of concentrating conductance into the bounding region. Taken together, these bounds are a measure of the uncertainty in the associated region of our model. Starting with a blocky inverse solution is key in the selection of the bounding regions. Of course, there is a tradeoff between resolution and uncertainty: an increase in resolution (smaller bounding regions), results in greater uncertainty (wider bounds). Minimization of the 1-norm of spatial variation delivers the fewest possible regions defined by a mean conductivity, the quantity we wish to bound. Thus, these regions present a natural set for which the most narrow and discriminating bounds can be found. For illustration, we apply these techniques to synthetic magnetotelluric (MT) data sets resulting from one-dimensional (1D) earth models. In each case we find that with realistic data coverage, any single inverted model can often stray from the truth, while the computed bounds on an encompassing region contain both the inverted and the true conductivities, indicating that our measure of model uncertainty is robust. Such estimates of uncertainty for conductivity can then be translated to bounds on important petrological parameters such as mineralogy, porosity, saturation, and fluid type.
Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.
NASA Astrophysics Data System (ADS)
Xia, Jake Jiqing
The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Minimizing EIT image artefacts from mesh variability in finite element models.
Adler, Andy; Lionheart, William R B
2011-07-01
Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.
NASA Astrophysics Data System (ADS)
Codd, A. L.; Gross, L.
2018-03-01
We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.
3D CSEM inversion based on goal-oriented adaptive finite element method
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to themore » full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.« less
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
NASA Technical Reports Server (NTRS)
Pizzo, Michelle; Daryabeigi, Kamran; Glass, David
2015-01-01
The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
NASA Astrophysics Data System (ADS)
Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.
2016-11-01
Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.
Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Schwede, R. L.; Li, W.
2012-12-01
Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.
Efficient 3D inversions using the Richards equation
NASA Astrophysics Data System (ADS)
Cockett, Rowan; Heagy, Lindsey J.; Haber, Eldad
2018-07-01
Fluid flow in the vadose zone is governed by the Richards equation; it is parameterized by hydraulic conductivity, which is a nonlinear function of pressure head. Investigations in the vadose zone typically require characterizing distributed hydraulic properties. Water content or pressure head data may include direct measurements made from boreholes. Increasingly, proxy measurements from hydrogeophysics are being used to supply more spatially and temporally dense data sets. Inferring hydraulic parameters from such datasets requires the ability to efficiently solve and optimize the nonlinear time domain Richards equation. This is particularly important as the number of parameters to be estimated in a vadose zone inversion continues to grow. In this paper, we describe an efficient technique to invert for distributed hydraulic properties in 1D, 2D, and 3D. Our technique does not store the Jacobian matrix, but rather computes its product with a vector. Existing literature for the Richards equation inversion explicitly calculates the sensitivity matrix using finite difference or automatic differentiation, however, for large scale problems these methods are constrained by computation and/or memory. Using an implicit sensitivity algorithm enables large scale inversion problems for any distributed hydraulic parameters in the Richards equation to become tractable on modest computational resources. We provide an open source implementation of our technique based on the SimPEG framework, and show it in practice for a 3D inversion of saturated hydraulic conductivity using water content data through time.
NASA Astrophysics Data System (ADS)
Revil, A.; Jardani, A.; Dupont, J.
2012-12-01
The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution associated with a low density of available piezometers. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity. We use a stochastic joint inversion of Direct Current (DC) resistivity and Self-Potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field of an heterogeneous aquifer. The pilot point parameterization is used to avoid over-parameterization of the inverse problem. Bounds on the model parameters are used to promote a consistent Markov chain Monte Carlo sampling of the hydrogeological parameters of the model. To evaluate the effectiveness of the inversion process, we compare several scenarios where the geophysical data are coupled or not to the hydrogeological data to map the hydraulic conductivity. We first test the effectiveness of the inversion of each type of data alone, and then we combine the methods two by two. We finally combine all the information together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. The results of the inversion reveal that the self-potential data improve the estimate of hydraulic conductivity especially when the self-potential data are combined to the salt concentration measurement in the second well or to the time-lapse electrical resistivity data. Various tests are also performed to quantify the uncertainty in the inversion when for instance the semi-variogram is not known and its parameters should be inverted as well.
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Jones, A. G.; Roux, E.; Lebedev, S.
2009-12-01
Recently different studies were undertaken on the correlation between diverse geophysical datasets. Magnetotelluric (MT) data are used to map the electrical conductivity structure behind the Earth, but one of the problems in MT method is the lack in resolution in mapping zones beneath a region of high conductivity. Joint inversion of different datasets in which a common structure is recognizable reduces non-uniqueness and may improve the quality of interpretation when different dataset are sensitive to different physical properties with an underlined common structure. A common structure is recognized if the change of physical properties occur at the same spatial locations. Common structure may be recognized in 1D inversion of seismic and MT datasets, and numerous authors show that also 2D common structure may drive to an improvement of inversion quality while dataset are jointly inverted. In this presentation a tool to constrain MT 2D inversion with phase velocity of surface wave seismic data (SW) is proposed and is being developed and tested on synthetic data. Results obtained suggest that a joint inversion scheme could be applied with success along a section profile for which data are compatible with a 2D MT model.
NASA Astrophysics Data System (ADS)
Jardani, A.; Revil, A.; Dupont, J. P.
2013-02-01
The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity field.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
NASA Astrophysics Data System (ADS)
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2016-12-01
Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which is a practical computational time for the inverse problem.
Source localization in electromyography using the inverse potential problem
NASA Astrophysics Data System (ADS)
van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.
2011-02-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.
NASA Astrophysics Data System (ADS)
Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf
2017-04-01
In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.
2005-01-01
This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.
NASA Astrophysics Data System (ADS)
Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre
2014-12-01
In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.
Dynamic data integration and stochastic inversion of a confined aquifer
NASA Astrophysics Data System (ADS)
Wang, D.; Zhang, Y.; Irsa, J.; Huang, H.; Wang, L.
2013-12-01
Much work has been done in developing and applying inverse methods to aquifer modeling. The scope of this paper is to investigate the applicability of a new direct method for large inversion problems and to incorporate uncertainty measures in the inversion outcomes (Wang et al., 2013). The problem considered is a two-dimensional inverse model (50×50 grid) of steady-state flow for a heterogeneous ground truth model (500×500 grid) with two hydrofacies. From the ground truth model, decreasing number of wells (12, 6, 3) were sampled for facies types, based on which experimental indicator histograms and directional variograms were computed. These parameters and models were used by Sequential Indicator Simulation to generate 100 realizations of hydrofacies patterns in a 100×100 (geostatistical) grid, which were conditioned to the facies measurements at wells. These realizations were smoothed with Simulated Annealing, coarsened to the 50×50 inverse grid, before they were conditioned with the direct method to the dynamic data, i.e., observed heads and groundwater fluxes at the same sampled wells. A set of realizations of estimated hydraulic conductivities (Ks), flow fields, and boundary conditions were created, which centered on the 'true' solutions from solving the ground truth model. Both hydrofacies conductivities were computed with an estimation accuracy of ×10% (12 wells), ×20% (6 wells), ×35% (3 wells) of the true values. For boundary condition estimation, the accuracy was within × 15% (12 wells), 30% (6 wells), and 50% (3 wells) of the true values. The inversion system of equations was solved with LSQR (Paige et al, 1982), for which coordinate transform and matrix scaling preprocessor were used to improve the condition number (CN) of the coefficient matrix. However, when the inverse grid was refined to 100×100, Gaussian Noise Perturbation was used to limit the growth of the CN before the matrix solve. To scale the inverse problem up (i.e., without smoothing and coarsening and therefore reducing the associated estimation uncertainty), a parallel LSQR solver was written and verified. For the 50×50 grid, the parallel solver sped up the serial solution time by 14X using 4 CPUs (research on parallel performance and scaling is ongoing). A sensitivity analysis was conducted to examine the relation between the observed data and the inversion outcomes, where measurement errors of increasing magnitudes (i.e., ×1, 2, 5, 10% of the total head variation and up to ×2% of the total flux variation) were imposed on the observed data. Inversion results were stable but the accuracy of Ks and boundary estimation degraded with increasing errors, as expected. In particular, quality of the observed heads is critical to hydraulic head recovery, while quality of the observed fluxes plays a dominant role in K estimation. References: Wang, D., Y. Zhang, J. Irsa, H. Huang, and L. Wang (2013), Data integration and stochastic inversion of a confined aquifer with high performance computing, Advances in Water Resources, in preparation. Paige, C. C., and M. A. Saunders (1982), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Transactions on Mathematical Software, 8(1), 43-71.
Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2016-09-01
Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.
Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew
2016-07-01
Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Çakır, Süleyman
2017-10-01
In this study, a two-phase methodology for resource allocation problems under a fuzzy environment is proposed. In the first phase, the imprecise Shannon's entropy method and the acceptability index are suggested, for the first time in the literature, to select input and output variables to be used in the data envelopment analysis (DEA) application. In the second step, an interval inverse DEA model is executed for resource allocation in a short run. In an effort to exemplify the practicality of the proposed fuzzy model, a real case application has been conducted involving 16 cement firms listed in Borsa Istanbul. The results of the case application indicated that the proposed hybrid model is a viable procedure to handle input-output selection and resource allocation problems under fuzzy conditions. The presented methodology can also lend itself to different applications such as multi-criteria decision-making problems.
NASA Astrophysics Data System (ADS)
Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.
2016-03-01
Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.
The Calderón problem with corrupted data
NASA Astrophysics Data System (ADS)
Caro, Pedro; Garcia, Andoni
2017-08-01
We consider the inverse Calderón problem consisting of determining the conductivity inside a medium by electrical measurements on its surface. Ideally, these measurements determine the Dirichlet-to-Neumann map and, therefore, one usually assumes the data to be given by such a map. This situation corresponds to having access to infinite-precision measurements, which is totally unrealistic. In this paper, we study the Calderón problem assuming the data to contain measurement errors and provide formulas to reconstruct the conductivity and its normal derivative on the surface. Additionally, we state the rate convergence of the method. Our approach is theoretical and has a stochastic flavour.
Numerical methods for the inverse problem of density functional theory
Jensen, Daniel S.; Wasserman, Adam
2017-07-17
Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less
Numerical methods for the inverse problem of density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Daniel S.; Wasserman, Adam
Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less
Global uniqueness in an inverse problem for time fractional diffusion equations
NASA Astrophysics Data System (ADS)
Kian, Y.; Oksanen, L.; Soccorsi, E.; Yamamoto, M.
2018-01-01
Given (M , g), a compact connected Riemannian manifold of dimension d ⩾ 2, with boundary ∂M, we consider an initial boundary value problem for a fractional diffusion equation on (0 , T) × M, T > 0, with time-fractional Caputo derivative of order α ∈ (0 , 1) ∪ (1 , 2). We prove uniqueness in the inverse problem of determining the smooth manifold (M , g) (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solutions on a subset of ∂M at fixed time. In the "flat" case where M is a compact subset of Rd, two out the three coefficients ρ (density), a (conductivity) and q (potential) appearing in the equation ρ ∂tα u - div (a∇u) + qu = 0 on (0 , T) × M are recovered simultaneously.
Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre
2013-01-01
The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.
Subspace-based analysis of the ERT inverse problem
NASA Astrophysics Data System (ADS)
Ben Hadj Miled, Mohamed Khames; Miller, Eric L.
2004-05-01
In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.
NASA Astrophysics Data System (ADS)
Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus
2018-05-01
In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
Accurate reconstruction of the thermal conductivity depth profile in case hardened steel
NASA Astrophysics Data System (ADS)
Celorrio, Ricardo; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Mandelis, Andreas
2010-04-01
The problem of retrieving a nonhomogeneous thermal conductivity profile from photothermal radiometry data is addressed from the perspective of a stabilized least square fitting algorithm. We have implemented an inversion method with several improvements: (a) a renormalization of the experimental data which removes not only the instrumental factor, but the constants affecting the amplitude and the phase as well, (b) the introduction of a frequency weighting factor in order to balance the contribution of high and low frequencies in the inversion algorithm, (c) the simultaneous fitting of amplitude and phase data, balanced according to their experimental noises, (d) a modified Tikhonov regularization procedure has been introduced to stabilize the inversion, and (e) the Morozov discrepancy principle has been used to stop the iterative process automatically, according to the experimental noise, to avoid "overfitting" of the experimental data. We have tested this improved method by fitting theoretical data generated from a known conductivity profile. Finally, we have applied our method to real data obtained in a hardened stainless steel plate. The reconstructed in-depth thermal conductivity profile exhibits low dispersion, even at the deepest locations, and is in good anticorrelation with the hardness indentation test.
Easy way to determine quantitative spatial resolution distribution for a general inverse problem
NASA Astrophysics Data System (ADS)
An, M.; Feng, M.
2013-12-01
The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.
Nishida, Atsushi; Richards, Marcus; Stafford, Mai
2016-01-01
Mental health problems in adolescence are predictive of future mental distress and psychopathology; however, few studies investigated adolescent mental health problems in relation to future mental wellbeing and none with follow-up to older age. To test prospective associations between adolescent mental health problems and mental wellbeing and life satisfaction in early old age. A total of 1561 men and women were drawn from the Medical Research Council National Survey of Health and Development (the British 1946 birth cohort). Teachers had previously completed rating scales to assess emotional adjustment and behaviours, which allowed us to extract factors of mental health problems measuring self-organisation, behavioural problems, and emotional problems during adolescence. Between the ages of 60-64 years, mental wellbeing was assessed using the Warwick-Edinburgh Mental Well-being Scale (WEMWBS) and life satisfaction was self-reported using the Satisfaction with Life Scale (SWLS). After controlling for gender, social class of origin, childhood cognitive ability, and educational attainment, adolescent emotional problems were independently inversely associated with mental wellbeing and with life satisfaction. Symptoms of anxiety/depression at 60-64 years explained the association with life satisfaction but not with mental wellbeing. Associations between adolescent self-organisation and conduct problems and mental wellbeing and life satisfaction were of negligible magnitude, but higher childhood cognitive ability significantly predicted poor life satisfaction in early old age. Adolescent self-organisation and conduct problems may not be predictive of future mental wellbeing and life satisfaction. Adolescent emotional problems may be inversely associated with future wellbeing, and may be associated with lower levels of future life satisfaction through symptoms of anxiety/depression in early old age. Initiatives to prevent and treat emotional problems in adolescence may have long-term benefits which extend into older age.
Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...
2015-08-01
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim; Versteeg, Roelof; Thomle, Jon
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
NASA Astrophysics Data System (ADS)
Ahmed, S.; Salucci, M.; Miorelli, R.; Anselmi, N.; Oliveri, G.; Calmon, P.; Reboud, C.; Massa, A.
2017-10-01
A quasi real-time inversion strategy is presented for groove characterization of a conductive non-ferromagnetic tube structure by exploiting eddy current testing (ECT) signal. Inversion problem has been formulated by non-iterative Learning-by-Examples (LBE) strategy. Within the framework of LBE, an efficient training strategy has been adopted with the combination of feature extraction and a customized version of output space filling (OSF) adaptive sampling in order to get optimal training set during offline phase. Partial Least Squares (PLS) and Support Vector Regression (SVR) have been exploited for feature extraction and prediction technique respectively to have robust and accurate real time inversion during online phase.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
Robinson, Katherine M; Ninowski, Jerilyn E
2003-12-01
Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.
NASA Astrophysics Data System (ADS)
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Imaging of isotropic and anisotropic conductivities from power densities in three dimensions
NASA Astrophysics Data System (ADS)
Monard, François; Rim, Donsub
2018-07-01
We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.
Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai
2004-10-01
Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.
MT+, integrating magnetotellurics to determine earth structure, physical state, and processes
Bedrosian, P.A.
2007-01-01
As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.
Children's Understanding of the Arithmetic Concepts of Inversion and Associativity
ERIC Educational Resources Information Center
Robinson, Katherine M.; Ninowski, Jerilyn E.; Gray, Melissa L.
2006-01-01
Previous studies have shown that even preschoolers can solve inversion problems of the form a + b - b by using the knowledge that addition and subtraction are inverse operations. In this study, a new type of inversion problem of the form d x e [divided by] e was also examined. Grade 6 and 8 students solved inversion problems of both types as well…
2D Inversion of Transient Electromagnetic Method (TEM)
NASA Astrophysics Data System (ADS)
Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando
2017-04-01
A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most promising regions for groundwater exploration. In addition, there was the development of new geophysical software that can be applied as an important tool for many geological/hydrogeological applications and educational purposes.
Interactive Inverse Groundwater Modeling - Addressing User Fatigue
NASA Astrophysics Data System (ADS)
Singh, A.; Minsker, B. S.
2006-12-01
This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these machine learning models and the advantages and disadvantages for each approach are discussed. These results indicate that using the proposed two-step methodology leads to significant reduction in user-fatigue without deteriorating the solution quality of the IMOGA.
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
High Resolution Global Electrical Conductivity Variations in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Kelbert, A.; Sun, J.; Egbert, G. D.
2013-12-01
Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic observatory data, and use additional constraints to interpret these results in terms of mantle processes and compositional variations.
Information fusion in regularized inversion of tomographic pumping tests
Bohling, Geoffrey C.; ,
2008-01-01
In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2016-01-01
Despite impressive progress in the development and application of electromagnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical conductivity within the Earth, there is one question which remains poorly addressed—uncertainty quantification of the recovered conductivity models. Apparently, only an inversion based on a statistical approach provides a systematic framework to quantify such uncertainties. The Metropolis-Hastings (M-H) algorithm is the most popular technique for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. However, all statistical inverse schemes require an enormous amount of forward simulations and thus appear to be extremely demanding computationally, if not prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D modelling codes which can run large-scale 3-D models of practical interest for fractions of a second on high-performance multi-core platforms. But, even with these codes, the challenge for M-H methods is to construct proposal functions that simultaneously provide a good approximation of the target density function while being inexpensive to be sampled. In this paper we address both of these issues. First we introduce a variant of the M-H method which uses information about the local gradient and Hessian of the penalty function. This, in particular, allows us to exploit adjoint-based machinery that has been instrumental for the fast solution of deterministic inverse problems. We explain why this modification of M-H significantly accelerates sampling of the posterior probability distribution. In addition we show how Hessian handling (inverse, square root) can be made practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we discuss uncertainty analysis based on stochastic inversion results. In addition, we demonstrate how this analysis can be performed within a deterministic approach. In the second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.
Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.
Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L
2015-09-01
Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be obtained. The authors found that, by selectively exciting parts of the volume, the authors could increase the reconstruction quality even further while reducing the amount of measurements. Additionally, the inverse solution of this activation method degrades slower for increasing volumes. Finally, the methodology was applied to noisy EPR measurements: using the reduced EPR setup's symmetry and the partial activation method, an increase in reconstruction quality of ≈ 80% can be seen with a speedup of the measurements with 10%. Applying the aforementioned requirements to the EPR setup and stabilizing the EPR measurements showed a tremendous increase in noise robustness, thereby making EPR a valuable method for quantitative imaging of multidimensional MNP distributions.
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
NASA Astrophysics Data System (ADS)
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
The Earthquake‐Source Inversion Validation (SIV) Project
Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf
2016-01-01
Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters
2017-03-07
please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for
A Forward Glimpse into Inverse Problems through a Geology Example
ERIC Educational Resources Information Center
Winkel, Brian J.
2012-01-01
This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)
NASA Astrophysics Data System (ADS)
Piero Deidda, Gian; Coppola, Antonio; Dragonetti, Giovanna; Comegna, Alessandro; Rodriguez, Giuseppe; Vignoli, Giulio
2017-04-01
The ability to determine the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) in the field. Measurements of σb can be made with either in situ or remote devices (Rhoades and Oster, 1986; Rhoades and Corwin, 1990; Rhoades and Miyamoto, 1990). Time Domain Reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated in the laboratory for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation volume and thus they only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, non-invasive electromagnetic induction (EMI) techniques can be used for extensively mapping the bulk electrical conductivity in the field. The problem is that all these techniques give depth-weighted apparent electrical conductivity (ECa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of local σb in the soil profile, one may invert the signal coming from EMI sensors. Most studies use the linear model proposed by McNeill (1980), describing the relative depth-response of the ground conductivity meter. By using the forward linear model of McNeill, Borchers et al. (1997) implemented a Least Squares inverse procedure with second order Tikhonov regularization, to estimate σb vertical distribution from EMI field data. More recent studies (Hendrickx et al., 2002; Deidda et al., 2003; Deidda et al., 2014, among others), extended the approach to a more complicated non linear model of the response of a ground conductivity meter to changes with depth of σb. Noteworthy, these inverse procedures are only based on electromagnetic physics. Thus, they are only based on ECa readings, possibly taken with both the horizontal and vertical configurations and with the sensor at different heights above the ground, and do not require any further field calibration. Nevertheless, as discussed by Hendrickx et al. (2002), important issues on inverse approaches are about: i) the applicability to heterogeneous field soils of physical equations originally developed for the electromagnetic response of homogeneous media and ii) nonuniqueness and instability problems inherent to inverse procedures, even after Tikhonov regularization. Besides, as discussed by Cook and Walker (1992), these mathematical inversions procedures using layered-earth models were originally designed for interpreting porous systems with distinct layering. Where subsurface layers are not sharply defined, this type of inversion may be subject to considerable error. With these premises, the main aim of this study is estimating the vertical σb distribution by ECa measured using ground surface EMI methods under different salinity conditions and using TDR data as ground-truth data for validation of the inversion procedure. The latter is based on a regularized 1D inversion procedure designed to swiftly manage nonlinear multiple EMI-depth responses (Deidda et al., 2014). It is based on the coupling of the damped Gauss-Newton method with either the truncated singular value decomposition (TSVD) or the truncated generalized singular value decomposition (TGSVD), and it implements an explicit (exact) representation of the Jacobian to solve the nonlinear inverse problem. The experimental field (30 m x 15.6 m; for a total area of 468 m2) was divided into three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped with a sprinkler irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii), a Geonics EM-38; iii). Overall, fifteen measurement campaigns were carried out.
Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi
2012-11-01
Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
NASA Astrophysics Data System (ADS)
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh
2017-01-01
Background: Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. Materials and Methods: This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. Results: The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse (P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse (P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students (P = 0.0004). Conclusions: Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students. PMID:28904539
Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh
2017-01-01
Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse ( P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse ( P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students ( P = 0.0004). Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students.
Salivary oxytocin in adolescents with conduct problems and callous-unemotional traits.
Levy, Tomer; Bloch, Yuval; Bar-Maisels, Meytal; Gat-Yablonski, Galia; Djalovski, Amir; Borodkin, Katy; Apter, Alan
2015-12-01
Callous-unemotional (CU) traits correlate with the severity and prognosis of conduct disorder in youth. The neuropeptide oxytocin (OT) has been linked to prosocial behaviors, including empathy and collaboration with others. This study discusses a possible role for OT in the biology of delinquent behavior. We hypothesized that in delinquent youth OT secretion will correlate with the severity of conduct problems and specifically with the level of CU traits. The study group included 67 male adolescents (mean age 16.2 years) undergoing residential treatment, previously assessed by an open clinical interview and history for the psychiatric diagnosis. Staff based Inventory of Callous-Unemotional traits for psychopathy and Strength and Difficulties Questionnaire were administered, and patients' medical and social personal files were systematically coded for previous history of antisocial acts using the Brown-Goodwin Questionnaire. Salivary OT was assayed by ELISA. Salivary OT levels were inversely correlated with conduct problems severity on Strength and Difficulties Questionnaire (r = -0.27; p ≤ 0.01). Recorded history of antisocial acts did not correlate with current OT levels. Odds ratio (OR) for significant CU traits among subjects with conduct problems was increased in low-OT (OR = 14, p ≤ 0.05) but not in high-OT subjects (OR = 6, p ≥ 0.05). Children with conduct problems and low levels of salivary OT are at risk for significant CU traits. These results suggest a possible role for salivary OT as a biomarker for CU traits and conduct problems severity.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Bayesian approach to inverse statistical mechanics
NASA Astrophysics Data System (ADS)
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
An inverse problem in thermal imaging
NASA Technical Reports Server (NTRS)
Bryan, Kurt; Caudill, Lester F., Jr.
1994-01-01
This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.
Inverse problems in quantum chemistry
NASA Astrophysics Data System (ADS)
Karwowski, Jacek
Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.
Application of a stochastic inverse to the geophysical inverse problem
NASA Technical Reports Server (NTRS)
Jordan, T. H.; Minster, J. B.
1972-01-01
The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Review on solving the forward problem in EEG source analysis
Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace
2007-01-01
Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144
NASA Astrophysics Data System (ADS)
Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello
2018-03-01
An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.
NASA Astrophysics Data System (ADS)
Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro
2005-01-01
The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in atmospheric sciences and oceanography. Last but not least is our gratitude. As editors we would like to express our sincere thanks to all the plenary and invited speakers, the members of the International Scientific Committee and the Advisory Board for the success of the conference, which has given rise to this present volume of selected papers. We would also like to thank Mr Wang Yanbo, Miss Wan Xiqiong and the graduate students at Fudan University for their effective work to make this conference a success. The conference was financially supported by the NFS of China, the Mathematical Center of Ministry of Education of China, E-Institutes of Shanghai Municipal Education Commission (No E03004) and Fudan University, Grant 15340027 from the Japan Society for the Promotion of Science, and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Characterization for stability in planar conductivities
NASA Astrophysics Data System (ADS)
Faraco, Daniel; Prats, Martí
2018-05-01
We find a complete characterization for sets of uniformly strongly elliptic and isotropic conductivities with stable recovery in the L2 norm when the data of the Calderón Inverse Conductivity Problem is obtained in the boundary of a disk and the conductivities are constant in a neighborhood of its boundary. To obtain this result, we present minimal a priori assumptions which turn out to be sufficient for sets of conductivities to have stable recovery in a bounded and rough domain. The condition is presented in terms of the integral moduli of continuity of the coefficients involved and their ellipticity bound as conjectured by Alessandrini in his 2007 paper, giving explicit quantitative control for every pair of conductivities.
Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.
A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment
NASA Astrophysics Data System (ADS)
Mehrabian, Hatef; Campbell, Gordon; Samani, Abbas
2010-12-01
In breast elastography, breast tissue usually undergoes large compression resulting in significant geometric and structural changes. This implies that breast elastography is associated with tissue nonlinear behavior. In this study, an elastography technique is presented and an inverse problem formulation is proposed to reconstruct parameters characterizing tissue hyperelasticity. Such parameters can potentially be used for tumor classification. This technique can also have other important clinical applications such as measuring normal tissue hyperelastic parameters in vivo. Such parameters are essential in planning and conducting computer-aided interventional procedures. The proposed parameter reconstruction technique uses a constrained iterative inversion; it can be viewed as an inverse problem. To solve this problem, we used a nonlinear finite element model corresponding to its forward problem. In this research, we applied Veronda-Westmann, Yeoh and polynomial models to model tissue hyperelasticity. To validate the proposed technique, we conducted studies involving numerical and tissue-mimicking phantoms. The numerical phantom consisted of a hemisphere connected to a cylinder, while we constructed the tissue-mimicking phantom from polyvinyl alcohol with freeze-thaw cycles that exhibits nonlinear mechanical behavior. Both phantoms consisted of three types of soft tissues which mimic adipose, fibroglandular tissue and a tumor. The results of the simulations and experiments show feasibility of accurate reconstruction of tumor tissue hyperelastic parameters using the proposed method. In the numerical phantom, all hyperelastic parameters corresponding to the three models were reconstructed with less than 2% error. With the tissue-mimicking phantom, we were able to reconstruct the ratio of the hyperelastic parameters reasonably accurately. Compared to the uniaxial test results, the average error of the ratios of the parameters reconstructed for inclusion to the middle and external layers were 13% and 9.6%, respectively. Given that the parameter ratios of the abnormal tissues to the normal ones range from three times to more than ten times, this accuracy is sufficient for tumor classification.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing
NASA Technical Reports Server (NTRS)
Chu, W. P.
1985-01-01
The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.
Computational inverse methods of heat source in fatigue damage problems
NASA Astrophysics Data System (ADS)
Chen, Aizhou; Li, Yuan; Yan, Bo
2018-04-01
Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.
Breast ultrasound computed tomography using waveform inversion with source encoding
NASA Astrophysics Data System (ADS)
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin
2009-01-01
We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
Hybrid modeling of spatial continuity for application to numerical inverse problems
Friedel, Michael J.; Iwashita, Fabio
2013-01-01
A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.
FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems
NASA Astrophysics Data System (ADS)
Vourc'h, Eric; Rodet, Thomas
2015-11-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.
NASA Astrophysics Data System (ADS)
Long, Samuel R. M.; Smith, Richard S.; Hearst, Robert B.
2017-06-01
Resistivity methods are commonly used in mineral exploration to map lithology, structure, sulphides and alteration. In the Athabasca Basin, resistivity methods are used to detect alteration associated with uranium. At the Midwest deposit, there is an alteration zone in the Athabasca sandstones that is above a uraniferous conductive graphitic fault in the basement and below a conductive lake at surface. Previous geophysical work in this area has yielded resistivity sections that we feel are ambiguous in the area where the alteration is expected. Resolve® and TEMPEST sections yield an indistinct alteration zone, while two-dimensional (2D) inversions of the ground resistivity data show an equivocal smeared conductive feature in the expected location between the conductive graphite and the conductive lake. Forward modelling alone cannot identify features in the pseudosections that are clearly associated with alteration, as the section is dominated by the feature associated with the near-surface conductive lake; inverse modelling alone produces sections that are smeared and equivocal. We advocate an approach that uses a combination of forward and inverse modelling. We generate a forward model from a synthetic geoelectric section; this forward data is then inverse modelled and compared with the inverse model generated from the field data using the same inversion parameters. The synthetic geoelectric section is then adjusted until the synthetic inverse model closely matches the field inverse model. We found that this modelling process required a conductive alteration zone in the sandstone above the graphite, as removing the alteration zone from the sandstone created an inverse section very dissimilar to the inverse section derived from the field data. We therefore conclude that the resistivity method is able to identify conductive alteration at Midwest even though it is below a conductive lake and above a conductive graphitic fault. We also concluded that resistivity inversions suggest a conductive paleoweathering surface on the top of the basement rocks at the basin/basement unconformity.
NASA Astrophysics Data System (ADS)
Penfold, Scott; Zalas, Rafał; Casiraghi, Margherita; Brooke, Mark; Censor, Yair; Schulte, Reinhard
2017-05-01
A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy treatment planning with dose-volume constraints included in the planning algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a percentage-violation constraint in the model problem and its handling by continuous (as opposed to integer) methods. We propose an iterative algorithmic framework for solving such a problem by applying the feasibility-seeking CQ-algorithm of Byrne combined with the automatic relaxation method that uses cyclic projections. Detailed implementation instructions are furnished. Functionality of the algorithm was demonstrated through the creation of an intensity-modulated proton therapy plan for a simple 2D C-shaped geometry and also for a realistic base-of-skull chordoma treatment site. Monte Carlo simulations of proton pencil beams of varying energy were conducted to obtain dose distributions for the 2D test case. A research release of the Pinnacle 3 proton treatment planning system was used to extract pencil beam doses for a clinical base-of-skull chordoma case. In both cases the beamlet doses were calculated to satisfy dose-volume constraints according to our new algorithm. Examination of the dose-volume histograms following inverse planning with our algorithm demonstrated that it performed as intended. The application of our proposed algorithm to dose-volume constraint inverse planning was successfully demonstrated. Comparison with optimized dose distributions from the research release of the Pinnacle 3 treatment planning system showed the algorithm could achieve equivalent or superior results.
Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S
2014-09-01
Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.
NASA Astrophysics Data System (ADS)
Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.
2016-12-01
Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new forward model during each iteration of the inversion.
Children's Understanding of the Inverse Relation between Multiplication and Division
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2009-01-01
Children's understanding of the inversion concept in multiplication and division problems (i.e., that on problems of the form "d multiplied by e/e" no calculations are required) was investigated. Children in Grades 6, 7, and 8 completed an inversion problem-solving task, an assessment of procedures task, and a factual knowledge task of simple…
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2018-05-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2017-12-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
NASA Astrophysics Data System (ADS)
Zaikin, Oleg; Petrov, Pavel; Posypkin, Mikhail; Bulavintsev, Vadim; Kurochkin, Ilya
2017-12-01
A volunteer computing project aimed at solving computationally hard inverse problems in underwater acoustics is described. This project was used to study the possibilities of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. The computational capabilities provided by the project allowed us to investigate the accuracy of the inversion for different mesh sizes of the sound speed profile discretization grid. This problem suits well for volunteer computing because it can be easily decomposed into independent simpler subproblems.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Advanced computer techniques for inverse modeling of electric current in cardiac tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.
1996-08-01
For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bledsoe, Keith C.
2015-04-01
The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less
NASA Astrophysics Data System (ADS)
Shi, X.; Utada, H.; Jiaying, W.
2009-12-01
The vector finite-element method combined with divergence corrections based on the magnetic field H, referred to as VFEH++ method, is developed to simulate the magnetotelluric (MT) responses of 3-D conductivity models. The advantages of the new VFEH++ method are the use of edge-elements to eliminate the vector parasites and the divergence corrections to explicitly guarantee the divergence-free conditions in the whole modeling domain. 3-D MT topographic responses are modeling using the new VFEH++ method, and are compared with those calculated by other numerical methods. The results show that MT responses can be modeled highly accurate using the VFEH+ +method. The VFEH++ algorithm is also employed for the 3-D MT data inversion incorporating topography. The 3-D MT inverse problem is formulated as a minimization problem of the regularized misfit function. In order to avoid the huge memory requirement and very long time for computing the Jacobian sensitivity matrix for Gauss-Newton method, we employ the conjugate gradient (CG) approach to solve the inversion equation. In each iteration of CG algorithm, the cost computation is the product of the Jacobian sensitivity matrix with a model vector x or its transpose with a data vector y, which can be transformed into two pseudo-forwarding modeling. This avoids the full explicitly Jacobian matrix calculation and storage which leads to considerable savings in the memory required by the inversion program in PC computer. The performance of CG algorithm will be illustrated by several typical 3-D models with horizontal earth surface and topographic surfaces. The results show that the VFEH++ and CG algorithms can be effectively employed to 3-D MT field data inversion.
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Use of Inverse Reinforcement Learning for Identity Prediction
NASA Technical Reports Server (NTRS)
Hayes, Roy; Bao, Jonathan; Beling, Peter; Horowitz, Barry
2011-01-01
We adopt Markov Decision Processes (MDP) to model sequential decision problems, which have the characteristic that the current decision made by a human decision maker has an uncertain impact on future opportunity. We hypothesize that the individuality of decision makers can be modeled as differences in the reward function under a common MDP model. A machine learning technique, Inverse Reinforcement Learning (IRL), was used to learn an individual's reward function based on limited observation of his or her decision choices. This work serves as an initial investigation for using IRL to analyze decision making, conducted through a human experiment in a cyber shopping environment. Specifically, the ability to determine the demographic identity of users is conducted through prediction analysis and supervised learning. The results show that IRL can be used to correctly identify participants, at a rate of 68% for gender and 66% for one of three college major categories.
The application of the pilot points in groundwater numerical inversion model
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Cheng, Lirong
2015-04-01
Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity
Inductive System for Reliable Magnesium Level Detection in a Titanium Reduction Reactor
NASA Astrophysics Data System (ADS)
Krauter, Nico; Eckert, Sven; Gundrum, Thomas; Stefani, Frank; Wondrak, Thomas; Frick, Peter; Khalilov, Ruslan; Teimurazov, Andrei
2018-05-01
The determination of the Magnesium level in a Titanium reduction retort by inductive methods is often hampered by the formation of Titanium sponge rings which disturb the propagation of electromagnetic signals between excitation and receiver coils. We present a new method for the reliable identification of the Magnesium level which explicitly takes into account the presence of sponge rings with unknown geometry and conductivity. The inverse problem is solved by a look-up-table method, based on the solution of the inductive forward problems for several tens of thousands parameter combinations.
Optimal Design for Parameter Estimation in EEG Problems in a 3D Multilayered Domain
2014-03-30
dipole, C(x) = q δ(x − rq), where δ is the Dirac distribution, rq is a fixed point in the brain which represents the dipole location, and q is the dipole...again based on the formulations discussed above, we consider a function F of the form F (x, θ) = qδ(x− rq), where δ denotes the dirac distribution...Inverse Problems, 12, (1996), 565–577. [5] H.T. Banks, M.W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Conductive Inter- faces and
Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.
2015-12-01
Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.
