NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
Application of a stochastic inverse to the geophysical inverse problem
NASA Technical Reports Server (NTRS)
Jordan, T. H.; Minster, J. B.
1972-01-01
The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.
Transurethral Ultrasound Diffraction Tomography
2007-03-01
the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering
Iterative algorithms for a non-linear inverse problem in atmospheric lidar
NASA Astrophysics Data System (ADS)
Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto
2017-08-01
We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.
Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements.
Black, Georgia; Waddington, Gordon; Adams, Roger
2014-02-01
25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.
Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India.
Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K
2013-01-01
Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. CBRs were inversely related to literacy rates (slope parameter = -0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = -0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = -1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = -0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Female literacy is relatively highly important for both population stabilization and better infant health.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India
Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K.
2013-01-01
Background: Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Materials and Methods: Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. Results: CBRs were inversely related to literacy rates (slope parameter = −0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = −0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = −1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = −0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Conclusion: Female literacy is relatively highly important for both population stabilization and better infant health. PMID:26664840
An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients
NASA Technical Reports Server (NTRS)
Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas
1994-01-01
We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
Are normal narcissists psychologically healthy?: self-esteem matters.
Sedikides, Constantine; Rudich, Eric A; Gregg, Aiden P; Kumashiro, Madoka; Rusbult, Caryl
2004-09-01
Five studies established that normal narcissism is correlated with good psychological health. Specifically, narcissism is (a) inversely related to daily sadness and dispositional depression, (b) inversely related to daily and dispositional loneliness, (c) positively related to daily and dispositional subjective well-being as well as couple well-being, (d) inversely related to daily anxiety, and (e) inversely related to dispositional neuroticism. More important, self-esteem fully accounted for the relation between narcissism and psychological health. Thus, narcissism is beneficial for psychological health only insofar as it is associated with high self-esteem. Explanations of the main and mediational findings in terms of response or social desirability biases (e.g., defensiveness, repression, impression management) were ruled out. Supplementary analysis showed that the links among narcissism, self-esteem, and psychological health were preponderantly linear. ((c) 2004 APA, all rights reserved)
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, L.; Gu, H.
2017-12-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.
Angle-domain inverse scattering migration/inversion in isotropic media
NASA Astrophysics Data System (ADS)
Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan
2018-07-01
The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.
Inverse solutions for electrical impedance tomography based on conjugate gradients methods
NASA Astrophysics Data System (ADS)
Wang, M.
2002-01-01
A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.
A MATLAB implementation of the minimum relative entropy method for linear inverse problems
NASA Astrophysics Data System (ADS)
Neupauer, Roseanna M.; Borchers, Brian
2001-08-01
The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.
NASA Astrophysics Data System (ADS)
Fukuda, J.; Johnson, K. M.
2009-12-01
Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.
Next Generation Robots for STEM Education andResearch at Huston Tillotson University
2017-11-10
dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one
Three-dimensional inversion of multisource array electromagnetic data
NASA Astrophysics Data System (ADS)
Tartaras, Efthimios
Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia
Jack, Clifford R.; Wiste, Heather J.; Weigand, Stephen D.; Vemuri, Prashanthi; Lowe, Val J.; Kantarci, Kejal; Gunter, Jeffrey L.; Senjem, Matthew L.; Mielke, Michelle M.; Machulda, Mary M.; Roberts, Rosebud O.; Boeve, Bradley F.; Jones, David T.; Petersen, Ronald C.
2016-01-01
Objective: To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Methods: Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [18F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. Results: The 97 participants with AD dementia (aged 49–93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. Conclusions: In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. PMID:27421543
Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.
Knopman, David S; Jack, Clifford R; Wiste, Heather J; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C
2016-08-16
To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [(18)F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. The 97 participants with AD dementia (aged 49-93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. © 2016 American Academy of Neurology.
Sedimentation of knotted polymers
NASA Astrophysics Data System (ADS)
Piili, J.; Marenduzzo, D.; Kaski, K.; Linna, R. P.
2013-01-01
We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number nc of the corresponding ideal knot. This provides direct computational confirmation of this relation, postulated on the basis of sedimentation experiments by Rybenkov [J. Mol. Biol.10.1006/jmbi.1996.0876 267, 299 (1997)]. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration Rg-1, more specifically with the inverse of the Rg component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, Rg-1 remains to a good precision linearly dependent on nc. Therefore, Rg-1 is a good measure of a knot's complexity.
Informativeness of Wind Data in Linear Madden-Julian Oscillation Prediction
2016-08-15
Linear inverse models (LIMs) are used to explore predictability and information content of the Madden–Julian Oscillation (MJO). Hindcast skill for...mostly at the largest scales, adds 1–2 days of skill. Keywords: linear inverse modeling; Madden–Julian Oscillation; sub-seasonal prediction 1...tion that may reflect on the MJO’s incompletely under- stood dynamics. Cavanaugh et al. (2014, hereafter C14) explored the skill of linear inverse
NASA Astrophysics Data System (ADS)
Aleardi, Mattia
2018-01-01
We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.
NASA Astrophysics Data System (ADS)
Hasanov, Alemdar; Erdem, Arzu
2008-08-01
The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.
Integration of Visual and Joint Information to Enable Linear Reaching Motions
NASA Astrophysics Data System (ADS)
Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu
2017-01-01
A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Bayesian linearized amplitude-versus-frequency inversion for quality factor and its application
NASA Astrophysics Data System (ADS)
Yang, Xinchao; Teng, Long; Li, Jingnan; Cheng, Jiubing
2018-06-01
We propose a straightforward attenuation inversion method by utilizing the amplitude-versus-frequency (AVF) characteristics of seismic data. A new linearized approximation equation of the angle and frequency dependent reflectivity in viscoelastic media is derived. We then use the presented equation to implement the Bayesian linear AVF inversion. The inversion result includes not only P-wave and S-wave velocities, and densities, but also P-wave and S-wave quality factors. Synthetic tests show that the AVF inversion surpasses the AVA inversion for quality factor estimation. However, a higher signal noise ratio (SNR) of data is necessary for the AVF inversion. To show its feasibility, we apply both the new Bayesian AVF inversion and conventional AVA inversion to a tight gas reservoir data in Sichuan Basin in China. Considering the SNR of the field data, a combination of AVF inversion for attenuation parameters and AVA inversion for elastic parameters is recommended. The result reveals that attenuation estimations could serve as a useful complement in combination with the AVA inversion results for the detection of tight gas reservoirs.
Nonlinear Waves and Inverse Scattering
1990-09-18
to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the
An evolutive real-time source inversion based on a linear inverse formulation
NASA Astrophysics Data System (ADS)
Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.
2016-12-01
Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source Inversion Validation project (Mai et al. 2011). A real case application is currently being explored. Our specific formulation, combined with simple prior information, as well as numerical results obtained so far, yields interesting perspectives for a real-time implementation.
NASA Astrophysics Data System (ADS)
Godano, M.; Regnier, M.; Deschamps, A.; Bardainne, T.
2009-04-01
Since these last years, the feasibility of CO2 storage in geological reservoir is carefully investigated. The monitoring of the seismicity (natural or induced by the gas injection) in the reservoir area is crucial for safety concerns. The location of the seismic events provide an imaging of the active structures which can be a potential leakage paths. Besides, the focal mechanism is an other important seismic attribute providing direct informations about the rock fracturing, and indirect information about the state of stress in the reservoir. We address the problem of focal mechanism determination for the micro-earthquakes induced in reservoirs with a potential application to the sites of CO2 storage. We developed a non linear inversion method of P, SV and SH direct waves amplitudes. To solve the inverse problem, we perfected our own simulated annealing algorithm. Our method allows simply determining the fault plane solution (strike, dip and rake of the fault plane) in the case of a double-couple source assumption. More generally, our method allows also determining the full moment tensor in case of non-purely shear source assumption. We searched to quantify the uncertainty associated to the obtained focal mechanisms. We defined three uncertainty causes. The first is related to the convergence process of the inversion, the second is related the amplitude picking error caused by the noise level and the third is related to the event location uncertainty. We performed a series of tests on synthetic data generated in reservoir configuration in order to validate our inversion method.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
NASA Astrophysics Data System (ADS)
Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
2017-12-01
The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)
This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...
Inversion for the driving forces of plate tectonics
NASA Technical Reports Server (NTRS)
Richardson, R. M.
1983-01-01
Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions
NASA Astrophysics Data System (ADS)
Loaiciga, Hugo A.; MariñO, Miguel A.
1987-01-01
The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI
NASA Astrophysics Data System (ADS)
Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.
2017-01-01
Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast comparable to that obtained with a non-linear 3D inversion. Over four different sites, this method is able to produce, following an acceptably short computation time, realistic values for the lateral and vertical variations in susceptibility, which are significantly different to those given by a point-by-point 1D inversion.
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P
2018-06-20
Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
NASA Astrophysics Data System (ADS)
Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas
2017-04-01
We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.
Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model
NASA Astrophysics Data System (ADS)
Mejer Hansen, Thomas
2017-04-01
Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.
Mathematics in the Real World.
ERIC Educational Resources Information Center
Borenstein, Matt
1997-01-01
The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
Non-linear Parameter Estimates from Non-stationary MEG Data
Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth
2016-01-01
We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, Longxiao; Gu, Hanming
2018-03-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
NASA Technical Reports Server (NTRS)
McCrea, R. A.; Chen-Huang, C.; Peterson, B. W. (Principal Investigator)
1999-01-01
The contributions of vestibular nerve afferents and central vestibular pathways to the angular (AVOR) and linear (LVOR) vestibulo-ocular reflex were studied in squirrel monkeys during fixation of near and far targets. Irregular vestibular afferents did not appear to be necessary for the LVOR, since when they were selectively silenced with galvanic currents the LVOR was essentially unaffected during both far- and near-target viewing. The linear translation signals generated by secondary AVOR neurons in the vestibular nuclei were, on average, in phase with head velocity, inversely related to viewing distance, and were nearly as strong as AVOR-related signals. We suggest that spatial-temporal transformation of linear head translation signals to angular eye velocity commands is accomplished primarily by the addition of viewing distance multiplied, centrally integrated, otolith regular afferent signals to angular VOR pathways.
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
Zinc oxide inverse opal enzymatic biosensor
NASA Astrophysics Data System (ADS)
You, Xueqiu; Pikul, James H.; King, William P.; Pak, James J.
2013-06-01
We report ZnO inverse opal- and nanowire (NW)-based enzymatic glucose biosensors with extended linear detection ranges. The ZnO inverse opal sensors have 0.01-18 mM linear detection range, which is 2.5 times greater than that of ZnO NW sensors and 1.5 times greater than that of other reported ZnO sensors. This larger range is because of reduced glucose diffusivity through the inverse opal geometry. The ZnO inverse opal sensors have an average sensitivity of 22.5 μA/(mM cm2), which diminished by 10% after 35 days, are more stable than ZnO NW sensors whose sensitivity decreased by 10% after 7 days.
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties
NASA Astrophysics Data System (ADS)
Raghuvanshi, S.; Mazaleyrat, F.; Kane, S. N.
2018-04-01
Correlation between cationic distribution, magnetic properties of Mg1-xZnxFe2O4 (0.0 ≤ x ≤ 1.0) ferrite is demonstrated, hardly shown in literature. X-ray diffraction (XRD) confirms the formation of cubic spinel nano ferrites with grain diameter between 40.8 to 55.4 nm. Energy dispersive spectroscopy (EDS) confirms close agreement of Mg/Fe, Zn/Fe molar ratio, presence of all elements (Mg, Zn, Fe, O), formation of estimated ferrite composition. Zn addition (for Mg) shows: i) linear increase of lattice parameter aexp, accounted for replacement of an ion with higher ionic radius (Zn > Mg); ii) presence of higher population of Fe3+ ions on B site, and unusual occurrence of Zn, Mg on A and B site leads to non-equilibrium cation distribution where we observe inverse to mixed structure, and is in contrast to reported literature where inverse to normal transition is reported; iii) effect on A-A, A-B, B-B exchange interactions, affecting coercivity Hc, Ms. A new empirical relation is also obtained showing linear relation between saturation magnetization Ms - inversion parameter δ, oxygen parameter u4 ¯ 3 m. Non-zero Y-K angle (αYK) values implies Y-K type magnetic ordering in the studied samples.
SYNTHESIS OF NOVEL ALL-DIELECTRIC GRATING FILTERS USING GENETIC ALGORITHMS
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Cwik, Tom; Ditchman, Christopher
1997-01-01
We are concerned with the design of inhomogeneous, all dielectric (lossless) periodic structures which act as filters. Dielectric filters made as stacks of inhomogeneous gratings and layers of materials are being used in optical technology, but are not common at microwave frequencies. The problem is then finding the periodic cell's geometric configuration and permittivity values which correspond to a specified reflectivity/transmittivity response as a function of frequency/illumination angle. This type of design can be thought of as an inverse-source problem, since it entails finding a distribution of sources which produce fields (or quantities derived from them) of given characteristics. Electromagnetic sources (electric and magnetic current densities) in a volume are related to the outside fields by a well known linear integral equation. Additionally, the sources are related to the fields inside the volume by a constitutive equation, involving the material properties. Then, the relationship linking the fields outside the source region to those inside is non-linear, in terms of material properties such as permittivity, permeability and conductivity. The solution of the non-linear inverse problem is cast here as a combination of two linear steps, by explicitly introducing the electromagnetic sources in the computational volume as a set of unknowns in addition to the material unknowns. This allows to solve for material parameters and related electric fields in the source volume which are consistent with Maxwell's equations. Solutions are obtained iteratively by decoupling the two steps. First, we invert for the permittivity only in the minimization of a cost function and second, given the materials, we find the corresponding electric fields through direct solution of the integral equation in the source volume. The sources thus computed are used to generate the far fields and the synthesized triter response. The cost function is obtained by calculating the deviation between the synthesized value of reflectivity/transmittivity and the desired one. Solution geometries for the periodic cell are sought as gratings (ensembles of columns of different heights and widths), or combinations of homogeneous layers of different dielectric materials and gratings. Hence the explicit unknowns of the inversion step are the material permittivities and the relative boundaries separating homogeneous parcels of the periodic cell.
Errors in Tsunami Source Estimation from Tide Gauges
NASA Astrophysics Data System (ADS)
Arcas, D.
2012-12-01
Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of tide gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the tide gauge site. This study demonstrates the inaccuracies incurred in source estimation using tide gauge data in conjunction with a linear combination procedure for tsunami source estimation.
NASA Astrophysics Data System (ADS)
Lin, Y.; O'Malley, D.; Vesselinov, V. V.
2015-12-01
Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
School social cohesion, student-school connectedness, and bullying in Colombian adolescents.
Springer, Andrew E; Cuevas Jaramillo, Maria Clara; Ortiz Gómez, Yamileth; Case, Katie; Wilkinson, Anna
2016-12-01
Student-school connectedness is inversely associated with multiple health risk behaviors, yet research is limited on the relative contributions of a student's connectedness with school and an overall context of school social cohesion to peer victimization/bullying. We examined associations of perceived school cohesion and student-school connectedness with physical victimization, verbal victimization, and social exclusion in the past six months in adolescents in grades 6-11 (N = 774) attending 11 public and private urban schools in Colombia. Cross-sectional data were collected via a self-administered questionnaire and analyzed using mixed-effects linear regression models. Higher perceived school cohesion was inversely related with exposure to three bullying types examined (p < 0.05); student-school connectedness was negatively related to verbal victimization among girls only (p < 0.01). In full models, school cohesion maintained inverse associations with three bullying types after controlling for student-school connectedness (p ≤ 0.05). Enhancing school cohesion may hold benefits for bullying prevention beyond a student's individual school connectedness. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Gallovic, Frantisek; Cirella, Antonella; Plicka, Vladimir; Piatanesi, Alessio
2013-04-01
On 14 June 2008, UTC 23:43, the border of Iwate and Miyagi prefectures was hit by an Mw7 reverse-fault type crustal earthquake. The event is known to have the largest ground acceleration observed to date (~4g), which was recorded at station IWTH25. We analyze observed strong motion data with the objective to image the event rupture process and the associated uncertainties. Two different slip inversion approaches are used, the difference between the two methods being only in the parameterization of the source model. To minimize mismodeling of the propagation effects we use crustal model obtained by full waveform inversion of aftershock records in the frequency range between 0.05-0.3 Hz. In the first method, based on linear formulation, the parameters are represented by samples of slip velocity functions along the (finely discretized) fault in a time window spanning the whole rupture duration. Such a source description is very general with no prior constraint on the nucleation point, rupture velocity, shape of the velocity function. Thus the inversion could resolve very general (unexpected) features of the rupture evolution, such as multiple rupturing, rupture-propagation reversals, etc. On the other hand, due to the relatively large number of model parameters, the inversion result is highly non-unique, with possibility of obtaining a biased solution. The second method is a non-linear global inversion technique, where each point on the fault can slip only once, following a prescribed functional form of the source time function. We invert simultaneously for peak slip velocity, slip angle, rise time and rupture time by allowing a given range of variability for each kinematic model parameter. For this reason, unlike to the linear inversion approach, the rupture process needs a smaller number of parameters to be retrieved, and is more constrained with a proper control on the allowed range of parameter values. In order to test the resolution and reliability of the retrieved models, we present a thorough analysis of the performance of the two inversion approaches. In fact, depending on the inversion strategy and the intrinsic 'non-uniqueness' of the inverse problem, the final slip maps and distribution of rupture onset times are generally different, sometimes even incompatible with each other. Great emphasis is devoted to the uncertainty estimate of both techniques. Thus we do not compare only the best fitting models, but their 'compatibility' in terms of the uncertainty limits.
Toxicokinetics of PAHs in Hexagenia
Stehly, Guy R.; Landrum, Peter F.; Henry, Mary G.; Klemm, C.
1990-01-01
The clearance of oxygen from water is inversely and linearly related to the weight of the mayfly nymphs, but oxygen clearances were always much less than the uptake clearances of the PAHs. The high PAH uptake clearance compared to oxygen clearance implies a greater surface area or efficiency for PAH accumulation from water.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Elastic robot control - Nonlinear inversion and linear stabilization
NASA Technical Reports Server (NTRS)
Singh, S. N.; Schy, A. A.
1986-01-01
An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Multi-Maneuver Clohessy-Wiltshire Targeting
NASA Technical Reports Server (NTRS)
Dannemiller, David P.
2011-01-01
Orbital rendezvous involves execution of a sequence of maneuvers by a chaser vehicle to bring the chaser to a desired state relative to a target vehicle while meeting intermediate and final relative constraints. Intermediate and final relative constraints are necessary to meet a multitude of requirements such as to control approach direction, ensure relative position is adequate for operation of space-to-space communication systems and relative sensors, provide fail-safe trajectory features, and provide contingency hold points. The effect of maneuvers on constraints is often coupled, so the maneuvers must be solved for as a set. For example, maneuvers that affect orbital energy change both the chaser's height and downrange position relative to the target vehicle. Rendezvous designers use experience and rules-of-thumb to design a sequence of maneuvers and constraints. A non-iterative method is presented for targeting a rendezvous scenario that includes a sequence of maneuvers and relative constraints. This method is referred to as Multi-Maneuver Clohessy-Wiltshire Targeting (MM_CW_TGT). When a single maneuver is targeted to a single relative position, the classic CW targeting solution is obtained. The MM_CW_TGT method involves manipulation of the CW state transition matrix to form a linear system. As a starting point for forming the algorithm, the effects of a series of impulsive maneuvers on the state are derived. Simple and moderately complex examples are used to demonstrate the pattern of the resulting linear system. The general form of the pattern results in an algorithm for formation of the linear system. The resulting linear system relates the effect of maneuver components and initial conditions on relative constraints specified by the rendezvous designer. Solution of the linear system includes the straight-forward inverse of a square matrix. Inversion of the square matrix is assured if the designer poses a controllable scenario - a scenario where the the constraints can be met by the sequence of maneuvers. Matrices in the linear system are dependent on selection of maneuvers and constraints by the designer, but the matrices are independent of the chaser's initial conditions. For scenarios where the sequence of maneuvers and constraints are fixed, the linear system can be formed and the square matrix inverted prior to real-time operations. Example solutions are presented for several rendezvous scenarios to illustrate the utility of the method. The MM_CW_TGT method has been used during the preliminary design of rendezvous scenarios and is expected to be useful for iterative methods in the generation of an initial guess and corrections.
NASA Astrophysics Data System (ADS)
Linde, N.; Vrugt, J. A.
2009-04-01
Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.
Reconstructing Images in Astrophysics, an Inverse Problem Point of View
NASA Astrophysics Data System (ADS)
Theys, Céline; Aime, Claude
2016-04-01
After a short introduction, a first section provides a brief tutorial to the physics of image formation and its detection in the presence of noises. The rest of the chapter focuses on the resolution of the inverse problem
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.
Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.
2007-01-01
The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.
Wright, Melecia; Sotres-Alvarez, Daniela; Mendez, Michelle A; Adair, Linda
2017-03-01
No study has analysed how protein intake from early childhood to young adulthood relate to adult BMI in a single cohort. To estimate the association of protein intake at 2, 11, 15, 19 and 22 years with age- and sex-standardised BMI at 22 years (early adulthood), we used linear regression models with dietary and anthropometric data from a Filipino birth cohort (1985-2005, n 2586). We used latent growth curve analysis to identify trajectories of protein intake relative to age-specific recommended daily allowance (intake in g/kg body weight) from 2 to 22 years, then related trajectory membership to early adulthood BMI using linear regression models. Lean mass and fat mass were secondary outcomes. Regression models included socioeconomic, dietary and anthropometric confounders from early life and adulthood. Protein intake relative to needs at age 2 years was positively associated with BMI and lean mass at age 22 years, but intakes at ages 11, 15 and 22 years were inversely associated with early adulthood BMI. Individuals were classified into four mutually exclusive trajectories: (i) normal consumers (referent trajectory, 58 % of cohort), (ii) high protein consumers in infancy (20 %), (iii) usually high consumers (18 %) and (iv) always high consumers (5 %). Compared with the normal consumers, 'usually high' consumption was inversely associated with BMI, lean mass and fat mass at age 22 years whereas 'always high' consumption was inversely associated with male lean mass in males. Proximal protein intakes were more important contributors to early adult BMI relative to early-childhood protein intake; protein intake history was differentially associated with adulthood body size.
Olsen, Tom Skyhøj; Christensen, Rune Haubo Bojesen; Kammersgaard, Lars Peter; Andersen, Klaus Kaae
2007-10-01
Evidence of a causal relation between serum cholesterol and stroke is inconsistent. We investigated the relation between total serum cholesterol and both stroke severity and poststroke mortality to test the hypothesis that hypercholesterolemia is primarily associated with minor stroke. In the study, 652 unselected patients with ischemic stroke arrived at the hospital within 24 hours of stroke onset. A measure of total serum cholesterol was obtained in 513 (79%) within the 24-hour time window. Stroke severity was measured with the Scandinavian Stroke Scale (0=worst, 58=best); a full cardiovascular risk profile was established for all. Death within 10 years after stroke onset was obtained from the Danish Registry of Persons. Mean+/-SD age of the 513 patients was 75+/-10 years, 54% were women, and the mean+/-SD Scandinavian Stroke Scale score was 39+/-17. Serum cholesterol was inversely and almost linearly related to stroke severity: an increase of 1 mmol/L in total serum cholesterol resulted in an increase in the Scandinavian Stroke Scale score of 1.32 (95% CI, 0.28 to 2.36, P=0.013), meaning that higher cholesterol levels are associated with less severe strokes. A survival analysis revealed an inverse linear relation between serum cholesterol and mortality, meaning that an increase of 1 mmol/L in cholesterol results in a hazard ratio of 0.89 (95% CI, 0.82 to 0.97, P=0.01). The results of our study support the hypothesis that a higher cholesterol level favors development of minor strokes. Because of selection, therefore, major strokes are more often seen in patients with lower cholesterol levels. Poststroke mortality, therefore, is inversely related to cholesterol.
A comparative study of minimum norm inverse methods for MEG imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, R.M.; Mosher, J.C.; Phillips, J.W.
1996-07-01
The majority of MEG imaging techniques currently in use fall into the general class of (weighted) minimum norm methods. The minimization of a norm is used as the basis for choosing one from a generally infinite set of solutions that provide an equally good fit to the data. This ambiguity in the solution arises from the inherent non- uniqueness of the continuous inverse problem and is compounded by the imbalance between the relatively small number of measurements and the large number of source voxels. Here we present a unified view of the minimum norm methods and describe how we canmore » use Tikhonov regularization to avoid instabilities in the solutions due to noise. We then compare the performance of regularized versions of three well known linear minimum norm methods with the non-linear iteratively reweighted minimum norm method and a Bayesian approach.« less
ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.
1999-03-01
ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less
Guertin, Kristin A; Loftfield, Erikka; Boca, Simina M; Sampson, Joshua N; Moore, Steven C; Xiao, Qian; Huang, Wen-Yi; Xiong, Xiaoqin; Freedman, Neal D; Cross, Amanda J; Sinha, Rashmi
2015-05-01
Coffee intake may be inversely associated with colorectal cancer; however, previous studies have been inconsistent. Serum coffee metabolites are integrated exposure measures that may clarify associations with cancer and elucidate underlying mechanisms. Our aims were 2-fold as follows: 1) to identify serum metabolites associated with coffee intake and 2) to examine these metabolites in relation to colorectal cancer. In a nested case-control study of 251 colorectal cancer cases and 247 matched control subjects from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we conducted untargeted metabolomics analyses of baseline serum by using ultrahigh-performance liquid-phase chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Usual coffee intake was self-reported in a food-frequency questionnaire. We used partial Pearson correlations and linear regression to identify serum metabolites associated with coffee intake and conditional logistic regression to evaluate associations between coffee metabolites and colorectal cancer. After Bonferroni correction for multiple comparisons (P = 0.05 ÷ 657 metabolites), 29 serum metabolites were positively correlated with coffee intake (partial correlation coefficients: 0.18-0.61; P < 7.61 × 10(-5)); serum metabolites most highly correlated with coffee intake (partial correlation coefficients >0.40) included trigonelline (N'-methylnicotinate), quinate, and 7 unknown metabolites. Of 29 serum metabolites, 8 metabolites were directly related to caffeine metabolism, and 3 of these metabolites, theophylline (OR for 90th compared with 10th percentiles: 0.44; 95% CI: 0.25, 0.79; P-linear trend = 0.006), caffeine (OR for 90th compared with 10th percentiles: 0.56; 95% CI: 0.35, 0.89; P-linear trend = 0.015), and paraxanthine (OR for 90th compared with 10th percentiles: 0.58; 95% CI: 0.36, 0.94; P-linear trend = 0.027), were inversely associated with colorectal cancer. Serum metabolites can distinguish coffee drinkers from nondrinkers; some caffeine-related metabolites were inversely associated with colorectal cancer and should be studied further to clarify the role of coffee in the cause of colorectal cancer. The Prostate, Lung, Colorectal, and Ovarian trial was registered at clinicaltrials.gov as NCT00002540. © 2015 American Society for Nutrition.
A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Cui, C.; Wang, Y.
2017-12-01
Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.
Inverse kinematics of a dual linear actuator pitch/roll heliostat
NASA Astrophysics Data System (ADS)
Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh
2017-06-01
This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.
Friedline, Terri; Masa, Rainier D; Chowa, Gina A N
2015-01-01
The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun
2017-09-01
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Zhang, Jing; Sun, Xiao-Peng
2012-09-01
Suspended particle material is the main factor affecting remote sensing inversion of chlorophyll-a concentration (Chla) in turbidity water. According to the optical property of suspended material in water, the present paper proposed a linear baseline correction method to weaken the suspended particle contribution in the spectrum above turbidity water surface. The linear baseline was defined as the connecting line of reflectance from 450 to 750 nm, and baseline correction is that spectrum reflectance subtracts the baseline. Analysis result of field data in situ of Meiliangwan, Taihu Lake in April, 2011 and March, 2010 shows that spectrum linear baseline correction can improve the inversion precision of Chl a and produce the better model diagnoses. As the data in March, 2010, RMSE of band ratio model built by original spectrum is 4.11 mg x m(-3), and that built by spectrum baseline correction is 3.58 mg x m(-3). Meanwhile, residual distribution and homoscedasticity in the model built by baseline correction spectrum is improved obviously. The model RMSE of April, 2011 shows the similar result. The authors suggest that using linear baseline correction as the spectrum processing method to improve Chla inversion accuracy in turbidity water without algae bloom.
Support Minimized Inversion of Acoustic and Elastic Wave Scattering
NASA Astrophysics Data System (ADS)
Safaeinili, Ali
Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).
Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study.