NASA Astrophysics Data System (ADS)
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
Korcha, Rachael A; Polcin, Douglas L; Evans, Kristy; Bond, Jason C; Galloway, Gantt P
2014-02-01
Motivational interviewing (MI) for the treatment of alcohol and drug problems is typically conducted over 1 to 3 sessions. The current work evaluates an intensive 9-session version of MI (Intensive MI) compared to a standard single MI session (Standard MI) using 163 methamphetamine (MA) dependent individuals. The primary purpose of this paper is to report the unexpected finding that women with co-occurring alcohol problems in the Intensive MI condition reduced the severity of their alcohol problems significantly more than women in the Standard MI condition at the 6-month follow-up. Stronger perceived alliance with the therapist was inversely associated with alcohol problem severity scores. Findings indicate that Intensive MI is a beneficial treatment for alcohol problems among women with MA dependence. © 2013.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.
2005-01-01
In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.
Computational methods for inverse problems in geophysics: inversion of travel time observations
Pereyra, V.; Keller, H.B.; Lee, W.H.K.
1980-01-01
General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.
A fixed energy fixed angle inverse scattering in interior transmission problem
NASA Astrophysics Data System (ADS)
Chen, Lung-Hui
2017-06-01
We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.
A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data
NASA Astrophysics Data System (ADS)
Mandolesi, Eric; Ogaya, Xenia; Campanyà, Joan; Piana Agostinetti, Nicola
2018-04-01
This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward solutions.
Total-variation based velocity inversion with Bregmanized operator splitting algorithm
NASA Astrophysics Data System (ADS)
Zand, Toktam; Gholami, Ali
2018-04-01
Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.
Zatsiorsky, Vladimir M.
2011-01-01
One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)
NASA Astrophysics Data System (ADS)
2014-10-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.
2008-01-01
A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of this geophysical investigation should help the USACE to maintain the current levee system while also assisting the designers and planners of levee enhancements with the knowledge of what is to be expected from the near-surface geology and where zones of concern may be located.
High effective inverse dynamics modelling for dual-arm robot
NASA Astrophysics Data System (ADS)
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Hollaus, K; Magele, C; Merwa, R; Scharfetter, H
2004-02-01
Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method
Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...
2017-11-20
The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
NASA Astrophysics Data System (ADS)
Jakkareddy, Pradeep S.; Balaji, C.
2016-09-01
This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.
NASA Astrophysics Data System (ADS)
Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien
2015-04-01
Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer- Verlag Berlin Heidelberg ,996p. Doherty J., 2010, PEST: Model-Independent Parameter Estimation. user manual 5th Edition. Watermark, Brisbane, Australia Magri, F., Inbar, N., Siebert C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520(0), 342-355.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Frnakenstein: multiple target inverse RNA folding.
Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun
2012-10-09
RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.
Frnakenstein: multiple target inverse RNA folding
2012-01-01
Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260
NASA Astrophysics Data System (ADS)
Rundell, William; Somersalo, Erkki
2008-07-01
The Inverse Problems International Association (IPIA) awarded the first Calderón Prize to Matti Lassas for his outstanding contributions to the field of inverse problems, especially in geometric inverse problems. The Calderón Prize is given to a researcher under the age of 40 who has made distinguished contributions to the field of inverse problems broadly defined. The first Calderón Prize Committee consisted of Professors Adrian Nachman, Lassi Päivärinta, William Rundell (chair), and Michael Vogelius. William Rundell For the Calderón Prize Committee Prize ceremony The ceremony awarding the Calderón Prize. Matti Lassas is on the left. He and William Rundell are on the right. Photos by P Stefanov. Brief Biography of Matti Lassas Matti Lassas was born in 1969 in Helsinki, Finland, and studied at the University of Helsinki. He finished his Master's studies in 1992 in three years and earned his PhD in 1996. His PhD thesis, written under the supervision of Professor Erkki Somersalo was entitled `Non-selfadjoint inverse spectral problems and their applications to random bodies'. Already in his thesis, Matti demonstrated a remarkable command of different fields of mathematics, bringing together the spectral theory of operators, geometry of Riemannian surfaces, Maxwell's equations and stochastic analysis. He has continued to develop all of these branches in the framework of inverse problems, the most remarkable results perhaps being in the field of differential geometry and inverse problems. Matti has always been a very generous researcher, sharing his ideas with his numerous collaborators. He has authored over sixty scientific articles, among which a monograph on inverse boundary spectral problems with Alexander Kachalov and Yaroslav Kurylev and over forty articles in peer reviewed journals of the highest standards. To get an idea of the wide range of Matti's interests, it is enough to say that he also has three US patents on medical imaging applications. Matti is currently professor of mathematics at Helsinki University of Technology, where he has created his own line of research with young talented researchers around him. He is a central person in the Centre of Excellence in Inverse Problems Research of the Academy of Finland. Previously, Matti Lassas has won several awards in his home country, including the prestigious Vaisala price of the Finnish Academy of Science and Letters in 2004. He is a highly esteemed colleague, teacher and friend, and the Great Diving Beetle of the Finnish Inverse Problems Society (http://venda.uku.fi/research/FIPS/), an honorary title for a person who has no fear of the deep. Erkki Somersalo
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
PREFACE: Inverse Problems in Applied Sciences—towards breakthrough
NASA Astrophysics Data System (ADS)
Cheng, Jin; Iso, Yuusuke; Nakamura, Gen; Yamamoto, Masahiro
2007-06-01
These are the proceedings of the international conference `Inverse Problems in Applied Sciences—towards breakthrough' which was held at Hokkaido University, Sapporo, Japan on 3-7 July 2006 (http://coe.math.sci.hokudai.ac.jp/sympo/inverse/). There were 88 presentations and more than 100 participants, and we are proud to say that the conference was very successful. Nowadays, many new activities on inverse problems are flourishing at many centers of research around the world, and the conference has successfully gathered a world-wide variety of researchers. We believe that this volume contains not only main papers, but also conveys the general status of current research into inverse problems. This conference was the third biennial international conference on inverse problems, the core of which is the Pan-Pacific Asian area. The purpose of this series of conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries, and to lead the organization of activities concerning inverse problems centered in East Asia. The first conference was held at City University of Hong Kong in January 2002 and the second was held at Fudan University in June 2004. Following the preceding two successes, the third conference was organized in order to extend the scope of activities and build useful bridges to the next conference in Seoul in 2008. Therefore this third biennial conference was intended not only to establish collaboration and links between researchers in Asia and leading researchers worldwide in inverse problems but also to nurture interdisciplinary collaboration in theoretical fields such as mathematics, applied fields and evolving aspects of inverse problems. For these purposes, we organized tutorial lectures, serial lectures and a panel discussion as well as conference research presentations. This volume contains three lecture notes from the tutorial and serial lectures, and 22 papers. Especially at this flourishing time, it is necessary to carefully analyse the current status of inverse problems for further development. Thus we have opened with the panel discussion entitled `Future of Inverse Problems' with panelists: Professors J Cheng, H W Engl, V Isakov, R Kress, J-K Seo, G Uhlmann and the commentator: Elaine Longden-Chapman from IOP Publishing. The aims of the panel discussion were to examine the current research status from various viewpoints, to discuss how we can overcome any difficulties and how we can promote young researchers and open new possibilities for inverse problems such as industrial linkages. As one output, the panel discussion has triggered the organization of the Inverse Problems International Association (IPIA) which has led to its first international congress in the summer of 2007. Another remarkable outcome of the conference is, of course, the present volume: this is the very high quality online proceedings volume of Journal of Physics: Conference Series. Readers can see in these proceedings very well written tutorial lecture notes, and very high quality original research and review papers all of which show what was achieved by the time the conference was held. The electronic publication of the proceedings is a new way of publicizing the achievement of the conference. It has the advantage of wide circulation and cost reduction. We believe this is a most efficient method for our needs and purposes. We would like to take this opportunity to acknowledge all the people who helped to organize the conference. Guest Editors Jin Cheng, Fudan University, Shanghai, China Yuusuke Iso, Kyoto University, Kyoto, Japan Gen Nakamura, Hokkaido University, Sapporo, Japan Masahiro Yamamoto, University of Tokyo, Tokyo, Japan
NASA Astrophysics Data System (ADS)
Zhang, Junwei
I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica data and prior distributions. We pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case study, performing a joint inversion of gravity and galvanometric resistivity data with the stations all located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to deform the facies boundaries preserving prior topological properties of the facies throughout the inversion. With the additional help of prior facies petrophysical relationships, topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The result of the inversion technique is encouraging when applied to a second synthetic case study, showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries. A paper has been submitted to Geophysics on this topic and I am the first author of this paper. During this thesis, I also worked on the time lapse inversion problem of gravity data in collaboration with Marios Karaoulis and a paper was published in Geophysical Journal international on this topic. I also worked on the time-lapse inversion of cross-well geophysical data (seismic and resistivity) using both a structural approach named the cross-gradient approach and a petrophysical approach. A paper was published in Geophysics on this topic.
Solvability of the electrocardiology inverse problem for a moving dipole.
Tolkachev, V; Bershadsky, B; Nemirko, A
1993-01-01
New formulations of the direct and inverse problems for the moving dipole are offered. It has been suggested to limit the study by a small area on the chest surface. This lowers the role of the medium inhomogeneity. When formulating the direct problem, irregular components are considered. The algorithm of simultaneous determination of the dipole and regular noise parameters has been described and analytically investigated. It is shown that temporal overdetermination of the equations offers a single solution of the inverse problem for the four leads.
Variational methods for direct/inverse problems of atmospheric dynamics and chemistry
NASA Astrophysics Data System (ADS)
Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena
2013-04-01
We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the monotone and stable discrete-analytical numerical schemes [1]-[3] conserving the positivity of the chemical substance concentrations and possessing the properties of energy and mass balance that are postulated in the general variational principle for integrated models. All algorithms for solution of transport, diffusion and transformation problems are direct (without iterations). The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004. References Penenko V., Tsvetova E. Discrete-analytical methods for the implementation of variational principles in environmental applications// Journal of computational and applied mathematics, 2009, v. 226, 319-330. Penenko A.V. Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods// Numerical Analysis and Applications, 2012, V. 5, pp 326-341. V. Penenko, E. Tsvetova. Variational methods for constructing the monotone approximations for atmospheric chemistry models //Numerical Analysis and Applications, 2013 (in press).
MAP Estimators for Piecewise Continuous Inversion
2016-08-08
MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP
Time-domain full waveform inversion using instantaneous phase information with damping
NASA Astrophysics Data System (ADS)
Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun
2018-06-01
In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
NASA Astrophysics Data System (ADS)
Lezina, Natalya; Agoshkov, Valery
2017-04-01
Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).
Acoustic Inversion in Optoacoustic Tomography: A Review
Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel
2013-01-01
Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060
Monotonicity based imaging method for time-domain eddy current problems
NASA Astrophysics Data System (ADS)
Su, Z.; Ventre, S.; Udpa, L.; Tamburrino, A.
2017-12-01
Eddy current imaging is an example of inverse problem in nondestructive evaluation for detecting anomalies in conducting materials. This paper introduces the concept of time constants and associated natural modes in eddy current imaging. The monotonicity of time constants is then described and applied to develop a non-iterative imaging method. The proposed imaging method has a low computational cost which makes it suitable for real-time operations. Full 3D numerical examples prove the effectiveness of the method in realistic scenarios. This paper is dedicated to Professor Guglielmo Rubinacci on the occasion of his 65th Birthday.
Parameter Identification Of Multilayer Thermal Insulation By Inverse Problems
NASA Astrophysics Data System (ADS)
Nenarokomov, Aleksey V.; Alifanov, Oleg M.; Gonzalez, Vivaldo M.
2012-07-01
The purpose of this paper is to introduce an iterative regularization method in the research of radiative and thermal properties of materials with further applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (heat capacity, emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the IHTP, based on sensitivity function approach, is presented too. The practical testing was performed for specimen of the real MLI. This paper consists of recent researches, which developed the approach suggested at [1].
NASA Astrophysics Data System (ADS)
Fan, Qingbiao; Xu, Caijun; Yi, Lei; Liu, Yang; Wen, Yangmao; Yin, Zhi
2017-10-01
When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
Self-prior strategy for organ reconstruction in fluorescence molecular tomography
Zhou, Yuan; Chen, Maomao; Su, Han; Luo, Jianwen
2017-01-01
The purpose of this study is to propose a strategy for organ reconstruction in fluorescence molecular tomography (FMT) without prior information from other imaging modalities, and to overcome the high cost and ionizing radiation caused by the traditional structural prior strategy. The proposed strategy is designed as an iterative architecture to solve the inverse problem of FMT. In each iteration, a short time Fourier transform (STFT) based algorithm is used to extract the self-prior information in the space-frequency energy spectrum with the assumption that the regions with higher fluorescence concentration have larger energy intensity, then the cost function of the inverse problem is modified by the self-prior information, and lastly an iterative Laplacian regularization algorithm is conducted to solve the updated inverse problem and obtains the reconstruction results. Simulations and in vivo experiments on liver reconstruction are carried out to test the performance of the self-prior strategy on organ reconstruction. The organ reconstruction results obtained by the proposed self-prior strategy are closer to the ground truth than those obtained by the iterative Tikhonov regularization (ITKR) method (traditional non-prior strategy). Significant improvements are shown in the evaluation indexes of relative locational error (RLE), relative error (RE) and contrast-to-noise ratio (CNR). The self-prior strategy improves the organ reconstruction results compared with the non-prior strategy and also overcomes the shortcomings of the traditional structural prior strategy. Various applications such as metabolic imaging and pharmacokinetic study can be aided by this strategy. PMID:29082094
Self-prior strategy for organ reconstruction in fluorescence molecular tomography.
Zhou, Yuan; Chen, Maomao; Su, Han; Luo, Jianwen
2017-10-01
The purpose of this study is to propose a strategy for organ reconstruction in fluorescence molecular tomography (FMT) without prior information from other imaging modalities, and to overcome the high cost and ionizing radiation caused by the traditional structural prior strategy. The proposed strategy is designed as an iterative architecture to solve the inverse problem of FMT. In each iteration, a short time Fourier transform (STFT) based algorithm is used to extract the self-prior information in the space-frequency energy spectrum with the assumption that the regions with higher fluorescence concentration have larger energy intensity, then the cost function of the inverse problem is modified by the self-prior information, and lastly an iterative Laplacian regularization algorithm is conducted to solve the updated inverse problem and obtains the reconstruction results. Simulations and in vivo experiments on liver reconstruction are carried out to test the performance of the self-prior strategy on organ reconstruction. The organ reconstruction results obtained by the proposed self-prior strategy are closer to the ground truth than those obtained by the iterative Tikhonov regularization (ITKR) method (traditional non-prior strategy). Significant improvements are shown in the evaluation indexes of relative locational error (RLE), relative error (RE) and contrast-to-noise ratio (CNR). The self-prior strategy improves the organ reconstruction results compared with the non-prior strategy and also overcomes the shortcomings of the traditional structural prior strategy. Various applications such as metabolic imaging and pharmacokinetic study can be aided by this strategy.
Multi-level damage identification with response reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Chao-Dong; Xu, You-Lin
2017-10-01
Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.
Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.
Abbasi, Mahdi
2014-01-01
Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.
Marine magnetotelluric inversion with an unstructured tetrahedral mesh
NASA Astrophysics Data System (ADS)
Usui, Yoshiya; Kasaya, Takafumi; Ogawa, Yasuo; Iwamoto, Hisanori
2018-05-01
The finite element method using an unstructured tetrahedral mesh is one of the most effective methods for the three-dimensional modelling of marine magnetotelluric data which are strongly affected by bathymetry, because it enables us to incorporate both small-scale and regional-scale bathymetry into a computational mesh with a practical number of elements. The authors applied a three-dimensional inversion scheme using mesh of this type to marine magnetotelluric problems for the first time and verified its applicability. Forward calculations for two bathymetry models demonstrated that the results obtained with an unstructured tetrahedral mesh are close to the reference solutions. To evaluate the forward calculation results, we developed a general TM-mode analytical formulation for a two-dimensional sinusoidal topography. Moreover, synthetic inversion test results confirmed that a three-dimensional inversion scheme with an unstructured tetrahedral mesh enables us to recover subseafloor resistivity structure properly even for a model including a land-sea boundary as well as seafloor undulations. The verified inversion scheme was subsequently applied to a set of marine magnetotelluric data observed around the Iheya North Knoll, the middle Okinawa Trough. Three-dimensional modelling using a mesh with precise bathymetry demonstrated that the data observed around the Iheya North Knoll are strongly affected by bathymetry, especially by the sea-depth differences between the depression of the trough and the shallow East China Sea. The estimated resistivity structure under the knoll is characterized by a conductive surface layer underlain by a resistive layer. The conductive layer implies permeable pelagic/hemi-pelagic sediments, which are consistent with a previous seismological study. Furthermore, the conductive layer has a resistive part immediately below the knoll, which is regarded as the consolidated magma intrusion that formed the knoll. Furthermore, at depth of 10 km, we found that the resistor underneath the knoll extends to the southeast, implying that subseafloor resistivity under the Volcanic Arc Migration Phenomenon (VAMP) area is more resistive than the surroundings due to the presence of consolidated magma.
Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J
2015-04-01
The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.
NASA Astrophysics Data System (ADS)
Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.
2015-04-01
The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.
Inverse models: A necessary next step in ground-water modeling
Poeter, E.P.; Hill, M.C.
1997-01-01
Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.
Iterative algorithms for a non-linear inverse problem in atmospheric lidar
NASA Astrophysics Data System (ADS)
Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto
2017-08-01
We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.
NASA Astrophysics Data System (ADS)
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
NASA Astrophysics Data System (ADS)
Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.
2011-12-01
In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.
The incomplete inverse and its applications to the linear least squares problem
NASA Technical Reports Server (NTRS)
Morduch, G. E.
1977-01-01
A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.
Ground-based microwave radiometric remote sensing of the tropical atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong.
1992-01-01
A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperature to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Severalmore » methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. The radiometer was calibrated using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, the radiometric measurements with experimental noises added no more profile information to the inversion than that they were determined mainly by the surface pressure measurements. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.« less
Analytic semigroups: Applications to inverse problems for flexible structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rebnord, D. A.
1990-01-01
Convergence and stability results for least squares inverse problems involving systems described by analytic semigroups are presented. The practical importance of these results is demonstrated by application to several examples from problems of estimation of material parameters in flexible structures using accelerometer data.
Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet
Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo
2016-01-01
Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766
Bohling, Geoffrey C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
A direct method for nonlinear ill-posed problems
NASA Astrophysics Data System (ADS)
Lakhal, A.
2018-02-01
We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.
A gradient based algorithm to solve inverse plane bimodular problems of identification
NASA Astrophysics Data System (ADS)
Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing
2018-02-01
This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
The Inverse Problem in Jet Acoustics
NASA Technical Reports Server (NTRS)
Wooddruff, S. L.; Hussaini, M. Y.
2001-01-01
The inverse problem for jet acoustics, or the determination of noise sources from far-field pressure information, is proposed as a tool for understanding the generation of noise by turbulence and for the improved prediction of jet noise. An idealized version of the problem is investigated first to establish the extent to which information about the noise sources may be determined from far-field pressure data and to determine how a well-posed inverse problem may be set up. Then a version of the industry-standard MGB code is used to predict a jet noise source spectrum from experimental noise data.
A microwave tomography strategy for structural monitoring
NASA Astrophysics Data System (ADS)
Catapano, I.; Crocco, L.; Isernia, T.
2009-04-01
The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a cost functional. In particular, a local minimization scheme is exploited and a pre-processing step, devoted to preliminary asses the location and the shape of the anomalies, is exploited. The effectiveness of the proposed strategy has been preliminary assessed by means of numerical examples concerning the diagnostic of masonry structures, which will be shown in the Conference. [1] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, Subsurface inverse scattering problems: Quantifying, qualifying and achieving the available information, IEEE Trans. Geosci. Remote Sens., 39(5), 2527-2538, 2001. [2] R. Persico, R. Bernini, and F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the distorted Born approximation," IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 1875-1887, Jun. 2005. [3] I. Catapano, L. Crocco, M. D'Urso, T. Isernia, "On the Effect of Support Estimation and of a New Model in 2-D Inverse Scattering Problems," IEEE Trans. Antennas Propagat., vol.55, no.6, pp.1895-1899, 2007. [4] M. D'Urso, I. Catapano, L. Crocco and T. Isernia, Effective solution of 3D scattering problems via series expansions: applicability and a new hybrid scheme, IEEE Trans. On Geosci. Remote Sens., vol.45, no.3, pp. 639-648, 2007.
Wang, Liansheng; Qin, Jing; Wong, Tien Tsin; Heng, Pheng Ann
2011-10-07
The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.
Inverse kinematics problem in robotics using neural networks
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Lawrence, Charles
1992-01-01
In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.
Bayesian Inference in Satellite Gravity Inversion
NASA Technical Reports Server (NTRS)
Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Kim, Hyung Rae; Torony, B.; Mayer-Guerr, T.
2005-01-01
To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 kilometer altitude over the South part of the Pannonian basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.
EDITORIAL: Inverse Problems in Engineering
NASA Astrophysics Data System (ADS)
West, Robert M.; Lesnic, Daniel
2007-01-01
Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.
Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states
NASA Astrophysics Data System (ADS)
Fedele, Micaela; Vernia, Cecilia
2017-10-01
In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.
Domain identification in impedance computed tomography by spline collocation method
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1990-01-01
A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.
Computational structures for robotic computations
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Chang, P. R.
1987-01-01
The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed.
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.
2017-12-01
The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.
Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S
2012-01-01
Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems. PMID:22254301
Dushaw, Brian D; Sagen, Hanne
2017-12-01
Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.
Joint Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelievre, P. G.; Bijani, R.; Farquharson, C. G.
2015-12-01
Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.
An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.
Time-reversal and Bayesian inversion
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2017-04-01
Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.
Inverse random source scattering for the Helmholtz equation in inhomogeneous media
NASA Astrophysics Data System (ADS)
Li, Ming; Chen, Chuchu; Li, Peijun
2018-01-01
This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.
2012-04-01
We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.
NASA Astrophysics Data System (ADS)
Uhlmann, Gunther
2008-07-01
This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology, Finland), Masahiro Yamamoto (University of Tokyo, Japan), Gunther Uhlmann (University of Washington) and Jun Zou (Chinese University of Hong Kong). IPIA is a recently formed organization that intends to promote the field of inverse problem at all levels. See http://www.inverse-problems.net/. IPIA awarded the first Calderón prize at the opening of the conference to Matti Lassas (see first article in the Proceedings). There was also a general meeting of IPIA during the workshop. This was probably the largest conference ever on IP with 350 registered participants. The program consisted of 18 invited speakers and the Calderón Prize Lecture given by Matti Lassas. Another integral part of the program was the more than 60 mini-symposia that covered a broad spectrum of the theory and applications of inverse problems, focusing on recent developments in medical imaging, seismic exploration, remote sensing, industrial applications, numerical and regularization methods in inverse problems. Another important related topic was image processing in particular the advances which have allowed for significant enhancement of widely used imaging techniques. For more details on the program see the web page: http://www.pims.math.ca/science/2007/07aip. These proceedings reflect the broad spectrum of topics covered in AIP 2007. The conference and these proceedings would not have happened without the contributions of many people. I thank all my fellow organizers, the invited speakers, the speakers and organizers of mini-symposia for making this an exciting and vibrant event. I also thank PIMS, NSF and MITACS for their generous financial support. I take this opportunity to thank the PIMS staff, particularly Ken Leung, for making the local arrangements. Also thanks are due to Stephen McDowall for his help in preparing the schedule of the conference and Xiaosheng Li for the help in preparing these proceedings. I also would like to thank the contributors of this volume and the referees. Finally, many thanks are due to Graham Douglas and Elaine Longden-Chapman for suggesting publication in Journal of Physics: Conference Series.
1990-05-01
Research is conducted primarily by visiting scientists from universities and industry who have resident appointments for limited periods of time , and...Elsevier Science Publishers B. V. (North-holland), IFIP, 1989. Crowley, Kay, Joel Saltz, Ravi Mirchandaney, and Harry Berryman: Run- time scheduling...Inverse problem techniques for beams with tip body and time hysteresis camping. ICASE Report No. 89-22, April 18, 1989. 24 pages. To appear in
Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame.
Legros, Guillaume; Fuentes, Andrés; Ben-Abdallah, Philippe; Baillargeat, Jacques; Joulain, Pierre; Vantelon, Jean-Pierre; Torero, José L
2005-12-15
A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.
Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame
NASA Astrophysics Data System (ADS)
Legros, Guillaume; Fuentes, Andrés; Ben-Abdallah, Philippe; Baillargeat, Jacques; Joulain, Pierre; Vantelon, Jean-Pierre; Torero, José L.
2005-12-01
A remote scanning retrieval method was developed to investigate the soot layer produced by a laminar diffusion flame established over a flat plate burner in microgravity. Experiments were conducted during parabolic flights. This original application of an inverse problem leads to the three-dimensional recomposition by layers of the absorption field inside the flame. This technique provides a well-defined flame length that substitutes for other subjective definitions associated with emissions.
Butler, Troy; Graham, L.; Estep, D.; ...
2015-02-03
The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
NASA Astrophysics Data System (ADS)
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Van Regenmortel, Marc H. V.
2018-01-01
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066
The importance of coherence in inverse problems in optics
NASA Astrophysics Data System (ADS)
Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.
1981-12-01
Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.
Comparison of iterative inverse coarse-graining methods
NASA Astrophysics Data System (ADS)
Rosenberger, David; Hanke, Martin; van der Vegt, Nico F. A.
2016-10-01
Deriving potentials for coarse-grained Molecular Dynamics (MD) simulations is frequently done by solving an inverse problem. Methods like Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC) have been widely used to solve this problem. The solution obtained by application of these methods guarantees a match in the radial distribution function (RDF) between the underlying fine-grained system and the derived coarse-grained system. However, these methods often fail in reproducing thermodynamic properties. To overcome this deficiency, additional thermodynamic constraints such as pressure or Kirkwood-Buff integrals (KBI) may be added to these methods. In this communication we test the ability of these methods to converge to a known solution of the inverse problem. With this goal in mind we have studied a binary mixture of two simple Lennard-Jones (LJ) fluids, in which no actual coarse-graining is performed. We further discuss whether full convergence is actually needed to achieve thermodynamic representability.
Atmospheric inverse modeling via sparse reconstruction
NASA Astrophysics Data System (ADS)
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
On computational experiments in some inverse problems of heat and mass transfer
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2016-11-01
The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.
Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan
2016-09-01
Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.
NASA Astrophysics Data System (ADS)
Tian, Xiang-Dong
The purpose of this research is to simulate induction and measuring-while-drilling (MWD) logs. In simulation of logs, there are two tasks. The first task, the forward modeling procedure, is to compute the logs from known formation. The second task, the inversion procedure, is to determine the unknown properties of the formation from the measured field logs. In general, the inversion procedure requires the solution of a forward model. In this study, a stable numerical method to simulate induction and MWD logs is presented. The proposed algorithm is based on a horizontal eigenmode expansion method. Vertical propagation of modes is modeled by a three-layer module. The multilayer cases are treated as a cascade of these modules. The mode tracing algorithm possesses stable characteristics that are superior to other methods. This method is applied to simulate the logs in the formations with both vertical and horizontal layers, and also used to study the groove effects of the MWD tool. The results are very good. Two-dimensional inversion of induction logs is an nonlinear problem. Nonlinear functions of the apparent conductivity are expanded into a Taylor series. After truncating the high order terms in this Taylor series, the nonlinear functions are linearized. An iterative procedure is then devised to solve the inversion problem. In each iteration, the Jacobian matrix is calculated, and a small variation computed using the least-squares method is used to modify the background medium. Finally, the inverted medium is obtained. The horizontal eigenstate method is used to solve the forward problem. It is found that a good inverted formation can be obtained by using measurements. In order to help the user simulate the induction logs conveniently, a Wellog Simulator, based on the X-window system, is developed. The application software (FORTRAN codes) embedded in the Simulator is designed to simulate the responses of the induction tools in the layered formation with dipping beds. The graphic user-interface part of the Wellog Simulator is implemented with C and Motif. Through the user interface, the user can prepare the simulation data, select the tools, simulate the logs and plot the results.
Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data
NASA Astrophysics Data System (ADS)
Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.
2017-10-01
The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.
Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography
NASA Astrophysics Data System (ADS)
Chu, Pan; Lei, Jing
2017-11-01
The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.
Termination Proofs for String Rewriting Systems via Inverse Match-Bounds
NASA Technical Reports Server (NTRS)
Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2004-01-01
Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.
The inverse Wiener polarity index problem for chemical trees.
Du, Zhibin; Ali, Akbar
2018-01-01
The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.
Assimilating data into open ocean tidal models
NASA Astrophysics Data System (ADS)
Kivman, Gennady A.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Study of multi-dimensional radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, S. N.
1993-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.
Active and Passive Hydrologic Tomographic Surveys:A Revolution in Hydrology (Invited)
NASA Astrophysics Data System (ADS)
Yeh, T. J.
2013-12-01
Mathematical forward or inverse problems of flow through geological media always have unique solutions if necessary conditions are givens. Unique mathematical solutions to forward or inverse modeling of field problems are however always uncertain (an infinite number of possibilities) due to many reasons. They include non-representativeness of the governing equations, inaccurate necessary conditions, multi-scale heterogeneity, scale discrepancies between observation and model, noise and others. Conditional stochastic approaches, which derives the unbiased solution and quantifies the solution uncertainty, are therefore most appropriate for forward and inverse modeling of hydrological processes. Conditioning using non-redundant data sets reduces uncertainty. In this presentation, we explain non-redundant data sets in cross-hole aquifer tests, and demonstrate that active hydraulic tomographic survey (using man-made excitations) is a cost-effective approach to collect the same type but non-redundant data sets for reducing uncertainty in the inverse modeling. We subsequently show that including flux measurements (a piece of non-redundant data set) collected in the same well setup as in hydraulic tomography improves the estimated hydraulic conductivity field. We finally conclude with examples and propositions regarding how to collect and analyze data intelligently by exploiting natural recurrent events (river stage fluctuations, earthquakes, lightning, etc.) as energy sources for basin-scale passive tomographic surveys. The development of information fusion technologies that integrate traditional point measurements and active/passive hydrogeophysical tomographic surveys, as well as advances in sensor, computing, and information technologies may ultimately advance our capability of characterizing groundwater basins to achieve resolution far beyond the feat of current science and technology.
Ray, J.; Lee, J.; Yadav, V.; ...
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
NASA Astrophysics Data System (ADS)
Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew
The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
NASA Astrophysics Data System (ADS)
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
Geometric MCMC for infinite-dimensional inverse problems
NASA Astrophysics Data System (ADS)
Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.
2017-04-01
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.
Convex blind image deconvolution with inverse filtering
NASA Astrophysics Data System (ADS)
Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong
2018-03-01
Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.
NASA Astrophysics Data System (ADS)
An, M.; Assumpcao, M.
2003-12-01
The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.
On the Development of Multi-Step Inverse FEM with Shell Model
NASA Astrophysics Data System (ADS)
Huang, Y.; Du, R.
2005-08-01
The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
An investigation on a two-dimensional problem of Mode-I crack in a thermoelastic medium
NASA Astrophysics Data System (ADS)
Kant, Shashi; Gupta, Manushi; Shivay, Om Namha; Mukhopadhyay, Santwana
2018-04-01
In this work, we consider a two-dimensional dynamical problem of an infinite space with finite linear Mode-I crack and employ a recently proposed heat conduction model: an exact heat conduction with a single delay term. The thermoelastic medium is taken to be homogeneous and isotropic. However, the boundary of the crack is subjected to a prescribed temperature and stress distributions. The Fourier and Laplace transform techniques are used to solve the problem. Mathematical modeling of the present problem reduces the solution of the problem into the solution of a system of four dual integral equations. The solution of these equations is equivalent to the solution of the Fredholm's integral equation of the first kind which has been solved by using the regularization method. Inverse Laplace transform is carried out by using the Bellman method, and we obtain the numerical solution for all the physical field variables in the physical domain. Results are shown graphically, and we highlight the effects of the presence of crack in the behavior of thermoelastic interactions inside the medium in the present context, and its results are compared with the results of the thermoelasticity of type-III.
An ambiguity of information content and error in an ill-posed satellite inversion
NASA Astrophysics Data System (ADS)
Koner, Prabhat
According to Rodgers (2000, stochastic approach), the averaging kernel (AK) is the representational matrix to understand the information content in a scholastic inversion. On the other hand, in deterministic approach this is referred to as model resolution matrix (MRM, Menke 1989). The analysis of AK/MRM can only give some understanding of how much regularization is imposed on the inverse problem. The trace of the AK/MRM matrix, which is the so-called degree of freedom from signal (DFS; stochastic) or degree of freedom in retrieval (DFR; deterministic). There are no physical/mathematical explanations in the literature: why the trace of the matrix is a valid form to calculate this quantity? We will present an ambiguity between information and error using a real life problem of SST retrieval from GOES13. The stochastic information content calculation is based on the linear assumption. The validity of such mathematics in satellite inversion will be questioned because it is based on the nonlinear radiative transfer and ill-conditioned inverse problems. References: Menke, W., 1989: Geophysical data analysis: discrete inverse theory. San Diego academic press. Rodgers, C.D., 2000: Inverse methods for atmospheric soundings: theory and practice. Singapore :World Scientific.
The inverse electroencephalography pipeline
NASA Astrophysics Data System (ADS)
Weinstein, David Michael
The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.
IPDO-2007: Inverse Problems, Design and Optimization Symposium
2007-08-01
Kanevce, G. H., Kanevce, Lj. P., and Mitrevski , V. B.), International Symposium on Inverse Problems, Design and Optimization (IPDO-2007), (eds...107 Gligor Kanevce Ljubica Kanevce Vangelce Mitrevski George Dulikravich 108 Gligor Kanevce Ljubica Kanevce Igor Andreevski George Dulikravich
Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique
NASA Technical Reports Server (NTRS)
Maise, G.; Rossi, M. J.
1974-01-01
A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.
A preprocessing strategy for helioseismic inversions
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, J.; Thompson, M. J.
1993-05-01
Helioseismic inversion in general involves considerable computational expense, due to the large number of modes that is typically considered. This is true in particular of the widely used optimally localized averages (OLA) inversion methods, which require the inversion of one or more matrices whose order is the number of modes in the set. However, the number of practically independent pieces of information that a large helioseismic mode set contains is very much less than the number of modes, suggesting that the set might first be reduced before the expensive inversion is performed. We demonstrate with a model problem that by first performing a singular value decomposition the original problem may be transformed into a much smaller one, reducing considerably the cost of the OLA inversion and with no significant loss of information.
NASA Astrophysics Data System (ADS)
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
Comparing multiple statistical methods for inverse prediction in nuclear forensics applications
Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela
2017-10-29
Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less
Comparing multiple statistical methods for inverse prediction in nuclear forensics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela
Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less
2015-12-15
UXO community . NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Irma Shamatava 0.50 0.50 1 Resolving and Discriminating...Distinguishing an object of interest from innocuous items is the main problem that the UXO community is facing currently. This inverse problem...innocuous items is the main problem that the UXO community is facing currently. This inverse problem demands fast and accurate representation of
NASA Astrophysics Data System (ADS)
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model
NASA Astrophysics Data System (ADS)
Mejer Hansen, Thomas
2017-04-01
Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.
A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution
NASA Astrophysics Data System (ADS)
Zuo, B.; Hu, X.; Li, H.
2011-12-01
A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Zhang, Yin
2016-06-08
The mass sensing superiority of a micro/nanomechanical resonator sensor over conventional mass spectrometry has been, or at least, is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors such as position and axial force can also cause the shifts of resonant frequencies. The in-situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as smallmore » as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of mechanical resonator sensor on two things: reducing extra experimental equipments and achieving better mass sensing by considering more factors.« less
pyGIMLi: An open-source library for modelling and inversion in geophysics
NASA Astrophysics Data System (ADS)
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Maciejewska, Beata; Piasecka, Magdalena
2018-06-01
In this paper, the solution of the two-dimensional inverse heat transfer problem with the use of the Beck method coupled with the Trefftz method is proposed. This method was applied for solving an inverse heat conduction problem. The aim of the calculation was to determine the boiling heat transfer coefficient on the basis of temperature measurements taken by infrared thermography. The experimental data of flow boiling heat transfer in a single vertical minichannel of 1.7 mm depth, heated asymmetrically, were used in calculations. The heating element for two refrigerants (FC-72 and HFE-7100, 3M) flowing in the minichannel was the plate enhanced on the side contacting with the fluid. The analysis of the results was performed on the basis of experimental series obtained for the same heat flux and two different mass flow velocities. The results were presented as infrared thermographs, heated wall temperature and heat transfer coefficient as a function of the distance from the minichannel inlet. The results was discussed for the subcooled and saturated boiling regions separately.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
NASA Astrophysics Data System (ADS)
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
Viscoelastic material inversion using Sierra-SD and ROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis
2014-11-01
In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.