Chan, Q; Stamler, J; Brown, I J; Daviglus, M L; Van Horn, L; Dyer, A R; Oude Griep, L M; Miura, K; Ueshima, H; Zhao, L; Nicholson, J K; Holmes, E; Elliott, P
2014-06-01
Inverse associations have been reported of overall vegetable intake to blood pressure (BP); whether such relations prevail for both raw and cooked vegetables has not been examined. Here we report cross-sectional associations of vegetable intakes with BP for 2195 Americans ages 40-59 in the International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) using four standardized multi-pass 24-h dietary recalls and eight BP measurements. Relations to BP of raw and cooked vegetables consumption, and main individual constituents were assessed by multiple linear regression. Intakes of both total raw and total cooked vegetables considered separately were inversely related to BP in multivariate-adjusted models. Estimated average systolic BP differences associated with two s.d. differences in raw vegetable intake (68 g per 1000 kcal) and cooked vegetable intake (92 g per 1000 kcal) were -1.9 mm Hg (95% confidence interval (CI): -3.1, -0.8; P=0.001) and -1.3 mm Hg (95% CI: -2.5, -0.2; P=0.03) without body mass index (BMI) in the full model; -1.3 mm Hg (95% CI: -2.4, -0.2; P=0.02) and -0.9 mm Hg (95% CI: -2.0, 0.2; P=0.1) with additional adjustment for BMI. Among commonly consumed individual raw vegetables, tomatoes, carrots, and scallions related significantly inversely to BP. Among commonly eaten cooked vegetables, tomatoes, peas, celery, and scallions related significantly inversely to BP.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
NASA Astrophysics Data System (ADS)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.
Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings
NASA Technical Reports Server (NTRS)
Stiffler, A. K.; Tapia, R. R.
1979-01-01
A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.
Aune, Dagfinn; Lau, Rosa; Chan, Doris S M; Vieira, Rui; Greenwood, Darren C; Kampman, Ellen; Norat, Teresa
2011-07-01
The association between fruit and vegetable intake and colorectal cancer risk has been investigated by many studies but is controversial because of inconsistent results and weak observed associations. We summarized the evidence from cohort studies in categorical, linear, and nonlinear, dose-response meta-analyses. We searched PubMed for studies of fruit and vegetable intake and colorectal cancer risk that were published until the end of May 2010. We included 19 prospective studies that reported relative risk estimates and 95% confidence intervals (CIs) of colorectal cancer-associated with fruit and vegetable intake. Random effects models were used to estimate summary relative risks. The summary relative risk for the highest vs the lowest intake was 0.92 (95% CI: 0.86-0.99) for fruit and vegetables combined, 0.90 (95% CI: 0.83-0.98) for fruit, and 0.91 (95% CI: 0.86-0.96) for vegetables (P for heterogeneity=.24, .05, and .54, respectively). The inverse associations appeared to be restricted to colon cancer. In linear dose-response analysis, only intake of vegetables was significantly associated with colorectal cancer risk (summary relative risk=0.98; 95% CI: 0.97-0.99), per 100 g/d. However, significant inverse associations emerged in nonlinear models for fruits (Pnonlinearity<.001) and vegetables (Pnonlinearity=.001). The greatest risk reduction was observed when intake increased from very low levels of intake. There was generally little evidence of heterogeneity in the analyses and there was no evidence of small-study bias. Based on meta-analysis of prospective studies, there is a weak but statistically significant nonlinear inverse association between fruit and vegetable intake and colorectal cancer risk. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Linear Approximation to Optimal Control Allocation for Rocket Nozzles with Elliptical Constraints
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Wall, Johnm W.
2011-01-01
In this paper we present a straightforward technique for assessing and realizing the maximum control moment effectiveness for a launch vehicle with multiple constrained rocket nozzles, where elliptical deflection limits in gimbal axes are expressed as an ensemble of independent quadratic constraints. A direct method of determining an approximating ellipsoid that inscribes the set of attainable angular accelerations is derived. In the case of a parameterized linear generalized inverse, the geometry of the attainable set is computationally expensive to obtain but can be approximated to a high degree of accuracy with the proposed method. A linear inverse can then be optimized to maximize the volume of the true attainable set by maximizing the volume of the approximating ellipsoid. The use of a linear inverse does not preclude the use of linear methods for stability analysis and control design, preferred in practice for assessing the stability characteristics of the inertial and servoelastic coupling appearing in large boosters. The present techniques are demonstrated via application to the control allocation scheme for a concept heavy-lift launch vehicle.
Scarp degraded by linear diffusion: inverse solution for age.
Andrews, D.J.; Hanks, T.C.
1985-01-01
Under the assumption that landforms unaffected by drainage channels are degraded according to the linear diffusion equation, a procedure is developed to invert a scarp profile to find its 'diffusion age'. The inverse procedure applied to synthetic data yields the following rules of thumb. Evidence of initial scarp shape has been lost when apparent age reaches twice its initial value. A scarp that appears to have been formed by one event may have been formed by two with an interval between them as large as apparent age. The simplicity of scarp profile measurement and this inversion makes profile analysis attractive. -from Authors
NASA Astrophysics Data System (ADS)
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
Li, YuHui; Jin, FeiTeng
2017-01-01
The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680
Peeling linear inversion of upper mantle velocity structure with receiver functions
NASA Astrophysics Data System (ADS)
Shen, Xuzhang; Zhou, Huilan
2012-02-01
A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.
We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...
Bowhead whale localization using asynchronous hydrophones in the Chukchi Sea.
Warner, Graham A; Dosso, Stan E; Hannay, David E; Dettmer, Jan
2016-07-01
This paper estimates bowhead whale locations and uncertainties using non-linear Bayesian inversion of their modally-dispersed calls recorded on asynchronous recorders in the Chukchi Sea, Alaska. Bowhead calls were recorded on a cluster of 7 asynchronous ocean-bottom hydrophones that were separated by 0.5-9.2 km. A warping time-frequency analysis is used to extract relative mode arrival times as a function of frequency for nine frequency-modulated whale calls that dispersed in the shallow water environment. Each call was recorded on multiple hydrophones and the mode arrival times are inverted for: the whale location in the horizontal plane, source instantaneous frequency (IF), water sound-speed profile, seabed geoacoustic parameters, relative recorder clock drifts, and residual error standard deviations, all with estimated uncertainties. A simulation study shows that accurate prior environmental knowledge is not required for accurate localization as long as the inversion treats the environment as unknown. Joint inversion of multiple recorded calls is shown to substantially reduce uncertainties in location, source IF, and relative clock drift. Whale location uncertainties are estimated to be 30-160 m and relative clock drift uncertainties are 3-26 ms.
A matched-peak inversion approach for ocean acoustic travel-time tomography
Skarsoulis
2000-03-01
A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.
Landau damping of electrostatic waves in arbitrarily degenerate quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rightley, Shane, E-mail: shane.rightley@colorado.edu; Uzdensky, Dmitri, E-mail: uzdensky@colorado.edu
2016-03-15
We carry out a systematic study of the dispersion relation for linear electrostatic waves in an arbitrarily degenerate quantum electron plasma. We solve for the complex frequency spectrum for arbitrary values of wavenumber k and level of degeneracy μ. Our finding is that for large k and high μ the real part of the frequency ω{sub r} grows linearly with k and scales with μ, only because of the scaling of the Fermi energy. In this regime, the relative Landau damping rate γ/ω{sub r} becomes independent of k and varies inversely with μ. Thus, damping is weak but finite atmore » moderate levels of degeneracy for short wavelengths.« less
Effects of induced stress on seismic forward modelling and inversion
NASA Astrophysics Data System (ADS)
Tromp, Jeroen; Trampert, Jeannot
2018-05-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
NASA Astrophysics Data System (ADS)
Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud
2018-07-01
This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Spontaneously broken spacetime symmetries and the role of inessential Goldstones
NASA Astrophysics Data System (ADS)
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2017-10-01
In contrast to internal symmetries, there is no general proof that the coset construction for spontaneously broken spacetime symmetries leads to universal dynamics. One key difference lies in the role of Goldstone bosons, which for spacetime symmetries includes a subset which are inessential for the non-linear realisation and hence can be eliminated. In this paper we address two important issues that arise when eliminating inessential Goldstones. The first concerns the elimination itself, which is often performed by imposing so-called inverse Higgs constraints. Contrary to claims in the literature, there are a series of conditions on the structure constants which must be satisfied to employ the inverse Higgs phenomenon, and we discuss which parametrisation of the coset element is the most effective in this regard. We also consider generalisations of the standard inverse Higgs constraints, which can include integrating out inessential Goldstones at low energies, and prove that under certain assumptions these give rise to identical effective field theories for the essential Goldstones. Secondly, we consider mappings between non-linear realisations that differ both in the coset element and the algebra basis. While these can always be related to each other by a point transformation, remarkably, the inverse Higgs constraints are not necessarily mapped onto each other under this transformation. We discuss the physical implications of this non-mapping, with a particular emphasis on the coset space corresponding to the spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.
On the theory of thermometric titration.
Piloyan, G O; Dolinina, Y V
1974-09-01
The general equation defining the change in solution temperature DeltaT during a thermometric titration is DeltaT = T - T(0) = - AV 1 + BV where A and B are constants, V is the volume of titrant used to produce temperature T, and T(0) is the initial temperature. There is a linear relation between the inverse values of DeltaT and V: 1 Delta T = - a V - b where a = 1/A and b = B/A, both a and b being constants. A linear relation between DeltaT and V is usually a special case of this general relation, and is valid only over a narrow range of V. Graphs of 1/DeltaTvs. 1/V are more suitable for practical calculations than the usual graphs of DeltaTvs. V.
Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study
Chan, Q; Stamler, J; Brown, I J; Daviglus, M L; Van Horn, L; Dyer, A R; Oude Griep, L M; Miura, K; Ueshima, H; Zhao, L; Nicholson, J K; Holmes, E; Elliott, P
2014-01-01
Inverse associations have been reported of overall vegetable intake to blood pressure (BP); whether such relations prevail for both raw and cooked vegetables has not been examined. Here we report cross-sectional associations of vegetable intakes with BP for 2195 Americans ages 40–59 in the International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) using four standardized multi-pass 24-h dietary recalls and eight BP measurements. Relations to BP of raw and cooked vegetables consumption, and main individual constituents were assessed by multiple linear regression. Intakes of both total raw and total cooked vegetables considered separately were inversely related to BP in multivariate-adjusted models. Estimated average systolic BP differences associated with two s.d. differences in raw vegetable intake (68 g per 1000 kcal) and cooked vegetable intake (92 g per 1000 kcal) were −1.9 mm Hg (95% confidence interval (CI): −3.1, −0.8; P=0.001) and −1.3 mm Hg (95% CI: −2.5, −0.2; P=0.03) without body mass index (BMI) in the full model; −1.3 mm Hg (95% CI: −2.4, −0.2; P=0.02) and −0.9 mm Hg (95% CI: −2.0, 0.2; P=0.1) with additional adjustment for BMI. Among commonly consumed individual raw vegetables, tomatoes, carrots, and scallions related significantly inversely to BP. Among commonly eaten cooked vegetables, tomatoes, peas, celery, and scallions related significantly inversely to BP. PMID:24257514
The attitude inversion method of geostationary satellites based on unscented particle filter
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao
2018-04-01
The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.
Finite frequency shear wave splitting tomography: a model space search approach
NASA Astrophysics Data System (ADS)
Mondal, P.; Long, M. D.
2017-12-01
Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.
Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm
NASA Astrophysics Data System (ADS)
Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy
2016-01-01
The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from not requiring the knowledge of earthquake source, the newly developed technique provides an approximate uncertainty measure of the structure coefficients and allows us to control the type of structure solved for, for example to establish if elastic structure is sufficient.
Rosa, Erica Carine Campos Caldas; Dos Santos, Renan Renato Cruz; Fernandes, Luis Fernando Amarante; Neves, Francisco de Assis Rocha; Coelho, Michella Soares; Amato, Angelica Amorim
2018-01-01
We investigated leukocyte relative telomere length (TL) in patients with type 2 diabetes (T2D) diagnosed for no longer than five years and its association with clinical and biochemical variables. Peripheral blood leukocyte relative TL was investigated in 108 patients with T2D (87 women, 21 men) and 125 (37 women, 88 men) age-matched control subjects with normal glucose tolerance, by quantitative polymerase chain reaction. Multiple linear regression analysis was used to examine the association between relative TL and demographic, anthropometric and biochemical indicators of metabolic control among patients with T2D. Patients with T2D had a median time since diagnosis of 1 year and most were on metformin monotherapy, with satisfactory glucose control determined by HbA1c levels. Median relative TL was not different between patients with T2D and control subjects. However, multiple linear regression analyses showed that relative TL was inversely associated with time since T2D diagnosis, fasting plasma glucose levels and HbA1c levels, but not with HbA1c levels assessed in the preceding 5-12 months, after adjustment for age, sex and body mass index. This study suggests that relative TL is not shorter in patients with recently diagnosed T2D, but is inversely correlated with glucose levels, even among patients with overall satisfactory glucose control. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite
2016-09-01
aerial platform for subsequent visual sensor integration. 14. SUBJECT TERMS autonomous system, quadrotors, direct method, inverse ...CONTROLLER ARCHITECTURE .....................................................43 B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN ......................45 1...control station GPS Global-Positioning System IDVD inverse dynamics in the virtual domain ILP integer linear program INS inertial-navigation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Guertin, Kristin A; Loftfield, Erikka; Boca, Simina M; Sampson, Joshua N; Moore, Steven C; Xiao, Qian; Huang, Wen-Yi; Xiong, Xiaoqin; Freedman, Neal D; Cross, Amanda J; Sinha, Rashmi
2015-01-01
Background: Coffee intake may be inversely associated with colorectal cancer; however, previous studies have been inconsistent. Serum coffee metabolites are integrated exposure measures that may clarify associations with cancer and elucidate underlying mechanisms. Objectives: Our aims were 2-fold as follows: 1) to identify serum metabolites associated with coffee intake and 2) to examine these metabolites in relation to colorectal cancer. Design: In a nested case-control study of 251 colorectal cancer cases and 247 matched control subjects from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we conducted untargeted metabolomics analyses of baseline serum by using ultrahigh-performance liquid-phase chromatography–tandem mass spectrometry and gas chromatography–mass spectrometry. Usual coffee intake was self-reported in a food-frequency questionnaire. We used partial Pearson correlations and linear regression to identify serum metabolites associated with coffee intake and conditional logistic regression to evaluate associations between coffee metabolites and colorectal cancer. Results: After Bonferroni correction for multiple comparisons (P = 0.05 ÷ 657 metabolites), 29 serum metabolites were positively correlated with coffee intake (partial correlation coefficients: 0.18–0.61; P < 7.61 × 10−5); serum metabolites most highly correlated with coffee intake (partial correlation coefficients >0.40) included trigonelline (N′-methylnicotinate), quinate, and 7 unknown metabolites. Of 29 serum metabolites, 8 metabolites were directly related to caffeine metabolism, and 3 of these metabolites, theophylline (OR for 90th compared with 10th percentiles: 0.44; 95% CI: 0.25, 0.79; P-linear trend = 0.006), caffeine (OR for 90th compared with 10th percentiles: 0.56; 95% CI: 0.35, 0.89; P-linear trend = 0.015), and paraxanthine (OR for 90th compared with 10th percentiles: 0.58; 95% CI: 0.36, 0.94; P-linear trend = 0.027), were inversely associated with colorectal cancer. Conclusions: Serum metabolites can distinguish coffee drinkers from nondrinkers; some caffeine-related metabolites were inversely associated with colorectal cancer and should be studied further to clarify the role of coffee in the cause of colorectal cancer. The Prostate, Lung, Colorectal, and Ovarian trial was registered at clinicaltrials.gov as NCT00002540. PMID:25762808
Tan, U
1994-03-01
Relations of grasp-reflex strengths to serum free-thyroid hormone levels were studied in human neonates. In right-dominant (RH) males and females without familial sinistrality (-FS), grasp-reflex strengths from right (R) and left (L) inversely correlated with serum triiodothyronine (T3). In RH, +FS males, grasp-reflex strengths from R and L hands directly correlated with T3 (no correlations in RH, +FS females). There was no significant correlation between grasp reflex and T3 in non-right-handed (NRH), -FS neonates. In NRH +FS neonates, there was a significant negative linear correlation between grasp reflex from left and T3 only in NRH, +FS males. The following correlations were found between grasp reflex and thyroxine (T4): direct relation in RH, +FS males and females; inverse relation in NRH, -FS females only for the right hand; inverse correlations in NRH, +FS females. The R-L grasp reflex directly correlated with T3 in RH, -FS males, and inversely correlated with T3 in RH, -FS females (no significant correlations in others). These results indicated that thyroid hormones may influence cerebral maturation and lateralization differentially according to genetically predetermined cerebral organization. The generalizations of the hormonal effects on, at least, cerebral functioning would be wrong, if the genetically predetermined main features of the brain are neglected.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riyahi, S; Choi, W; Bhooshan, N
2016-06-15
Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Minimal-Inversion Feedforward-And-Feedback Control System
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
NASA Astrophysics Data System (ADS)
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.
3D CSEM inversion based on goal-oriented adaptive finite element method
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.
Culmination of the inverse cascade - mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna; Herbert, Corentin
2017-11-01
An inverse cascade-energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it terminates in the self organization of the turbulence into a large scale coherent structure, on top of small scale fluctuations. A recent theoretical framework in which this coherent mean flow can be obtained will be discussed. Assuming that the quasi-linear approximation applies, the forcing acts at small scales, and a strong shear, the theory gives an inverse relation between the average momentum flux and the mean shear rate. It will be argued that this relation is quite general, being independent of the dissipation mechanism and largely insensitive to the type of forcing. Furthermore, in the special case of a homogeneous forcing, the relation between the momentum flux and mean shear rate is completely determined by dimensional analysis and symmetry arguments. The subject of the average energy of the fluctuations will also be touched upon, focusing on a vortex mean flow. In contrast to the momentum flux, we find that the energy of the fluctuations is determined by zero modes of the mean-flow advection operator. Using an analytic derivation for the zero mo.
On the inversion-indel distance
2013-01-01
Background The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. Results In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components. PMID:24564182
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.
Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders.
Warner, Graham A; Dosso, Stan E; Hannay, David E
2017-03-01
This paper estimates bowhead whale locations and uncertainties using nonlinear Bayesian inversion of the time-difference-of-arrival (TDOA) of low-frequency whale calls recorded on onmi-directional asynchronous recorders in the shallow waters of the northeastern Chukchi Sea, Alaska. A Y-shaped cluster of seven autonomous ocean-bottom hydrophones, separated by 0.5-9.2 km, was deployed for several months over which time their clocks drifted out of synchronization. Hundreds of recorded whale calls are manually associated between recorders. The TDOA between hydrophone pairs are calculated from filtered waveform cross correlations and depend on the whale locations, hydrophone locations, relative recorder clock offsets, and effective waveguide sound speed. A nonlinear Bayesian inversion estimates all of these parameters and their uncertainties as well as data error statistics. The problem is highly nonlinear and a linearized inversion did not produce physically realistic results. Whale location uncertainties from nonlinear inversion can be low enough to allow accurate tracking of migrating whales that vocalize repeatedly over several minutes. Estimates of clock drift rates are obtained from inversions of TDOA data over two weeks and agree with corresponding estimates obtained from long-time averaged ambient noise cross correlations. The inversion is suitable for application to large data sets of manually or automatically detected whale calls.
Jets or vortices - what flows are generated by an inverse turbulent cascade?
NASA Astrophysics Data System (ADS)
Frishman, Anna; Laurie, Jason; Falkovich, Gregory
An inverse cascade-energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole was expected. Using direct numerical simulations, we show that in fact neither the box symmetry is respected nor the largest scale is realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, however, can be deduced neither from the largest-available-scale argument, nor from the often employed maximum-entropy principle or quasi-linear approximation.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; White, J.; Doherty, J.
2011-12-01
Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.
NASA Astrophysics Data System (ADS)
Wei, Yimin; Wu, Hebing
2001-12-01
In this paper, the perturbation and subproper splittings for the generalized inverse AT,S(2), the unique matrix X such that XAX=X, R(X)=T and N(X)=S, are considered. We present lower and upper bounds for the perturbation of AT,S(2). Convergence of subproper splittings for computing the special solution AT,S(2)b of restricted rectangular linear system Ax=b, x[set membership, variant]T, are studied. For the solution AT,S(2)b we develop a characterization. Therefore, we give a unified treatment of the related problems considered in literature by Ben-Israel, Berman, Hanke, Neumann, Plemmons, etc.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
Trimming and procrastination as inversion techniques
NASA Astrophysics Data System (ADS)
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
ADVERSITY AND PSYCHOSOCIAL COMPETENCE OF SOUTH AFRICAN CHILDREN
Barbarin, Oscar A.; Richter, Linda
2007-01-01
Black children in South Africa commonly experience low socioeconomic status and community violence. Parents (N=625) in a longitudinal study of urbanization responded to structured questionnaires related to resilience, affability, maturity, and school readiness of their six-year olds. SES was found to have an inverse and linear relation to competence at age six; the relationship to violence was curvilinear, with children from moderately safe communities achieving better outcomes than those from very safe or very unsafe ones. PMID:10439846
NASA Astrophysics Data System (ADS)
Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing
2004-12-01
The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.
Hartzell, S.; Liu, P.
1996-01-01
A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
The incomplete inverse and its applications to the linear least squares problem
NASA Technical Reports Server (NTRS)
Morduch, G. E.
1977-01-01
A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.
Inverse square law isothermal property in relativistic charged static distributions
NASA Astrophysics Data System (ADS)
Hansraj, Sudan; Qwabe, Nkululeko
2017-12-01
We analyze the impact of the inverse square law fall-off of the energy density in a charged isotropic spherically symmetric fluid. Initially, we impose a linear barotropic equation of state p = αρ but this leads to an intractable differential equation. Next, we consider the neutral isothermal metric of Saslaw et al. [Phys. Rev. D 13, 471 (1996)] in an electric field and the usual inverse square law of energy density and pressure results thus preserving the equation of state. Additionally, we discard a linear equation of state and endeavor to find new classes of solutions with the inverse square law fall-off of density. Certain prescribed forms of the spatial and temporal gravitational forms result in new exact solutions. An interesting result that emerges is that while isothermal fluid spheres are unbounded in the neutral case, this is not so when charge is involved. Indeed it was found that barotropic equations of state exist and hypersurfaces of vanishing pressure exist establishing a boundary in practically all models. One model was studied in depth and found to satisfy other elementary requirements for physical admissibility such as a subluminal sound speed as well as gravitational surface redshifts smaller than 2. Buchdahl [Acta Phys. Pol. B 10, 673 (1965)], Böhmer and Harko [Gen. Relat. Gravit. 39, 757 (2007)] and Andréasson [Commum. Math. Phys. 198, 507 (2009)] mass-radius bounds were also found to be satisfied. Graphical plots utilizing constants selected from the boundary conditions established that the model displayed characteristics consistent with physically viable models.
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
Self-similarity and self-inversion of quasicrystals
NASA Astrophysics Data System (ADS)
Madison, A. E.
2014-08-01
The discovery of quasicrystals played a revolutionary role in the condensed matter science and forced to renounce the dogma of the classical crystallography that the regular filling of the space by identical blocks is reduced solely to the Fedorov space groups. It is shown that aperiodic crystals, apart from the similarity, exhibit the self-inversion property. In a broadened sense, the self-inversion implies the possible composition of the inversion with translations, rotations, and homothety, whereas pure reflection by itself in a circle can be absent as an independent symmetry element. It is demonstrated that the symmetry of aperiodic tilings is described by Schottky groups (which belong to a particular type of Kleinian groups generated by the linear fractional Möbius transformations); in the theory of aperiodic crystals, the Schottky groups play the same role that the Fedorov groups play in the theory of crystal lattices. The local matching rules for the Penrose fractal tiling are derived, the problem of choice of the fundamental region of the group of motions of a quasicrystal is discussed, and the relation between the symmetry of aperiodic tilings and the symmetry of constructive fractals is analyzed.
Analysis of Interval Changes on Mammograms for Computer Aided Diagnosis
2000-05-01
tizer was calibrated so that the gray values were linearly and erage pixel values in the template and ROI, respectively. The inversely proportional to the...earlier for linearly and inversely proportional to the OD within the alignment of the breast regions, except that the regions to be range 0-4 OD...results versely proportional to the radial distance r from the nipple. in a decrease in the value of (to 20 mm. This decrease helps For the data set
NASA Astrophysics Data System (ADS)
Tsunoda, Takaya; Suzuki, Keigo; Saitoh, Takahiro
2018-04-01
This study develops a method to visualize the state of steel-concrete interface with ultrasonic testing. Scattered waves are obtained by the UT pitch-catch mode from the surface of the concrete. Discrete wavelet transform is applied in order to extract echoes scattered from the steel-concrete interface. Then Linearized Inverse Scattering Methods are used for imaging the interface. The results show that LISM with Born and Kirchhoff approximation provide clear images for the target.
NASA Technical Reports Server (NTRS)
Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.
2005-01-01
The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Wunsch, Carl
1996-01-01
A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model-estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on very a large scale, where the linearization hypothesis appears to be a good one. A semi-automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or 'Green's functions' then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of 'twin experiments' and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time-mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10 deg. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.
NASA Technical Reports Server (NTRS)
Hsia, T. C.; Lu, G. Z.; Han, W. H.
1987-01-01
In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.
Two-Port Representation of a Linear Transmission Line in the Time Domain.
1980-01-01
which is a rational function. To use the Prony procedure it is necessary to inverse transform the admittance functions. For the transmission line, most...impulse is a constant, the inverse transform of Y0(s) contains an impulse of value ._ Therefore, if we were to numerically inverse transform Yo(s), we...would remove this im- pulse and inverse transform Y-(S) Y (S) 1’LR+C~ (23) The prony procedure would then be applied to the result. Of course, an impulse
Determining the effect of grain size and maximum induction upon coercive field of electrical steels
NASA Astrophysics Data System (ADS)
Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel
2011-10-01
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.
The culmination of an inverse cascade: Mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna
2017-12-01
Two dimensional turbulence has a remarkable tendency to self-organize into large, coherent structures, forming a mean flow. The purpose of this paper is to elucidate how these structures are sustained and what determines them and the fluctuations around them. A recent theory for the mean flow will be reviewed. The theory assumes that turbulence is excited by a forcing supported on small scales and uses a linear shear model to relate the turbulent momentum flux to the mean shear rate. Extending the theory, it will be shown here that the relation between the momentum flux and mean shear is valid, and the momentum flux is non-zero, for both an isotropic forcing and an anisotropic forcing, independent of the dissipation mechanism at small scales. This conclusion requires taking into account that the linear shear model is an approximation to the real system. The proportionality between the momentum flux and the inverse of the shear can then be inferred most simply on dimensional grounds. Moreover, for a homogeneous pumping, the proportionality constant can be determined by symmetry considerations, recovering the result of the original theory. The regime of applicability of the theory, its compatibility with observations from simulations, a formula for the momentum flux for an inhomogeneous pumping, and results for the statistics of fluctuations will also be discussed.
Striatal dopamine release codes uncertainty in pathological gambling.
Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert
2012-10-30
Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Drewery, M L; Gaitán, A V; Spedale, S B; Monlezun, C J; Miketínas, D C; Lammi-Keefe, C J
2017-11-01
Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnesium and the Risk of Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies
Hao, Yongqiang; Li, Huiwu; Tang, Tingting; Wang, Hao; Yan, Weili; Dai, Kerong
2013-01-01
Background Prospective studies that have examined the association between dietary magnesium intake and serum magnesium concentrations and the risk of cardiovascular disease (CVD) events have reported conflicting findings. We undertook a meta-analysis to evaluate the association between dietary magnesium intake and serum magnesium concentrations and the risk of total CVD events. Methodology/Principal Findings We performed systematic searches on MEDLINE, EMBASE, and OVID up to February 1, 2012 without limits. Categorical, linear, and nonlinear, dose-response, heterogeneity, publication bias, subgroup, and meta-regression analysis were performed. The analysis included 532,979 participants from 19 studies (11 studies on dietary magnesium intake, 6 studies on serum magnesium concentrations, and 2 studies on both) with 19,926 CVD events. The pooled relative risks of total CVD events for the highest vs. lowest category of dietary magnesium intake and serum magnesium concentrations were 0.85 (95% confidence interval 0.78 to 0.92) and 0.77 (0.66 to 0.87), respectively. In linear dose-response analysis, only serum magnesium concentrations ranging from 1.44 to 1.8 mEq/L were significantly associated with total CVD events risk (0.91, 0.85 to 0.97) per 0.1 mEq/L (Pnonlinearity = 0.465). However, significant inverse associations emerged in nonlinear models for dietary magnesium intake (Pnonlinearity = 0.024). The greatest risk reduction occurred when intake increased from 150 to 400 mg/d. There was no evidence of publication bias. Conclusions/Significance There is a statistically significant nonlinear inverse association between dietary magnesium intake and total CVD events risk. Serum magnesium concentrations are linearly and inversely associated with the risk of total CVD events. PMID:23520480
Habibi, Ehsanollah; Soury, Shiva; Vardanjani, Hassan Rajabi; Khodarahmi, Behnam; Dehghan, Habibollah; Hosseini, Mohsen; Esmaeli, Hamid; Khademi, Abolfazl
2015-01-01
Context: Fatigue is a factor that can have negative effects on family life, social relationship and work. Work schedule is one of the affective factors on personnel's fatigue in different jobs. In this study, the work schedule and its effect on rescue personnel in Isfahan are explored. Aims: The purpose of this study was to investigate the relationship between work schedules and fatigue among rescue personnel. Settings and Design: This study is periodical and has been conducted on 72 employees of rescue personnel in Isfahan. Materials and Methods: Random sampling was done and the primary data that was collected through fatigue assessment questionnaire after being conducted as a pilot study on 10% of samples were collected to confirm the validity of this study. Finally, the data was given to SPSS11.5 software and were analyzed by descriptive statistics and linear digression. Results: The results showed that from the statistical point of view some parts of work schedules like work hours satisfaction, resting time and work order on total fatigue are effective in linear and inverse way but the item “predictibility of work conditions” does not have a meaningful relationship with total fatigue. Furthermore, the results showed that there is a meaningful and inverse relationship with work hours, resting time and work order with mental fatigue and also the work schedule has a meaningful, linear and inverse relation with mental fatigue and total fatigue. Conclusions: By increasing the satisfaction of working hours, increasing resting time and also with an increase of work order the total fatigue of rescue personnel will decrease. PMID:27462640
Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions
NASA Astrophysics Data System (ADS)
Boulic, Ronan; Raunhardt, Daniel
Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
The excitation of long period seismic waves by a source spanning a structural discontinuity
NASA Astrophysics Data System (ADS)
Woodhouse, J. H.
Simple theoretical results are obtained for the excitation of seismic waves by an indigenous seismic source in the case that the source volume is intersected by a structural discontinuity. In the long wavelength approximation the seismic radiation is identical to that of a point source placed on one side of the discontinuity or of a different point source placed on the other side. The moment tensors of these two equivalent sources are related by a specific linear transformation and may differ appreciably both in magnitude and geometry. Either of these sources could be obtained by linear inversion of seismic data but the physical interpretation is more complicated than in the usual case. A source which involved no volume change would, for example, yield an isotropic component if, during inversion, it were assumed to lie on the wrong side of the discontinuity. The problem of determining the true moment tensor of the source is indeterminate unless further assumptions are made about the stress glut distribution; one way to resolve this indeterminancy is to assume proportionality between the integrated stress glut on each side of the discontinuity.
NASA Astrophysics Data System (ADS)
Chanthawara, Krittidej; Kaennakham, Sayan; Toutip, Wattana
2016-02-01
The methodology of Dual Reciprocity Boundary Element Method (DRBEM) is applied to the convection-diffusion problems and investigating its performance is our first objective of the work. Seven types of Radial Basis Functions (RBF); Linear, Thin-plate Spline, Cubic, Compactly Supported, Inverse Multiquadric, Quadratic, and that proposed by [12], were closely investigated in order to numerically compare their effectiveness drawbacks etc. and this is taken as our second objective. A sufficient number of simulations were performed covering as many aspects as possible. Varidated against both exacts and other numerical works, the final results imply strongly that the Thin-Plate Spline and Linear type of RBF are superior to others in terms of both solutions' quality and CPU-time spent while the Inverse Multiquadric seems to poorly yield the results. It is also found that DRBEM can perform relatively well at moderate level of convective force and as anticipated becomes unstable when the problem becomes more convective-dominated, as normally found in all classical mesh-dependence methods.
NASA Astrophysics Data System (ADS)
Sun, Jiajia; Li, Yaoguo
2017-02-01
Joint inversion that simultaneously inverts multiple geophysical data sets to recover a common Earth model is increasingly being applied to exploration problems. Petrophysical data can serve as an effective constraint to link different physical property models in such inversions. There are two challenges, among others, associated with the petrophysical approach to joint inversion. One is related to the multimodality of petrophysical data because there often exist more than one relationship between different physical properties in a region of study. The other challenge arises from the fact that petrophysical relationships have different characteristics and can exhibit point, linear, quadratic, or exponential forms in a crossplot. The fuzzy c-means (FCM) clustering technique is effective in tackling the first challenge and has been applied successfully. We focus on the second challenge in this paper and develop a joint inversion method based on variations of the FCM clustering technique. To account for the specific shapes of petrophysical relationships, we introduce several different fuzzy clustering algorithms that are capable of handling different shapes of petrophysical relationships. We present two synthetic and one field data examples and demonstrate that, by choosing appropriate distance measures for the clustering component in the joint inversion algorithm, the proposed joint inversion method provides an effective means of handling common petrophysical situations we encounter in practice. The jointly inverted models have both enhanced structural similarity and increased petrophysical correlation, and better represent the subsurface in the spatial domain and the parameter domain of physical properties.
Scilab software as an alternative low-cost computing in solving the linear equations problem
NASA Astrophysics Data System (ADS)
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
Rybicki, F J; Hrovat, M I; Patz, S
2000-09-01
We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.
Direct measurement of nonlinear dispersion relation for water surface waves
NASA Astrophysics Data System (ADS)
Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle
2013-04-01
The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.
The inverse problem: Ocean tides derived from earth tide observations
NASA Technical Reports Server (NTRS)
Kuo, J. T.
1978-01-01
Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.
A note on convergence of solutions of total variation regularized linear inverse problems
NASA Astrophysics Data System (ADS)
Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar
2018-05-01
In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.
Inverse dynamics of a 3 degree of freedom spatial flexible manipulator
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Serna, M.
1989-01-01
A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.
Murata, M; Uchida, T; Yang, Y; Lezhava, A; Kinashi, H
2011-04-01
We have comprehensively analyzed the linear chromosomes of Streptomyces griseus mutants constructed and kept in our laboratory. During this study, macrorestriction analysis of AseI and DraI fragments of mutant 402-2 suggested a large chromosomal inversion. The junctions of chromosomal inversion were cloned and sequenced and compared with the corresponding target sequences in the parent strain 2247. Consequently, a transposon-involved mechanism was revealed. Namely, a transposon originally located at the left target site was replicatively transposed to the right target site in an inverted direction, which generated a second copy and at the same time caused a 2.5-Mb chromosomal inversion. The involved transposon named TnSGR was grouped into a new subfamily of the resolvase-encoding Tn3 family transposons based on its gene organization. At the end, terminal diversity of S. griseus chromosomes is discussed by comparing the sequences of strains 2247 and IFO13350.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiffmann, Florian; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filteringmore » small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.« less
NASA Astrophysics Data System (ADS)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
Using a pseudo-dynamic source inversion approach to improve earthquake source imaging
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.
2014-12-01
Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.
Inverse relation between Braak stage and cerebrovascular pathology in Alzheimer predominant dementia
Goulding, J.; Signorini, D.; Chatterjee, S.; Nicoll, J.; Stewart, J.; Morris, R.; Lammie, G
1999-01-01
The most common neuropathological substrates of dementia are Alzheimer's disease, cerebrovascular disease, and dementia with Lewy bodies. A preliminary, retrospective postmortem analysis was performed of the relative burden of each pathology in 25 patients with predominantly Alzheimer's disease-type dementia. Log linear modelling was used to assess the relations between ApoE genotype, Alzheimer's disease, and cerebrovascular disease pathology scores. Sixteen of 18 cases (89%) with a Braak neuritic pathology score ⩽4 had, in addition, significant cerebrovascular disease, or dementia with Lewy bodies, or both. There was a significant inverse relation between cerebrovascular disease and Braak stage (p=0.015). The frequency of the ApoE-ε4 allele was 36.4%. No evidence was found for an association between possession of the ApoE-ε4 allele and any one pathological variable over another. In this series most brains from patients with dementia for which Alzheimer's disease is the predominant neuropathological substrate also harboured significant cerebrovascular disease or dementia with Lewy bodies. The data suggest that these diseases are perhaps pathogenetically distinct, yet conspire to produce the dementing phenotype. PMID:10519874
NASA Astrophysics Data System (ADS)
Blumenfeld, Raphael; Bergman, David J.
1991-10-01
A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law relation between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk effective dielectric constant ɛe to second order in the fluctuations of its local value. A simlar procedure for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear integral expressions in the rescaled coordinates and exact bounds for it are derived.
Classifying bilinear differential equations by linear superposition principle
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu
2016-09-01
In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.
Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.
1984-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.
1985-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Zatsiorsky, Vladimir M.
2011-01-01
One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
NASA Astrophysics Data System (ADS)
Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han
2016-09-01
Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.
Shear Wave Splitting Inversion in a Complex Crust
NASA Astrophysics Data System (ADS)
Lucas, A.
2015-12-01
Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.
Local muscle oxygen consumption related to external and joint specific power.
Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille
2016-02-01
The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A linear-encoding model explains the variability of the target morphology in regeneration
Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael
2014-01-01
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915
A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution
NASA Astrophysics Data System (ADS)
Zuo, B.; Hu, X.; Li, H.
2011-12-01
A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.
Integrating conventional and inverse representation for face recognition.
Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David
2014-10-01
Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.
NASA Technical Reports Server (NTRS)
Gatewood, B. E.
1971-01-01
The linearized integral equation for the Foucault test of a solid mirror was solved by various methods: power series, Fourier series, collocation, iteration, and inversion integral. The case of the Cassegrain mirror was solved by a particular power series method, collocation, and inversion integral. The inversion integral method appears to be the best overall method for both the solid and Cassegrain mirrors. Certain particular types of power series and Fourier series are satisfactory for the Cassegrain mirror. Numerical integration of the nonlinear equation for selected surface imperfections showed that results start to deviate from those given by the linearized equation at a surface deviation of about 3 percent of the wavelength of light. Several possible procedures for calibrating and scaling the input data for the integral equation are described.
Blocky inversion of multichannel elastic impedance for elastic parameters
NASA Astrophysics Data System (ADS)
Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza
2018-04-01
Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.
Thyroid hormones and mortality risk in euthyroid individuals: the Kangbuk Samsung health study.
Zhang, Yiyi; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Pastor-Barriuso, Roberto; Rampal, Sanjay; Han, Won Kon; Shin, Hocheol; Guallar, Eliseo
2014-07-01
Hyperthyroidism and hypothyroidism, both overt and subclinical, are associated with all-cause and cardiovascular mortality. The association between thyroid hormones and mortality in euthyroid individuals, however, is unclear. To examine the prospective association between thyroid hormones levels within normal ranges and mortality endpoints. A prospective cohort study of 212 456 middle-aged South Korean men and women who had normal thyroid hormone levels and no history of thyroid disease at baseline from January 1, 2002 to December 31, 2009. Free T4 (FT4), free T3 (FT3), and TSH levels were measured by RIA. Vital status and cause of death ascertainment were based on linkage to the National Death Index death certificate records. After a median follow-up of 4.3 years, 730 participants died (335 deaths from cancer and 112 cardiovascular-related deaths). FT4 was inversely associated with all-cause mortality (HR = 0.77, 95% confidence interval 0.63-0.95, comparing the highest vs lowest quartile of FT4; P for linear trend = .01), and FT3 was inversely associated cancer mortality (HR = 0.62, 95% confidence interval 0.45-0.85; P for linear trend = .001). TSH was not associated with mortality endpoints. In a large cohort of euthyroid men and women, FT4 and FT3 levels within the normal range were inversely associated with the risk of all-cause mortality and cancer mortality, particularly liver cancer mortality.
[Determinants of pride and shame: outcome, expected success and attribution].
Schützwohl, A
1991-01-01
In two experiments we investigated the relationship between subjective probability of success and pride and shame. According to Atkinson (1957), pride (the incentive of success) is an inverse linear function of the probability of success, shame (the incentive of failure) being a negative linear function. Attribution theory predicts an inverse U-shaped relationship between subjective probability of success and pride and shame. The results presented here are at variance with both theories: Pride and shame do not vary with subjective probability of success. However, pride and shame are systematically correlated with internal attributions of action outcome.
NASA Astrophysics Data System (ADS)
Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid
2016-02-01
In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.
Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B
2003-05-30
To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.
Observer-dependent sign inversions of polarization singularities.
Freund, Isaac
2014-10-15
We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.
A Higher Order Iterative Method for Computing the Drazin Inverse
Soleymani, F.; Stanimirović, Predrag S.
2013-01-01
A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of linear system of equations will be presented to clarify the contribution of the paper. PMID:24222747
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
NASA Technical Reports Server (NTRS)
Chu, W. P.
1977-01-01
Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.
2011-03-01
The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.
Least squares reconstruction of non-linear RF phase encoded MR data.
Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E
2016-09-01
The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background Inverse associations between cruciferous vegetable intake and lung cancer risk have been consistently reported. However, associations within smoking status subgroups have not been consistently addressed. Methods We conducted a hospital-based case-control study with lung cancer cases and controls matched on smoking status, and further adjusted for smoking status, duration, and intensity in the multivariate models. A total of 948 cases and 1743 controls were included in the analysis. Results Inverse linear trends were observed between intake of fruits, total vegetables, and cruciferous vegetables and risk of lung cancer (ORs ranged from 0.53-0.70, with P for trend < 0.05). Interestingly, significant associations were observed for intake of fruits and total vegetables with lung cancer among never smokers. Conversely, significant inverse associations with cruciferous vegetable intake were observed primarily among smokers, in particular former smokers, although significant interactions were not detected between smoking and intake of any food group. Of four lung cancer histological subtypes, significant inverse associations were observed primarily among patients with squamous or small cell carcinoma - the two subtypes more strongly associated with heavy smoking. Conclusions Our findings are consistent with the smoking-related carcinogen-modulating effect of isothiocyanates, a group of phytochemicals uniquely present in cruciferous vegetables. Our data support consumption of a diet rich in cruciferous vegetables may reduce the risk of lung cancer among smokers. PMID:20423504
Mathematics of Computed Tomography
NASA Astrophysics Data System (ADS)
Hawkins, William Grant
A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.
An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.
Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P
2012-01-01
The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example for an extreme concave case. Quadratic programming is an alternative approach for inverse planning which generates clinically satisfying plans in comparison to the clinical system and constitutes an efficient optimization process characterized by uniqueness and reproducibility of the solution.
Preview-Based Stable-Inversion for Output Tracking
NASA Technical Reports Server (NTRS)
Zou, Qing-Ze; Devasia, Santosh
1999-01-01
Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-01-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-05-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.
NASA Technical Reports Server (NTRS)
Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.
1992-01-01
The relationship between surface conductance and spectral vegetation indices is investigated utilizing the FIFE data set, principally the surface flux station data and images from the TM instrument. It is found that the unstressed canopy conductance for a given site for a given day is near-linearly related to the incident PAR flux. Estimates of unstressed canopy conductance were acquired via a model inversion that separated the soil and vegetation contributions to evapotranspiration and made adjustments for the effects of vapor pressure deficit and soil moisture stress.
On some stochastic formulations and related statistical moments of pharmacokinetic models.
Matis, J H; Wehrly, T E; Metzler, C M
1983-02-01
This paper presents the deterministic and stochastic model for a linear compartment system with constant coefficients, and it develops expressions for the mean residence times (MRT) and the variances of the residence times (VRT) for the stochastic model. The expressions are relatively simple computationally, involving primarily matrix inversion, and they are elegant mathematically, in avoiding eigenvalue analysis and the complex domain. The MRT and VRT provide a set of new meaningful response measures for pharmacokinetic analysis and they give added insight into the system kinetics. The new analysis is illustrated with an example involving the cholesterol turnover in rats.
Full analogue electronic realisation of the Hodgkin-Huxley neuronal dynamics in weak-inversion CMOS.
Lazaridis, E; Drakakis, E M; Barahona, M
2007-01-01
This paper presents a non-linear analog synthesis path towards the modeling and full implementation of the Hodgkin-Huxley neuronal dynamics in silicon. The proposed circuits have been realized in weak-inversion CMOS technology and take advantage of both log-domain and translinear transistor-level techniques.
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Solving ill-posed inverse problems using iterative deep neural networks
NASA Astrophysics Data System (ADS)
Adler, Jonas; Öktem, Ozan
2017-12-01
We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
Some Applications Of Semigroups And Computer Algebra In Discrete Structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2009-11-01
An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.
Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1993-01-01
High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
FORTRAN90 codes for inversion of electrostatic geophysical data in terms of three subsurface parameters in a single-well, oilfield environment: the linear charge density of the steel well casing (L), the point charge associated with an induced fracture filled with a conductive contrast agent (Q) and the location of said fracture (s). Theory is described in detail in Weiss et al. (Geophysics, 2016). Inversion strategy is to loop over candidate fracture locations, and at each one minimize the squared Cartesian norm of the data misfit to arrive at L and Q. Solution method is to construct the 2x2 linear system ofmore » normal equations and compute L and Q algebraically. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed by a simple L-Q-s model. This may include hydrofracking operations, as postulated in Weiss et al. (2016), but no field validation examples have so far been provided.« less
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
Bannister, S.; Bryan, C.J.; Bibby, H.M.
2004-01-01
The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.
Spatial operator factorization and inversion of the manipulator mass matrix
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz-Delgado, Kenneth
1992-01-01
This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.
Ground-based microwave radiometric remote sensing of the tropical atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong.
1992-01-01
A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperature to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Severalmore » methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. The radiometer was calibrated using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, the radiometric measurements with experimental noises added no more profile information to the inversion than that they were determined mainly by the surface pressure measurements. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.« less
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
NASA Astrophysics Data System (ADS)
Shinnaga, H.; Moran, J. M.; Young, K. H.; Ho, P. T. P.
2005-12-01
We imaged the SiO maser emission of J=5-4 in the v=1 state associated with the peculiar red supergiant VY Canis Majoris using the partially completed Submillimeter Array. We identified seven maser components and measured the relative positions at sub-arcsecond scale in the high J transition for the first time. We have also measured the polarization of these maser components. The strongest maser feature has a linear polarization of ˜ 60%, and its direction of polarization is approximately aligned with the bipolar axis. Such a high degree of polarization suggests that radiative pumping is probably responsible for the maser inversion. Five of the other maser features have significant linear polarization.
Spectral likelihood expansions for Bayesian inference
NASA Astrophysics Data System (ADS)
Nagel, Joseph B.; Sudret, Bruno
2016-03-01
A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.
Standard and inverse bond percolation of straight rigid rods on square lattices
NASA Astrophysics Data System (ADS)
Ramirez, L. S.; Centres, P. M.; Ramirez-Pastor, A. J.
2018-04-01
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty. Then, linear bond k -mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the lattice. Jamming coverage pj ,k and percolation threshold pc ,k are determined for a wide range of k (1 ≤k ≤120 ). pj ,k and pc ,k exhibit a decreasing behavior with increasing k , pj ,k →∞=0.7476 (1 ) and pc ,k →∞=0.0033 (9 ) being the limit values for large k -mer sizes. pj ,k is always greater than pc ,k, and consequently, the percolation phase transition occurs for all values of k . In the case of inverse percolation, the process starts with an initial configuration where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing linear bond k -mers from the lattice. The central idea here is based on finding the maximum concentration of occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value of concentration is called the inverse percolation threshold pc,k i, and determines a geometrical phase transition in the system. On the other hand, the inverse jamming coverage pj,k i is the coverage of the limit state, in which no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds of appropriate size. It is easy to understand that pj,k i=1 -pj ,k . The obtained results for pc,k i show that the inverse percolation threshold is a decreasing function of k in the range 1 ≤k ≤18 . For k >18 , all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed bonds pj,k i is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k =1 ) are much more effective than correlated attacks on groups of close nodes (large k 's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered.
NASA Astrophysics Data System (ADS)
Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien
2016-04-01
We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.
Shear wave velocity structure in North America from large-scale waveform inversions of surface waves
Alsina, D.; Woodward, R.L.; Snieder, R.K.
1996-01-01
A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km) layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.
Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.
Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery
The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution.
Elhakeem, Ahmed; Hannam, Kimberly; Deere, Kevin C; Hartley, April; Clark, Emma M; Moss, Charlotte; Edwards, Mark H; Dennison, Elaine; Gaysin, Tim; Kuh, Diana; Wong, Andrew; Cooper, Cyrus; Cooper, Rachel; Tobias, Jon H
2018-01-01
Abstract Background High impact physical activity (PA) is thought to improve skeletal health, but its relation to other health outcomes are unclear. We investigated associations between PA impact magnitude and body mass index (BMI) in older adults. Methods Data were taken from the Cohort for Skeletal Health in Bristol and Avon (COSHIBA), Hertfordshire Cohort Study, and MRC National Survey of Health and Development. Vertical acceleration peaks from 7-day hip-worn accelerometer recordings were used to classify PA as low (0.5 < g < 1.0g), medium (1 < g < 1.5g), or higher (≥1.5g) impact. Cohort-specific associations of low, medium, and higher impact PA with BMI were examined using linear regressions and estimates combined using random-effects meta-analysis. Results A total of 1182 participants (mean age = 72.7 years, 68% female) were included. Low, medium, and higher impact PA were inversely related to BMI in initial models. After adjustment for confounders and other impacts, low, but not medium or higher, impacts were inversely related to BMI (−0.31, p < .001: overall combined standard deviation change in BMI per doubling in the number of low impacts). In adjusted analyses of body composition measured by dual-energy X-ray absorptiometry in COSHIBA, low, but not medium or higher, impacts were inversely related to total body fat mass (−0.19, p < .001) and android:gynoid fat mass ratio (−0.16, p = .01), whereas high impact PA was weakly and positively associated with lean mass (0.05, p = .06). Conclusions Greater exposure to PA producing low magnitude vertical impacts was associated with lower BMI and fat mass at older age. Low impact PA may help reduce obesity risk in older adults. PMID:29028919
Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G
2016-12-01
An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Inverse Control for Rotorcraft Vibration Reduction
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1985-01-01
This thesis extends the Least Mean Square (LMS) algorithm to solve the mult!ple-input, multiple-output problem of alleviating N/Rev (revolutions per minute by number of blades) helicopter fuselage vibration by means of adaptive inverse control. A frequency domain locally linear model is used to represent the transfer matrix relating the higher harmonic pitch control inputs to the harmonic vibration outputs to be controlled. By using the inverse matrix as the controller gain matrix, an adaptive inverse regulator is formed to alleviate the N/Rev vibration. The stability and rate of convergence properties of the extended LMS algorithm are discussed. It is shown that the stability ranges for the elements of the stability gain matrix are directly related to the eigenvalues of the vibration signal information matrix for the learning phase, but not for the control phase. The overall conclusion is that the LMS adaptive inverse control method can form a robust vibration control system, but will require some tuning of the input sensor gains, the stability gain matrix, and the amount of control relaxation to be used. The learning curve of the controller during the learning phase is shown to be quantitatively close to that predicted by averaging the learning curves of the normal modes. For higher order transfer matrices, a rough estimate of the inverse is needed to start the algorithm efficiently. The simulation results indicate that the factor which most influences LMS adaptive inverse control is the product of the control relaxation and the the stability gain matrix. A small stability gain matrix makes the controller less sensitive to relaxation selection, and permits faster and more stable vibration reduction, than by choosing the stability gain matrix large and the control relaxation term small. It is shown that the best selections of the stability gain matrix elements and the amount of control relaxation is basically a compromise between slow, stable convergence and fast convergence with increased possibility of unstable identification. In the simulation studies, the LMS adaptive inverse control algorithm is shown to be capable of adapting the inverse (controller) matrix to track changes in the flight conditions. The algorithm converges quickly for moderate disturbances, while taking longer for larger disturbances. Perfect knowledge of the inverse matrix is not required for good control of the N/Rev vibration. However it is shown that measurement noise will prevent the LMS adaptive inverse control technique from controlling the vibration, unless the signal averaging method presented is incorporated into the algorithm.
Niquil, Nathalie; Jobard, Marlène; Saint-Béat, Blanche; Sime-Ngando, Télesphore
2011-01-01
This study is the first assessment of the quantitative impact of parasitic chytrids on a planktonic food web. We used a carbon-based food web model of Lake Pavin (Massif Central, France) to investigate the effects of chytrids during the spring diatom bloom by developing models with and without chytrids. Linear inverse modelling procedures were employed to estimate undetermined flows in the lake. The Monte Carlo Markov chain linear inverse modelling procedure provided estimates of the ranges of model-derived fluxes. Model results support recent theories on the probable impact of parasites on food web function. In the lake, during spring, when ‘inedible’ algae (unexploited by planktonic herbivores) were the dominant primary producers, the epidemic growth of chytrids significantly reduced the sedimentation loss of algal carbon to the detritus pool through the production of grazer-exploitable zoospores. We also review some theories about the potential influence of parasites on ecological network properties and argue that parasitism contributes to longer carbon path lengths, higher levels of activity and specialization, and lower recycling. Considering the “structural asymmetry” hypothesis as a stabilizing pattern, chytrids should contribute to the stability of aquatic food webs. PMID:21887240
Humidity affects the performance of von Frey monofilaments.
Werner, M U; Rotbøll-Nielsen, P; Ellehuus-Hilmersson, C
2011-05-01
Assessment of tactile and nociceptive thresholds of the skin with calibrated polyamide monofilaments is an established testing method both in animal and in human research. It is known that changes in relative humidity may affect the physical properties of the monofilaments. As this effect has only been studied in very small diameter monofilaments, used in neonatal research, we therefore studied complete sets of polyamide monofilaments. The effects were studied in a controlled climate chamber during six incremental changes in relative humidity from 20% to 79% (22-24°C). Following 24 h of equilibration at each humidity level, calibration with a precision scale was performed. A highly significant linear correlation between the natural logarithm (In) of the bending force and the von Frey number was observed at all humidity levels (r(2)>0.99, P<0.0001). An inverse linear relationship between relative humidity and In of the bending force for each monofilament was found (r(2)=0.95, P<0.0001). One percent increase in relative humidity corresponded to a 1-4% relative decrease in numerical bending force, depending on the diameter of the monofilament. A significant linear relationship was observed between the coefficient of variation and the relative humidity (r(2)=0.87, P<0.001). The data indicate that the hygroscopic properties of polyamide monofilaments must be taken into account for their reliable use in quantitative sensory testing.
Chromosome Gene Orientation Inversion Networks (GOINs) of Plasmodium Proteome.
Quevedo-Tumailli, Viviana F; Ortega-Tenezaca, Bernabé; González-Díaz, Humbert
2018-03-02
The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of genes are transcribed from bidirectional promoters in humans, and many more are organized into larger clusters. This raises intriguing questions previously asked by different authors. We would like to add a few more questions in this context, related to gene orientation inversions. Does gene orientation (inversion) follow a random pattern? Is it relevant to biological activity somehow? We define a new kind of network coined as the gene orientation inversion network (GOIN). GOIN's complex network encodes short- and long-range patterns of inversion of the orientation of pairs of gene in the chromosome. We selected Plasmodium falciparum as a case of study due to the high relevance of this parasite to public health (causal agent of malaria). We constructed here for the first time all of the GOINs for the genome of this parasite. These networks have an average of 383 nodes (genes in one chromosome) and 1314 links (pairs of gene with inverse orientation). We calculated node centralities and other parameters of these networks. These numerical parameters were used to study different properties of gene inversion patterns, for example, distribution, local communities, similarity to Erdös-Rényi random networks, randomness, and so on. We find clues that seem to indicate that gene orientation inversion does not follow a random pattern. We noted that some gene communities in the GOINs tend to group genes encoding for RIFIN-related proteins in the proteome of the parasite. RIFIN-like proteins are a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Consequently, we used these centralities as input of machine learning (ML) models to predict the RIFIN-like activity of 5365 proteins in the proteome of Plasmodium sp. The best linear ML model found discriminates RIFIN-like from other proteins with sensitivity and specificity 70-80% in training and external validation series. All of these results may point to a possible biological relevance of gene orientation inversion not directly dependent on genetic sequence information. This work opens the gate to the use of GOINs as a tool for the study of the structure of chromosomes and the study of protein function in proteome research.
Zinc Levels in Left Ventricular Hypertrophy.
Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin
2017-03-01
Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.