Halász, József; Áspán, Nikoletta; Bozsik, Csilla; Gádoros, Júlia; Inántsy-Pap, Judit
2013-01-01
In adult individuals with antisocial personality disorder, impairment in the recognition of fear seems established. In adolescents with conduct disorder (antecedent of antisocial personality disorder), only sporadic data were assessed, but literature data indicate alterations in the recognition of emotions. The aim of the present study was to assess the relationship between emotion recognition and conduct symptoms in non-clinical adolescents. 53 adolescents participated in the study (13-16 years, boys, n=29, age 14.7±0.2 years; girls, n=24, age=14.7±0.2 years) after informed consent. The parent version of the Strengths and Difficulties Questionnaire was used to assess behavioral problems. The recognition of six basic emotions was established by the "Facial expressions of emotion-stimuli and tests", while Raven IQ measures were also performed. Compared to boys, girls showed significantly better performance in the recognition of disgust (p<0.035), while no significant difference occurred in the recognition of other emotions. In boys, Conduct Problems score was inversely correlated with the recognition of fear (Spearman R=-0.40, p<0.031) and overall emotion recognition (Spearman R=-0.44, p<0.015), while similar correlation was not present in girls. The relationship between the recognition of emotions and conduct problems might indicate an important mechanism in the development of antisocial behavior.
Louis, A. K.
2006-01-01
Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060
Reconstruction of local perturbations in periodic surfaces
NASA Astrophysics Data System (ADS)
Lechleiter, Armin; Zhang, Ruming
2018-03-01
This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Frechet derivatives for shallow water ocean acoustic inverse problems
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2003-04-01
For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.
NASA Astrophysics Data System (ADS)
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.
NASA Astrophysics Data System (ADS)
Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto
2016-08-01
We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is influenced by the strength of measurement errors and it is not significantly diminished or increased by adding noisy reciprocal information.
Forward Field Computation with OpenMEEG
Gramfort, Alexandre; Papadopoulo, Théodore; Olivi, Emmanuel; Clerc, Maureen
2011-01-01
To recover the sources giving rise to electro- and magnetoencephalography in individual measurements, realistic physiological modeling is required, and accurate numerical solutions must be computed. We present OpenMEEG, which solves the electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity. The core of OpenMEEG consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem. OpenMEEG is able to provide lead fields for four different electromagnetic forward problems: Electroencephalography (EEG), Magnetoencephalography (MEG), Electrical Impedance Tomography (EIT), and intracranial electric potentials (IPs). OpenMEEG is open source and multiplatform. It can be used from Python and Matlab in conjunction with toolboxes that solve the inverse problem; its integration within FieldTrip is operational since release 2.0. PMID:21437231
An approach to quantum-computational hydrologic inverse analysis
O'Malley, Daniel
2018-05-02
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less
An approach to quantum-computational hydrologic inverse analysis.
O'Malley, Daniel
2018-05-02
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.
Coupling of Large Amplitude Inversion with Other States
NASA Astrophysics Data System (ADS)
Pearson, John; Yu, Shanshan
2016-06-01
The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.
An approach to quantum-computational hydrologic inverse analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Daniel
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
3-D Inversion of the MT EarthScope Data, Collected Over the East Central United States
NASA Astrophysics Data System (ADS)
Gribenko, A. V.; Zhdanov, M. S.
2017-12-01
The magnetotelluric (MT) data collected as a part of the EarthScope project provided a unique opportunity to study the conductivity structure of the deep interior of the North American continent. Besides the scientific value of the recovered subsurface models, the data also allowed inversion practitioners to test the robustness of their algorithms applied to regional long-period data. In this paper, we present the results of MT inversion of a subset of the second footprint of the MT data collection covering the East Central United States. Our inversion algorithm implements simultaneous inversion of the full MT impedance data both for the 3-D conductivity distribution and for the distortion matrix. The distortion matrix provides the means to account for the effect of the near-surface geoelectrical inhomogeneities on the MT data. The long-period data do not have the resolution for the small near-surface conductivity anomalies, which makes an application of the distortion matrix especially appropriate. The determined conductivity model of the region agrees well with the known geologic and tectonic features of the East Central United States. The conductivity anomalies recovered by our inversion indicate a possible presence of the hot spot track in the area.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2014-06-01
A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver
2013-10-01
3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Revil, A.
2018-04-01
Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.
NASA Astrophysics Data System (ADS)
Köpke, Corinna; Irving, James; Elsheikh, Ahmed H.
2018-06-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are commonly employed. This gives rise to model error, which has the potential to significantly bias posterior statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems. Our approach is geared towards the common case where this error cannot be (i) effectively characterized through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of computed model-error realizations. To this end, we focus on identification and removal of the model-error component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their inversion. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic characterization of uncertainty.
Control and System Theory, Optimization, Inverse and Ill-Posed Problems
1988-09-14
Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
Deconvolution using a neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Genetics Home Reference: Koolen-de Vries syndrome
... of Koolen-de Vries syndrome , has undergone an inversion . An inversion involves two breaks in a chromosome; the resulting ... lineage have no health problems related to the inversion. However, genetic material can be lost or duplicated ...
Numerical approach for ECT by using boundary element method with Laplace transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enokizono, M.; Todaka, T.; Shibao, K.
1997-03-01
This paper presents an inverse analysis by using BEM with Laplace transform. The method is applied to a simple problem in the eddy current testing (ECT). Some crack shapes in a conductive specimen are estimated from distributions of the transient eddy current on its sensing surface and magnetic flux density in the liftoff space. Because the transient behavior includes information on various frequency components, the method is applicable to the shape estimation of a comparative small crack.
Optimal Control of Thermo--Fluid Phenomena in Variable Domains
NASA Astrophysics Data System (ADS)
Volkov, Oleg; Protas, Bartosz
2008-11-01
This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.
Three-dimensional inversion of multisource array electromagnetic data
NASA Astrophysics Data System (ADS)
Tartaras, Efthimios
Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.
NASA Astrophysics Data System (ADS)
Horesh, L.; Haber, E.
2009-09-01
The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
Individual differences in children's understanding of inversion and arithmetical skill.
Gilmore, Camilla K; Bryant, Peter
2006-06-01
Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.
NASA Astrophysics Data System (ADS)
Kamynin, V. L.; Bukharova, T. I.
2017-01-01
We prove the estimates of stability with respect to perturbations of input data for the solutions of inverse problems for degenerate parabolic equations with unbounded coefficients. An important feature of these estimates is that the constants in these estimates are written out explicitly by the input data of the problem.
FOREWORD: Imaging from coupled physics Imaging from coupled physics
NASA Astrophysics Data System (ADS)
Arridge, S. R.; Scherzer, O.
2012-08-01
Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all new imaging techniques, the discovery of physical principles which can be exploited to yield information about internal physical parameters has led, hand in hand, to the development of new mathematical methods for solving the corresponding inverse problems. In many cases, the coupled physics imaging problems are expected to be much better posed than conventional tomographical imaging problems. However, still, at the current state of research, there exist a variety of open mathematical questions regarding uniqueness, existence and stability. In this special section we have invited contributions from many of the leading researchers in the mathematics, physics and engineering of these techniques to survey and to elaborate on these novel methodologies, and to present recent research directions. Historically, one of the best studied strongly ill-posed problems in the mathematical literature is the Calderón problem occuring in conductivity imaging, and one of the first examples of ICP is the use of magnetic resonance imaging (MRI) to detect internal current distributions. This topic, known as current density imaging (CDI) or magnetic resonance elecrical impedance tomography (MREIT), and its related technique of magnetic resonance electrical property tomography (MREPT), is reviewed by Wildak and Scherzer [1], and also by Seo et al [3], where experimental studies are documented. Mathematically, several of the ICP problems can be analyzed in terms of the 'p-Laplacian' which raises interesting research questions of non-linear partial differential equations. One approach for analyzing and for the solution of the CDI problem, using characteristics of the 1-Laplacian, is discussed by Tamasan and Veras [4]. Moreover, Moradifam et al [5] present a novel iterative algorithm based on Bregman splitting for solving the CDI problem. Probably the most active research areas in ICP are related to acoustic detection, because most of these techniques rely on the photoacoustic effect wherein absorption of an ultrashort pulse of light, having propagated by multiple scattering some distance into a diffusing medium, generates a source of acoustic waves that are propagated with hyperbolic stability to a surface detector. A complementary problem is that of 'acousto-optics' which uses focussed acoustic waves as the primary field to induce perturbations in optical or electrical properties, which are thus spatially localized. Similar physical principles apply to implement ultrasound modulated electrical impedance tomography (UMEIT). These topics are included in the review of Wildak and Scherzer [1], and Kuchment and Steinhauer [2] offer a general analysis of their structure in terms of pseudo-differential operators. 'Acousto-electrical' imaging is analyzed as a particular case by Ammari et al [6]. In the paper by Tarvainen et al [7], the photo-acoustic problem is studied with respect to different models of the light propagation step. In the paper by Monard and Bal [8], a more general problem for the reconstruction of an anisotropic diffusion parameter from power density measurements is considered; here, issues of uniqueness with respect to the number of measurements is of great importance. A distinctive, and highly important, example of ICP is that of elastography, in which the primary field is low-frequency ultrasound giving rise to mechanical displacement that reveals information on the local elasticity tensor. As in all the methods discussed in this section, this contrast mechanism is measured internally, with a secondary technique, which in this case can be either MRI or ultrasound. McLaughlin et al [9] give a comprehensive analysis of this problem. Our intention for this special section was to provide both an overview and a snapshot of current work in this exciting area. The increasing interest, and the involvement of cross-disciplinary groups of scientists, will continue to lead to the rapid expansion and important new results in this novel area of imaging science. References [1] Widlak T and Scherzer O 2012 Inverse Problems 28 084008 [2] Kuchment P and Steinhauer D 2012 Inverse Problems 28 084007 [3] Seo J K, Kim D-H, Lee J, Kwon O I, Sajib S Z K and Woo E J 2012 Inverse Problems 28 084002 [4] Tamasan A and Veras J 2012 Inverse Problems 28 084006 [5] Moradifam A, Nachman A and Timonov A 2012 Inverse Problems 28 084003 [6] Ammari H, Garnier J and Jing W 2012 Inverse Problems 28 084005 [7] Tarvainen T, Cox B T, Kaipio J P and Arridge S R 2012 Inverse Problems 28 084009 [8] Monard F and Bal G 2012 Inverse Problems 28 084001 [9] McLaughlin J, Oberai A and Yoon J R 2012 Inverse Problems 28 084004
THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)
This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...
ON THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM. (R825689C037)
The geostatistical approach to the inverse problem is discussed with emphasis on the importance of structural analysis. Although the geostatistical approach is occasionally misconstrued as mere cokriging, in fact it consists of two steps: estimation of statist...
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
NASA Astrophysics Data System (ADS)
Li Voti, R.; Sibilia, C.; Bertolotti, M.
2003-01-01
Photothermal depth profiling has been the subject of many papers in the last years. Inverse problems on different kinds of materials have been identified, classified, and solved. A first classification has been done according to the type of depth profile: the physical quantity to be reconstructed is the optical absorption in the problems of type I, the thermal effusivity for type II, and both of them for type III. Another classification may be done depending on the time scale of the pump beam heating (frequency scan, time scan), or on its geometrical symmetry (one- or three-dimensional). In this work we want to discuss two different approaches, the genetic algorithms (GA) [R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 410 (2001); R. Li Voti, Proceedings, IV Int. Workshop on Advances in Signal Processing for Non-Destructive Evaluation of Materials, Quebec, August 2001] and the thermal wave backscattering (TWBS) [R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 414 (2001); J. C. Krapez and R. Li Voti, Anal. Sci. 17, 417 (2001)], showing their performances and limits of validity for several kinds of photothermal depth profiling problems: The two approaches are based on different mechanisms and exhibit obviously different features. GA may be implemented on the exact heat diffusion equation as follows: one chromosome is associated to each profile. The genetic evolution of the chromosome allows one to find better and better profiles, eventually converging towards the solution of the inverse problem. The main advantage is that GA may be applied to any arbitrary profile, but several disadvantages exist; for example, the complexity of the algorithm, the slow convergence, and consequently the computer time consumed. On the contrary, TWBS uses a simplified theoretical model of heat diffusion in inhomogeneous materials. According to such a model, the photothermal signal depends linearly on the thermal effusivity inhomogeneities, which may be detected because they act as backscattering centers for the heat flux. The physical problem is reduced to the inversion of a algebraic linear system. The advantage is that TWBS allows excellent reconstructions, but only within the limits of validity of the approximate model, which include any slowly varying profile. Recently we have tested the perfomance of both TWBS and GA on linear conductivity profiles. In other words, we have done the numerical simulations of the photothermal measurements coming from a film over a substrate, where the conductivity in the film changes linearly from k1 at the surface, to k2 at the substrate. TWBS and GA have been used to reconstruct the original profiles. If the conductivity mismatch ranges as 0.2
NASA Astrophysics Data System (ADS)
Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam
2017-05-01
The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.
NLSE: Parameter-Based Inversion Algorithm
NASA Astrophysics Data System (ADS)
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.
Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.
Zhukovsky, K
2014-01-01
We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.
NASA Astrophysics Data System (ADS)
Parker, Robert L.; Booker, John R.
1996-12-01
The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.
Bayesian resolution of TEM, CSEM and MT soundings: a comparative study
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Ray, A.; Key, K.
2017-12-01
We examine the resolution of three electromagnetic exploration methods commonly used to map the electrical conductivity of the shallow crust - the magnetotelluric (MT) method, the controlled-source electromagnetic (CSEM) method and the transient electromagnetic (TEM) method. TEM and CSEM utilize an artificial source of EM energy, while MT makes use of natural variations in the Earth's electromagnetic field. For a given geological setting and acquisition parameters, each of these methods will have a different resolution due to differences in the source field polarization and the frequency range of the measurements. For example, the MT and TEM methods primarily rely on induced horizontal currents and are most sensitive to conductive layers while the CSEM method generates vertical loops of current and is more sensitive to resistive features. Our study seeks to provide a robust resolution comparison that can help inform exploration geophysicists about which technique is best suited for a particular target. While it is possible to understand and describe a difference in resolution qualitatively, it remains challenging to fully describe it quantitatively using optimization based approaches. Part of the difficulty here stems from the standard electromagnetic inversion toolkit, which makes heavy use of regularization (often in the form of smoothing) to constrain the non-uniqueness inherent in the inverse problem. This regularization makes it difficult to accurately estimate the uncertainty in estimated model parameters - and therefore obscures their true resolution. To overcome this difficulty, we compare the resolution of CSEM, airborne TEM, and MT data quantitatively using a Bayesian trans-dimensional Markov chain Monte Carlo (McMC) inversion scheme. Noisy synthetic data for this study are computed from various representative 1D test models: a conductive anomaly under a conductive/resistive overburden; and a resistive anomaly under a conductive/resistive overburden. In addition to obtaining the full posterior probability density function of the model parameters, we develop a metric to more directly compare the resolution of each method as a function of depth.
Ground-Based Microwave Radiometric Remote Sensing of the Tropical Atmosphere
NASA Astrophysics Data System (ADS)
Han, Yong
A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperatures to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Several methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. During this experiment, the radiometer was calibrated by using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was first applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, it was shown that the radiometric measurements with experimental noises added no more profile information to the inversion than that which was available from a climatological mean. Although successful retrievals of the geopotential heights were made, it was shown that they were determined mainly by the surface pressure measurements. The reasons why the radiometer did not contribute to the retrievals of temperature profiles and geopotential heights were discussed. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Under certain assumptions, the cloud absorption coefficients and mean radiating temperature, used in the physical or statistical inversion equation, were determined from the measurements. It was shown that significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.
Solving inversion problems with neural networks
NASA Technical Reports Server (NTRS)
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Approximation of the ruin probability using the scaled Laplace transform inversion
Mnatsakanov, Robert M.; Sarkisian, Khachatur; Hakobyan, Artak
2015-01-01
The problem of recovering the ruin probability in the classical risk model based on the scaled Laplace transform inversion is studied. It is shown how to overcome the problem of evaluating the ruin probability at large values of an initial surplus process. Comparisons of proposed approximations with the ones based on the Laplace transform inversions using a fixed Talbot algorithm as well as on the ones using the Trefethen–Weideman–Schmelzer and maximum entropy methods are presented via a simulation study. PMID:26752796
Inverse problems and coherence
NASA Astrophysics Data System (ADS)
Baltes, H. P.; Ferwerda, H. A.
1981-03-01
A summary of current inverse problems of statistical optics is presented together with a short guide to the pertinent review-type literature. The retrieval of structural information from the far-zone degree of coherence and the average intensity distribution of radiation scattered by a superposition of random and periodic scatterers is discussed.
Inverse transport problems in quantitative PAT for molecular imaging
NASA Astrophysics Data System (ADS)
Ren, Kui; Zhang, Rongting; Zhong, Yimin
2015-12-01
Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.
Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less
SIAM conference on inverse problems: Geophysical applications. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devotedmore » to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.« less
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Large-scale inverse model analyses employing fast randomized data reduction
NASA Astrophysics Data System (ADS)
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
NASA Technical Reports Server (NTRS)
Seidman, T. I.; Munteanu, M. J.
1979-01-01
The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.
Layer Stripping Solutions of Inverse Seismic Problems.
1985-03-21
problems--more so than has generally been recognized. The subject of this thesis is the theoretical development of the . layer-stripping methodology , and...medium varies sharply at each interface, which would be expected to cause difficulties for the algorithm, since it was designed for a smoothy varying... methodology was applied in a novel way. The inverse problem considered in this chapter was that of reconstructing a layered medium from measurement of its
Hydromagnetic conditions near the core-mantle boundary
NASA Technical Reports Server (NTRS)
Backus, George E.
1995-01-01
The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.
Matrix of moments of the Legendre polynomials and its application to problems of electrostatics
NASA Astrophysics Data System (ADS)
Savchenko, A. O.
2017-01-01
In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.
The Relationship Between Non-Symbolic Multiplication and Division in Childhood
McCrink, Koleen; Shafto, Patrick; Barth, Hilary
2016-01-01
Children without formal education in addition and subtraction are able to perform multi-step operations over an approximate number of objects. Further, their performance improves when solving approximate (but not exact) addition and subtraction problems that allow for inversion as a shortcut (e.g., a + b − b = a). The current study examines children’s ability to perform multi-step operations, and the potential for an inversion benefit, for the operations of approximate, non-symbolic multiplication and division. Children were trained to compute a multiplication and division scaling factor (*2 or /2, *4 or /4), and then tested on problems that combined two of these factors in a way that either allowed for an inversion shortcut (e.g., 8 * 4 / 4) or did not (e.g., 8 * 4 / 2). Children’s performance was significantly better than chance for all scaling factors during training, and they successfully computed the outcomes of the multi-step testing problems. They did not exhibit a performance benefit for problems with the a * b / b structure, suggesting they did not draw upon inversion reasoning as a logical shortcut to help them solve the multi-step test problems. PMID:26880261
NASA Astrophysics Data System (ADS)
Meléndez, Adrià; Korenaga, Jun; Sallarès, Valentí; Miniussi, Alain; Ranero, César
2015-04-01
We present a new 3-D travel-time tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the propagation velocity distribution and the geometry of reflecting boundaries in the subsurface. The combination of refracted and reflected data provides a denser coverage of the study area. Moreover, because refractions only depend on the velocity parameters, they contribute to the mitigation of the negative effect of the ambiguity between layer thickness and propagation velocity that is intrinsic to the reflections that define these boundaries. This code is based on its renowned 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The forward travel-time calculations are conducted using a hybrid ray-tracing technique combining the graph or shortest path method and the bending method. The LSQR algorithm is used to perform the iterative inversion of travel-time residuals to update the initial velocity and depth models. In order to cope with the increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes by far most of the run time (~90%), has been parallelised with a combination of MP and MPI standards. This parallelisation distributes the ray-tracing and travel-time calculations among the available computational resources, allowing the user to set the number of nodes, processors and cores to be used. The code's performance was evaluated with a complex synthetic case simulating a subduction zone. The objective is to retrieve the velocity distribution of both upper and lower plates and the geometry of the interplate and Moho boundaries. Our tomography method is designed to deal with a single reflector per inversion, and we show that a data-driven layer-stripping strategy allows to successfully recover several reflectors in successive inversions. This strategy consists in building the final velocity model layer by layer, sequentially extending it down with each inversion of a new, deeper reflector. One advantage of layer stripping is that it allows us to introduce and keep strong velocity contrasts associated to geological discontinuities that would otherwise be smoothened. Another advantage is that it poses simpler inverse problems at each step, facilitating the minimisation of travel-time residuals and ensuring a good control on each partial model before adding new data corresponding to deeper layers. Finally, we discuss the parallel performance of the code in this particular synthetic case.
Evidence for an altered sex ratio in clinic-referred adolescents with gender dysphoria.
Aitken, Madison; Steensma, Thomas D; Blanchard, Ray; VanderLaan, Doug P; Wood, Hayley; Fuentes, Amanda; Spegg, Cathy; Wasserman, Lori; Ames, Megan; Fitzsimmons, C Lindsay; Leef, Jonathan H; Lishak, Victoria; Reim, Elyse; Takagi, Anna; Vinik, Julia; Wreford, Julia; Cohen-Kettenis, Peggy T; de Vries, Annelou L C; Kreukels, Baudewijntje P C; Zucker, Kenneth J
2015-03-01
The number of adolescents referred to specialized gender identity clinics for gender dysphoria appears to be increasing and there also appears to be a corresponding shift in the sex ratio, from one favoring natal males to one favoring natal females. We conducted two quantitative studies to ascertain whether there has been a recent inversion of the sex ratio of adolescents referred for gender dysphoria. The sex ratio of adolescents from two specialized gender identity clinics was examined as a function of two cohort periods (2006-2013 vs. prior years). Study 1 was conducted on patients from a clinic in Toronto, and Study 2 was conducted on patients from a clinic in Amsterdam. Across both clinics, the total sample size was 748. In both clinics, there was a significant change in the sex ratio of referred adolescents between the two cohort periods: between 2006 and 2013, the sex ratio favored natal females, but in the prior years, the sex ratio favored natal males. In Study 1 from Toronto, there was no corresponding change in the sex ratio of 6,592 adolescents referred for other clinical problems. Sociological and sociocultural explanations are offered to account for this recent inversion in the sex ratio of adolescents with gender dysphoria. © 2015 International Society for Sexual Medicine.
NASA Astrophysics Data System (ADS)
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
NASA Astrophysics Data System (ADS)
Hasanov, Alemdar; Erdem, Arzu
2008-08-01
The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
NASA Astrophysics Data System (ADS)
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.
NASA Astrophysics Data System (ADS)
Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong
2018-05-01
In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.
2018-01-01
In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.
Han, Lei; Zhang, Yu; Zhang, Tong
2016-08-01
The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.
Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.
NASA Astrophysics Data System (ADS)
Kalenichenko, V. V.
A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.
Inverse problems in the modeling of vibrations of flexible beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Powers, R. K.; Rosen, I. G.
1987-01-01
The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.
An inverse finance problem for estimation of the volatility
NASA Astrophysics Data System (ADS)
Neisy, A.; Salmani, K.
2013-01-01
Black-Scholes model, as a base model for pricing in derivatives markets has some deficiencies, such as ignoring market jumps, and considering market volatility as a constant factor. In this article, we introduce a pricing model for European-Options under jump-diffusion underlying asset. Then, using some appropriate numerical methods we try to solve this model with integral term, and terms including derivative. Finally, considering volatility as an unknown parameter, we try to estimate it by using our proposed model. For the purpose of estimating volatility, in this article, we utilize inverse problem, in which inverse problem model is first defined, and then volatility is estimated using minimization function with Tikhonov regularization.
1984-02-01
conducting sphere 35 compared to inverse transform of exact solution. 4-5. Measured impulse response of a conducting 2:1 right 37 circular cylinder with...frequency domain. This is equivalent to multiplication in the time domain by the inverse transform of w(n), which is shown in Figure 3-1 for N=15. The...equivalent pulse width from 0.066 T for the rectangular window to 0.10 T for the Hanning window. The inverse transform of the Hanning window is shown
NASA Astrophysics Data System (ADS)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
Eddy current characterization of small cracks using least square support vector machine
NASA Astrophysics Data System (ADS)
Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.
2016-04-01
Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.
Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.
ERIC Educational Resources Information Center
Bohn, C. L.; Flynn, R. W.
1978-01-01
Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...
2016-07-13
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less
Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar
2016-07-01
We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.
The Relation between Perceived Social Support and Anxiety in Patients under Hemodialysis.
Davaridolatabadi, Elham; Abdeyazdan, Gholamhossein
2016-03-01
The increase in the number of patients under hemodialysis treatment is a universal problem. With regard to the fact that there have been few social-psychological studies conducted on patients under hemodialysis treatment, the current study was conducted to investigate anxiety and perceived social support and the relation between them among these patients. This cross-sectional study was conducted on 126 patients under hemodialysis treatment in Isfahan in 2012. After randomly selecting a hospital with a hemodialysis ward, purposive sampling was conducted. Data collection tools included state-trait anxiety and perceived social support inventory. The data were analyzed using the Spearman correlation coefficient. Among the participants, 68.3% received average perceived social support. In addition, perceiving the tangible dimension of support was lower compared to other dimensions (Mean 40.02). Level of trait and state anxiety (65 and 67.5%) of over half of the participants was average. There was in inverse relationship between state and trait anxiety and total perceived social support and emotional and information dimensions (r = -0.340, r = -0.229). State and trait anxiety had the highest relation with emotional and information dimension of social support, respectively. Patients under hemodialysis treatment suffer from numerous psychological and social problems. Low awareness and emotional problems result in the increase of anxiety and reduction of perceived social support. Reduction of social support has negative effect on treatment outcomes.
Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods
NASA Astrophysics Data System (ADS)
Thurin, J.; Brossier, R.; Métivier, L.
2017-12-01
Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
The inverse resonance problem for CMV operators
NASA Astrophysics Data System (ADS)
Weikard, Rudi; Zinchenko, Maxim
2010-05-01
We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.
An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca
2017-10-01
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \
2011-06-01
in giving us of a copy of his habilitation thesis, without which this article would not have been possible. We also thank Prof. Karsten Eppler for...John Wiley & Sons, 1983. [19] Andreas Kirsch. Generalized boundary value- and control problems for the Helmholtz equation. Habilitation thesis, 1984
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
Solving ill-posed inverse problems using iterative deep neural networks
NASA Astrophysics Data System (ADS)
Adler, Jonas; Öktem, Ozan
2017-12-01
We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askan, A.; /Carnegie Mellon U.; Akcelik, V.
2009-04-30
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less
Trimming and procrastination as inversion techniques
NASA Astrophysics Data System (ADS)
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
A general approach to regularizing inverse problems with regional data using Slepian wavelets
NASA Astrophysics Data System (ADS)
Michel, Volker; Simons, Frederik J.
2017-12-01
Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.
Bayesian parameter estimation in spectral quantitative photoacoustic tomography
NASA Astrophysics Data System (ADS)
Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja
2016-03-01
Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.
NASA Astrophysics Data System (ADS)
Ryzhikov, I. S.; Semenkin, E. S.
2017-02-01
This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.
Yamaguchi, Tohru F; Okamoto, Yoshiwo
2018-01-01
Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device. Copyright © 2017 John Wiley & Sons, Ltd.
An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations
Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.
2016-01-01
We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360
Bayesian inference in geomagnetism
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.
Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation
NASA Astrophysics Data System (ADS)
Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat
2018-05-01
This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.
NASA Astrophysics Data System (ADS)
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
NASA Astrophysics Data System (ADS)
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.
Inverse kinematics of a dual linear actuator pitch/roll heliostat
NASA Astrophysics Data System (ADS)
Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh
2017-06-01
This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.
Small-scale electrical resistivity tomography of wet fractured rocks.
LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail
2004-01-01
This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.
NASA Astrophysics Data System (ADS)
Han, B.; Li, Y.
2016-12-01
We present a three-dimensional (3D) forward and inverse modeling code for marine controlled-source electromagnetic (CSEM) surveys in anisotropic media. The forward solution is based on a primary/secondary field approach, in which secondary fields are solved using a staggered finite-volume (FV) method and primary fields are solved for 1D isotropic background models analytically. It is shown that it is rather straightforward to extend the isotopic 3D FV algorithm to a triaxial anisotropic one, while additional coefficients are required to account for full tensor conductivity. To solve the linear system resulting from FV discretization of Maxwell' s equations, both iterative Krylov solvers (e.g. BiCGSTAB) and direct solvers (e.g. MUMPS) have been implemented, makes the code flexible for different computing platforms and different problems. For iterative soloutions, the linear system in terms of electromagnetic potentials (A-Phi) is used to precondition the original linear system, transforming the discretized Curl-Curl equations to discretized Laplace-like equations, thus much more favorable numerical properties can be obtained. Numerical experiments suggest that this A-Phi preconditioner can dramatically improve the convergence rate of an iterative solver and high accuracy can be achieved without divergence correction even for low frequencies. To efficiently calculate the sensitivities, i.e. the derivatives of CSEM data with respect to tensor conductivity, the adjoint method is employed. For inverse modeling, triaxial anisotropy is taken into account. Since the number of model parameters to be resolved of triaxial anisotropic medias is twice or thrice that of isotropic medias, the data-space version of the Gauss-Newton (GN) minimization method is preferred due to its lower computational cost compared with the traditional model-space GN method. We demonstrate the effectiveness of the code with synthetic examples.
Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity
Mallik, Sadek Hossain; Kanoria, M.
2014-01-01
A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210
Appraisal of geodynamic inversion results: a data mining approach
NASA Astrophysics Data System (ADS)
Baumann, T. S.
2016-11-01
Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.
Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method
Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter
2017-01-01
An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated. PMID:28098851
Group-theoretic models of the inversion process in bacterial genomes.
Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R
2014-07-01
The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.
Query-based learning for aerospace applications.
Saad, E W; Choi, J J; Vian, J L; Wunsch, D C Ii
2003-01-01
Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem.
A practical method to assess model sensitivity and parameter uncertainty in C cycle models
NASA Astrophysics Data System (ADS)
Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy
2015-04-01
The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.
On the Forward Scattering of Microwave Breast Imaging
Lui, Hoi-Shun; Fhager, Andreas; Persson, Mikael
2012-01-01
Microwave imaging for breast cancer detection has been of significant interest for the last two decades. Recent studies focus on solving the imaging problem using an inverse scattering approach. Efforts have mainly been focused on the development of the inverse scattering algorithms, experimental setup, antenna design and clinical trials. However, the success of microwave breast imaging also heavily relies on the quality of the forward data such that the tumor inside the breast volume is well illuminated. In this work, a numerical study of the forward scattering data is conducted. The scattering behavior of simple breast models under different polarization states and aspect angles of illumination are considered. Numerical results have demonstrated that better data contrast could be obtained when the breast volume is illuminated using cross-polarized components in linear polarization basis or the copolarized components in the circular polarization basis. PMID:22611371
Nozzle cooling of hot surfaces with various orientations
NASA Astrophysics Data System (ADS)
Ondrouskova, Jana; Luks, Tomas; Horsky, Jaroslav
2012-04-01
The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle). A test plate was cooled in three positions - top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format.
NASA Astrophysics Data System (ADS)
Ortega Gelabert, Olga; Zlotnik, Sergio; Afonso, Juan Carlos; Díez, Pedro
2017-04-01
The determination of the present-day physical state of the thermal and compositional structure of the Earth's lithosphere and sub-lithospheric mantle is one of the main goals in modern lithospheric research. All this data is essential to build Earth's evolution models and to reproduce many geophysical observables (e.g. elevation, gravity anomalies, travel time data, heat flow, etc) together with understanding the relationship between them. Determining the lithospheric state involves the solution of high-resolution inverse problems and, consequently, the solution of many direct models is required. The main objective of this work is to contribute to the existing inversion techniques in terms of improving the estimation of the elevation (topography) by including a dynamic component arising from sub-lithospheric mantle flow. In order to do so, we implement an efficient Reduced Order Method (ROM) built upon classic Finite Elements. ROM allows to reduce significantly the computational cost of solving a family of problems, for example all the direct models that are required in the solution of the inverse problem. The strategy of the method consists in creating a (reduced) basis of solutions, so that when a new problem has to be solved, its solution is sought within the basis instead of attempting to solve the problem itself. In order to check the Reduced Basis approach, we implemented the method in a 3D domain reproducing a portion of Earth that covers up to 400 km depth. Within the domain the Stokes equation is solved with realistic viscosities and densities. The different realizations (the family of problems) is created by varying viscosities and densities in a similar way as it would happen in an inversion problem. The Reduced Basis method is shown to be an extremely efficiently solver for the Stokes equation in this context.
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.
Sanz, E.; Voss, C.I.
2006-01-01
Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-06-01
We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.
Solving the Inverse-Square Problem with Complex Variables
ERIC Educational Resources Information Center
Gauthier, N.
2005-01-01
The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…
Backus-Gilbert inversion of travel time data
NASA Technical Reports Server (NTRS)
Johnson, L. E.
1972-01-01
Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.
Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello; Walter, Ulrich
2015-05-01
This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.
Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-03-01
An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads
Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2017-07-01
MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.
Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Ray, A.; Key, K.
2017-12-01
Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.
Genetic algorithms and their use in Geophysical Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less
Genetic algorithms and their use in geophysical problems
NASA Astrophysics Data System (ADS)
Parker, Paul Bradley
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.
NASA Astrophysics Data System (ADS)
Gao, F.; Zhang, Y.
2017-12-01
A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.
Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Li, Kun; Zong, Zhaoyun
2016-10-01
AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.
MUSIC-type imaging of small perfectly conducting cracks with an unknown frequency
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-09-01
MUltiple SIgnal Classification (MUSIC) is a famous non-iterative detection algorithm in inverse scattering problems. However, when the applied frequency is unknown, inaccurate locations are identified via MUSIC. This fact has been confirmed through numerical simulations. However, the reason behind this phenomenon has not been investigated theoretically. Motivated by this fact, we identify the structure of MUSIC-type imaging functionals with unknown frequency, by establishing a relationship with Bessel functions of order zero of the first kind. Through this, we can explain why inaccurate results appear.
NASA Astrophysics Data System (ADS)
Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio
2018-04-01
We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.
NASA Astrophysics Data System (ADS)
Revil, A.
2015-12-01
Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.
Black hole algorithm for determining model parameter in self-potential data
NASA Astrophysics Data System (ADS)
Sungkono; Warnana, Dwa Desa
2018-01-01
Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.
EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
M-matrices with prescribed elementary divisors
NASA Astrophysics Data System (ADS)
Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar
2017-09-01
A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
A MATLAB implementation of the minimum relative entropy method for linear inverse problems
NASA Astrophysics Data System (ADS)
Neupauer, Roseanna M.; Borchers, Brian
2001-08-01
The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Li, Huiping; Li, Zhichao
2018-04-01
The interfacial heat transfer coefficient (IHTC) is one of the most important thermal physical parameters which have significant effects on the calculation accuracy of physical fields in the numerical simulation. In this study, the artificial fish swarm algorithm (AFSA) was used to evaluate the IHTC between the heated sample and the quenchant in a one-dimensional heat conduction problem. AFSA is a global optimization method. In order to speed up the convergence speed, a hybrid method which is the combination of AFSA and normal distribution method (ZAFSA) was presented. The IHTC evaluated by ZAFSA were compared with those attained by AFSA and the advanced-retreat method and golden section method. The results show that the reasonable IHTC is obtained by using ZAFSA, the convergence of hybrid method is well. The algorithm based on ZAFSA can not only accelerate the convergence speed, but also reduce the numerical oscillation in the evaluation of IHTC.
NASA Astrophysics Data System (ADS)
Dorn, O.; Lesselier, D.