Stochastic inversion of cross-borehole radar data from metalliferous vein detection
NASA Astrophysics Data System (ADS)
Zeng, Zhaofa; Huai, Nan; Li, Jing; Zhao, Xueyu; Liu, Cai; Hu, Yingsa; Zhang, Ling; Hu, Zuzhi; Yang, Hui
2017-12-01
In the exploration and evaluation of the metalliferous veins with a cross-borehole radar system, traditional linear inversion methods (least squares inversion, LSQR) only get indirect parameters (permittivity, resistivity, or velocity) to estimate the target structure. They cannot accurately reflect the geological parameters of the metalliferous veins’ media properties. In order to get the intrinsic geological parameters and internal distribution, in this paper, we build a metalliferous veins model based on the stochastic effective medium theory, and carry out stochastic inversion and parameter estimation based on the Monte Carlo sampling algorithm. Compared with conventional LSQR, the stochastic inversion can get higher resolution inversion permittivity and velocity of the target body. We can estimate more accurately the distribution characteristics of abnormality and target internal parameters. It provides a new research idea to evaluate the properties of complex target media.
Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5
Chen, Zhi-Guo; Chen, R. Y.; Zhong, R. D.; Schneeloch, John; Zhang, C.; Huang, Y.; Qu, Fanming; Yu, Rui; Gu, G. D.; Wang, N. L.
2017-01-01
Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly linear band dispersions were seldom observed in TIs. Recently, a van der Waals crystal, ZrTe5, was theoretically predicted to be a TI. Here, we report an infrared transmission study of a high-mobility [∼33,000 cm2/(V ⋅ s)] multilayer ZrTe5 flake at magnetic fields (B) up to 35 T. Our observation of a linear relationship between the zero-magnetic-field optical absorption and the photon energy, a bandgap of ∼10 meV and a B dependence of the Landau level (LL) transition energies at low magnetic fields demonstrates 3D massive Dirac fermions with nearly linear band dispersions in this system. More importantly, the reemergence of the intra-LL transitions at magnetic fields higher than 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands. Our results not only provide spectroscopic evidence for the TI state in ZrTe5 but also open up a new avenue for fundamental studies of Dirac fermions in van der Waals materials. PMID:28096330
Chen, Zhi -Guo; Chen, R. Y.; Zhong, R. D.; ...
2017-01-17
Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly linear band dispersions were seldom observed in TIs. Recently, a van der Waals crystal, ZrTe 5, was theoretically predicted to be a TI. Here, we report an infrared transmission study of a high-mobility [~33,000 cm 2/(V • s)] multilayer ZrTe 5 flakemore » at magnetic fields (B) up to 35 T. Our observation of a linear relationship between the zero-magnetic-field optical absorption and the photon energy, a bandgap of ~10 meV and a √B dependence of the Landau level (LL) transition energies at low magnetic fields demonstrates 3D massive Dirac fermions with nearly linear band dispersions in this system. More importantly, the reemergence of the intra-LL transitions at magnetic fields higher than 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands. Finally, our results not only provide spectroscopic evidence for the TI state in ZrTe 5 but also open up a new avenue for fundamental studies of Dirac fermions in van der Waals materials.« less
NASA Astrophysics Data System (ADS)
Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.
2017-08-01
Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.
NASA Astrophysics Data System (ADS)
Chang, Ouliang
The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific spectral indices from simulated wavevector energy spectra do not match the frequency spectral indices from observations due to the inapplicability of Taylor's hypothesis. In contrast, the direct comparison of simulated frequency energy spectra and solar wind observations shows a closer similarity. Electron density fluctuations power spectra also exhibit a close similarity to solar wind observations and MHD predications, both qualitatively and quantitatively. Linear damping represents an intermediate fraction of the total dissipation of whistler turbulence over a wide range of betae and epsilone. The relative importance of linear damping by comparison to nonlinear dissipation increases with increasing beta e but decreases with increasing epsilone. Correlation coefficient calculations imply that the nonlinear dissipation processes in our simulation are primarily associated with dissipation in regions of intermittent current sheet structures. The simulation results suggest that whistler fluctuations could be the substantial constituent of solar wind turbulence at higher frequencies and short wavelengths, and support the magnetosonic-whistler interpretation of the quasilinear scenario. An even larger scale 3D whistler turbulence simulation exhibits both a forward cascade to shorter wavelengths with wavevectors preferentially k⊥ > k∥, and an inverse cascade to longer wavelengths with wavevectors k ≳ k⊥. The inverse cascade process is primarily driven by the nonlinear wave-wave interaction. It is shown that the energy inverse cascade rate is similar to the energy forward cascade rate at early times although the overall energy in the two cascades is very different. The presence of inverse cascade process does not affect qualitative conclusions established from the whistler turbulence forward cascade simulations.
Goltz, Annemarie; Janowitz, Deborah; Hannemann, Anke; Nauck, Matthias; Hoffmann, Johanna; Seyfart, Tom; Völzke, Henry; Terock, Jan; Grabe, Hans Jörgen
2018-06-19
Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951-0.981) and obesity (OR = 0.976; 95% CI 0.967-0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes. © 2018 S. Karger AG, Basel.
Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study.
Kühn, Tilman; Sookthai, Disorn; Graf, Mirja E; Schübel, Ruth; Freisling, Heinz; Johnson, Theron; Katzke, Verena; Kaaks, Rudolf
2017-11-07
It has long been proposed that albumin, bilirubin and uric acid may inhibit cancer development due to their anti-oxidative properties. However, there is a lack of population-based studies on blood levels of these molecules and cancer risk. Associations between pre-diagnostic serum albumin, bilirubin and uric acid and the risks of common cancers as well as cancer death in the EPIC-Heidelberg cohort were evaluated by multivariable Cox regression analyses. A case-cohort sample including a random subcohort (n=2739) and all incident cases of breast (n=627), prostate (n=554), colorectal (n=256), and lung cancer (n=195) as well as cancer death (n=761) that occurred between baseline (1994-1998) and 2009 was used. Albumin levels were inversely associated with breast cancer risk (hazard ratio Quartile 4 vs Quartile 1 (95% CI): 0.71 (0.51, 0.99), P linear trend =0.004) and overall cancer mortality (HR Q4 vs Q1 (95% CI): 0.64 (0.48, 0.86), P linear trend <0.001) after multivariable adjustment. Uric acid levels were also inversely associated with breast cancer risk (HR Q4 vs Q1 (95% CI): 0.72 (0.53, 0.99), P linear trend =0.043) and cancer mortality (HR Q4 vs Q1 (95% CI): 0.75 (0.58, 0.98), P linear trend =0.09). There were no significant associations between albumin or uric acid and prostate, lung and colorectal cancer. Serum bilirubin was not associated with any cancer end point. The present findings indicate that higher levels of albumin and uric acid are related to lower risks of breast cancer and cancer mortality. Further studies are needed to assess whether the observed associations are causal.
Bayesian inversion of refraction seismic traveltime data
NASA Astrophysics Data System (ADS)
Ryberg, T.; Haberland, Ch
2018-03-01
We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test for a synthetic data set from a known model is also presented.
NASA Astrophysics Data System (ADS)
Ho, Tung-Cheng; Satake, Kenji; Watada, Shingo
2017-12-01
Systemic travel time delays of up to 15 min relative to the linear long waves for transoceanic tsunamis have been reported. A phase correction method, which converts the linear long waves into dispersive waves, was previously proposed to consider seawater compressibility, the elasticity of the Earth, and gravitational potential change associated with tsunami motion. In the present study, we improved this method by incorporating the effects of ocean density stratification, actual tsunami raypath, and actual bathymetry. The previously considered effects amounted to approximately 74% for correction of the travel time delay, while the ocean density stratification, actual raypath, and actual bathymetry, contributed to approximately 13%, 4%, and 9% on average, respectively. The improved phase correction method accounted for almost all the travel time delay at far-field stations. We performed single and multiple time window inversions for the 2011 Tohoku tsunami using the far-field data (>3 h travel time) to investigate the initial sea surface displacement. The inversion result from only far-field data was similar to but smoother than that from near-field data and all stations, including a large sea surface rise increasing toward the trench followed by a migration northward along the trench. For the forward simulation, our results showed good agreement between the observed and computed waveforms at both near-field and far-field tsunami gauges, as well as with satellite altimeter data. The present study demonstrates that the improved method provides a more accurate estimate for the waveform inversion and forward prediction of far-field data.
Minimum relative entropy, Bayes and Kapur
NASA Astrophysics Data System (ADS)
Woodbury, Allan D.
2011-04-01
The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean are constrained not by d=Gm but by its first moment E(d=Gm), a weakened form of the constraints. If there is no error in the data then one should expect a complete agreement between Bayes and MRE and this is what is shown. Similar results are shown when second moment data is available (e.g. posterior covariance equal to zero). But dissimilar results are noted when we attempt to derive a Bayesian like result from MRE. In the various examples given in this paper, the problems look similar but are, in the final analysis, not equal. The methods of attack are different and so are the results even though we have used the linear inverse problem as a common template.
Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.
Elalmis, Derya Deniz; Tan, Uner
2007-12-01
The growth promoting effects of growth hormone (GH) are well-known. However, the studies in this respect did not consider the sexual dimorphism. The adverse--growth limiting--GH effects were also reported in human newborns (see Tan, 1992, 1995; Tan et al., 1998). A similar study was replicated in the newborn rat pups in the present work. The serum GH level, body weight, body height, right- and left-brain weights were measured just after birth in rat pups. The relations of the serum GH levels to the bodily measurements were found to be sexually dimorphic. Namely, there were no significant correlations between the serum GH levels and the body size (weight and height) in males, whereas there were inverse relations between these parameters in females. The GH level negatively linearly related to the right-, left-, and right- minus left-brain weights in females, whereas only the right-brain weight positively linearly correlated with the serum GH level, the right- minus left-brain weight being also positively linearly correlated with the serum GH level in males. The results suggested that the sexual dimorphism should be taken into consideration in studies concerning the global GH effects. The relation of the serum GH level to the right-left brain asymmetry, also sexually dimorphic, suggests a role of GH in cerebral lateralization.
Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z
ERIC Educational Resources Information Center
Beaver, Scott
2015-01-01
For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.
The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.
1979-09-01
coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all
Ferguson, Trevor S; Younger-Coleman, Novie O; Tulloch-Reid, Marshall K; Knight-Madden, Jennifer M; Bennett, Nadia R; Samms-Vaughan, Maureen; Ashley, Deanna; McCaw-Binns, Affette; Molaodi, Oarabile R; Cruickshank, J Kennedy; Harding, Seeromanie; Wilks, Rainford J
2015-09-01
In this study, we examined the effects of birth weight (BWT) and early life socioeconomic circumstances (SEC) on systolic blood pressure (SBP) and diastolic blood pressure (DBP) among Jamaican young adults. Longitudinal study of 364 men and 430 women from the Jamaica 1986 Birth Cohort Study. Information on BWT and maternal SEC at child's birth was linked to information collected at 18-20 years old. Sex-specific multilevel linear regression models were used to examine whether adult SBP/DBP was associated with BWT and maternal SEC. In unadjusted models, SBP was inversely related to BWT z-score in both men (β, -0.82 mm Hg) and women (β, -1.18 mm Hg) but achieved statistical significance for women only. In the fully adjusted model, one standard deviation increase in BWT was associated with 1.16 mm Hg reduction in SBP among men [95% confidence interval (CI): 2.15, 0.17; P = 0.021] and 1.34 mm Hg reduction in SBP among women (95% CI: 2.21, 0.47; P = 0.003). Participants whose mothers had lower SEC had higher SBP compared with those with mothers of high SEC (β, 3.4-4.8 mm Hg for men, P < 0.05 for all SEC categories and 1.8-2.1 for women, P > 0.05). SBP was inversely related to maternal SEC and BWT among Jamaican young adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Building Generalized Inverses of Matrices Using Only Row and Column Operations
ERIC Educational Resources Information Center
Stuart, Jeffrey
2010-01-01
Most students complete their first and only course in linear algebra with the understanding that a real, square matrix "A" has an inverse if and only if "rref"("A"), the reduced row echelon form of "A", is the identity matrix I[subscript n]. That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix…
Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man
2011-10-01
A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.
NASA Astrophysics Data System (ADS)
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
NASA Technical Reports Server (NTRS)
Backus, George
1987-01-01
Let R be the real numbers, R(n) the linear space of all real n-tuples, and R(infinity) the linear space of all infinite real sequences x = (x sub 1, x sub 2,...). Let P sub n :R(infinity) approaches R(n) be the projection operator with P sub n (x) = (x sub 1,...,x sub n). Let p(infinity) be a probability measure on the smallest sigma-ring of subsets of R(infinity) which includes all of the cylinder sets P sub n(-1) (B sub n), where B sub n is an arbitrary Borel subset of R(n). Let p sub n be the marginal distribution of p(infinity) on R(n), so p sub n(B sub n) = p(infinity)(P sub n to the -1(B sub n)) for each B sub n. A measure on R(n) is isotropic if it is invariant under all orthogonal transformations of R(n). All members of the set of all isotropic probability distributions on R(n) are described. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.
Hesford, Andrew J.; Chew, Weng C.
2010-01-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438
NASA Astrophysics Data System (ADS)
Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao
2018-01-01
Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.
Preconditioned alternating direction method of multipliers for inverse problems with constraints
NASA Astrophysics Data System (ADS)
Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie
2017-02-01
We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.
Kadric, Lejla; Zylla, Stephanie; Nauck, Matthias; Völzke, Henry; Friedrich, Nele; Hannemann, Anke
2018-06-01
Chemerin is an adipokine associated with parameters of inflammation and the metabolic syndrome. Small observational studies suggested that high circulating chemerin levels are also related to bone erosion. We aimed to determine whether plasma chemerin levels are related to bone quality in the general population and to investigate the influence of body mass index (BMI) on that relation. For our analyses, we obtained data from 3583 adults who participated in the population-based Study of Health in Pomerania-Trend. The participants were divided into three groups according to their BMI: lean (<25 kg/m2), overweight (25 to 30 kg/m2), and obese (≥30 kg/m2). Chemerin concentrations were determined in EDTA plasma. Bone quality was assessed using quantitative ultrasound at the heel. Broadband ultrasound attenuation (BUA), speed of sound (SOS), stiffness index, and osteoporotic fracture risk were derived from this measurement. Sex- and BMI-specific linear regression models revealed inverse associations between chemerin levels and BUA in obese men. In obese women, inverse relations between chemerin levels and SOS or stiffness index were found. Logistic regression models revealed positive associations between chemerin levels and osteoporotic fracture risk. In lean or overweight subjects, no statistically significant associations were found. Our sex- and BMI-specific analyses showed that inverse associations between chemerin levels and bone quality are restricted to obese men and women. The observed association may be due to a chemerin-induced negative affect on bone metabolism, possibly due to abrogation of osteoblastogenesis or stimulation of adipogenesis.
Inversion Of Jacobian Matrix For Robot Manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
Preliminary assessment of the robustness of dynamic inversion based flight control laws
NASA Technical Reports Server (NTRS)
Snell, S. A.
1992-01-01
Dynamic-inversion-based flight control laws present an attractive alternative to conventional gain-scheduled designs for high angle-of-attack maneuvering, where nonlinearities dominate the dynamics. Dynamic inversion is easily applied to the aircraft dynamics requiring a knowledge of the nonlinear equations of motion alone, rather than an extensive set of linearizations. However, the robustness properties of the dynamic inversion are questionable especially when considering the uncertainties involved with the aerodynamic database during post-stall flight. This paper presents a simple analysis and some preliminary results of simulations with a perturbed database. It is shown that incorporating integrators into the control loops helps to improve the performance in the presence of these perturbations.
2017-01-01
Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856
Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization
NASA Astrophysics Data System (ADS)
Yamagishi, Masao; Yamada, Isao
2017-04-01
Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Easy way to determine quantitative spatial resolution distribution for a general inverse problem
NASA Astrophysics Data System (ADS)
An, M.; Feng, M.
2013-12-01
The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.
NASA Astrophysics Data System (ADS)
Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.
2017-08-01
We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active system. The basin geometry evolved by E-W block faulting overprinted by NE-SW trending pre- to syn-depositional normal faults generating NE-SW depression, which are affected by N-S trend post-sedimentary faulting. Though the present work relates the basin evolution with the initiation of rift basin, it warrants further work to establish the deformation within the basin pertaining to the proximal thrust and uplift along the craton fringe.
Is 3D true non linear traveltime tomography reasonable ?
NASA Astrophysics Data System (ADS)
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Solar Sail Attitude Control Performance Comparison
NASA Technical Reports Server (NTRS)
Bladt, Jeff J.; Lawrence, Dale A.
2005-01-01
Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
Reverse Flood Routing with the Lag-and-Route Storage Model
NASA Astrophysics Data System (ADS)
Mazi, K.; Koussis, A. D.
2010-09-01
This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.
Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John
2016-01-01
Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667
Borghero, Francesco; Demontis, Francesco
2016-09-01
In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions.
Antwi, Samuel O; Steck, Susan E; Zhang, Hongmei; Stumm, Lareissa; Zhang, Jiajia; Hurley, Thomas G; Hebert, James R
2015-10-01
Although men presenting with clinically localized prostate cancer (PrCA) often are treated with radical prostatectomy or radiation therapy with curative intent, about 25-40% develop biochemically recurrent PrCA within 5 years of treatment, which has no known cure. Studies suggest that carotenoid and tocopherol intake may be associated with PrCA risk and progression. We examined plasma carotenoid and tocopherol levels in relation to prostate-specific antigen (PSA) levels among men with PSA-defined biochemical recurrence of PrCA. Data analyzed were from a 6-month diet, physical activity and stress-reduction intervention trial conducted in South Carolina among biochemically recurrent PrCA patients (n=39). Plasma carotenoids and tocopherol levels were measured using high-performance liquid chromatography (HPLC). Linear regression was used to estimate least-square means comparing PSA levels of men with high versus low carotenoid/tocopherol levels, adjusting for covariates. After adjusting for baseline PSA level, plasma cis-lutein/zeaxanthin level at 3 months was related inversely to PSA level at 3 months (P=0.0008), while α-tocopherol (P=0.01), β-cryptoxanthin (P=0.01), and all-trans-lycopene (P=0.004) levels at 3 months were related inversely to PSA levels at 6-months. Percent increase in α-tocopherol and trans-β-carotene levels from baseline to month 3 were associated with lower PSA levels at 3 and 6 months. Percent increase in β-cryptoxanthin, cis-lutein/zeaxanthin and all-trans-lycopene were associated with lower PSA levels at 6 months only. Certain plasma carotenoids and tocopherols were related inversely to PSA levels at various timepoints, suggesting that greater intake of foods containing these micronutrients might be beneficial to men with PSA-defined PrCA recurrence. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
A Glimpse in the Third Dimension for Electrical Resistivity Profiles
NASA Astrophysics Data System (ADS)
Robbins, A. R.; Plattner, A.
2017-12-01
We present an electrode layout strategy designed to enhance the popular two-dimensional electrical resistivity profile. Offsetting electrodes from the traditional linear layout and using 3-D inversion software allows for mapping the three-dimensional electrical resistivity close to the profile plane. We established a series of synthetic tests using simulated data generated from chosen resistivity distributions with a three-dimensional target feature. All inversions and simulations were conducted using freely-available ERT software, BERT and E4D. Synthetic results demonstrate the effectiveness of the offset electrode approach, whereas the linear layout failed to resolve the three-dimensional character of our subsurface feature. A field survey using trench backfill as a known resistivity contrast confirmed our synthetic tests. As we show, 3-D inversions of linear layouts for starting models without previously known structure are futile ventures because they generate symmetric resistivity solutions with respect to the profile plane. This is a consequence of the layout's inherent symmetrical sensitivity patterns. An offset electrode layout is not subject to the same limitation, as the collective measurements do not share a common sensitivity symmetry. For practitioners, this approach presents a low-cost improvement of a traditional geophysical method which is simple to use yet may provide critical information about the three dimensional structure of the subsurface close to the profile.
Building generalized inverses of matrices using only row and column operations
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey
2010-12-01
Most students complete their first and only course in linear algebra with the understanding that a real, square matrix A has an inverse if and only if rref(A), the reduced row echelon form of A, is the identity matrix I n . That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix [A | I n ] to obtain [rref(A) | P], then the matrix A is invertible exactly when rref(A) = I n , in which case, P = A -1. Many students must wonder what happens when A is not invertible, and what information P conveys in that case. That question is, however, seldom answered in a first course. We show that investigating that question emphasizes the close relationships between matrix multiplication, elementary row operations, linear systems, and the four fundamental spaces associated with a matrix. More important, answering that question provides an opportunity to show students how mathematicians extend results by relaxing hypotheses and then exploring the strengths and limitations of the resulting generalization, and how the first relaxation found is often not the best relaxation to be found. Along the way, we introduce students to the basic properties of generalized inverses. Finally, our approach should fit within the time and topic constraints of a first course in linear algebra.
de Pont, Anne-Cornélie J M; Bouman, Catherine S C; Bakhtiari, Kamran; Schaap, Marianne C L; Nieuwland, Rienk; Sturk, Augueste; Hutten, Barbara A; de Jonge, Evert; Vroom, Margreeth B; Meijers, Joost C M; Büller, Harry R
2006-01-01
During continuous venovenous hemofiltration, predilution can prolong circuit survival time, but the underlying mechanism has not been elucidated. The aim of the present study was to compare predilution with postdilution, with respect to circuit thrombogenesis. Eight critically ill patients were treated with both predilutional and postdilutional continuous venovenous hemofiltration in a crossover fashion. A filtration flow of 60 ml/min was used in both modes. We chose blood flows of 140 and 200 ml/min during predilution and postdilution, respectively, to keep the total flow through the hemofilter constant. Extracorporeal circuit pressures were measured hourly, and samples of blood and ultrafiltrate were collected at five different time points. Thrombin-antithrombin complexes and prothrombin fragments F1 + 2 were measured by ELISA, and platelet activation was assessed by flow cytometry. No signs of thrombin generation or platelet activation were found during either mode. During postdilution, baseline platelet count and maximal prefilter pressure had a linear relation, whereas both parameters were inversely related with circuit survival time. In summary, predilution and postdilution did not differ with respect to extracorporeal circuit thrombogenesis. During postdilution, baseline platelet count and maximal prefilter pressure were inversely related with circuit survival time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, Stefan A.
2010-11-01
iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional , multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. It performs sensitivity analysis, parameter estimation, and uncertainty propagation, analysis in geosciences and reservoir engineering and other application areas. It supports a number of different combination of fluids and components [equation-of-state (EOS) modules]. In addition, the optimization routines implemented in iTOUGH2 can also be used or sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files. This link is achieved by means of the PEST application programmingmore » interface. iTOUGH2 solves the inverse problem by minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative fee, gradient-based and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlos simulation for uncertainty propagation analysis. A detailed residual and error analysis is provided. This upgrade includes new EOS modules (specifically EOS7c, ECO2N and TMVOC), hysteretic relative permeability and capillary pressure functions and the PEST API. More details can be found at http://esd.lbl.gov/iTOUGH2 and the publications cited there. Hardware Req.: Multi-platform; Related/auxiliary software PVM (if running in parallel).« less
Sorting signed permutations by inversions in O(nlogn) time.
Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E
2010-03-01
The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to themore » full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.« less
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
On the null distribution of Bayes factors in linear regression
USDA-ARS?s Scientific Manuscript database
We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...
NASA Technical Reports Server (NTRS)
Wiggins, R. A.
1972-01-01
The discrete general linear inverse problem reduces to a set of m equations in n unknowns. There is generally no unique solution, but we can find k linear combinations of parameters for which restraints are determined. The parameter combinations are given by the eigenvectors of the coefficient matrix. The number k is determined by the ratio of the standard deviations of the observations to the allowable standard deviations in the resulting solution. Various linear combinations of the eigenvectors can be used to determine parameter resolution and information distribution among the observations. Thus we can determine where information comes from among the observations and exactly how it constraints the set of possible models. The application of such analyses to surface-wave and free-oscillation observations indicates that (1) phase, group, and amplitude observations for any particular mode provide basically the same type of information about the model; (2) observations of overtones can enhance the resolution considerably; and (3) the degree of resolution has generally been overestimated for many model determinations made from surface waves.
Ground-Based Microwave Radiometric Remote Sensing of the Tropical Atmosphere
NASA Astrophysics Data System (ADS)
Han, Yong
A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperatures to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Several methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. During this experiment, the radiometer was calibrated by using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was first applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, it was shown that the radiometric measurements with experimental noises added no more profile information to the inversion than that which was available from a climatological mean. Although successful retrievals of the geopotential heights were made, it was shown that they were determined mainly by the surface pressure measurements. The reasons why the radiometer did not contribute to the retrievals of temperature profiles and geopotential heights were discussed. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Under certain assumptions, the cloud absorption coefficients and mean radiating temperature, used in the physical or statistical inversion equation, were determined from the measurements. It was shown that significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.
Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys
NASA Astrophysics Data System (ADS)
Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.
2016-12-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
Fisher information and Rényi dimensions: A thermodynamical formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godó, B.; Nagy, Á.
The relation between the Fisher information and Rényi dimensions is established: the Fisher information can be expressed as a linear combination of the first and second derivatives of the Rényi dimensions with respect to the Rényi parameter β. The Rényi parameter β is the parameter of the Fisher information. A thermodynamical description based on the Fisher information with β being the inverse temperature is introduced for chaotic systems. The link between the Fisher information and the heat capacity is emphasized, and the Fisher heat capacity is introduced.
Fisher information and Rényi dimensions: A thermodynamical formalism.
Godó, B; Nagy, Á
2016-08-01
The relation between the Fisher information and Rényi dimensions is established: the Fisher information can be expressed as a linear combination of the first and second derivatives of the Rényi dimensions with respect to the Rényi parameter β. The Rényi parameter β is the parameter of the Fisher information. A thermodynamical description based on the Fisher information with β being the inverse temperature is introduced for chaotic systems. The link between the Fisher information and the heat capacity is emphasized, and the Fisher heat capacity is introduced.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Fever as a Cause of Hypophosphatemia in Patients with Malaria
Browner, Warren
2007-01-01
Hypophosphatemia occurs in 40 to 60% of patients with acute malaria, and in many other conditions associated with elevations of body temperature. To determine the prevalence and causes of hypophosphatemia in patients with malaria, we retrospectively studied all adults diagnosed with acute malaria during a 12-year period. To validate our findings, we analyzed a second sample of malaria patients during a subsequent 10-year period. Serum phosphorus correlated inversely with temperature (n = 59, r = −0.62; P<0.0001), such that each 1°C increase in body temperature was associated with a reduction of 0.18 mmol/L (0.56 mg/dL) in the serum phosphorus level (95% confidence interval: −0.12 to −0.24 mmol/L [−0.37 to −0.74 mg/dL] per 1°C). A similar effect was observed among 19 patients who had repeat measurements of serum phosphorus and temperature. In a multiple linear regression analysis, the relation between temperature and serum phosphorus level was independent of blood pH, PCO2, and serum levels of potassium, bicarbonate, calcium, albumin, and glucose. Our study demonstrates a strong inverse linear relation between body temperature and serum phosphorus level that was not explained by other factors known to cause hypophosphatemia. If causal, this association can account for the high prevalence of hypophosphatemia, observed in our patients and in previous studies of patients with malaria. Because hypophosphatemia has been observed in other clinical conditions characterized by fever or hyperthermia, this relation may not be unique to malaria. Elevation of body temperature should be added to the list of causes of hypophosphatemia. PMID:18159256
Quantum description of light propagation in generalized media
NASA Astrophysics Data System (ADS)
Häyrynen, Teppo; Oksanen, Jani
2016-02-01
Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.
A non-linear induced polarization effect on transient electromagnetic soundings
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
Lycopene and Risk of Prostate Cancer
Chen, Ping; Zhang, Wenhao; Wang, Xiao; Zhao, Keke; Negi, Devendra Singh; Zhuo, Li; Qi, Mao; Wang, Xinghuan; Zhang, Xinhua
2015-01-01
Abstract Prostate cancer (PCa) is a common illness for aging males. Lycopene has been identified as an antioxidant agent with potential anticancer properties. Studies investigating the relation between lycopene and PCa risk have produced inconsistent results. This study aims to determine dietary lycopene consumption/circulating concentration and any potential dose–response associations with the risk of PCa. Eligible studies published in English up to April 10, 2014, were searched and identified from Pubmed, Sciencedirect Online, Wiley online library databases and hand searching. The STATA (version 12.0) was applied to process the dose–response meta-analysis. Random effects models were used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs) and to incorporate variation between studies. The linear and nonlinear dose–response relations were evaluated with data from categories of lycopene consumption/circulating concentrations. Twenty-six studies were included with 17,517 cases of PCa reported from 563,299 participants. Although inverse association between lycopene consumption and PCa risk was not found in all studies, there was a trend that with higher lycopene intake, there was reduced incidence of PCa (P = 0.078). Removal of one Chinese study in sensitivity analysis, or recalculation using data from only high-quality studies for subgroup analysis, indicated that higher lycopene consumption significantly lowered PCa risk. Furthermore, our dose–response meta-analysis demonstrated that higher lycopene consumption was linearly associated with a reduced risk of PCa with a threshold between 9 and 21 mg/day. Consistently, higher circulating lycopene levels significantly reduced the risk of PCa. Interestingly, the concentration of circulating lycopene between 2.17 and 85 μg/dL was linearly inversed with PCa risk whereas there was no linear association >85 μg/dL. In addition, greater efficacy for the circulating lycopene concentration on preventing PCa was found for studies with high quality, follow-up >10 years and where results were adjusted by the age or the body mass index. In conclusion, our novel data demonstrates that higher lycopene consumption/circulating concentration is associated with a lower risk of PCa. However, further studies are required to determine the mechanism by which lycopene reduces the risk of PCa and if there are other factors in tomato products that might potentially decrease PCa risk and progression. PMID:26287411
Un, M Kerem; Kaghazchi, Hamed
2018-01-01
When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.
2012-12-01
The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities during the time intervals spanned by the interferogram and a DEM height correction. The sensitivity of the phase to the height correction depends on the length of the perpendicular baseline of each interferogram. This design matrix is augmented with a set of additional weighted constraints on the acceleration that penalize rapid velocity variations. The weighting factor γ can be varied from 0 (no smoothing) to a large values (> 10) that yield an essentially linear time-series solution. The factor can be tuned to take into account a priori knowledge of the deformation non-linearity. The difference between the time-series solution and the unconstrained time-series can be interpreted as due to a combination of tropospheric path delay and baseline error. Spatial smoothing of the residual phase leads to an improved atmospheric model that can be fed back into the model and iterated. Our analysis shows non-linear deformation related to changes in the oil extraction as well as local height corrections improving on the low resolution 3 arc-sec SRTM DEM.
Froetschel, M A; Amos, H E; Evans, J J; Croom, W J; Hagler, W M
1989-03-01
Slaframine (SF), a parasympathomimetic salivary stimulant, was administered i.m. (10, 15 or 20 micrograms SF/kg BW) to ruminally and abomasally fistulated steers at 12-h intervals for 18-d periods in a latin square-designed experiment. Steers were fed semicontinuously (12 times daily) a 40:60 roughage:concentrate diet at twice their net energy requirement for maintenance. Ruminal digestion coefficients for DM, ADF and starch were 10 to 16% lower and linearly related in an inverse manner to the level of SF administered (P less than .05). Postruminal digestion of DM, ADF and starch increased as much as 46.7, 9.5 and 44.0%, respectively, in a fashion linearly related (P less than .05) to the level of SF administered. Total tract digestion of DM and ADF were not affected by SF; however, total tract starch digestion was increased as much as 5% and was related linearly (P less than .05) to SF treatment. With SF administration, as much as 13% more bacterial protein exited the rumen, resulting in a 16.5% linear improvement (P less than .1) in the efficiency of ruminal bacterial protein production per 100 g of OM fermented. Ruminal concentrations of VFA, ammonia and pH were not affected by SF. These results demonstrate a positive relationship between salivation and ruminal bacterial protein synthesis and suggest that feed utilization by ruminants may be improved by pharmacological stimulation of salivary secretions.
Slattery, M L; Benson, J; Curtin, K; Ma, K N; Schaeffer, D; Potter, J D
2000-02-01
Carotenoids have numerous biological properties that may underpin a role for them as chemopreventive agents. However, except for beta-carotene, little is known about how dietary carotenoids are associated with common cancers, including colon cancer. The objective of this study was to evaluate associations between dietary alpha-carotene, beta-carotene, lycopene, lutein, zeaxanthin, and beta-cryptoxanthin and the risk of colon cancer. Data were collected from 1993 case subjects with first primary incident adenocarcinoma of the colon and from 2410 population-based control subjects. Dietary data were collected from a detailed diet-history questionnaire and nutrient values for dietary carotenoids were obtained from the US Department of Agriculture-Nutrition Coordinating Center carotenoid database (1998 updated version). Lutein was inversely associated with colon cancer in both men and women [odds ratio (OR) for upper quintile of intake relative to lowest quintile of intake: 0.83; 95% CI: 0.66, 1.04; P = 0.04 for linear trend]. The greatest inverse association was observed among subjects in whom colon cancer was diagnosed when they were young (OR: 0.66; 95% CI: 0.48, 0.92; P = 0.02 for linear trend) and among those with tumors located in the proximal segment of the colon (OR: 0.65; 95% CI: 0.51, 0.91; P < 0.01 for linear trend). The associations with other carotenoids were unremarkable. The major dietary sources of lutein in subjects with colon cancer and in control subjects were spinach, broccoli, lettuce, tomatoes, oranges and orange juice, carrots, celery, and greens. These data suggest that incorporating these foods into the diet may help reduce the risk of developing colon cancer.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
1982-09-17
FK * 1PK (2) The convolution of two transforms in time domain is the inverse transform of the product in frequency domain. Thus Rp(s) - Fgc() Ipg(*) (3...its inverse transform by: R,(r)- R,(a.)e’’ do. (5)2w In order to nuke use f a very accurate numerical method to ompute Fourier "ke and coil...taorm. When the inverse transform it tken by using Eq. (15), the cosine transform, because it converges faster than the sine transform refu-ft the
A proposed performance index for galactic cosmic ray shielding materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.
1993-01-01
In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.
Discrete Inverse and State Estimation Problems
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2006-06-01
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware
Planktonic food webs revisited: Reanalysis of results from the linear inverse approach
NASA Astrophysics Data System (ADS)
Hlaili, Asma Sakka; Niquil, Nathalie; Legendre, Louis
2014-01-01
Identification of the trophic pathway that dominates a given planktonic assemblage is generally based on the distribution of biomasses among food-web compartments, or better, the flows of materials or energy among compartments. These flows are obtained by field observations and a posteriori analyses, including the linear inverse approach. In the present study, we re-analysed carbon flows obtained by inverse analysis at 32 stations in the global ocean and one large lake. Our results do not support two "classical" views of plankton ecology, i.e. that the herbivorous food web is dominated by mesozooplankton grazing on large phytoplankton, and the microbial food web is based on microzooplankton significantly consuming bacteria; our results suggest instead that phytoplankton are generally grazed by microzooplankton, of which they are the main food source. Furthermore, we identified the "phyto-microbial food web", where microzooplankton largely feed on phytoplankton, in addition to the already known "poly-microbial food web", where microzooplankton consume more or less equally various types of food. These unexpected results led to a (re)definition of the conceptual models corresponding to the four trophic pathways we found to exist in plankton, i.e. the herbivorous, multivorous, and two types of microbial food web. We illustrated the conceptual trophic pathways using carbon flows that were actually observed at representative stations. The latter can be calibrated to correspond to any field situation. Our study also provides researchers and managers with operational criteria for identifying the dominant trophic pathway in a planktonic assemblage, these criteria being based on the values of two carbon ratios that could be calculated from flow values that are relatively easy to estimate in the field.
Gravimetric control of active volcanic processes
NASA Astrophysics Data System (ADS)
Saltogianni, Vasso; Stiros, Stathis
2017-04-01
Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.
NASA Astrophysics Data System (ADS)
Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.
2017-02-01
A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.
Manunta, Paolo; Hamlyn, John M; Simonini, Marco; Messaggio, Elisabetta; Lanzani, Chiara; Bracale, Maria; Argiolas, Giuseppe; Casamassima, Nunzia; Brioni, Elena; Glorioso, Nicola; Bianchi, Giuseppe
2011-02-01
To evaluate whether the renin-angiotensin-aldosterone system (RAAS) and endogenous ouabain system differently affect renal Na handling and blood pressure. Three hundred and one patients in whom we compared blood pressure, and renal Na tubular reabsorption in the basal condition and 2 h (T120) after saline infusion. Following multivariate-adjusted linear and quartiles analysis, baseline mean blood pressure (MBP) was significantly higher (113.7 ± 1.33 mmHg) in the fourth versus the first endogenous ouabain quartile (103.8 ± 1.04 mmHg) and the trend across the quartiles was highly significant (β = 0.23, P = 3.53e-04). In contrast, an inverse relationship was present in the renin activity (PRA) quartiles with MBP highest in the first (112.5 ± 1.26) and lowest in the fourth PRA quartile (107.6 ± 1.48, P = 0.039). Following an acute saline load, changes in MBP and the slope of the pressure-natriuresis relationship were inversely related across the PRA quartiles. The fractional excretion of sodium (FENa) showed a negative linear trend going from the first to the third endogenous ouabain quartiles (2.35 ± 0.17 and 1.90 ± 0.14%, P = 0.05). Patients in the fourth endogenous ouabain quartile (>323 pmol/l) showed increased FENa T120 (2.78 ± 0.18%, P < 0.01) and increased Na tubular rejection fraction (P = 0.007) after Na load. After the saline load, there was a biphasic relationship between plasma endogenous ouabain and FENa favoring Na retention at low endogenous ouabain and Na excretion at high endogenous ouabain levels. The RAAS and endogenous ouabain system are two independent and complementary systems having an inverse (RAAS) or a direct (endogenous ouabain system) relationship with hemodynamic parameters.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.
Hilton, Harry H
2012-01-18
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Impact of heart rate variability, a marker for cardiac health, on lupus disease activity.
Thanou, Aikaterini; Stavrakis, Stavros; Dyer, John W; Munroe, Melissa E; James, Judith A; Merrill, Joan T
2016-09-02
Decreased heart rate variability (HRV) is associated with adverse outcomes in cardiovascular diseases and has been observed in patients with systemic lupus erythematosus (SLE). We examined the relationship of HRV with SLE disease activity and selected cytokine pathways. Fifty-three patients from the Oklahoma Lupus Cohort were evaluated at two visits each. Clinical assessments included the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), British Isles Lupus Assessment Group (BILAG) index, physician global assessment (PGA), and Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI Flare Index. HRV was assessed with a 5-minute electrocardiogram, and the following HRV parameters were calculated: square root of the mean of the squares of differences between adjacent NN intervals (RMSSD), percentage of pairs of adjacent NN intervals differing by more than 50 milliseconds (pNN50), high-frequency power (HF power), and low frequency to high frequency (LF/HF) ratio, which reflects sympathetic/vagal balance. Plasma cytokine levels were measured with a multiplex, bead-based immunoassay. Serum B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) were measured with an enzyme-linked immunosorbent assay. Linear regression analysis was applied. Baseline HRV (pNN50, HF power, LF/HF ratio) was inversely related to disease activity (BILAG, PGA) and flare. Changes in RMSSD between visits were inversely related to changes in SLEDAI (p = 0.007). Age, caffeine, tobacco and medication use had no impact on HRV. Plasma soluble tumor necrosis factor receptor II (sTNFRII) and monokine induced by interferon gamma (MIG) were inversely related with all baseline measures of HRV (p = 0.039 to <0.001). Plasma stem cell factor (SCF), interleukin (IL)-1 receptor antagonist (IL-1RA), and IL-15 showed similar inverse relationships with baseline HRV, and weaker trends were observed for interferon (IFN)-α, interferon gamma-induced protein (IP)-10, and serum BLyS. Changes in the LF/HF ratio between visits were also associated with changes in sTNFRII (p = 0.021), MIG (p = 0.003), IFN-α (p = 0.012), SCF (p = 0.001), IL-1RA (p = 0.023), and IL-15 (p = 0.010). On the basis of multivariate linear regression, MIG was an independent predictor of baseline HRV after adjusting for plasma IL-1RA, SCF, IFN-α, IP-10, and serum BLyS. In a similar model, the sTNFRII impact remained significant after adjusting for the same variables. Impaired HRV, particularly the LF/HF ratio, is associated with lupus disease activity and several cytokines related to IFN type II and TNF pathways. The strongest association was with MIG and sTNFRII, expanding previous immune connections of vagal signaling.
NASA Astrophysics Data System (ADS)
Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord
2017-04-01
This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.
NASA Astrophysics Data System (ADS)
Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.
2005-02-01
Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.
Range of earth structure nonuniqueness implied by body wave observations.
NASA Technical Reports Server (NTRS)
Wiggins, R. A.; Mcmechan, G. A.; Toksoz, M. N.
1973-01-01
The Herglotz-Wiechert integral for the direct inversion of ray parameter versus distance curves can be manipulated to find the envelope of all possible models consistent with geometrical body wave observations (travel time and ray parameter versus distance). Such an extremal inversion approach has been used to find the uncertainty bounds for the velocity structure in the mantle and core. It is found, for example, that there is an uncertainty of plus or minus 40 km in the radius of the inner core boundary, plus or minus 18 km at the core-mantle boundary, and plus or minus 35 km at the 435-km transition zone. The velocity uncertainty is about plus or minus 0.08 km/sec for P and S waves in the lower mantle and about plus or minus 0.20 km/sec in the core. Experiments with various combinations of ray types in the core indicate that rather crude observations of SKKS-SKS travel times confine the range of possible models far more dramatically than do the most precise estimates of PmKP travel times. Comparisons of results from extremal inversion and linearized perturbation inversions indicate that body wave behavior is too strongly nonlinear for linearized schemes to be effective for predicting uncertainty.
Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion
NASA Astrophysics Data System (ADS)
Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong
2017-03-01
Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.
Gierach, Gretchen L.; Geller, Berta M.; Shepherd, John A.; Patel, Deesha A.; Vacek, Pamela M.; Weaver, Donald L.; Chicoine, Rachael E.; Pfeiffer, Ruth M.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Wang, Jeff; Johnson, Jason M.; Herschorn, Sally D.; Brinton, Louise A.; Sherman, Mark E.
2014-01-01
Background Mammographic density (MD), the area of non-fatty appearing tissue divided by total breast area, is a strong breast cancer risk factor. Most MD analyses have employed visual categorizations or computer-assisted quantification, which ignore breast thickness. We explored MD volume and area, using a volumetric approach previously validated as predictive of breast cancer risk, in relation to risk factors among women undergoing breast biopsy. Methods Among 413 primarily white women, ages 40–65, undergoing diagnostic breast biopsies between 2007–2010 at an academic facility in Vermont, MD volume (cm3) was quantified in cranio-caudal views of the breast contralateral to the biopsy target using a density phantom, while MD area (cm2) was measured on the same digital mammograms using thresholding software. Risk factor associations with continuous MD measurements were evaluated using linear regression. Results Percent MD volume and area were correlated (r=0.81) and strongly and inversely associated with age, body mass index (BMI), and menopause. Both measures were inversely associated with smoking and positively associated with breast biopsy history. Absolute MD measures were correlated (r=0.46) and inversely related to age and menopause. Whereas absolute dense area was inversely associated with BMI, absolute dense volume was positively associated. Conclusions Volume and area MD measures exhibit some overlap in risk factor associations, but divergence as well, particularly for BMI. Impact Findings suggest that volume and area density measures differ in subsets of women; notably, among obese women, absolute density was higher with volumetric methods, suggesting that breast cancer risk assessments may vary for these techniques. PMID:25139935
Reconstructing paleoclimate fields using online data assimilation with a linear inverse model
NASA Astrophysics Data System (ADS)
Perkins, Walter A.; Hakim, Gregory J.
2017-05-01
We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs) and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model, LIM), which has been shown to have skill comparable to CGCMs for forecasting annual-to-decadal surface temperature anomalies. We reconstruct annual-average 2 m air temperature over the instrumental period (1850-2000) using proxy records from the PAGES 2k Consortium Phase 1 database; proxy models for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs calibrated using observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57 % over the offline benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over Northern Hemisphere land areas and in the high-latitude North Atlantic-Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the linear dynamical constraints of the forecast and not simply persistence of temperature anomalies.
Humphries, T D; Sheppard, D A; Buckley, C E
2015-06-30
For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.
Johannsson, Ora E.; O'Gorman, Robert
1991-01-01
We sampled phytoplankton, zooplankton, and alewives Alosa pseudoharengus and measured water temperature in Lake Ontario during 1981–1986. Through the use of general linear regression models we then sought evidence of control of the eplimnetic zooplankton community (mid-July to mid-October) by producers, consumers, and temperature. Our measures of the zooplankton community were total biomass, cladoceran biomass, and the ratio of large to small Daphnia spp. (D. galeata mendotae andD. retrocurva). Zooplankton population variables assessed were abundance, egg ratio, and productivity. Through factor analysis, factors were created from the standardized, transformed independent variables for use in the regression analyses. Regression models showed significant inverse relationships (P < 0.05) between alewives and Bosmina longirostris (abundance, production, and egg ratio), Ceriodaphnia lacustris (egg ratio), andDaphnia retrocurva (egg ratio). Bosmina longirostris and D. retrocurva egg ratios were inversely related to algae biomass (<20 μm), thus the smaller algae might be controlled in part by the zooplankton community. Production of C. lacustris was directly related to temperature, as was the production and abundance of Tropocyclops prasinus. The annual size-frequency distributions of B. longirostris and D. retrocurva were inversely related to yearling alewife abundance and directly related to adult alewife abundance, which suggested that yearlings use a particulate-feeding mode on these zooplankton species more frequently than adults. We found no significant negative correlations among the zooplankton species, which suggested that interzooplankton predation and competition were not as important in structuring the community as were planktivory and temperature.
Müezzinler, Aysel; Mons, Ute; Dieffenbach, Aida Karina; Butterbach, Katja; Saum, Kai-Uwe; Schick, Matthias; Stammer, Hermann; Boukamp, Petra; Holleczek, Bernd; Stegmaier, Christa; Brenner, Hermann
2015-10-01
Leukocyte telomere length (LTL) shortens with age and short LTL has been associated with increased mortality and increased risk for some age-related outcomes. This study aims to analyse the associations of smoking habits with LTL and rate of LTL change per year in older adults. LTL was measured by quantitative PCR at baseline in 3600 older adults, who were enrolled in a population-based cohort study in Germany. For longitudinal analyses, measurements were repeated in blood samples obtained at 8-year follow-up from 1000 participants. Terminal Restriction Fragment analysis was additionally performed in a sub-sample to obtain absolute LTL in base pairs. Multivariate linear regression models were used to estimate associations of smoking habits with baseline LTL and changes in LTL over time. LTL was inversely associated with age (r=-0.090, p<0.0001). Women had longer LTL than men (p<0.0001). Smoking was inversely associated with LTL. On average, current smokers had 73 base pairs (BP) shorter LTL compared to never smokers. Smoking intensity and pack-years of smoking were also inversely associated with LTL, and a positive association was observed with years since smoking cessation. Slower LTL attrition rates were observed in ever smokers over 8years of follow-up. Our cross-sectional analysis supports suggestions that smoking might contribute to shortening of LTL but this relationship could not be shown longitudinally. The overall rather small effect sizes observed for smoking-related variables suggest that LTL reflects smoking-related health hazards only to a very limited extent. Copyright © 2015 Elsevier Inc. All rights reserved.
Study of the intensity noise and intensity modulation in a of hybrid soliton pulsed source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogru, Nuran; Oziazisi, M Sadetin
2005-10-31
The relative intensity noise (RIN) and small-signal intensity modulation (IM) of a hybrid soliton pulsed source (HSPS) with a linearly chirped Gaussian apodised fibre Bragg grating (FBG) are considered in the electric-field approximation. The HSPS is described by solving the dynamic coupled-mode equations. It is shown that consideration of the carrier density noise in the HSPS in addition to the spontaneous noise is necessary to analyse accurately noise in the mode-locked HSPS. It is also shown that the resonance peak spectral splitting (RPSS) of the IM near the frequency inverse to the round-trip time of light in the external cavitymore » can be eliminated by selecting an appropriate linear chirp rate in the Gaussian apodised FBG. (laser applications and other topics in quantum electronics)« less
Using parallel banded linear system solvers in generalized eigenvalue problems
NASA Technical Reports Server (NTRS)
Zhang, Hong; Moss, William F.
1993-01-01
Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.
NASA Astrophysics Data System (ADS)
Haris, A.; Nafian, M.; Riyanto, A.
2017-07-01
Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.
Bessel smoothing filter for spectral-element mesh
NASA Astrophysics Data System (ADS)
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.
The shifting zoom: new possibilities for inverse scattering on electrically large domains
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien
2017-04-01
Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C. Atzeni, R. Persico, F. Soldovieri, Advanced Processing Techniques for Step-frequency Continuous-Wave Penetrating Radar: the Case Study of "Palazzo Vecchio" Walls (Firenze, Italy), Research on Nondestructive Evaluation, vol. 17, pp. 71-83, 2006. [2] N. Masini, R. Persico, E. Rizzo, A. Calia, M. T. Giannotta, G. Quarta, A. Pagliuca, "Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy)." Near Surface Geophysics, vol. 8 (5), pp. 423-432, 2010. [3] E. Pettinelli, A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions", IEEE Transactions on Geoscience and Remote Sensing, vol. 47, n. 8, 2639-2645, Aug. 2009. [4] O. Lopera, E. C. Slob, N. Milisavljevic and S. Lambot, "Filtering soil surface and antenna effects from GPR data to enhance landmine detection", IEEE Transactions on Geoscience and Remote Sensing, vol. 45, n. 3, pp.707-717, 2007. [5] R. Persico, "Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing". Wiley, 2014. [6] R. Persico, J. Sala, "The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data", IEEE Geoscience and Remote Sensing Letters, vol. 11, n. 7, pp. 1215-1219, doi 10.1109/LGRS.2013.2290008, July 2014. [7] R. Persico, F. Soldovieri, S. Lambot, Shifting zoom in 2D linear inversions performed on GPR data gathered along an electrically large investigation domain, Proc. 16th International Conference on Ground Penetrating Radar GPR2016, Honk-Kong, June 13-16, 2016
Application of snapshot imaging spectrometer in environmental detection
NASA Astrophysics Data System (ADS)
Sun, Kai; Qin, Xiaolei; Zhang, Yu; Wang, Jinqiang
2017-10-01
This study aimed at the application of snapshot imaging spectrometer in environmental detection. The simulated sewage and dyeing wastewater were prepared and the optimal experimental conditions were determined. The white LED array was used as the detection light source and the image of the sample was collected by the imaging spectrometer developed in the laboratory to obtain the spectral information of the sample in the range of 400-800 nm. The standard curve between the absorbance and the concentration of the samples was established. The linear range of a single component of Rhoda mine B was 1-50 mg/L, the linear correlation coefficient was more than 0.99, the recovery was 93%-113% and the relative standard deviations (RSD) was 7.5%. The linear range of chemical oxygen demand (COD) standard solution was 50-900mg/L, the linear correlation coefficient was 0.981, the recovery was 91% -106% and the relative standard deviation (RSD) was 6.7%. The rapid, accurate and precise method for detecting dyes showed an excellent promise for on-site and emergency detection in environment. At the request of the proceedings editor, an updated version of this article was published on 17 October 2017. The original version of this article was replaced due to an accidental inversion of Figure 2 and Figure 3. The Figures have been corrected in the updated and republished version.
Development of the WRF-CO2 4D-Var assimilation system v1.0
NASA Astrophysics Data System (ADS)
Zheng, Tao; French, Nancy H. F.; Baxter, Martin
2018-05-01
Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.
The genetic algorithm: A robust method for stress inversion
NASA Astrophysics Data System (ADS)
Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.
2017-01-01
The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-08-25
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-01-01
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081
The mechanism of erosion of metallic materials under cavitation attack
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5Al-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation.
von Jeinsen, Beatrice; Short, Meghan I; Xanthakis, Vanessa; Carneiro, Herman; Cheng, Susan; Mitchell, Gary F; Vasan, Ramachandran S
2018-06-21
Adipokines mediate cardiometabolic risk associated with obesity but their role in the pathogenesis of obesity-associated heart failure remains uncertain. We investigated the associations between circulating adipokine concentrations and echocardiographic measures in a community-based sample. We evaluated 3514 Framingham Heart Study participants (mean age 40 years, 53.8% women) who underwent routine echocardiography and had select circulating adipokines measured, ie, leptin, soluble leptin receptor, fatty acid-binding protein 4, retinol-binding protein 4, fetuin-A, and adiponectin. We used multivariable linear regression, adjusting for known correlates (including weight), to relate adipokine concentrations (independent variables) to the following echocardiographic measures (dependent variables): left ventricular mass index, left atrial diameter in end systole, fractional shortening, and E/e'. In multivariable-adjusted analysis, left ventricular mass index was inversely related to circulating leptin and fatty acid-binding protein 4 concentrations but positively related to retinol-binding protein 4 and leptin receptor levels ( P ≤0.002 for all). Left atrial end-systolic dimension was inversely related to leptin but positively related to retinol-binding protein 4 concentrations ( P ≤0.0001). E/e' was inversely related to leptin receptor levels ( P =0.0002). We observed effect modification by body weight for select associations (leptin receptor and fatty acid-binding protein 4 with left ventricular mass index, and leptin with left atrial diameter in end systole; P <0.05 for interactions). Fractional shortening was not associated with any of the adipokines. No echocardiographic trait was associated with fetuin-A or adiponectin concentrations. In our cross-sectional study of a large, young to middle-aged, relatively healthy community-based sample, key indices of subclinical cardiac remodeling were associated with higher or lower circulating concentrations of prohypertrophic and antihypertrophic adipokines in a context-specific manner. These observations may offer insights into the pathogenesis of the cardiomyopathy of obesity. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Caregiver Life Satisfaction: Relationship to Youth Symptom Severity through Treatment
Athay, M. Michele
2013-01-01
Objective This study utilized the Satisfaction with Life Scale (SWLS) to investigate the life satisfaction of caregivers for youth receiving mental health services (N = 383), specifically how it relates to youth symptom severity throughout treatment. Method Hierarchical linear modeling (HLM) with a time-varying covariate was used to estimate the linear trajectory of caregiver life satisfaction and how it relates to youth symptom severity as rated by caregivers, youth, and clinicians. Results Initial caregiver life satisfaction was inversely related to caregiver and clinician rated youth symptom severity. Additionally, subsequent caregiver life satisfaction demonstrated a small but significant relationship to changes in youth symptom severity during treatment where a decrease in youth symptoms corresponded to an increase in caregiver life satisfaction, and vice versa. Caregiver background characteristics related to higher life satisfaction include being: married, a birth-parent, under 40 years old and having the absence of previous diagnoses of an emotional, behavioral or substance use disorder. Conclusion Caregivers of clinically-referred youth report low levels of life satisfaction throughout youth treatment. Given the bi-directional influences on one another, tending to the well-being of caregivers may positively influence both caregivers and youths. PMID:22571285
Caregiver life satisfaction: relationship to youth symptom severity through treatment.
Athay, M Michele
2012-01-01
This study utilized the Satisfaction with Life Scale to investigate the life satisfaction of caregivers for youth receiving mental health services (N = 383). Specifically, this study assessed how caregiver life satisfaction relates to youth symptom severity throughout treatment. Hierarchical linear modeling with a time-varying covariate was used to estimate the linear trajectory of caregiver life satisfaction and how it relates to youth symptom severity as rated by caregivers, youth, and clinicians. Results found initial caregiver life satisfaction was inversely related to caregiver and clinician rated youth symptom severity. In addition, subsequent caregiver life satisfaction demonstrated a small but significant relationship to changes in youth symptom severity during treatment where a decrease in youth symptoms corresponded to an increase in caregiver life satisfaction, and vice versa. Caregiver background characteristics related to higher life satisfaction included being (a) married, a birth parent, and younger than 40 years old, and (b) having the absence of previous diagnoses of an emotional, behavioral, or substance use disorder. Despite significant change over time, caregivers of clinically referred youth demonstrated low levels of life satisfaction throughout youth treatment. Given the bidirectional influences on one another, tending to the well-being of caregivers may positively influence both caregivers and youths.
TOPEX/POSEIDON tides estimated using a global inverse model
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.
1994-01-01
Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory
NASA Astrophysics Data System (ADS)
Roadhouse, Emily A.
The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely related to the winter air temperatures. The application of n-factor modeling techniques within the permafrost region, and the verification of these techniques for a range of natural surfaces, is essential to the determination of the thermal and physical response to potential climate warming in permafrost regions. The presence of temperature inversions presents a unique challenge to permafrost probability mapping in mountainous terrain. While elsewhere the existence of permafrost can be linearly related to elevation, the presence of frequent inversions challenges this assumption, affecting permafrost distribution in ways that the current modeling techniques cannot accurately predict. At sites across the Yukon, inversion-prone sites were predominantly situated in U-shaped valleys, although open slopes, mid-slope ridges and plains were also identified. Within the Wolf Creek basin and surrounding area, inversion episodes have a measurable effect on local air temperatures, occurring during the fall and winter seasons along the Mount Sima trail, and year-round in the palsa valley. Within the discontinuous permafrost zone, where average surface temperatures are often close to zero, even a relatively small change in temperature in the context of future climate change could have a widespread impact on permafrost distribution.