2010-07-01
Inverse problems in electromagnetics have a long history and have stimulated exciting research over many decades. New applications and solution methods are still emerging, providing a rich source of challenging topics for further investigation. The purpose of this special issue is to combine descriptions of several such developments that are expected to have the potential to fundamentally fuel new research, and to provide an overview of novel methods and applications for electromagnetic inverse problems. There have been several special sections published in Inverse Problems over the last decade addressing fully, or partly, electromagnetic inverse problems. Examples are: Electromagnetic imaging and inversion of the Earth's subsurface (Guest Editors: D Lesselier and T Habashy) October 2000 Testing inversion algorithms against experimental data (Guest Editors: K Belkebir and M Saillard) December 2001 Electromagnetic and ultrasonic nondestructive evaluation (Guest Editors: D Lesselier and J Bowler) December 2002 Electromagnetic characterization of buried obstacles (Guest Editors: D Lesselier and W C Chew) December 2004 Testing inversion algorithms against experimental data: inhomogeneous targets (Guest Editors: K Belkebir and M Saillard) December 2005 Testing inversion algorithms against experimental data: 3D targets (Guest Editors: A Litman and L Crocco) February 2009 In a certain sense, the current issue can be understood as a continuation of this series of special sections on electromagnetic inverse problems. On the other hand, its focus is intended to be more general than previous ones. Instead of trying to cover a well-defined, somewhat specialized research topic as completely as possible, this issue aims to show the broad range of techniques and applications that are relevant to electromagnetic imaging nowadays, which may serve as a source of inspiration and encouragement for all those entering this active and rapidly developing research area. Also, the construction of this special issue is likely to have been different from preceding ones. In addition to the invitations sent to specific research groups involved in electromagnetic inverse problems, the Guest Editors also solicited recommendations, from a large number of experts, of potential authors who were thereupon encouraged to contribute. Moreover, an open call for contributions was published on the homepage of Inverse Problems in order to attract as wide a scope of contributions as possible. This special issue's attempt at generality might also define its limitations: by no means could this collection of papers be exhaustive or complete, and as Guest Editors we are well aware that many exciting topics and potential contributions will be missing. This, however, also determines its very special flavor: besides addressing electromagnetic inverse problems in a broad sense, there were only a few restrictions on the contributions considered for this section. One requirement was plausible evidence of either novelty or the emergent nature of the technique or application described, judged mainly by the referees, and in some cases by the Guest Editors. The technical quality of the contributions always remained a stringent condition of acceptance, final adjudication (possibly questionable either way, not always positive) being made in most cases once a thorough revision process had been carried out. Therefore, we hope that the final result presented here constitutes an interesting collection of novel ideas and applications, properly refereed and edited, which will find its own readership and which can stimulate significant new research in the topics represented. Overall, as Guest Editors, we feel quite fortunate to have obtained such a strong response to the call for this issue and to have a really wide-ranging collection of high-quality contributions which, indeed, can be read from the first to the last page with sustained enthusiasm. A large number of applications and techniques is represented, overall via 16 contributions with 45 authors in total. This shows, in our opinion, that electromagnetic imaging and inversion remain amongst the most challenging and active research areas in applied inverse problems today. Below, we give a brief overview of the contributions included in this issue, ordered alphabetically by the surname of the leading author. 1. The complexity of handling potential randomness of the source in an inverse scattering problem is not minor, and the literature is far from being replete in this configuration. The contribution by G Bao, S N Chow, P Li and H Zhou, `Numerical solution of an inverse medium scattering problem with a stochastic source', exemplifies how to hybridize Wiener chaos expansion with a recursive linearization method in order to solve the stochastic problem as a set of decoupled deterministic ones. 2. In cases where the forward problem is expensive to evaluate, database methods might become a reliable method of choice, while enabling one to deliver more information on the inversion itself. The contribution by S Bilicz, M Lambert and Sz Gyimóthy, `Kriging-based generation of optimal databases as forward and inverse surrogate models', describes such a technique which uses kriging for constructing an efficient database with the goal of achieving an equidistant distribution of points in the measurement space. 3. Anisotropy remains a considerable challenge in electromagnetic imaging, which is tackled in the contribution by F Cakoni, D Colton, P Monk and J Sun, `The inverse electromagnetic scattering problem for anisotropic media', via the fact that transmission eigenvalues can be retrieved from a far-field scattering pattern, yielding, in particular, lower and upper bounds of the index of refraction of the unknown (dielectric anisotropic) scatterer. 4. So-called subspace optimization methods (SOM) have attracted a lot of interest recently in many fields. The contribution by X Chen, `Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium', illustrates how to address a realistic situation in which the medium containing the unknown obstacles is not homogeneous, via blending a properly developed SOM with a finite-element approach to the required Green's functions. 5. H Egger, M Hanke, C Schneider, J Schöberl and S Zaglmayr, in their contribution `Adjoint-based sampling methods for electromagnetic scattering', show how to efficiently develop sampling methods without explicit knowledge of the dyadic Green's function once an adjoint problem has been solved at much lower computational cost. This is demonstrated by examples in demanding propagative and diffusive situations. 6. Passive sensor arrays can be employed to image reflectors from ambient noise via proper migration of cross-correlation matrices into their embedding medium. This is investigated, and resolution, in particular, is considered in detail, as a function of the characteristics of the sensor array and those of the noise, in the contribution by J Garnier and G Papanicolaou, `Resolution analysis for imaging with noise'. 7. A direct reconstruction technique based on the conformal mapping theorem is proposed and investigated in depth in the contribution by H Haddar and R Kress, `Conformal mapping and impedance tomography'. This paper expands on previous work, with inclusions in homogeneous media, convergence results, and numerical illustrations. 8. The contribution by T Hohage and S Langer, `Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems', focuses on a spectral preconditioner intended to accelerate regularized Newton methods as employed for the retrieval of a local inhomogeneity in a three-dimensional vector electromagnetic case, while also illustrating the implementation of a Lepskiĭ-type stopping rule outsmarting a traditional discrepancy principle. 9. Geophysical applications are a rich source of practically relevant inverse problems. The contribution by M Li, A Abubakar and T Habashy, `Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion', deals with a model-based inversion technique for electromagnetic imaging which addresses novel challenges such as multi-physics inversion, and incorporation of prior knowledge, such as in hydrocarbon recovery. 10. Non-stationary inverse problems, considered as a special class of Bayesian inverse problems, are framed via an orthogonal decomposition representation in the contribution by A Lipponen, A Seppänen and J P Kaipio, `Reduced order estimation of nonstationary flows with electrical impedance tomography'. The goal is to simultaneously estimate, from electrical impedance tomography data, certain characteristics of the Navier--Stokes fluid flow model together with time-varying concentration distribution. 11. Non-iterative imaging methods of thin, penetrable cracks, based on asymptotic expansion of the scattering amplitude and analysis of the multi-static response matrix, are discussed in the contribution by W-K Park, `On the imaging of thin dielectric inclusions buried within a half-space', completing, for a shallow burial case at multiple frequencies, the direct imaging of small obstacles (here, along their transverse dimension), MUSIC and non-MUSIC type indicator functions being used for that purpose. 12. The contribution by R Potthast, `A study on orthogonality sampling' envisages quick localization and shaping of obstacles from (portions of) far-field scattering patterns collected at one or more time-harmonic frequencies, via the simple calculation (and summation) of scalar products between those patterns and a test function. This is numerically exemplified for Neumann/Dirichlet boundary conditions and homogeneous/heterogeneous embedding media. 13. The contribution by J D Shea, P Kosmas, B D Van Veen and S C Hagness, `Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms', aims at microwave medical imaging, namely the early detection of breast cancer. The use of contrast enhancing agents is discussed in detail and a number of reconstructions in three-dimensional geometry of realistic numerical breast phantoms are presented. 14. The contribution by D A Subbarayappa and V Isakov, `Increasing stability of the continuation for the Maxwell system', discusses enhanced log-type stability results for continuation of solutions of the time-harmonic Maxwell system, adding a fresh chapter to the interesting story of the study of the Cauchy problem for PDE. 15. In their contribution, `Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime', A Tamburrino, S Ventre and G Rubinacci extend the recently developed monotonicity method toward the application of magnetic induction tomography in order to map surface-breaking defects affecting a damaged metal component. 16. The contribution by F Viani, P Rocca, M Benedetti, G Oliveri and A Massa, `Electromagnetic passive localization and tracking of moving targets in a WSN-infrastructured environment', contributes to what could still be seen as a niche problem, yet both useful in terms of applications, e.g., security, and challenging in terms of methodologies and experiments, in particular, in view of the complexity of environments in which this endeavor is to take place and the variability of the wireless sensor networks employed. To conclude, we would like to thank the able and tireless work of Kate Watt and Zoë Crossman, as past and present Publishers of the Journal, on what was definitely a long and exciting journey (sometimes a little discouraging when reports were not arriving, or authors were late, or Guest Editors overwhelmed) that started from a thorough discussion at the `Manchester workshop on electromagnetic inverse problems' held mid-June 2009, between Kate Watt and the Guest Editors. We gratefully acknowledge the fact that W W Symes gave us his full backing to carry out this special issue and that A K Louis completed it successfully. Last, but not least, the staff of Inverse Problems should be thanked, since they work together to make it a premier journal.
A note on convergence of solutions of total variation regularized linear inverse problems
NASA Astrophysics Data System (ADS)
Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar
2018-05-01
In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.
Round-off errors in cutting plane algorithms based on the revised simplex procedure
NASA Technical Reports Server (NTRS)
Moore, J. E.
1973-01-01
This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
Inverse dynamics of a 3 degree of freedom spatial flexible manipulator
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Serna, M.
1989-01-01
A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.
Exact solution for an optimal impermeable parachute problem
NASA Astrophysics Data System (ADS)
Lupu, Mircea; Scheiber, Ernest
2002-10-01
In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.
The attitude inversion method of geostationary satellites based on unscented particle filter
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao
2018-04-01
The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.
NASA Astrophysics Data System (ADS)
Lin, Y.; O'Malley, D.; Vesselinov, V. V.
2015-12-01
Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.
Inverse solutions for electrical impedance tomography based on conjugate gradients methods
NASA Astrophysics Data System (ADS)
Wang, M.
2002-01-01
A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
NASA Astrophysics Data System (ADS)
Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun
2014-04-01
We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.
NASA Astrophysics Data System (ADS)
Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz
2017-10-01
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.
USDA-ARS?s Scientific Manuscript database
Determination of the optical properties from intact biological materials based on diffusion approximation theory is a complicated inverse problem, and it requires proper implementation of inverse algorithm, instrumentation, and experiment. This work was aimed at optimizing the procedure of estimatin...
Report to the Office of Naval Research for Contract N00014-89-J-1108 (Texas A&M University)
1989-12-31
class of undetermined coefficient problems of parabolic and elliptic type , and is easy to implement provided that the boundary conditions are in a ...considerable expertise to our efforts. Richard Fabiano, a student of John Burns, spent 3 years at Brown working with Tom Banks. His speciality is in... 3 ] J. R. Cannon and H. M. Yin, A uniqueness theorem for a class of parabolic inverse problems, J. Inverse Problems, 4, (1988), 411-416.
From inverse problems to learning: a Statistical Mechanics approach
NASA Astrophysics Data System (ADS)
Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo
2018-01-01
We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.
3D Acoustic Full Waveform Inversion for Engineering Purpose
NASA Astrophysics Data System (ADS)
Lim, Y.; Shin, S.; Kim, D.; Kim, S.; Chung, W.
2017-12-01
Seismic waveform inversion is the most researched data processing technique. In recent years, with an increase in marine development projects, seismic surveys are commonly conducted for engineering purposes; however, researches for application of waveform inversion are insufficient. The waveform inversion updates the subsurface physical property by minimizing the difference between modeled and observed data. Furthermore, it can be used to generate an accurate subsurface image; however, this technique consumes substantial computational resources. Its most compute-intensive step is the calculation of the gradient and hessian values. This aspect gains higher significance in 3D as compared to 2D. This paper introduces a new method for calculating gradient and hessian values, in an effort to reduce computational overburden. In the conventional waveform inversion, the calculation area covers all sources and receivers. In seismic surveys for engineering purposes, the number of receivers is limited. Therefore, it is inefficient to construct the hessian and gradient for the entire region (Figure 1). In order to tackle this problem, we calculate the gradient and the hessian for a single shot within the range of the relevant source and receiver. This is followed by summing up of these positions for the entire shot (Figure 2). In this paper, we demonstrate that reducing the area of calculation of the hessian and gradient for one shot reduces the overall amount of computation and therefore, the computation time. Furthermore, it is proved that the waveform inversion can be suitably applied for engineering purposes. In future research, we propose to ascertain an effective calculation range. This research was supported by the Basic Research Project(17-3314) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.
Fractions division knowledge of elementary school student: The case of Lala
NASA Astrophysics Data System (ADS)
Purnomo, Yoppy Wahyu; Widowati, Chairunnisa; Aziz, Tian Abdul; Pramudiani, Puri
2017-08-01
Division of fractions is often acknowledged by mysterious rule which is not based on conceptual knowledge. The purpose of the study was to explore elementary school student's knowledge of division fractions. For this purpose, a case study was conducted. The participant of the study was Lala (pseudonym) who enrolled at one elementary school in East Jakarta. The data were collected by administering written test and semi-structured interview respectively. The findings of the study indicated that Lala was able to describe strategy of division fractions as inverse of repeated addition flexibly. She also had basic understanding of fractions division concept as equal sharing, but when she was challenged with advance problems, she performed poorly. Lala also encountered difficulty when dealing with dividing fraction by fraction problem in which she interpreted it as subtraction problem. In this case, her procedural knowledge was likely to be more salient than her conceptual knowledge.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-10
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
PUBLISHER'S ANNOUNCEMENT: Important changes for 2008
NASA Astrophysics Data System (ADS)
2008-02-01
As a result of reviewing several aspects of our content, both in print and online, we have made some changes for 2008. These changes are described below. Article numbering Inverse Problems has moved from sequential page numbering to an article numbering system, offering important advantages and flexibility by speeding up the publication process. Articles in different issues or sections can be published online as soon as they are ready, without having to wait for a whole issue or section to be allocated page numbers. The bibliographic citation will change slightly. Articles should be referenced using the six-digit article number in place of a page number, and this number must include any leading zeros. For instance: Surname X and Surname Y 2008 Inverse Problems 24 015001 Articles will continue to be published on the web in advance of the print edition. A new look and feel We have taken the opportunity to refresh the design of Inverse Problems' cover in order to modernise the typography and create a consistent look and feel across IOP Publishing's range of publications. We hope you like the new cover. If you have any questions or comments about any of these changes, please contact us at ip@iop.org Kate Watt Publisher, Inverse Problems
Hesford, Andrew J.; Chew, Weng C.
2010-01-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438
NASA Astrophysics Data System (ADS)
Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong
2010-08-01
Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.
Damage identification using inverse methods.
Friswell, Michael I
2007-02-15
This paper gives an overview of the use of inverse methods in damage detection and location, using measured vibration data. Inverse problems require the use of a model and the identification of uncertain parameters of this model. Damage is often local in nature and although the effect of the loss of stiffness may require only a small number of parameters, the lack of knowledge of the location means that a large number of candidate parameters must be included. This paper discusses a number of problems that exist with this approach to health monitoring, including modelling error, environmental effects, damage localization and regularization.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel
2015-04-01
We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.
Inverse kinematic-based robot control
NASA Technical Reports Server (NTRS)
Wolovich, W. A.; Flueckiger, K. F.
1987-01-01
A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.
Discrete Inverse and State Estimation Problems
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2006-06-01
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware
Space structures insulating material's thermophysical and radiation properties estimation
NASA Astrophysics Data System (ADS)
Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.
2007-11-01
In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.
Analysis of harmonic spline gravity models for Venus and Mars
NASA Technical Reports Server (NTRS)
Bowin, Carl
1986-01-01
Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.
Inverse problem of HIV cell dynamics using Genetic Algorithms
NASA Astrophysics Data System (ADS)
González, J. A.; Guzmán, F. S.
2017-01-01
In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.
NASA Astrophysics Data System (ADS)
Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem
2017-04-01
The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model. The function recovered by the method proposed can find practical applications both as an initial condition for various optimization approaches and for computer calculation of the tsunami wave propagation.
Inversion methods for interpretation of asteroid lightcurves
NASA Technical Reports Server (NTRS)
Kaasalainen, Mikko; Lamberg, L.; Lumme, K.
1992-01-01
We have developed methods of inversion that can be used in the determination of the three-dimensional shape or the albedo distribution of the surface of a body from disk-integrated photometry, assuming the shape to be strictly convex. In addition to the theory of inversion methods, we have studied the practical aspects of the inversion problem and applied our methods to lightcurve data of 39 Laetitia and 16 Psyche.
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
NASA Astrophysics Data System (ADS)
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Full-Physics Inverse Learning Machine for Satellite Remote Sensing Retrievals
NASA Astrophysics Data System (ADS)
Loyola, D. G.
2017-12-01
The satellite remote sensing retrievals are usually ill-posed inverse problems that are typically solved by finding a state vector that minimizes the residual between simulated data and real measurements. The classical inversion methods are very time-consuming as they require iterative calls to complex radiative-transfer forward models to simulate radiances and Jacobians, and subsequent inversion of relatively large matrices. In this work we present a novel and extremely fast algorithm for solving inverse problems called full-physics inverse learning machine (FP-ILM). The FP-ILM algorithm consists of a training phase in which machine learning techniques are used to derive an inversion operator based on synthetic data generated using a radiative transfer model (which expresses the "full-physics" component) and the smart sampling technique, and an operational phase in which the inversion operator is applied to real measurements. FP-ILM has been successfully applied to the retrieval of the SO2 plume height during volcanic eruptions and to the retrieval of ozone profile shapes from UV/VIS satellite sensors. Furthermore, FP-ILM will be used for the near-real-time processing of the upcoming generation of European Sentinel sensors with their unprecedented spectral and spatial resolution and associated large increases in the amount of data.
Miyake, Yoshihiro; Tanaka, Keiko; Okubo, Hitomi; Sasaki, Satoshi; Arakawa, Masashi
2018-03-13
The present prebirth cohort study examined the association between maternal caffeine consumption during pregnancy and behavioral problems in Japanese children aged 5 years. Subjects were 1199 mother-child pairs. Dietary intake was assessed using a diet history questionnaire. Emotional problems, conduct problems, hyperactivity problems, and peer problems were assessed using the Japanese parent-report version of the Strengths and Difficulties Questionnaire. Adjustment was made for maternal age, gestation at baseline, region of residence at baseline, number of children at baseline, maternal and paternal education, household income, maternal depressive symptoms during pregnancy, maternal alcohol intake during pregnancy, maternal smoking during pregnancy, child's birth weight, child's sex, breastfeeding duration, and smoking in the household during the first year of life. The contributors of caffeine in the diet during pregnancy were Japanese and Chinese tea (74.8%), coffee (13.0%), black tea (4.4%), confectionaries (4.0%), and soft drinks (3.7%). Higher maternal caffeine consumption during pregnancy was independently associated with a reduced risk of peer problems in the children: the adjusted odds ratios (95% confidence intervals) in the first, second, third, and fourth quartiles of maternal caffeine consumption during pregnancy were 1 (reference), 0.61 (0.35-1.06), 0.52 (0.29-0.91), and 0.51 (0.28-0.91), respectively (P for trend = 0.01). Maternal caffeine intake during pregnancy was not evidently related to the risk of emotional problems, conduct problems, or hyperactivity problems in the children. Maternal caffeine consumption, mainly from Japanese and Chinese tea, during pregnancy may be preventive against peer problems in Japanese children.