[Life satisfaction and related socio-demographic factors during female midlife].
Cuadros, José Luis; Pérez-Roncero, Gonzalo R; López-Baena, María Teresa; Cuadros-Celorrio, Angela M; Fernández-Alonso, Ana María
2014-01-01
To assess life satisfaction and related factors in middle-aged Spanish women. This was a cross-sectional study including 235 women aged 40 to 65, living in Granada (Spain), healthy companions of patients visiting the obstetrics and gynecology clinics. They completed the Diener Satisfaction with Life Scale, the Menopause Rating Scale, the Perceived Stress Scale, the Insomnia Severity Index and a sociodemographic questionnaire containing personal and partner data. Internal consistency of each tool was also calculated. Almost two-thirds (61.3%) of the women were postmenopausal, and 43.8% had abdominal obesity, 36.6% had insomnia, 18.7% had poor menopause-related quality of life, 31.9% performed regular exercise, and 5.1% had severe financial problems. Life satisfaction showed significant positive correlations (Spearman's test) with female and male age, and inverse correlations with menopause-related quality of life, perceived stress and insomnia. In the multiple linear regression analysis, high life satisfaction is positively correlated with having a partner who performed exercise, and inversely with having work problems, perceived stress and the suspicion of partner infidelity. These factors explained 40% of the variance of the multiple regression analysis for life satisfaction in middle-aged women. Life satisfaction is a construct related to perceived stress, work problems, and having a partner, while aspects of menopause and general health had no significant influence. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
The impact of approximations and arbitrary choices on geophysical images
NASA Astrophysics Data System (ADS)
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the density structure of a vibrating string.
Inverse Faraday Effect Revisited
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Ali, S.; Davies, J. R.
2010-11-01
The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongbin; White, R. D.
In the calculation of the linearized Boltzmann collision operator for an inverse-square force law interaction (Coulomb interaction) F(r)=κ/r{sup 2}, we found the widely used scattering angle cutoff θ≥θ{sub min} is a wrong practise since the divergence still exists after the cutoff has been made. When the correct velocity change cutoff |v′−v|≥δ{sub min} is employed, the scattering angle can be integrated. A unified linearized Boltzmann collision operator for both inverse-square force law and rigid-sphere interactions is obtained. Like many other unified quantities such as transition moments, Fokker-Planck expansion coefficients and energy exchange rates obtained recently [Y. B. Chang and L. A.more » Viehland, AIP Adv. 1, 032128 (2011)], the difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and −3 for inverse-square force law interactions. When the cutoff is removed by setting δ{sub min}=0, Hilbert's well known kernel for rigid-sphere interactions is recovered for γ = 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less
Hessian Schatten-norm regularization for linear inverse problems.
Lefkimmiatis, Stamatios; Ward, John Paul; Unser, Michael
2013-05-01
We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto lq norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.
Controllable rotational inversion in nanostructures with dual chirality.
Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain
2018-04-05
Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.
Time domain localization technique with sparsity constraint for imaging acoustic sources
NASA Astrophysics Data System (ADS)
Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain
2017-09-01
This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.
Resonant activation in piecewise linear asymmetric potentials.
Fiasconaro, Alessandro; Spagnolo, Bernardo
2011-04-01
This work analyzes numerically the role played by the asymmetry of a piecewise linear potential, in the presence of both a Gaussian white noise and a dichotomous noise, on the resonant activation phenomenon. The features of the asymmetry of the potential barrier arise by investigating the stochastic transitions far behind the potential maximum, from the initial well to the bottom of the adjacent potential well. Because of the asymmetry of the potential profile together with the random external force uniform in space, we find, for the different asymmetries: (1) an inversion of the curves of the mean first passage time in the resonant region of the correlation time τ of the dichotomous noise, for low thermal noise intensities; (2) a maximum of the mean velocity of the Brownian particle as a function of τ; and (3) an inversion of the curves of the mean velocity and a very weak current reversal in the miniratchet system obtained with the asymmetrical potential profiles investigated. An inversion of the mean first passage time curves is also observed by varying the amplitude of the dichotomous noise, behavior confirmed by recent experiments. ©2011 American Physical Society
Tomography and the Herglotz-Wiechert inverse formulation
NASA Astrophysics Data System (ADS)
Nowack, Robert L.
1990-04-01
In this paper, linearized tomography and the Herglotz-Wiechert inverse formulation are compared. Tomographic inversions for 2-D or 3-D velocity structure use line integrals along rays and can be written in terms of Radon transforms. For radially concentric structures, Radon transforms are shown to reduce to Abel transforms. Therefore, for straight ray paths, the Abel transform of travel-time is a tomographic algorithm specialized to a one-dimensional radially concentric medium. The Herglotz-Wiechert formulation uses seismic travel-time data to invert for one-dimensional earth structure and is derived using exact ray trajectories by applying an Abel transform. This is of historical interest since it would imply that a specialized tomographic-like algorithm has been used in seismology since the early part of the century (see Herglotz, 1907; Wiechert, 1910). Numerical examples are performed comparing the Herglotz-Wiechert algorithm and linearized tomography along straight rays. Since the Herglotz-Wiechert algorithm is applicable under specific conditions, (the absence of low velocity zones) to non-straight ray paths, the association with tomography may prove to be useful in assessing the uniqueness of tomographic results generalized to curved ray geometries.
Full-wave Moment Tensor and Tomographic Inversions Based on 3D Strain Green Tensor
2010-01-31
propagation in three-dimensional (3D) earth, linearizes the inverse problem by iteratively updating the earth model , and provides an accurate way to...self-consistent FD-SGT databases constructed from finite-difference simulations of wave propagation in full-wave tomographic models can be used to...determine the moment tensors within minutes after a seismic event, making it possible for real time monitoring using 3D models . 15. SUBJECT TERMS
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
NASA Astrophysics Data System (ADS)
Piero Deidda, Gian; Coppola, Antonio; Dragonetti, Giovanna; Comegna, Alessandro; Rodriguez, Giuseppe; Vignoli, Giulio
2017-04-01
The ability to determine the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) in the field. Measurements of σb can be made with either in situ or remote devices (Rhoades and Oster, 1986; Rhoades and Corwin, 1990; Rhoades and Miyamoto, 1990). Time Domain Reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated in the laboratory for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation volume and thus they only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, non-invasive electromagnetic induction (EMI) techniques can be used for extensively mapping the bulk electrical conductivity in the field. The problem is that all these techniques give depth-weighted apparent electrical conductivity (ECa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of local σb in the soil profile, one may invert the signal coming from EMI sensors. Most studies use the linear model proposed by McNeill (1980), describing the relative depth-response of the ground conductivity meter. By using the forward linear model of McNeill, Borchers et al. (1997) implemented a Least Squares inverse procedure with second order Tikhonov regularization, to estimate σb vertical distribution from EMI field data. More recent studies (Hendrickx et al., 2002; Deidda et al., 2003; Deidda et al., 2014, among others), extended the approach to a more complicated non linear model of the response of a ground conductivity meter to changes with depth of σb. Noteworthy, these inverse procedures are only based on electromagnetic physics. Thus, they are only based on ECa readings, possibly taken with both the horizontal and vertical configurations and with the sensor at different heights above the ground, and do not require any further field calibration. Nevertheless, as discussed by Hendrickx et al. (2002), important issues on inverse approaches are about: i) the applicability to heterogeneous field soils of physical equations originally developed for the electromagnetic response of homogeneous media and ii) nonuniqueness and instability problems inherent to inverse procedures, even after Tikhonov regularization. Besides, as discussed by Cook and Walker (1992), these mathematical inversions procedures using layered-earth models were originally designed for interpreting porous systems with distinct layering. Where subsurface layers are not sharply defined, this type of inversion may be subject to considerable error. With these premises, the main aim of this study is estimating the vertical σb distribution by ECa measured using ground surface EMI methods under different salinity conditions and using TDR data as ground-truth data for validation of the inversion procedure. The latter is based on a regularized 1D inversion procedure designed to swiftly manage nonlinear multiple EMI-depth responses (Deidda et al., 2014). It is based on the coupling of the damped Gauss-Newton method with either the truncated singular value decomposition (TSVD) or the truncated generalized singular value decomposition (TGSVD), and it implements an explicit (exact) representation of the Jacobian to solve the nonlinear inverse problem. The experimental field (30 m x 15.6 m; for a total area of 468 m2) was divided into three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped with a sprinkler irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii), a Geonics EM-38; iii). Overall, fifteen measurement campaigns were carried out.
1992-03-01
Elementary Linear Algebra with Applications, pp. 301- 323, John Wiley and Sons Inc., 1987. Atlas, D., and Ulbrich, C. E. W., "The Physical Basis for...vector drd In this case, the linear system is said to be inconsistent ( Anton and Rorres, 1987). In contrast, for an underdetermined system (where the...ocean acoustical tomography and seismology. In simplest terms, the general linear inverse problem consists of fimding the desired solution to a set of m
Lattice enumeration for inverse molecular design using the signature descriptor.
Martin, Shawn
2012-07-23
We describe an inverse quantitative structure-activity relationship (QSAR) framework developed for the design of molecular structures with desired properties. This framework uses chemical fragments encoded with a molecular descriptor known as a signature. It solves a system of linear constrained Diophantine equations to reorganize the fragments into novel molecular structures. The method has been previously applied to problems in drug and materials design but has inherent computational limitations due to the necessity of solving the Diophantine constraints. We propose a new approach to overcome these limitations using the Fincke-Pohst algorithm for lattice enumeration. We benchmark the new approach against previous results on LFA-1/ICAM-1 inhibitory peptides, linear homopolymers, and hydrofluoroether foam blowing agents. Software implementing the new approach is available at www.cs.otago.ac.nz/homepages/smartin.
A developed nearly analytic discrete method for forward modeling in the frequency domain
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai
2018-02-01
High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.
Sebastian, Rhonda S; Wilkinson Enns, Cecilia; Goldman, Joseph D; Moshfegh, Alanna J
2017-08-02
Although flavonoids may confer anti-inflammatory and anti-oxidant benefits, no research has examined if flavonoid intake is related to cardiovascular disease (CVD) risk defined by anthropometric measures in the USA population. This study sought to determine whether flavonoid intake is associated with combined body mass index (BMI) and waist circumference (WC) measures indicative of high, very high, or extremely high ("high+") risk for CVD, using one day of 24-h recall data from adult (≥20 years) participants in What We Eat in America, National Health and Nutrition Examination Survey 2007-2010. Individuals were divided into categories of intake of total flavonoids and each flavonoid class, and adjusted estimates of the percentages at high+ CVD risk (based on BMI and WC, as per National Heart, Lung, and Blood Institute guidelines) were calculated. Inverse linear trends were found in percentages of adults at high+ CVD risk by intake of total flavonoids, anthocyanidins, flavan-3-ols, and flavanones ( p < 0.01). For individuals in the highest (versus the lowest) intake category of anthocyanidins, flavan-3-ols, and flavanones, relative risk and confidence intervals (RR and CI, respectively) were 0.86 (99% CI: 0.79, 0.93), 0.88 (99% CI: 0.79, 0.98), and 0.89 (99% CI: 0.80, 0.98), respectively. Research is needed to determine whether the inverse relationships found in this study are applicable to CVD endpoints at the population level.
Inversion of Atmospheric Tracer Measurements, Localization of Sources
NASA Astrophysics Data System (ADS)
Issartel, J.-P.; Cabrit, B.; Hourdin, F.; Idelkadi, A.
When abnormal concentrations of a pollutant are observed in the atmosphere, the question of its origin arises immediately. The radioactivity from Tchernobyl was de- tected in Sweden before the accident was announced. This situation emphasizes the psychological, political and medical stakes of a rapid identification of sources. In tech- nical terms, most industrial sources can be modeled as a fixed point at ground level with undetermined duration. The classical method of identification involves the cal- culation of a backtrajectory departing from the detector with an upstream integration of the wind field. We were first involved in such questions as we evaluated the ef- ficiency of the international monitoring network planned in the frame of the Com- prehensive Test Ban Treaty. We propose a new approach of backtracking based upon the use of retroplumes associated to available measurements. Firstly the retroplume is related to inverse transport processes, describing quantitatively how the air in a sam- ple originates from regions that are all the more extended and diffuse as we go back far in the past. Secondly it clarifies the sensibility of the measurement with respect to all potential sources. It is therefore calculated by adjoint equations including of course diffusive processes. Thirdly, the statistical interpretation, valid as far as sin- gle particles are concerned, should not be used to investigate the position and date of a macroscopic source. In that case, the retroplume rather induces a straightforward constraint between the intensity of the source and its position. When more than one measurements are available, including zero valued measurements, the source satisfies the same number of linear relations tightly related to the retroplumes. This system of linear relations can be handled through the simplex algorithm in order to make the above intensity-position correlation more restrictive. This method enables to manage in a quantitative manner the unavoidable ambiguity of atmospheric phenomena. When several measurements are available the ambiguity about the identification of a source is reduced significantly.
Multiscale 2D Inversions of Active-source First-arrival Times in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Y. P.; Zhao, L.; Hung, S. H.
2015-12-01
In this study, we make use of the active-source records collected by the TAIGER (TAiwan Integrated GEodynamics Research) project in 2008 at nearly 1400 locations on the island of Taiwan and the surrounding ocean bottom. We manually picked the first-arrival times from the waveform records to obtain a set of highly accurate P-wave traveltimes. Among the 1400 receivers, more than 1000 were deployed along four almost linear cross-island profiles with inter-seismometer spacing down to 200 m. This ground-truth dataset provides strong constrains on the structure between the exactly known active sources and densely distributed receivers, which can be used to calibrate the seismic structure in the upper crust in Taiwan. In this study, we use this dataset to image the two-dimensional P-wave structure along the four linear profiles. A wavelet parameterization of the model is adopted to achieve an objective and data-adaptive multiscale resolution to the 2D structures. Rigorous estimations of resolution lengths were also conducted to quantify the spatial resolutions of the tomography inversions. The resulting 2D models yield first-arrival time predictions that are in excellent agreement with the observations. The seismic structures along the 2D profiles display strong lateral variations (up to 80% relative to regional average) with more realistic amplitudes of velocity perturbations and spatial patterns consistent with geological zonations of Taiwan
Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes.
West, Christina E; Dunstan, Janet; McCarthy, Suzi; Metcalfe, Jessica; D'Vaz, Nina; Meldrum, Suzanne; Oddy, Wendy H; Tulic, Meri K; Prescott, Susan L
2012-11-14
Antioxidant intakes in pregnancy may influence fetal immune programming and the risk of allergic disease. We investigated associations between maternal intakes of β-carotene, vitamin C, vitamin E, copper and zinc, and infant allergic outcomes. Antioxidant intakes of pregnant women (n = 420) assessed prospectively by a food frequency questionnaire, were examined in relation to allergic outcomes at 1 year of age (n = 300). The main relationships with allergic outcomes were seen with dietary vitamin C and copper. Specifically, higher maternal dietary vitamin C intake was associated with a reduced risk of any diagnosed infant allergic disease and wheeze. After adjustment for potential confounders the relationship with wheeze remained statistically significant. There was also an inverse linear relationship between vitamin C and food allergy. Higher dietary copper intake was associated with reduced risk of eczema, wheeze and any allergic disease. The relationship with wheeze and any allergic disease remained statistically significant in multivariate analysis, and there was also an inverse linear relationship between copper and food allergy. However, these relationships were only seen for nutrients present in food. There were no relationships between β-carotene, vitamin E or zinc and any allergic outcomes. In summary, this study suggests that maternal diet of fresh foods rich in vitamin C is associated with reduced risk of infant wheeze, and that copper intake is associated with reduced risk of several allergic outcomes.
NASA Astrophysics Data System (ADS)
Ravenna, Matteo; Lebedev, Sergei
2018-04-01
Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric flow. This is consistent with an upward flow from below the thick lithosphere of the Siberian Craton to below the thinner lithosphere of central Mongolia, likely to give rise to decompression melting and the scattered, sporadic volcanism observed in the Baikal Rift area, as proposed previously. Inversion of phase-velocity data from west-central Italy for azimuthal anisotropy reveals a clear change in the shear-wave fast-propagation direction at 70-100 km depths, near the lithosphere-asthenosphere boundary. The orientation of the fabric in the lithosphere is roughly E-W, parallel to the direction of stretching over the last 10 m.y. The orientation of the fabric in the asthenosphere is NW-SE, matching the fast directions inferred from shear-wave splitting and probably indicating the direction of the asthenospheric flow.
Sanchez, Otto A.; Mariana, Lazo-Elizondo; Irfan, Zeb; Tracy, Russell P; Bradley, Ryan; Duprez, Daniel A.; Bahrami, Hossein; Peralta, Carmen A.; Daniels, Lori B.; Lima, João A.; Maisel, Alan; Jacobs, David R.; MJ, Budoff
2016-01-01
Background and aims N-terminal pro B-type natriuretic peptide (NT-proBNP) is inversely associated with diabetes mellitus, obesity and metabolic syndrome. We aim to characterize the association between NT-proBNP and nonalcoholic fatty liver disease (NAFLD), a condition strongly associated with metabolic syndrome. Methods 4529 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) free of cardiovascular disease, without self-reported liver disease and not diabetic at their baseline visit in 2000- 2002 were included in this analysis. NAFLD was defined by a liver attenuation <40 HU. Relative prevalence (RP) for NAFLD was assessed adjusted for age, race, and sex, percent of dietary calories derived from fat, total intentional exercise, alcoholic drinks per week, and interleukin-6 by quintiles of NT-proBNP. Adjusted linear spline model was used to characterize a non-linear association between NT-proBNP and liver fat. The inflection point (IP) was the NT-proBNP concentration where there was a change in slope in the association between liver attenuation and NT-proBNP. Results RP for NAFLD decreased by 30% from the lowest to the highest quintile of NT-proBNP, p = 0.01. We observed an inverse linear association between NT-proBNP and liver fat, which plateaued (IP) at an NT-proBNP concentration of 45 pg/mL. Linear regression coefficient (SE) per unit of NT-proBNP < and ≥ IP was of 0.05 (0.02), p = 0.001 and 0.0006 (0.0008), p = 0.5, respectively, differences between slopes p < 0.0001. Conclusions In this cross-sectional study of a community based multiethnic sample of non-diabetic adults, low levels of NT-proBNP are associated with greater prevalence of NAFLD. PMID:27085779
Truthmann, Julia; Mensink, Gert B M; Bosy-Westphal, Anja; Hapke, Ulfert; Scheidt-Nave, Christa; Schienkiewitz, Anja
2017-06-10
This study examined sex-specific differences in physical health-related quality of life (HRQoL) across subgroups of metabolic health and obesity. We specifically asked whether (1) obesity is related to lower HRQoL independent of metabolic health status and potential confounders, and (2) whether associations are similar in men and women. We used cross-sectional data from the German Health Interview and Examination Survey 2008-11. Physical HRQoL was measured using the Short Form-36 version 2 physical component summary (PCS) score. Based on harmonized ATPIII criteria for the definition of the metabolic health and a body mass index ≥ 30 kg/m 2 to define obesity, individuals were classified as metabolically healthy non-obese (MHNO), metabolically unhealthy non-obese (MUNO), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO). Sex-specific analyses including multivariable linear regression analyses were based on PCS as the dependent variable, metabolic health and obesity category as the independent variable with three categories and MHNO as the reference, and age, education, lifestyle and comorbidities as confounders. This study included 6860 participants (3298 men, 3562 women). Compared to MHNO, all other metabolic health and obesity categories had significantly lower PCS in both sexes. As reflected by the beta coefficients [95% confidence interval] from bivariable linear regression models, a significant inverse association with PCS was strongest for MUO (men: -7.0 [-8.2; -5.8]; women: -9.0 [-10.2; -7.9]), intermediate for MUNO (men: -4.2 [-5.3; -3.1]; women: -5.6 [-6.8; -4.4]) and least pronounced for MHO (men: -2.2 [-3.6; -0.8]; women -3.9 [-5.4; -2.5]). Differences in relation to MHNO remained statistically significant for all groups after adjusting for confounders, but decreased in particular for MUNO (men:-1.3 [-2.3; -0.3]; women: -1.5 [-2.7; -0.3]. Obesity was significantly related to lower physical HRQoL, independent of metabolic health status. Potential confounders including age, educational status, health-related behaviors, and comorbidities explained parts of the inverse relationship. Associations were evident in both sexes and consistently more pronounced among women than men.
Water-absorbing capacitor system for measuring relative humidity
NASA Technical Reports Server (NTRS)
Laue, Eric G. (Inventor)
1987-01-01
A method and apparatus using a known water-absorbent polymer as a capacitor which is operated at a dc voltage for measuring relative humidity is presented. When formed as a layer between porous electrically-conductive electrodes and operated in an RC oscillator circuit, the oscillator frequency varies inversely with the partial pressure of the moisture to be measured. In a preferred embodiment, the capacitor is formed from Nafion and is operated at a low dc voltage with a resistor as an RC circuit in an RC oscillator. At the low voltage, the leakage current is proper for oscillation over a satisfactory range. The frequency of oscillation varies in an essentially linear fashion with relative humidity which is represented by the moisture being absorbed into the Nafion. The oscillation frequency is detected by a frequency detector.
Guo, Jia; Buxton, Richard B.; Wong, Eric C.
2015-01-01
Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521
Perceived stress, insomnia and related factors in women around the menopause.
Cuadros, José L; Fernández-Alonso, Ana M; Cuadros-Celorrio, Angela M; Fernández-Luzón, Nuria; Guadix-Peinado, María J; del Cid-Martín, Nadia; Chedraui, Peter; Pérez-López, Faustino R
2012-08-01
Studies assessing perceived stress and insomnia in mid-aged women are scarce. To assess perceived stress, insomnia and related factors in mid-aged Spanish women. This was a cross sectional study in which 235 women aged 40-65 completed the Menopause Rating Scale (MRS), the Perceived Stress Scale (PSS), the Insomnia Severity Index (ISI), and a general socio-demographic questionnaire containing personal and partner data. Internal consistency of each tool was also computed. Median [interquartile range] age of the sample was 52 [9.0] years. A 61.3% were postmenopausal, 49.4% had increased body mass index values, 43.8% were abdominally obese, 11.9% had hypertension, and 74.0% had a partner. In addition, 9.8% used hormone therapy and 12.3% psychotropic drugs. Multiple linear regression analysis found that higher PSS scores (more stress) inversely correlated with female age and positively with MRS psychological and urogenital scores (impaired quality of life in these domains), total higher ISI scores (more insomnia) and partner premature ejaculation. Higher ISI scores positively correlated with PSS and MRS somatic scores and partner unfaithfulness, and inversely with female hip circumference. In this mid-aged Spanish sample perceived stress and insomnia were significantly correlated and related to various female and partner issues. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Meat intake and reproductive parameters among young men.
Afeiche, Myriam C; Williams, Paige L; Gaskins, Audrey J; Mendiola, Jaime; Jørgensen, Niels; Swan, Shanna H; Chavarro, Jorge E
2014-05-01
In the United States, anabolic sex steroids are administered to cattle for growth promotion. There is concern regarding the reproductive consequences of this practice in men who eat beef. We investigated whether meat consumption was associated with semen quality parameters and reproductive hormone levels in young men. Semen samples were obtained from 189 men aged 18-22 years. Diet was assessed with a previously validated food frequency questionnaire. We used linear regression to analyze the cross-sectional associations of meat intake with semen quality parameters and reproductive hormones while adjusting for potential confounders. There was an inverse relation between processed red meat intake and total sperm count. The adjusted relative differences in total sperm counts for men in increasing quartiles of processed meat intake were 0 (ref), -3 (95% confidence interval = -67 to 37), -14 (-82 to 28), and -78 (-202 to -5) million (test for trend, P = 0.01). This association was strongest among men with abstinence time less than 2 days and was driven by a strong inverse relation between processed red meat intake and ejaculate volume (test for trend, P = 0.003). In our population of young men, processed meat intake was associated with lower total sperm count. We cannot distinguish whether this association is because of residual confounding by abstinence time or represents a true biological effect.
Fernández-Castillejo, Sara; Rubió, Laura; Hernáez, Álvaro; Catalán, Úrsula; Pedret, Anna; Valls, Rosa-M; Mosele, Juana I; Covas, Maria-Isabel; Remaley, Alan T; Castañer, Olga; Motilva, Maria-José; Solá, Rosa
2017-12-01
Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
While, Peter T; Teruel, Jose R; Vidić, Igor; Bathen, Tone F; Goa, Pål Erik
2018-06-01
To explore the relationship between relative enhanced diffusivity (RED) and intravoxel incoherent motion (IVIM), as well as the impact of noise and the choice of intermediate diffusion weighting (b value) on the RED parameter. A mathematical derivation was performed to cast RED in terms of the IVIM parameters. Noise analysis and b value optimization was conducted by using Monte Carlo calculations to generate diffusion-weighted imaging data appropriate to breast and liver tissue at three different signal-to-noise ratios. RED was shown to be approximately linearly proportional to the IVIM parameter f, inversely proportional to D and to follow an inverse exponential decay with respect to D*. The choice of intermediate b value was shown to be important in minimizing the impact of noise on RED and in maximizing its discriminatory power. RED was shown to be essentially a reparameterization of the IVIM estimates for f and D obtained with three b values. RED imaging in the breast and liver should be performed with intermediate b values of 100 and 50 s/mm 2 , respectively. Future clinical studies involving RED should also estimate the IVIM parameters f and D using three b values for comparison.
NASA Astrophysics Data System (ADS)
Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.
2018-01-01
To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.
Brain serotonin 4 receptor binding is inversely associated with verbal memory recall.
Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice; Andersen, Emil; Hjordt, Liv V; McMahon, Brenda; Hasselbalch, Steen G; Frokjaer, Vibe G; Knudsen, Gitte M
2017-04-01
We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4 R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining the association between cerebral 5-HT 4 R binding and affective verbal memory recall. Twenty-four healthy volunteers were scanned with the 5-HT 4 R radioligand [ 11 C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4 R binding and affective verbal memory was evaluated using a linear latent variable structural equation model. We observed a significant inverse association across all regions between 5-HT 4 R binding and affective verbal memory performances for positive ( p = 5.5 × 10 -4 ) and neutral ( p = .004) word recall, and an inverse but nonsignificant association for negative ( p = .07) word recall. Differences in the associations with 5-HT 4 R binding between word categories (i.e., positive, negative, and neutral) did not reach statistical significance. Our findings replicate our previous observation of a negative association between 5-HT 4 R binding and memory performance in an independent cohort and provide novel evidence linking 5-HT 4 R binding, as a biomarker for synaptic 5-HT levels, to the mnestic processing of positive and neutral word stimuli in healthy humans.
Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.
2016-12-01
Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.
2017-12-01
The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.
Effect of step width manipulation on tibial stress during running.
Meardon, Stacey A; Derrick, Timothy R
2014-08-22
Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dietary and Plasma Magnesium and Risk of Coronary Heart Disease Among Women
Chiuve, Stephanie E.; Sun, Qi; Curhan, Gary C.; Taylor, Eric N.; Spiegelman, Donna; Willett, Walter C.; Manson, JoAnn E.; Rexrode, Kathryn M.; Albert, Christine M.
2013-01-01
Background Magnesium is associated with lower risk of sudden cardiac death, possibly through antiarrhythmic mechanisms. Magnesium influences endothelial function, inflammation, blood pressure, and diabetes, but a direct relation with coronary heart disease (CHD) risk has not been established. Methods and Results We prospectively examined the association between dietary and plasma magnesium and risk of CHD among women in the Nurses' Health Study. The association for magnesium intake was examined among 86 323 women free of disease in 1980. Information on magnesium intake and lifestyle factors was ascertained every 2 to 4 years through questionnaires. Through 2008, 3614 cases of CHD (2511 nonfatal/1103 fatal) were documented. For plasma magnesium, we conducted a nested case–control analysis, with 458 cases of incident CHD (400 nonfatal/58 fatal) matched to controls (1:1) on age, smoking, fasting status, and date of blood sampling. Higher magnesium intake was not associated with lower risk of total CHD (P‐linear trend=0.12) or nonfatal CHD (P‐linear trend=0.88) in multivariable models. However, magnesium intake was inversely associated with risk of fatal CHD. The RR comparing quintile 5 to quintile 1 of magnesium intake was 0.61 (95% CI, 0.45 to 0.84; P‐linear trend=0.003). The association between magnesium intake and risk of fatal CHD appeared to be mediated partially by hypertension. Plasma magnesium levels above 2.0 mg/dL were associated with lower risk of CHD, although not independent of other cardiovascular biomarkers (RR, 0.67; 95% CI, 0.44 to 1.04). Conclusions Dietary and plasma magnesium were not associated with total CHD incidence in this population of women. Dietary magnesium intake was inversely associated with fatal CHD, which may be mediated in part by hypertension. PMID:23537810
An efficient implementation of a high-order filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-03-01
A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.