A model reduction approach to numerical inversion for a parabolic partial differential equation
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
Censor, Yair; Unkelbach, Jan
2011-01-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694
NASA Astrophysics Data System (ADS)
Yoon, H.; McKenna, S. A.; Hart, D. B.
2010-12-01
Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale (~0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: 1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and 2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed concentration from point to cross-section. This comparison allows us to evaluate which method best matches experimental results at different scales. To evaluate the uncertainty in parameter estimation, the null space Monte Carlo method will be used to reduce computational burden of the development of calibration-constrained Monte Carlo based parameter fields. This study will illustrate how accurately a well-calibrated model can predict contaminant transport. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Iterative electromagnetic Born inversion applied to earth conductivity imaging
NASA Astrophysics Data System (ADS)
Alumbaugh, D. L.
1993-08-01
This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassab, A.J.; Pollard, J.E.
An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less
NASA Astrophysics Data System (ADS)
Trillon, Adrien
Eddy current tomography can be employed to caracterize flaws in metal plates in steam generators of nuclear power plants. Our goal is to evaluate a map of the relative conductivity that represents the flaw. This nonlinear ill-posed problem is difficult to solve and a forward model is needed. First, we studied existing forward models to chose the one that is the most adapted to our case. Finite difference and finite element methods matched very good to our application. We adapted contrast source inversion (CSI) type methods to the chosen model and a new criterion was proposed. These methods are based on the minimization of the weighted errors of the model equations, coupling and observation. They allow an error on the equations. It appeared that reconstruction quality grows with the decay of the error on the coupling equation. We resorted to augmented Lagrangian techniques to constrain coupling equation and to avoid conditioning problems. In order to overcome the ill-posed character of the problem, prior information was introduced about the shape of the flaw and the values of the relative conductivity. Efficiency of the methods are illustrated with simulated flaws in 2D case.
Children's Understanding of Addition and Subtraction Concepts
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2009-01-01
After the onset of formal schooling, little is known about the development of children's understanding of the arithmetic concepts of inversion and associativity. On problems of the form a+b-b (e.g., 3+26-26), if children understand the inversion concept (i.e., that addition and subtraction are inverse operations), then no calculations are needed…
The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method
NASA Astrophysics Data System (ADS)
Voronina, T. A.; Romanenko, A. A.
2016-12-01
Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.
Nonlinear Waves and Inverse Scattering
1990-09-18
to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the
Globally Convergent Numerical Methods for Coefficient Inverse Problems
2008-09-23
backgrounds. Probing radiations are usually thought as electric and acoustic waves for the first two applications and light originated by lasers in...fundamental laws of physics. Electric , acoustic or light scattering properties of both unknown targets and the backgrounds are described by coefficients of...with the back-reflected data here, Army applications are quite feasible. The 2-D inverse problem of the determination of the unknown electric
Recursive recovery of Markov transition probabilities from boundary value data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, Sarah Kathyrn
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less
Inverse problems biomechanical imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oberai, Assad A.
2016-03-01
It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.
Un, M Kerem; Kaghazchi, Hamed
2018-01-01
When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.
Calibration of Lévy Processes with American Options
NASA Astrophysics Data System (ADS)
Achdou, Yves
We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.
Hollaus, Karl; Rosell-Ferrer, Javier; Merwa, Robert
2006-01-01
Magnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils. Potential medical applications comprise the continuous, non-invasive monitoring of tissue alterations which are reflected in the change of the conductivity, e.g. edema, ventilation disorders, wound healing and ischemic processes. MIT requires the solution of an ill-posed inverse eddy current problem. A linearized version of this problem was solved for 16 excitation coils and 32 receiver coils with a model of two spherical perturbations within a cylindrical phantom. The method was tested with simulated measurement data. Images were reconstructed with a regularized single-step Gauss–Newton approach. Theoretical limits for spatial resolution and contrast/noise ratio were calculated and compared with the empirical results from a Monte-Carlo study. The conductivity perturbations inside a homogeneous cylinder were localized for a SNR between 44 and 64 dB. The results prove the feasibility of difference imaging with MIT and give some quantitative data on the limitations of the method. PMID:17031597
Inversion layer MOS solar cells
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1986-01-01
Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.
Acoustic and elastic waveform inversion best practices
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.
NASA Astrophysics Data System (ADS)
Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid
2016-02-01
In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
Comparative Study of Three Data Assimilation Methods for Ice Sheet Model Initialisation
NASA Astrophysics Data System (ADS)
Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier
2015-04-01
The current global warming has direct consequences on ice-sheet mass loss contributing to sea level rise. This loss is generally driven by an acceleration of some coastal outlet glaciers and reproducing these mechanisms is one of the major issues in ice-sheet and ice flow modelling. The construction of an initial state, as close as possible to current observations, is required as a prerequisite before producing any reliable projection of the evolution of ice-sheets. For this step, inverse methods are often used to infer badly known or unknown parameters. For instance, the adjoint inverse method has been implemented and applied with success by different authors in different ice flow models in order to infer the basal drag [ Schafer et al., 2012; Gillet-chauletet al., 2012; Morlighem et al., 2010]. Others data fields, such as ice surface and bedrock topography, are easily measurable with more or less uncertainty but only locally along tracks and interpolated on finer model grid. All these approximations lead to errors on the data elevation model and give rise to an ill-posed problem inducing non-physical anomalies in flux divergence [Seroussi et al, 2011]. A solution to dissipate these divergences of flux is to conduct a surface relaxation step at the expense of the accuracy of the modelled surface [Gillet-Chaulet et al., 2012]. Other solutions, based on the inversion of ice thickness and basal drag were proposed [Perego et al., 2014; Pralong & Gudmundsson, 2011]. In this study, we create a twin experiment to compare three different assimilation algorithms based on inverse methods and nudging to constrain the bedrock friction and the bedrock elevation: (i) cyclic inversion of friction parameter and bedrock topography using adjoint method, (ii) cycles coupling inversion of friction parameter using adjoint method and nudging of bedrock topography, (iii) one step inversion of both parameters with adjoint method. The three methods show a clear improvement in parameters knowledge leading to a significant reduction of flux divergence of the model before forecasting.
Hydraulic Conductivity Estimation using Bayesian Model Averaging and Generalized Parameterization
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Li, X.
2006-12-01
Non-uniqueness in parameterization scheme is an inherent problem in groundwater inverse modeling due to limited data. To cope with the non-uniqueness problem of parameterization, we introduce a Bayesian Model Averaging (BMA) method to integrate a set of selected parameterization methods. The estimation uncertainty in BMA includes the uncertainty in individual parameterization methods as the within-parameterization variance and the uncertainty from using different parameterization methods as the between-parameterization variance. Moreover, the generalized parameterization (GP) method is considered in the geostatistical framework in this study. The GP method aims at increasing the flexibility of parameterization through the combination of a zonation structure and an interpolation method. The use of BMP with GP avoids over-confidence in a single parameterization method. A normalized least-squares estimation (NLSE) is adopted to calculate the posterior probability for each GP. We employee the adjoint state method for the sensitivity analysis on the weighting coefficients in the GP method. The adjoint state method is also applied to the NLSE problem. The proposed methodology is implemented to the Alamitos Barrier Project (ABP) in California, where the spatially distributed hydraulic conductivity is estimated. The optimal weighting coefficients embedded in GP are identified through the maximum likelihood estimation (MLE) where the misfits between the observed and calculated groundwater heads are minimized. The conditional mean and conditional variance of the estimated hydraulic conductivity distribution using BMA are obtained to assess the estimation uncertainty.
Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; González, J. A.
2018-04-01
We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.
Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique
NASA Astrophysics Data System (ADS)
Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi
2013-09-01
According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.
Recovery of time-dependent volatility in option pricing model
NASA Astrophysics Data System (ADS)
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
NASA Astrophysics Data System (ADS)
Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.
2017-11-01
We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.
All about Genetics (For Parents)
... problems associated with their condition. Deletions, Translocations, and Inversions Sometimes it's not the number of chromosomes that's ... some places and not enough in others. With inversions (which affect about 1 in every 100 newborns), ...
NASA Astrophysics Data System (ADS)
Avdyushev, Victor A.
2017-12-01
Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the method of disturbed observations, we conclude that it practically should be still entirely acceptable to adequately describe the orbital uncertainty since, from a geometrical point of view, the efficiency of the method directly depends only on the nonflatness of the estimation subspace and it gets higher as the nonflatness decreases.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
Numerical solution of inverse scattering for near-field optics.
Bao, Gang; Li, Peijun
2007-06-01
A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.
Low frequency full waveform seismic inversion within a tree based Bayesian framework
NASA Astrophysics Data System (ADS)
Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe
2018-01-01
Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.
Perturbational and nonperturbational inversion of Rayleigh-wave velocities
Haney, Matt; Tsai, Victor C.
2017-01-01
The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.
Full-waveform inversion of GPR data for civil engineering applications
NASA Astrophysics Data System (ADS)
van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry
2014-05-01
Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208
3D electrical conductivity tomography of volcanoes
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.
2018-05-01
Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in interpreting electrical conductivity tomograms. That said, new experimental data provide evidence regarding the strong role of alteration in the vicinity of preferential fluid flow paths including magmatic conduits and hydrothermal vents.
The inverse problems of wing panel manufacture processes
NASA Astrophysics Data System (ADS)
Oleinikov, A. I.; Bormotin, K. S.
2013-12-01
It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2015-12-01
Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
NASA Astrophysics Data System (ADS)
Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui
2017-09-01
We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.
Model-based elastography: a survey of approaches to the inverse elasticity problem
Doyley, M M
2012-01-01
Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839
Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data
NASA Astrophysics Data System (ADS)
Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar
2017-04-01
A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedharan, Priya
The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less
ERIC Educational Resources Information Center
Bryant, Peter; Rendu, Alison; Christie, Clare
1999-01-01
Examined whether 5- and 6-year-olds understand that addition and subtraction cancel each other and whether this understanding is based on identity or quantity of addend and subtrahend. Found that children used inversion principle. Six- to eight-year-olds also used inversion and decomposition to solve a + b - (B+1) problems. Concluded that…
ERIC Educational Resources Information Center
Robinson, Katherine M.; LeFevre, Jo-Anne
2012-01-01
Researchers have speculated that children find it more difficult to acquire conceptual understanding of the inverse relation between multiplication and division than that between addition and subtraction. We reviewed research on children and adults' use of shortcut procedures that make use of the inverse relation on two kinds of problems:…
ERIC Educational Resources Information Center
Canobi, Katherine H.; Bethune, Narelle E.
2008-01-01
Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that…
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Knight, R.
2009-05-01
One of the key factors in the sensible inference of subsurface geologic properties from both field and laboratory experiments is the ability to quantify the linkages between the inherently fine-scale structures, such as bedding planes and fracture sets, and their macroscopic expression through geophysical interrogation. Central to this idea is the concept of a "minimal sampling volume" over which a given geophysical method responds to an effective medium property whose value is dictated by the geometry and distribution of sub- volume heterogeneities as well as the experiment design. In this contribution we explore the concept of effective resistivity volumes for the canonical depth-to-bedrock problem subject to industry-standard DC resistivity survey designs. Four models representing a sedimentary overburden and flat bedrock interface were analyzed through numerical experiments of six different resistivity arrays. In each of the four models, the sedimentary overburden consists of a thinly interbedded resistive and conductive laminations, with equivalent volume-averaged resistivity but differing lamination thickness, geometry, and layering sequence. The numerical experiments show striking differences in the apparent resistivity pseudo-sections which belie the volume-averaged equivalence of the models. These models constitute the synthetic data set offered for inversion in this Back to Basics Resistivity Modeling session and offer the promise to further our understanding of how the sampling volume, as affected by survey design, can be constrained by joint-array inversion of resistivity data.
Inverse source problems in elastodynamics
NASA Astrophysics Data System (ADS)
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Model based inversion of ultrasound data in composites
NASA Astrophysics Data System (ADS)
Roberts, R. A.
2018-04-01
Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.
NASA Astrophysics Data System (ADS)
Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe
2014-10-01
Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.
Identifying Aquifer Heterogeneities using the Level Set Method
NASA Astrophysics Data System (ADS)
Lu, Z.; Vesselinov, V. V.; Lei, H.
2016-12-01
Material interfaces between hydrostatigraphic units (HSU) with contrasting aquifer parameters (e.g., strata and facies with different hydraulic conductivity) have a great impact on flow and contaminant transport in subsurface. However, the identification of HSU shape in the subsurface is challenging and typically relies on tomographic approaches where a series of steady-state/transient head measurements at spatially distributed observation locations are analyzed using inverse models. In this study, we developed a mathematically rigorous approach for identifying material interfaces among any arbitrary number of HSUs using the level set method. The approach has been tested first with several synthetic cases, where the true spatial distribution of HSUs was assumed to be known and the head measurements were taken from the flow simulation with the true parameter fields. These synthetic inversion examples demonstrate that the level set method is capable of characterizing the spatial distribution of the heterogeneous. We then applied the methodology to a large-scale problem in which the spatial distribution of pumping wells and observation well screens is consistent with the actual aquifer contamination (chromium) site at the Los Alamos National Laboratory (LANL). In this way, we test the applicability of the methodology at an actual site. We also present preliminary results using the actual LANL site data. We also investigated the impact of the number of pumping/observation wells and the drawdown observation frequencies/intervals on the quality of the inversion results. We also examined the uncertainties associated with the estimated HSU shapes, and the accuracy of the results under different hydraulic-conductivity contrasts between the HSU's.
Behavioral pattern identification for structural health monitoring in complex systems
NASA Astrophysics Data System (ADS)
Gupta, Shalabh
Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special-purpose fatigue test apparatus, equipped with multiple sensing devices (e.g., ultrasonics and optical microscope) for damage analysis, has been used to experimentally validate the STSA method for early detection of anomalous behavior. The sensor information is integrated with a software module consisting of the STSA algorithm for real-time monitoring of fatigue damage. Experiments have been conducted under different loading conditions on specimens constructed from the ductile aluminium alloy 7075 - T6. The dissertation has also investigated the application of the STSA method for early detection of anomalies in other engineering disciplines. Two primary applications include combustion instability in a generic thermal pulse combustor model and whirling phenomenon in a typical misaligned shaft.
Regularity Aspects in Inverse Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten
2008-09-01
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study
NASA Astrophysics Data System (ADS)
Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.
2017-04-01
In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
CSI-EPT in Presence of RF-Shield for MR-Coils.
Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano
2017-07-01
Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.
Yang, C L; Wei, H Y; Adler, A; Soleimani, M
2013-06-01
Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.
Single photon emission computed tomography-guided Cerenkov luminescence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie
2012-07-01
Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.
Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.
Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y
1999-04-20
A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].
NASA Astrophysics Data System (ADS)
Tikhomirov, S. G.; Pyatakov, Y. V.; Karmanova, O. V.; Maslov, A. A.
2018-03-01
The studies of the vulcanization kinetics of elastomers were carried out using a Truck tyre tread rubber compound. The formal kinetic scheme of vulcanization of rubbers sulfur-accelerator curing system was used which generalizes the set of reactions occurring in the curing process. A mathematical model is developed for determining the thermal parameters vulcanizable mixture comprising algorithms for solving direct and inverse problems for system of equations of heat conduction and kinetics of the curing process. The performance of the model is confirmed by the results of numerical experiments on model examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp; Teki, Yoshio
We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.
2010-04-27
Dirichlet boundary data DP̃ (x, y) at the entire plane P̃ . Then one can solve the following boundary value problem in the half space below P̃ ∆w − s2w...which we wanted to be a plane wave when reaching the bottom side of the prism of Figure 1, where measurements were conducted. But actually this 14 was a...initializing wave field is a plane wave. On the other hand, a visual inspection of the output experimental data has revealed to us that actually we had a
3-D decoupled inversion of complex conductivity data in the real number domain
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Thomle, Jonathan
2018-01-01
Complex conductivity imaging (also called induced polarization imaging or spectral induced polarization imaging when conducted at multiple frequencies) involves estimating the frequency-dependent complex electrical conductivity distribution of the subsurface. The superior diagnostic capabilities provided by complex conductivity spectra have driven advancements in mechanistic understanding of complex conductivity as well as modelling and inversion approaches over the past several decades. In this work, we demonstrate the theory and application for an approach to 3-D modelling and inversion of complex conductivity data in the real number domain. Beginning from first principles, we demonstrate how the equations for the real and imaginary components of the complex potential may be decoupled. This leads to a description of the real and imaginary source current terms, and a corresponding assessment of error arising from an assumption necessary to complete the decoupled modelling. We show that for most earth materials, which exhibit relatively small phases (e.g. less than 0.2 radians) in complex conductivity, these errors become insignificant. For higher phase materials, the errors may be quantified and corrected through an iterative procedure. We demonstrate the accuracy of numerical forward solutions by direct comparison to corresponding analytic solutions. We demonstrate the inversion using both synthetic and field examples with data collected over a waste infiltration trench, at frequencies ranging from 0.5 to 7.5 Hz.
NASA Astrophysics Data System (ADS)
Ha, J.; Chung, W.; Shin, S.
2015-12-01
Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.
2014-03-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Variational approach to direct and inverse problems of atmospheric pollution studies
NASA Astrophysics Data System (ADS)
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2016-04-01
We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition quality// Russian meteorology and hydrology, V. 40, Issue: 6, Pages: 365-373, DOI: 10.3103/S1068373915060023. 4. A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. 5. V.V. Penenko, E.A. Tsvetova, A.V. Penenko Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, 2014, V.67, Issue 12, Pages 2240-2256, DOI:10.1016/j.camwa.2014.04.004 6. V.V. Penenko, E.A. Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220, DOI 10.1134/S199542391303004X
Direct EIT reconstructions of complex admittivities on a chest-shaped domain in 2-D.
Hamilton, Sarah J; Mueller, Jennifer L
2013-04-01
Electrical impedance tomography (EIT) is a medical imaging technique in which current is applied on electrodes on the surface of the body, the resulting voltage is measured, and an inverse problem is solved to recover the conductivity and/or permittivity in the interior. Images are then formed from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT is clinically useful for chest imaging. In this work, an implementation of a D-bar method for complex admittivities on a general 2-D domain is presented. In particular, reconstructions are computed on a chest-shaped domain for several realistic phantoms including a simulated pneumothorax, hyperinflation, and pleural effusion. The method demonstrates robustness in the presence of noise. Reconstructions from trigonometric and pairwise current injection patterns are included.