Seismic waveform inversion using neural networks
NASA Astrophysics Data System (ADS)
De Wit, R. W.; Trampert, J.
2012-12-01
Full waveform tomography aims to extract all available information on Earth structure and seismic sources from seismograms. The strongly non-linear nature of this inverse problem is often addressed through simplifying assumptions for the physical theory or data selection, thus potentially neglecting valuable information. Furthermore, the assessment of the quality of the inferred model is often lacking. This calls for the development of methods that fully appreciate the non-linear nature of the inverse problem, whilst providing a quantification of the uncertainties in the final model. We propose to invert seismic waveforms in a fully non-linear way by using artificial neural networks. Neural networks can be viewed as powerful and flexible non-linear filters. They are very common in speech, handwriting and pattern recognition. Mixture Density Networks (MDN) allow us to obtain marginal posterior probability density functions (pdfs) of all model parameters, conditioned on the data. An MDN can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels. Seismograms serve as input, Earth structure parameters are the so-called targets and network training aims to learn the relationship between input and targets. The network is trained on a large synthetic data set, which we construct by drawing many random Earth models from a prior model pdf and solving the forward problem for each of these models, thus generating synthetic seismograms. As a first step, we aim to construct a 1D Earth model. Training sets are constructed using the Mineos package, which computes synthetic seismograms in a spherically symmetric non-rotating Earth by summing normal modes. We train a network on the body waveforms present in these seismograms. Once the network has been trained, it can be presented with new unseen input data, in our case the body waves in real seismograms. We thus obtain the posterior pdf which represents our final state of knowledge given the information in the training set and the real data.
Entropic anomaly and maximal efficiency of microscopic heat engines.
Bo, Stefano; Celani, Antonio
2013-05-01
The efficiency of microscopic heat engines in a thermally heterogenous environment is considered. We show that-as a consequence of the recently discovered entropic anomaly-quasistatic engines, whose efficiency is maximal in a fluid at uniform temperature, have in fact vanishing efficiency in the presence of temperature gradients. For slow cycles the efficiency falls off as the inverse of the period. The maximum efficiency is reached at a finite value of the cycle period that is inversely proportional to the square root of the gradient intensity. The relative loss in maximal efficiency with respect to the thermally homogeneous case grows as the square root of the gradient. As an illustration of these general results, we construct an explicit, analytically solvable example of a Carnot stochastic engine. In this thought experiment, a Brownian particle is confined by a harmonic trap and immersed in a fluid with a linear temperature profile. This example may serve as a template for the design of real experiments in which the effect of the entropic anomaly can be measured.
ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.
Bodily, Paul M; Fujimoto, M Stanley; Snell, Quinn; Ventura, Dan; Clement, Mark J
2016-01-01
The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. http://bioresearch.byu.edu/scaffoldscaffolder. paulmbodily@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
2017-11-06
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
The Focused Inverse Method for Linear Logic
2006-12-04
design and engineering. Furthermore, it is a denouncement of the versatility of the inverse method if one were simply to abandon it for a radically...is technically unavoidable, but the impetus of design for such provers should be to reduce the size of the database. Our answer is to combine the...or “infinitely often P”. Systems such as Lamport’s TLA are not designed with automation as their primary aim; rather, they are intended to engage
On recovering distributed IP information from inductive source time domain electromagnetic data
NASA Astrophysics Data System (ADS)
Kang, Seogi; Oldenburg, Douglas W.
2016-10-01
We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (2) the horizontal location of a target body can be well recovered through inversion; (3) the overall geometry of a target body might be recovered but for ATEM data a depth weighting is required in the inversion; (4) we can recover estimates of intrinsic τ and η that may be useful for distinguishing between two chargeable targets.
Hindriks, Rikkert; Schmiedt, Joscha; Arsiwalla, Xerxes D; Peter, Alina; Verschure, Paul F M J; Fries, Pascal; Schmid, Michael C; Deco, Gustavo
2017-01-01
Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to "invert" a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.
Schmiedt, Joscha; Arsiwalla, Xerxes D.; Peter, Alina; Verschure, Paul F. M. J.; Fries, Pascal; Schmid, Michael C.; Deco, Gustavo
2017-01-01
Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task. PMID:29253006
Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion
NASA Astrophysics Data System (ADS)
Hesser, T.; Farthing, M. W.; Brodie, K.
2016-02-01
The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.
NASA Astrophysics Data System (ADS)
Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan
2018-04-01
Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.
Ducru, Pablo; Josey, Colin; Dibert, Karia; ...
2017-01-25
This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less
Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chen; Sinitsyn, Nikolai A.
2015-11-19
We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less
Multidimensional NMR inversion without Kronecker products: Multilinear inversion
NASA Astrophysics Data System (ADS)
Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos
2016-08-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.
An ambiguity of information content and error in an ill-posed satellite inversion
NASA Astrophysics Data System (ADS)
Koner, Prabhat
According to Rodgers (2000, stochastic approach), the averaging kernel (AK) is the representational matrix to understand the information content in a scholastic inversion. On the other hand, in deterministic approach this is referred to as model resolution matrix (MRM, Menke 1989). The analysis of AK/MRM can only give some understanding of how much regularization is imposed on the inverse problem. The trace of the AK/MRM matrix, which is the so-called degree of freedom from signal (DFS; stochastic) or degree of freedom in retrieval (DFR; deterministic). There are no physical/mathematical explanations in the literature: why the trace of the matrix is a valid form to calculate this quantity? We will present an ambiguity between information and error using a real life problem of SST retrieval from GOES13. The stochastic information content calculation is based on the linear assumption. The validity of such mathematics in satellite inversion will be questioned because it is based on the nonlinear radiative transfer and ill-conditioned inverse problems. References: Menke, W., 1989: Geophysical data analysis: discrete inverse theory. San Diego academic press. Rodgers, C.D., 2000: Inverse methods for atmospheric soundings: theory and practice. Singapore :World Scientific.
NASA Astrophysics Data System (ADS)
Kunkel, D.; Hoor, P. M.; Wirth, V.
2016-12-01
Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method
NASA Astrophysics Data System (ADS)
Voronina, T. A.; Romanenko, A. A.
2016-12-01
Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.
A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA
NASA Astrophysics Data System (ADS)
Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing
Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.
Low-Cost Linear Optical Sensors.
ERIC Educational Resources Information Center
Kinsey, Kenneth F.; Meisel, David D.
1994-01-01
Discusses the properties and application of three light-to-voltage optical sensors. The sensors have been used for sensing diffraction patterns, the inverse-square law, and as a fringe counter with an interferometer. (MVL)
Unsteady aerodynamic modeling and active aeroelastic control
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.
NASA Astrophysics Data System (ADS)
Mohammad-Djafari, Ali
2015-01-01
The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.
Inverse odds ratio-weighted estimation for causal mediation analysis.
Tchetgen Tchetgen, Eric J
2013-11-20
An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.
Exposure to UV radiation and risk of Hodgkin lymphoma: a pooled analysis
Glaser, Sally L.; Schupp, Clayton W.; Ekström Smedby, Karin; de Sanjosé, Silvia; Kane, Eleanor; Melbye, Mads; Forétova, Lenka; Maynadié, Marc; Staines, Anthony; Becker, Nikolaus; Nieters, Alexandra; Brennan, Paul; Boffetta, Paolo; Cocco, Pierluigi; Glimelius, Ingrid; Clavel, Jacqueline; Hjalgrim, Henrik; Chang, Ellen T.
2013-01-01
Ultraviolet radiation (UVR) exposure has been inversely associated with Hodgkin lymphoma (HL) risk, but only inconsistently, only in a few studies, and without attention to HL heterogeneity. We conducted a pooled analysis of HL risk focusing on type and timing of UVR exposure and on disease subtypes by age, histology, and tumor-cell Epstein-Barr virus (EBV) status. Four case-control studies contributed 1320 HL cases and 6381 controls. We estimated lifetime, adulthood, and childhood UVR exposure and history of sunburn and sunlamp use. We used 2-stage estimation with mixed-effects models and weighted pooled effect estimates by inverse marginal variances. We observed statistically significant inverse associations with HL risk for UVR exposures during childhood and adulthood, sunburn history, and sunlamp use, but we found no significant dose-response relationships. Risks were significant only for EBV-positive HL (pooled odds ratio, 0.56; 95% confidence interval, 0.35 to 0.91 for the highest overall UVR exposure category), with a significant linear trend for overall exposure (P = .03). Pooled relative risk estimates were not heterogeneous across studies. Increased UVR exposure may protect against HL, particularly EBV-positive HL. Plausible mechanisms involving UVR induction of regulatory T cells or the cellular DNA damage response suggest opportunities for new prevention targets. PMID:24016459
ERIC Educational Resources Information Center
Goffaux, Valerie; Rossion, Bruno
2007-01-01
Upside-down inversion disrupts the processing of spatial relations between the features of a face, while largely preserving local feature analysis. However, recent studies on face inversion failed to observe a clear dissociation between relational and featural processing. To resolve these discrepancies and clarify how inversion affects face…
Linear models for assessing mechanisms of sperm competition: the trouble with transformations.
Eggert, Anne-Katrin; Reinhardt, Klaus; Sakaluk, Scott K
2003-01-01
Although sperm competition is a pervasive selective force shaping the reproductive tactics of males, the mechanisms underlying different patterns of sperm precedence remain obscure. Parker et al. (1990) developed a series of linear models designed to identify two of the more basic mechanisms: sperm lotteries and sperm displacement; the models can be tested experimentally by manipulating the relative numbers of sperm transferred by rival males and determining the paternity of offspring. Here we show that tests of the model derived for sperm lotteries can result in misleading inferences about the underlying mechanism of sperm precedence because the required inverse transformations may lead to a violation of fundamental assumptions of linear regression. We show that this problem can be remedied by reformulating the model using the actual numbers of offspring sired by each male, and log-transforming both sides of the resultant equation. Reassessment of data from a previous study (Sakaluk and Eggert 1996) using the corrected version of the model revealed that we should not have excluded a simple sperm lottery as a possible mechanism of sperm competition in decorated crickets, Gryllodes sigillatus.
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard
2008-02-01
In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.
Optimal design of focused experiments and surveys
NASA Astrophysics Data System (ADS)
Curtis, Andrew
1999-10-01
Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.
NASA Astrophysics Data System (ADS)
Cibic, Tamara; Blasutto, Oriana; Falconi, Claus; Fonda Umani, Serena
2007-10-01
Monthly sampling was carried out during a 2-year study (2003-2004) in order to analyse benthic microalgal composition, abundance (ABU) and biomass (BIOM). Temperature and photosynthetically available radiation (PAR) at the bottom were recorded during sampling. In the overlying water nitrite (NO 2-), nitrate (NO 3-), ammonium (NH 4+), phosphate (PO 43-) and silicate (SiO 3-) were analysed. The sediment consisted of 8.2% sand, 18.3% clay and 73.5% silt. BIOM showed its maximum in August 2004, while the minimum was recorded in October 2003. The microphytobenthic community was mainly composed of diatoms. Among all the 103 Bacillariophyceae taxa identified in the sediment, we distinguished 67 benthic, 8 epiphytic and 8 planktonic species. Among diatoms Nitzschia and Navicula were the most abundant genera (30.8 and 26.2%, respectively). The linear regression between total diatom ABU and PAR was statistically significant ( r = 0.66, p < 0.001). A seasonal pattern of monthly samplings was highlighted both from cluster analysis and principal component analysis (PCA). The latter revealed two diatom assemblages: a winter assemblage and a spring-summer one. The genera Diploneis and Pinnularia showed an inverse relation against temperature. Considering the nutrient ratios the development of microphytobenthos (MPB) appeared to be potentially co-limited by Si and P almost throughout the study period. A clear inverse relation between NO 2-, NO 3- and BIOM was emphasised by the moving average and the PCA. The inverse relation among nutrients and light availability suggested that the photosynthetic activity of benthic diatoms in spring and summer may be one of the processes controlling sediment-water nutrient fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sermage, B.; Essa, Z.; Taleb, N.
2016-04-21
The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less
Simplified, inverse, ejector design tool
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1993-01-01
A simple lumped parameter based inverse design tool has been developed which provides flow path geometry and entrainment estimates subject to operational, acoustic, and design constraints. These constraints are manifested through specification of primary mass flow rate or ejector thrust, fully-mixed exit velocity, and static pressure matching. Fundamentally, integral forms of the conservation equations coupled with the specified design constraints are combined to yield an easily invertible linear system in terms of the flow path cross-sectional areas. Entrainment is computed by back substitution. Initial comparison with experimental and analogous one-dimensional methods show good agreement. Thus, this simple inverse design code provides an analytically based, preliminary design tool with direct application to High Speed Civil Transport (HSCT) design studies.
Joint inversion of regional and teleseismic earthquake waveforms
NASA Astrophysics Data System (ADS)
Baker, Mark R.; Doser, Diane I.
1988-03-01
A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.
Sky-radiance gradient measurements at narrow bands in the visible.
Winter, E M; Metcalf, T W; Stotts, L B
1995-07-01
Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.
The Lanchester square-law model extended to a (2,2) conflict
NASA Astrophysics Data System (ADS)
Colegrave, R. K.; Hyde, J. M.
1993-01-01
A natural extension of the Lanchester (1,1) square-law model is the (M,N) linear model in which M forces oppose N forces with constant attrition rates. The (2,2) model is treated from both direct and inverse viewpoints. The inverse problem means that the model is to be fitted to a minimum number of observed force levels, i.e. the attrition rates are to be found from the initial force levels together with the levels observed at two subsequent times. An approach based on Hamiltonian dynamics has enabled the authors to derive a procedure for solving the inverse problem, which is readily computerized. Conflicts in which participants unexpectedly rally or weaken must be excluded.
Probing the solar core with low-degree p modes
NASA Astrophysics Data System (ADS)
Roxburgh, I. W.; Vorontsov, S. V.
2002-01-01
We address the question of what could be learned about the solar core structure if the seismic data were limited to low-degree modes only. The results of three different experiments are described. The first is the linearized structural inversion of the p-mode frequencies of a solar model modified slightly in the energy-generating core, using the original (unmodified) model as an initial guess. In the second experiment, we invert the solar p-mode frequencies measured in the 32-month subset of BiSON data (Chaplin et al. 1998), degraded with additional 0.1 μHz random errors, using a model of 2.6 Gyr age from the solar evolutionary sequence as an initial approximation. This second inversion is non-linear. In the third experiment, we compare the same set of BiSON frequencies with current reference solar model.
A new frequency domain analytical solution of a cascade of diffusive channels for flood routing
NASA Astrophysics Data System (ADS)
Cimorelli, Luigi; Cozzolino, Luca; Della Morte, Renata; Pianese, Domenico; Singh, Vijay P.
2015-04-01
Simplified flood propagation models are often employed in practical applications for hydraulic and hydrologic analyses. In this paper, we present a new numerical method for the solution of the Linear Parabolic Approximation (LPA) of the De Saint Venant equations (DSVEs), accounting for the space variation of model parameters and the imposition of appropriate downstream boundary conditions. The new model is based on the analytical solution of a cascade of linear diffusive channels in the Laplace Transform domain. The time domain solutions are obtained using a Fourier series approximation of the Laplace Inversion formula. The new Inverse Laplace Transform Diffusive Flood Routing model (ILTDFR) can be used as a building block for the construction of real-time flood forecasting models or in optimization models, because it is unconditionally stable and allows fast and fairly precise computation.
Computationally efficient control allocation
NASA Technical Reports Server (NTRS)
Durham, Wayne (Inventor)
2001-01-01
A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.
Inversion of time-domain induced polarization data based on time-lapse concept
NASA Astrophysics Data System (ADS)
Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon
2018-05-01
Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.
NASA Astrophysics Data System (ADS)
Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto
2017-08-01
The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.
Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica
Brehm, John M.; Celedón, Juan C.; Soto-Quiros, Manuel E.; Avila, Lydiana; Hunninghake, Gary M.; Forno, Erick; Laskey, Daniel; Sylvia, Jody S.; Hollis, Bruce W.; Weiss, Scott T.; Litonjua, Augusto A.
2009-01-01
Rationale: Maternal vitamin D intake during pregnancy has been inversely associated with asthma symptoms in early childhood. However, no study has examined the relationship between measured vitamin D levels and markers of asthma severity in childhood. Objectives: To determine the relationship between measured vitamin D levels and both markers of asthma severity and allergy in childhood. Methods: We examined the relation between 25-hydroxyvitamin D levels (the major circulating form of vitamin D) and markers of allergy and asthma severity in a cross-sectional study of 616 Costa Rican children between the ages of 6 and 14 years. Linear, logistic, and negative binomial regressions were used for the univariate and multivariate analyses. Measurements and Main Results: Of the 616 children with asthma, 175 (28%) had insufficient levels of vitamin D (<30 ng/ml). In multivariate linear regression models, vitamin D levels were significantly and inversely associated with total IgE and eosinophil count. In multivariate logistic regression models, a log10 unit increase in vitamin D levels was associated with reduced odds of any hospitalization in the previous year (odds ratio [OR], 0.05; 95% confidence interval [CI], 0.004–0.71; P = 0.03), any use of antiinflammatory medications in the previous year (OR, 0.18; 95% CI, 0.05–0.67; P = 0.01), and increased airway responsiveness (a ≤8.58-μmol provocative dose of methacholine producing a 20% fall in baseline FEV1 [OR, 0.15; 95% CI, 0.024–0.97; P = 0.05]). Conclusions: Our results suggest that vitamin D insufficiency is relatively frequent in an equatorial population of children with asthma. In these children, lower vitamin D levels are associated with increased markers of allergy and asthma severity. PMID:19179486
Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador
2003-08-15
We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.
Numerical recovery of certain discontinuous electrical conductivities
NASA Technical Reports Server (NTRS)
Bryan, Kurt
1991-01-01
The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.
Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,
1986-12-01
time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to
1992-09-01
finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the
NASA Technical Reports Server (NTRS)
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
1989-01-24
coherent noise . To overcome this disadvantages, a new holographic inverse filtering system has been developed by the authors. The inverse filter is...beam is blocked. The deblurred aerial image is formed in the image plane IP (the back focal plane of L2). The frequency of the grating used in this... impulse response of the optical system. For certain types of blurs, which include linear motion of the camera under the assumption that the picture
Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.
Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A
2015-08-14
The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.
Evaluation of the site effect with Heuristic Methods
NASA Astrophysics Data System (ADS)
Torres, N. N.; Ortiz-Aleman, C.
2017-12-01
The seismic site response in an area depends mainly on the local geological and topographical conditions. Estimation of variations in ground motion can lead to significant contributions on seismic hazard assessment, in order to reduce human and economic losses. Site response estimation can be posed as a parameterized inversion approach which allows separating source and path effects. The generalized inversion (Field and Jacob, 1995) represents one of the alternative methods to estimate the local seismic response, which involves solving a strongly non-linear multiparametric problem. In this work, local seismic response was estimated using global optimization methods (Genetic Algorithms and Simulated Annealing) which allowed us to increase the range of explored solutions in a nonlinear search, as compared to other conventional linear methods. By using the VEOX Network velocity records, collected from August 2007 to March 2009, source, path and site parameters corresponding to the amplitude spectra of the S wave of the velocity seismic records are estimated. We can establish that inverted parameters resulting from this simultaneous inversion approach, show excellent agreement, not only in terms of adjustment between observed and calculated spectra, but also when compared to previous work from several authors.
Feedback control by online learning an inverse model.
Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis
2012-10-01
A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made.
Computing Generalized Matrix Inverse on Spiking Neural Substrate.
Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen
2018-01-01
Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.
Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao
2017-05-01
AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
Field theory of the inverse cascade in two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Mayo, Jackson R.
2005-11-01
A two-dimensional fluid, stirred at high wave numbers and damped by both viscosity and linear friction, is modeled by a statistical field theory. The fluid’s long-distance behavior is studied using renormalization-group (RG) methods, as begun by Forster, Nelson, and Stephen [Phys. Rev. A 16, 732 (1977)]. With friction, which dissipates energy at low wave numbers, one expects a stationary inverse energy cascade for strong enough stirring. While such developed turbulence is beyond the quantitative reach of perturbation theory, a combination of exact and perturbative results suggests a coherent picture of the inverse cascade. The zero-friction fluctuation-dissipation theorem (FDT) is derived from a generalized time-reversal symmetry and implies zero anomalous dimension for the velocity even when friction is present. Thus the Kolmogorov scaling of the inverse cascade cannot be explained by any RG fixed point. The β function for the dimensionless coupling ĝ is computed through two loops; the ĝ3 term is positive, as already known, but the ĝ5 term is negative. An ideal cascade requires a linear β function for large ĝ , consistent with a Padé approximant to the Borel transform. The conjecture that the Kolmogorov spectrum arises from an RG flow through large ĝ is compatible with other results, but the accurate k-5/3 scaling is not explained and the Kolmogorov constant is not estimated. The lack of scale invariance should produce intermittency in high-order structure functions, as observed in some but not all numerical simulations of the inverse cascade. When analogous RG methods are applied to the one-dimensional Burgers equation using an FDT-preserving dimensional continuation, equipartition is obtained instead of a cascade—in agreement with simulations.
A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification
NASA Astrophysics Data System (ADS)
Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping
2018-03-01
The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.
Termination Proofs for String Rewriting Systems via Inverse Match-Bounds
NASA Technical Reports Server (NTRS)
Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2004-01-01
Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.
Larkin, Kieran G; Fletcher, Peter A
2014-03-01
X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.
Larkin, Kieran G.; Fletcher, Peter A.
2014-01-01
X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823
Hydromagnetic conditions near the core-mantle boundary
NASA Technical Reports Server (NTRS)
Backus, George E.
1995-01-01
The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.
Inverse Theory for Petroleum Reservoir Characterization and History Matching
NASA Astrophysics Data System (ADS)
Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning
This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.
Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion
NASA Astrophysics Data System (ADS)
Jakobsen, M.; Wu, R. S.
2016-12-01
Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.
Multanen, J.; Heinonen, A.; Häkkinen, A.; Kautiainen, H.; Kujala, U.M.; Lammentausta, E.; Jämsä, T.; Kiviranta, I.; Nieminen, M.T.
2015-01-01
Objectives: To evaluate the association between radiographically-assessed knee osteoarthritis and femoral neck bone characteristics in women with mild knee radiographic osteoarthritis and those without radiographic osteoarthritis. Methods: Ninety postmenopausal women (mean age [SD], 58 [4] years; height, 163 [6] cm; weight, 71 [11] kg) participated in this cross-sectional study. The severity of radiographic knee osteoarthritis was defined using Kellgren-Lawrence grades 0=normal (n=12), 1=doubtful (n=25) or 2=minimal (n=53). Femoral neck bone mineral content (BMC), section modulus (Z), and cross-sectional area (CSA) were measured with DXA. The biochemical composition of ipsilateral knee cartilage was estimated using quantitative MRI measures, T2 mapping and dGEMRIC. The associations between radiographic knee osteoarthritis grades and bone and cartilage characteristics were analyzed using generalized linear models. Results: Age-, height-, and weight-adjusted femoral neck BMC (p for linearity=0.019), Z (p for linearity=0.033), and CSA (p for linearity=0.019) increased significantly with higher knee osteoarthritis grades. There was no linear relationship between osteoarthritis grades and knee cartilage indices. Conclusions: Increased DXA assessed hip bone strength is related to knee osteoarthritis severity. These results are hypothesis driven that there is an inverse relationship between osteoarthritis and osteoporosis. However, MRI assessed measures of cartilage do not discriminate mild radiographic osteoarthritis severity. PMID:25730654
Sugar-Sweetened Beverage and Water Intake in Relation to Diet Quality in U.S. Children.
Leung, Cindy W; DiMatteo, S Gemma; Gosliner, Wendi A; Ritchie, Lorrene D
2018-03-01
Sugar-sweetened beverages (SSBs) are a major contributor to children's added sugar consumption. This study examines whether children's SSB and water intakes are associated with diet quality and total energy intake. Using data on children aged 2-18 years from the 2009-2014 National Health and Nutrition Examination Survey, linear regression models were used to analyze SSB and water intake in relation to Healthy Eating Index 2010 (HEI-2010) scores and total energy intake. Generalized linear models were used to analyze SSB and water intake in relation to the HEI-2010 scores. Analyses were conducted including and excluding caloric contributions from SSBs and were conducted in 2016-2017. SSB intake was inversely associated with the HEI-2010 total scores (9.5-point lower score comparing more than two servings/day with zero servings/day, p-trend<0.0001) and positively associated with total energy intake (394 kcal higher comparing more than two servings/day with zero servings/day, p-trend<0.0001). The associations between SSB and HEI-2010 total scores were similar when SSBs were excluded from HEI-2010 calculations. Water intake was positively associated with HEI-2010 total scores, but not associated with total energy intake. SSB intake was inversely associated with several HEI-2010 component scores, notably vegetables, total fruit, whole fruit, greens and beans, whole grains, dairy, seafood and plant proteins, and empty calories. Water intake was positively associated with most of the same HEI-2010 component scores. Children who consume SSBs have poorer diet quality and higher total energy intake than children who do not consume SSBs. Interventions for obesity and chronic disease should focus on replacing SSBs with water and improving other aspects of diet quality that correlate with SSB consumption. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Wilkinson Enns, Cecilia; Goldman, Joseph D.; Moshfegh, Alanna J.
2017-01-01
Although flavonoids may confer anti-inflammatory and anti-oxidant benefits, no research has examined if flavonoid intake is related to cardiovascular disease (CVD) risk defined by anthropometric measures in the USA population. This study sought to determine whether flavonoid intake is associated with combined body mass index (BMI) and waist circumference (WC) measures indicative of high, very high, or extremely high (“high+”) risk for CVD, using one day of 24-h recall data from adult (≥20 years) participants in What We Eat in America, National Health and Nutrition Examination Survey 2007–2010. Individuals were divided into categories of intake of total flavonoids and each flavonoid class, and adjusted estimates of the percentages at high+ CVD risk (based on BMI and WC, as per National Heart, Lung, and Blood Institute guidelines) were calculated. Inverse linear trends were found in percentages of adults at high+ CVD risk by intake of total flavonoids, anthocyanidins, flavan-3-ols, and flavanones (p < 0.01). For individuals in the highest (versus the lowest) intake category of anthocyanidins, flavan-3-ols, and flavanones, relative risk and confidence intervals (RR and CI, respectively) were 0.86 (99% CI: 0.79, 0.93), 0.88 (99% CI: 0.79, 0.98), and 0.89 (99% CI: 0.80, 0.98), respectively. Research is needed to determine whether the inverse relationships found in this study are applicable to CVD endpoints at the population level. PMID:28767062
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
NASA Astrophysics Data System (ADS)
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Microturbulence in HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi
1993-08-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
Integrals and integral equations in linearized wing theory
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B
1951-01-01
The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pablant, N. A.; Bell, R. E.; Bitter, M.
2014-11-15
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy andmore » tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less
Pablant, N. A.; Bell, R. E.; Bitter, M.; ...
2014-08-08
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less
Adjoint-Based Sensitivity Kernels for Glacial Isostatic Adjustment in a Laterally Varying Earth
NASA Astrophysics Data System (ADS)
Crawford, O.; Al-Attar, D.; Tromp, J.; Mitrovica, J. X.; Austermann, J.; Lau, H. C. P.
2017-12-01
We consider a new approach to both the forward and inverse problems in glacial isostatic adjustment. We present a method for forward modelling GIA in compressible and laterally heterogeneous earth models with a variety of linear and non-linear rheologies. Instead of using the so-called sea level equation, which must be solved iteratively, the forward theory we present consists of a number of coupled evolution equations that can be straightforwardly numerically integrated. We also apply the adjoint method to the inverse problem in order to calculate the derivatives of measurements of GIA with respect to the viscosity structure of the Earth. Such derivatives quantify the sensitivity of the measurements to the model. The adjoint method enables efficient calculation of continuous and laterally varying derivatives, allowing us to calculate the sensitivity of measurements of glacial isostatic adjustment to the Earth's three-dimensional viscosity structure. The derivatives have a number of applications within the inverse method. Firstly, they can be used within a gradient-based optimisation method to find a model which minimises some data misfit function. The derivatives can also be used to quantify the uncertainty in such a model and hence to provide understanding of which parts of the model are well constrained. Finally, they enable construction of measurements which provide sensitivity to a particular part of the model space. We illustrate both the forward and inverse aspects with numerical examples in a spherically symmetric earth model.
Surface wave tomography of Europe from ambient seismic noise
NASA Astrophysics Data System (ADS)
Lu, Yang; Stehly, Laurent; Paul, Anne
2017-04-01
We present a European scale high-resolution 3-D shear wave velocity model derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous seismic recordings from 1293 stations across much of the European region (10˚W-35˚E, 30˚N-75˚N), which yields more than 0.8 million virtual station pairs. This data set compiles records from 67 seismic networks, both permanent and temporary from the EIDA (European Integrated Data Archive). Rayleigh wave group velocity are measured at each station pair using the multiple-filter analysis technique. Group velocity maps are estimated through a linearized tomographic inversion algorithm at period from 5s to 100s. Adaptive parameterization is used to accommodate heterogeneity in data coverage. We then apply a two-step data-driven inversion method to obtain the shear wave velocity model. The two steps refer to a Monte Carlo inversion to build the starting model, followed by a linearized inversion for further improvement. Finally, Moho depth (and its uncertainty) are determined over most of our study region by identifying and analysing sharp velocity discontinuities (and sharpness). The resulting velocity model shows good agreement with main geological features and previous geophyical studies. Moho depth coincides well with that obtained from active seismic experiments. A focus on the Greater Alpine region (covered by the AlpArray seismic network) displays a clear crustal thinning that follows the arcuate shape of the Alps from the southern French Massif Central to southern Germany.
Spin-orbit coupling effects in indium antimonide quantum well structures
NASA Astrophysics Data System (ADS)
Dedigama, Aruna Ruwan
Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.
Grosso, Giuseppe; Micek, Agnieszka; Godos, Justyna; Pajak, Andrzej; Sciacca, Salvatore; Bes-Rastrollo, Maira; Galvano, Fabio; Martinez-Gonzalez, Miguel A
2017-08-17
To perform a dose-response meta-analysis of prospective cohort studies investigating the association between long-term coffee intake and risk of hypertension. An online systematic search of studies published up to November 2016 was performed. Linear and non-linear dose-response meta-analyses were conducted; potential evidence of heterogeneity, publication bias, and confounding effect of selected variables were investigated through sensitivity and meta-regression analyses. Seven cohorts including 205,349 individuals and 44,120 cases of hypertension were included. In the non-linear analysis, there was a 9% significant decreased risk of hypertension per seven cups of coffee a day, while, in the linear dose-response association, there was a 1% decreased risk of hypertension for each additional cup of coffee per day. Among subgroups, there were significant inverse associations for females, caffeinated coffee, and studies conducted in the US with longer follow-up. Analysis of potential confounders revealed that smoking-related variables weakened the strength of association between coffee consumption and risk of hypertension. Increased coffee consumption is associated with a modest decrease in risk of hypertension in prospective cohort studies. Smoking status is a potential effect modifier on the association between coffee consumption and risk of hypertension.
Extensions of the Ferry shear wave model for active linear and nonlinear microrheology
Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.
2009-01-01
The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614
NASA Astrophysics Data System (ADS)
Lonchakov, A. T.
2011-04-01
A negative paramagnetic contribution to the dynamic elastic moduli is identified in AIIBVI:3d wide band-gap compounds for the first time. It appears as a paramagnetic elastic, or, briefly, paraelastic, susceptibility. These compounds are found to have a linear temperature dependence for the inverse paraelastic susceptibility. This is explained by a contribution from the diagonal matrix elements of the orbit-lattice interaction operators in the energy of the spin-orbital states of the 3d-ion as a function of applied stress (by analogy with the Curie contribution to the magnetic susceptibility). The inverse paraelastic susceptibility of AIIBVI crystals containing non-Kramers 3d-ions is found to deviate from linearity with decreasing temperature and reaches saturation. This effect is explained by a contribution from nondiagonal matrix elements (analogous to the well known van Vleck contribution to the magnetic susceptibility of paramagnets).
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
NASA Astrophysics Data System (ADS)
Zhu, Lupei; Zhou, Xiaofeng
2016-10-01
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.
Children's strategies to solving additive inverse problems: a preliminary analysis
NASA Astrophysics Data System (ADS)
Ding, Meixia; Auxter, Abbey E.
2017-03-01
Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.
von Ruesten, Anne; Brantsæter, Anne Lise; Haugen, Margaretha; Meltzer, Helle Margrete; Mehlig, Kirsten; Winkvist, Anna; Lissner, Lauren
2014-01-24
Pregnancy is a major life event for women and often connected with changes in diet and lifestyle and natural gestational weight gain. However, excessive weight gain during pregnancy may lead to postpartum weight retention and add to the burden of increasing obesity prevalence. Therefore, it is of interest to examine whether adherence to nutrient recommendations or food-based guidelines is associated with postpartum weight retention 6 months after birth. This analysis is based on data from the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health. Diet during the first 4-5 months of pregnancy was assessed by a food-frequency questionnaire and maternal weight before pregnancy as well as in the postpartum period was assessed by questionnaires. Two Healthy Eating Index (HEI) scores were applied to measure compliance with either the official Norwegian food-based guidelines (HEI-NFG) or the Nordic Nutrition Recommendations (HEI-NNR) during pregnancy. The considered outcome, i.e. weight retention 6 months after birth, was modelled in two ways: continuously (in kg) and categorically (risk of substantial postpartum weight retention, i.e. ≥ 5% gain to pre-pregnancy weight). Associations between the HEI-NFG and HEI-NNR score with postpartum weight retention on the continuous scale were estimated by linear regression models. Relationships of both HEI scores with the categorical outcome variable were evaluated using logistic regression. In the continuous model without adjustment for gestational weight gain (GWG), the HEI-NFG score but not the HEI-NNR score was inversely related to postpartum weight retention. However, after additional adjustment for GWG as potential intermediate the HEI-NFG score was marginally inversely and the HEI-NNR score was inversely associated with postpartum weight retention. In the categorical model, both HEI scores were inversely related with risk of substantial postpartum weight retention, independent of adjustment for GWG. Higher adherence to either the official Norwegian food guidelines or possibly also to Nordic Nutrition Recommendations during pregnancy appears to be associated with lower postpartum weight retention.
2014-01-01
Background Pregnancy is a major life event for women and often connected with changes in diet and lifestyle and natural gestational weight gain. However, excessive weight gain during pregnancy may lead to postpartum weight retention and add to the burden of increasing obesity prevalence. Therefore, it is of interest to examine whether adherence to nutrient recommendations or food-based guidelines is associated with postpartum weight retention 6 months after birth. Methods This analysis is based on data from the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health. Diet during the first 4-5 months of pregnancy was assessed by a food-frequency questionnaire and maternal weight before pregnancy as well as in the postpartum period was assessed by questionnaires. Two Healthy Eating Index (HEI) scores were applied to measure compliance with either the official Norwegian food-based guidelines (HEI-NFG) or the Nordic Nutrition Recommendations (HEI-NNR) during pregnancy. The considered outcome, i.e. weight retention 6 months after birth, was modelled in two ways: continuously (in kg) and categorically (risk of substantial postpartum weight retention, i.e. ≥ 5% gain to pre-pregnancy weight). Associations between the HEI-NFG and HEI-NNR score with postpartum weight retention on the continuous scale were estimated by linear regression models. Relationships of both HEI scores with the categorical outcome variable were evaluated using logistic regression. Results In the continuous model without adjustment for gestational weight gain (GWG), the HEI-NFG score but not the HEI-NNR score was inversely related to postpartum weight retention. However, after additional adjustment for GWG as potential intermediate the HEI-NFG score was marginally inversely and the HEI-NNR score was inversely associated with postpartum weight retention. In the categorical model, both HEI scores were inversely related with risk of substantial postpartum weight retention, independent of adjustment for GWG. Conclusions Higher adherence to either the official Norwegian food guidelines or possibly also to Nordic Nutrition Recommendations during pregnancy appears to be associated with lower postpartum weight retention. PMID:24456804
Meat intake and reproductive parameters among young men
Afeiche, Myriam C; Williams, Paige L; Gaskins, Audrey J; Mendiola, Jaime; Jørgensen, Niels; Swan, Shanna H
2014-01-01
Background In the United States, anabolic sex steroids are administered to cattle for growth promotion. There is concern regarding the reproductive consequences of this practice for men who eat beef. We investigated whether meat consumption was associated with semen quality parameters and reproductive hormone levels in young men. Methods Semen samples were obtained from 189 men aged 18-22 years. Diet was assessed with a previously validated food frequency questionnaire. We used linear regression to analyze the cross-sectional associations of meat intake with semen quality parameters and reproductive hormones, while adjusting for potential confounders. Results There was an inverse relation between processed red meat intake and total sperm count. The adjusted relative differences in total sperm counts for men in increasing quartiles of processed meat intake were 0 (ref), −3 (95% confidence interval = −67 to 37), −14 (−82 to 28), and −78 (−202 to −5) million (test for trend, P = 0.01). This association was strongest among men with abstinence time less than 2 days and was driven by a strong inverse relation between processed red meat intake and ejaculate volume (test for trend, P =0.003). Conclusions In our population of young men, processed meat intake was associated with lower total sperm count. We cannot distinguish whether this association is due to residual confounding by abstinence time or represents a true biological effect. PMID:24681577
Hanna, Mirette; Dumas, Isabelle; Orain, Michèle; Jacob, Simon; Têtu, Bernard; Sanschagrin, François; Bureau, Alexandre; Poirier, Brigitte; Diorio, Caroline
2017-01-01
Increased levels of pro-inflammatory markers and decreased levels of anti-inflammatory markers in the breast tissue can result in local inflammation. We aimed to investigate whether local inflammation in the breast tissue is associated with age-related lobular involution, a process inversely related to breast cancer risk. Levels of eleven pro- and anti-inflammatory markers were assessed by immunohistochemistry in normal breast tissue obtained from 164 pre- and postmenopausal breast cancer patients. Involution status of the breast (degree of lobular involution and the predominant lobule type) was microscopically assessed in normal breast tissue on hematoxylin-eosin stained mastectomy slides. Multivariate generalized linear models were used to assess the associations. In age-adjusted analyses, higher levels of pro-inflammatory markers IL-6, TNF-α, CRP, COX-2, leptin, SAA1 and IL-8; and anti-inflammatory marker IL-10, were inversely associated with the prevalence of complete lobular involution (all P≤0.04). Higher levels of the pro-inflammatory marker COX-2 were also associated with lower prevalence of predominant type 1/no type 3 lobules in the breast, an indicator of complete involution, in age-adjusted analysis (P = 0.017). Higher tissue levels of inflammatory markers, mainly the pro-inflammatory ones, are associated with less involuted breasts and may consequently be associated with an increased risk of developing breast cancer. PMID:28846716
Nansel, T R; Lipsky, L M; Iannotti, R J
2013-04-01
Weight gain is an oft-cited outcome of improved glycemic control in adults with type 1 diabetes, though few studies have investigated this in youth. The purpose of this paper was to examine cross-sectional and longitudinal associations of body mass index (BMI, kg/m(2)) with glycemic control in youth with type 1 diabetes (n=340, 12.5 ± 1.7 year, 49% female, duration ≥ 1 year) participating in a 2-year multi-center intervention study targeting family diabetes management. BMI was calculated from height and weight measured at clinic visits. Glycohemoglobin (HbA1c) at each visit was assayed centrally. Cross-sectional associations of baseline BMI with glycemic control, and of change in BMI and HbA1c with baseline values, were examined. Longitudinal associations of time-varying BMI and HbA1c were examined using a multilevel linear mixed effects model controlling for time-varying time (months), insulin dose (units/kg/day), regimen, Tanner stage, and time invariant baseline diabetes duration, BMI, treatment group and sociodemographic characteristics. Baseline HbA1c was unrelated to baseline BMI, but was related positively to subsequent BMI change (p=0.04) and inversely to HbA1c change (p=0.002). Baseline BMI was inversely related to BMI change (p=0.01) and unrelated to HbA1c change. In multilevel regression, BMI was related inversely to HbA1c (%) (β ± SE=-0.11 ± 0.02, p<0.001) and positively to insulin dose (0.23 ± 0.07, p=0.001). In the treatment group only, BMI was positively related to pump regimen (0.18 ± 0.08, p=0.02). Increased insulin administered to improve glycemic control may contribute to increased BMI in youth with type 1 diabetes, indicating the importance of determining ways to minimize weight gain while optimizing glycemic control. Published by Elsevier Ireland Ltd.
Pattern manipulation via on-chip phase modulation between orbital angular momentum beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huanlu; School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP; Strain, Michael J.
2015-08-03
An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications.more » It can be intentionally implemented with other modulation elements to achieve more complicated applications.« less
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
NASA Astrophysics Data System (ADS)
Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.
2015-08-01
Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.
Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...
2017-03-05
Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.
Combined linear theory/impact theory method for analysis and design of high speed configurations
NASA Technical Reports Server (NTRS)
Brooke, D.; Vondrasek, D. V.
1980-01-01
Pressure distributions on a wing body at Mach 4.63 are calculated. The combined theory is shown to give improved predictions over either linear theory or impact theory alone. The combined theory is also applied in the inverse design mode to calculate optimum camber slopes at Mach 4.63. Comparisons with optimum camber slopes obtained from unmodified linear theory show large differences. Analysis of the results indicate that the combined theory correctly predicts the effect of thickness on the loading distributions at high Mach numbers, and that finite thickness wings optimized at high Mach numbers using unmodified linear theory will not achieve the minimum drag characteristics for which they are designed.
A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion
NASA Astrophysics Data System (ADS)
CUI, C.; Hou, W.
2017-12-01
Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.
NASA Technical Reports Server (NTRS)
Brooke, D.; Vondrasek, D. V.
1978-01-01
The aerodynamic influence coefficients calculated using an existing linear theory program were used to modify the pressures calculated using impact theory. Application of the combined approach to several wing-alone configurations shows that the combined approach gives improved predictions of the local pressure and loadings over either linear theory alone or impact theory alone. The approach not only removes most of the short-comings of the individual methods, as applied in the Mach 4 to 8 range, but also provides the basis for an inverse design procedure applicable to high speed configurations.
Disorder-dominated linear magnetoresistance in topological insulator Bi2Se3 thin films
NASA Astrophysics Data System (ADS)
Wang, Wen Jie; Gao, Kuang Hong; Li, Qiu Lin; Li, Zhi-Qing
2017-12-01
The linear magnetoresistance (MR) effect is an interesting topic due to its potential applications. In topological insulator Bi2Se3, this effect has been reported to be dominated by the carrier mobility (μ) and hence has a classical origin. Here, we study the magnetotransport properties of Bi2Se3 thin films and observe the linear MR effect, which cannot be attributed to the quantum model. Unexpectedly, the linear MR does not show the linear dependence on μ, in conflict with the reported results. However, we find that the observed linear MR is dominated by the inverse disorder parameter 1 /kFl , where kF and l are the Fermi wave vector and the mean free path, respectively. This suggests that its origin is also classical and that no μ-dominated linear MR effect is observed which may be due to the very small μ values in our samples.
Hartzell, S.
1989-01-01
The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author
Three-dimensional imaging of buried objects in very lossy earth by inversion of VETEM data
Cui, T.J.; Aydiner, A.A.; Chew, W.C.; Wright, D.L.; Smith, D.V.
2003-01-01
The very early time electromagnetic system (VETEM) is an efficient tool for the detection of buried objects in very lossy earth, which allows a deeper penetration depth compared to the ground-penetrating radar. In this paper, the inversion of VETEM data is investigated using three-dimensional (3-D) inverse scattering techniques, where multiple frequencies are applied in the frequency range from 0-5 MHz. For small and moderately sized problems, the Born approximation and/or the Born iterative method have been used with the aid of the singular value decomposition and/or the conjugate gradient method in solving the linearized integral equations. For large-scale problems, a localized 3-D inversion method based on the Born approximation has been proposed for the inversion of VETEM data over a large measurement domain. Ways to process and to calibrate the experimental VETEM data are discussed to capture the real physics of buried objects. Reconstruction examples using synthesized VETEM data and real-world VETEM data are given to test the validity and efficiency of the proposed approach.
Data-driven discovery of Koopman eigenfunctions using deep learning
NASA Astrophysics Data System (ADS)
Lusch, Bethany; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
Koopman operator theory transforms any autonomous non-linear dynamical system into an infinite-dimensional linear system. Since linear systems are well-understood, a mapping of non-linear dynamics to linear dynamics provides a powerful approach to understanding and controlling fluid flows. However, finding the correct change of variables remains an open challenge. We present a strategy to discover an approximate mapping using deep learning. Our neural networks find this change of variables, its inverse, and a finite-dimensional linear dynamical system defined on the new variables. Our method is completely data-driven and only requires measurements of the system, i.e. it does not require derivatives or knowledge of the governing equations. We find a minimal set of approximate Koopman eigenfunctions that are sufficient to reconstruct and advance the system to future states. We demonstrate the method on several dynamical systems.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Numerical solution of inverse scattering for near-field optics.
Bao, Gang; Li, Peijun
2007-06-01
A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.
Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Schwede, R. L.; Li, W.
2012-12-01
Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.
Cerebral serotonin transporter binding is inversely related to body mass index.
Erritzoe, D; Frokjaer, V G; Haahr, M T; Kalbitzer, J; Svarer, C; Holst, K K; Hansen, D L; Jernigan, T L; Lehel, S; Knudsen, G M
2010-08-01
Overweight and obesity is a health threat of increasing concern and understanding the neurobiology behind obesity is instrumental to the development of effective treatment regimes. Serotonergic neurotransmission is critically involved in eating behaviour; cerebral level of serotonin (5-HT) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear regression model with adjustment for relevant covariates, we found that cortical and subcortical SERT binding was negatively correlated to BMI (-0.003 to -0.012 BP(ND) unit per kg/m(2)). Tobacco smoking and alcohol consumption did not affect cerebral SERT binding. Several effective anti-obesity drugs encompass blockade of the SERT; yet, our study is the first to demonstrate an abnormally decreased cerebral SERT binding in obese individuals. Whether the SERT has a direct role in the regulation of appetite and eating behaviour or whether the finding is due to a compensatory downregulation of SERT secondary to other dysfunction(s) in the serotonergic transmitter system, such as low baseline serotonin levels, remains to be established. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, D. Y.
2017-12-01
In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.
Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.
2000-01-01
Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.
NASA Astrophysics Data System (ADS)
Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.
2016-12-01
We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.
Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah
2017-04-01
Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.
Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe
2015-03-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.
Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.
2008-12-01
To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.
2018-07-01
Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.
Numerical Procedures for Inlet/Diffuser/Nozzle Flows
NASA Technical Reports Server (NTRS)
Rubin, Stanley G.
1998-01-01
Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein.
NASA Astrophysics Data System (ADS)
Bonato, Matteo; Negrello, Mattia; Mancuso, Claudia; De Zotti, Gianfranco; Ciliegi, Paolo; Cai, Zhen-Yi; Lapi, Andrea; Massardi, Marcella; Bonaldi, Anna; Sajina, Anna; Smolčić, Vernesa; Schinnerer, Eva
2017-08-01
The assessment of the relationship between radio continuum luminosity and star formation rate (SFR) is of crucial importance to make reliable predictions for the forthcoming ultra-deep radio surveys and to allow a full exploitation of their results to measure the cosmic star formation history. We have addressed this issue by matching recent accurate determinations of the SFR function up to high redshifts with literature estimates of the 1.4 GHz luminosity functions of star-forming galaxies (SFGs). This was done considering two options, proposed in the literature, for the relationship between the synchrotron emission (Lsynch), that dominates at 1.4 GHz, and the SFR: a linear relation with a decline of the Lsynch/SFR ratio at low luminosities or a mildly non-linear relation at all luminosities. In both cases, we get good agreement with the observed radio luminosity functions but, in the non-linear case, the deviation from linearity must be small. The luminosity function data are consistent with a moderate increase of the Lsynch/SFR ratio with increasing redshift, indicated by other data sets, although a constant ratio cannot be ruled out. A stronger indication of such increase is provided by recent deep 1.4-GHz counts, down to μJy levels. This is in contradiction with models predicting a decrease of that ratio due to inverse Compton cooling of relativistic electrons at high redshifts. Synchrotron losses appear to dominate up to z ≃ 5. We have also updated the Massardi et al. evolutionary model for radio loud AGNs.
Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes
NASA Astrophysics Data System (ADS)
Taranto, Philip; Modi, Kavan; Pollock, Felix A.
2018-05-01
In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.
Quantum algorithms for Gibbs sampling and hitting-time estimation
Chowdhury, Anirban Narayan; Somma, Rolando D.
2017-02-01
In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less
Mixing and evaporation processes in an inverse estuary inferred from δ2H and δ18O
NASA Astrophysics Data System (ADS)
Corlis, Nicholas J.; Herbert Veeh, H.; Dighton, John C.; Herczeg, Andrew L.
2003-05-01
We have measured δ2H and δ18O in Spencer Gulf, South Australia, an inverse estuary with a salinity gradient from 36‰ near its entrance to about 45‰ at its head. We show that a simple evaporation model of seawater under ambient conditions, aided by its long residence time in Spencer Gulf, can account for the major features of the non-linear distribution pattern of δ2H with respect to salinity, at least in the restricted part of the gulf. In the more exposed part of the gulf, the δ/ S pattern appears to be governed primarily by mixing processes between inflowing shelf water and outflowing high salinity gulf water. These data provide direct support for the oceanographic model of Spencer Gulf previously proposed by other workers. Although the observed δ/ S relationship here is non-linear and hence in notable contrast to the linear δ/ S relationship in the Red Sea, the slopes of δ2H vs. δ18O are comparable, indicating that the isotopic enrichments in both marginal seas are governed by similar climatic conditions with evaporation exceeding precipitation.
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Moran, James M.; Young, Ken H.; Ho, Paul T. P.
2004-11-01
We used the Submillimeter Array to image the SiO maser emission in the v=1, J=5-4 transition associated with the peculiar red supergiant VY Canis Majoris. We identified seven maser components and measured their relative positions and linear polarization properties. Five of the maser components are coincident to within about 150 mas (~200 AU at the distance of 1.5 kpc); most of them may originate in the circumstellar envelope at a radius of about 50 mas from the star along with the SiO masers in the lowest rotational transitions. Our measurements show that two of the maser components may be offset from the inner stellar envelope (at the 3 σ level of significance) and may be part of a larger bipolar outflow associated with VY CMa identified by Shinnaga et al. The strongest maser feature at a velocity of 35.9 km s-1 has a 60% linear polarization, and its polarization direction is aligned with the bipolar axis. Such a high degree of polarization suggests that maser inversion is due to radiative pumping. Five of the other maser features have significant linear polarization.
Symmetric log-domain diffeomorphic Registration: a demons-based approach.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2008-01-01
Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient.
Baseline-Subtraction-Free (BSF) Damage-Scattered Wave Extraction for Stiffened Isotropic Plates
NASA Technical Reports Server (NTRS)
He, Jiaze; Leser, Patrick E.; Leser, William P.
2017-01-01
Lamb waves enable long distance inspection of structures for health monitoring purposes. However, this capability is diminished when applied to complex structures where damage-scattered waves are often buried by scattering from various structural components or boundaries in the time-space domain. Here, a baseline-subtraction-free (BSF) inspection concept based on the Radon transform (RT) is proposed to identify and separate these scattered waves from those scattered by damage. The received time-space domain signals can be converted into the Radon domain, in which the scattered signals from structural components are suppressed into relatively small regions such that damage-scattered signals can be identified and extracted. In this study, a piezoelectric wafer and a linear scan via laser Doppler vibrometer (LDV) were used to excite and acquire the Lamb-wave signals in an aluminum plate with multiple stiffeners. Linear and inverse linear Radon transform algorithms were applied to the direct measurements. The results demonstrate the effectiveness of the Radon transform as a reliable extraction tool for damage-scattered waves in a stiffened aluminum plate and also suggest the possibility of generalizing this technique for application to a wide variety of complex, large-area structures.
Computing Generalized Matrix Inverse on Spiking Neural Substrate
Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen
2018-01-01
Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483
Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N
2016-07-12
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
Acoustic-articulatory mapping in vowels by locally weighted regression
McGowan, Richard S.; Berger, Michael A.
2009-01-01
A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829–836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented. PMID:19813812
Surface wave tomography of the European crust and upper mantle from ambient seismic noise
NASA Astrophysics Data System (ADS)
LU, Y.; Stehly, L.; Paul, A.
2017-12-01
We present a high-resolution 3-D Shear wave velocity model of the European crust and upper mantle derived from ambient seismic noise tomography. In this study, we collect 4 years of continuous vertical-component seismic recordings from 1293 broadband stations across Europe (10W-35E, 30N-75N). We analyze group velocity dispersion from 5s to 150s for cross-correlations of more than 0.8 million virtual source-receiver pairs. 2-D group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. 3-D velocity model is obtained by merging 1-D models inverted at each pixel through a two-step data-driven inversion algorithm: a non-linear Bayesian Monte Carlo inversion, followed by a linearized inversion. Resulting S-wave velocity model and Moho depth are compared with previous geophysical studies: 1) The crustal model and Moho depth show striking agreement with active seismic imaging results. Moreover, it even provides new valuable information such as a strong difference of the European Moho along two seismic profiles in the Western Alps (Cifalps and ECORS-CROP). 2) The upper mantle model displays strong similarities with published models even at 150km deep, which is usually imaged using earthquake records.
Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...
2016-06-06
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less
Inverse problem of HIV cell dynamics using Genetic Algorithms
NASA Astrophysics Data System (ADS)
González, J. A.; Guzmán, F. S.
2017-01-01
In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.
Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
Misalignment tolerant efficient inverse taper coupler for silicon waveguide
NASA Astrophysics Data System (ADS)
Wang, Peng; Michael, Aron; Kwok, Chee Yee; Chen, Ssu-Han
2015-12-01
This paper describes an efficient fiber to submicron silicon waveguide coupling based on an inversely tapered silicon waveguide embedded in a SiO2 waveguide that is suspended in air. The inverse taper waveguide consist of a 50um long and 240nm thick silicon that linearly taper in width from 500nm to 120nm, which is embedded in SiO2. The SiO2 waveguide is 6um wide and 10um long. The simulation results show that the coupling loss of this new approach is 2.7dB including the interface loss at the input and output. The tolerance to fiber misalignment at the input of the coupler is 2um in both horizontal and vertical directions for only 1.5dB additional loss.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
Jones, Matthew D; Booth, John; Taylor, Janet L; Barry, Benjamin K
2016-10-01
In healthy individuals and people with chronic pain, an inverse association between physical activity level and pain has been reported. Associations between objectively measured fitness and pain have also been found in people with chronic pain, but it is not clear whether the same relations are apparent in healthy individuals. The purpose of the present study was to examine the relation between aerobic capacity and pain in healthy individuals. Pressure pain threshold, ischemic pain tolerance, and pain ratings during ischemia were assessed and analyzed in relation to aerobic capacity in 35 healthy individuals. Correlation and multiple linear regression were used to analyze the data. Data from previous similar studies in healthy individuals and people with fibromyalgia were extracted and collated by literature review to support interpretation of the experimental data. No relation was found between aerobic capacity and any measure of pain, with the exception of a moderate inverse association between aerobic capacity and lower body pressure pain threshold in males (r = -0.58, P = 0.03) when data from male and female participants were analyzed separately. The limited association between aerobic capacity and quantitative sensory testing of pain was consistent with the data synthesis from previous studies of healthy individuals but differed from studies of people with fibromyalgia. Aerobic capacity is unrelated to pain in healthy young adults. For people with chronic pain, the negative relation between aerobic capacity and pain presumably arises from the underlying pathophysiology and/or associated behaviors of the disease process. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Large-scale inverse model analyses employing fast randomized data reduction
NASA Astrophysics Data System (ADS)
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
A trade-off solution between model resolution and covariance in surface-wave inversion
Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.
2010-01-01
Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.
Principal Component Geostatistical Approach for large-dimensional inverse problems
Kitanidis, P K; Lee, J
2014-01-01
The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best. PMID:25558113
Principal Component Geostatistical Approach for large-dimensional inverse problems.
Kitanidis, P K; Lee, J
2014-07-01
The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m , and the number of observations, n , is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m 2 n , though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n . The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m 2 as in the textbook approach. For problems of very large m , this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best.
Ray, J.; Lee, J.; Yadav, V.; ...
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.