Sample records for inverse modeling framework

  1. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  2. Action Understanding as Inverse Planning

    ERIC Educational Resources Information Center

    Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.

    2009-01-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…

  3. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  4. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  5. pyGIMLi: An open-source library for modelling and inversion in geophysics

    NASA Astrophysics Data System (ADS)

    Rücker, Carsten; Günther, Thomas; Wagner, Florian M.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.

  6. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  7. Feedback control by online learning an inverse model.

    PubMed

    Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis

    2012-10-01

    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made.

  8. Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models

    DOE PAGES

    Butler, Troy; Graham, L.; Estep, D.; ...

    2015-02-03

    The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less

  9. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  10. An Adaptive Model of Student Performance Using Inverse Bayes

    ERIC Educational Resources Information Center

    Lang, Charles

    2014-01-01

    This article proposes a coherent framework for the use of Inverse Bayesian estimation to summarize and make predictions about student behaviour in adaptive educational settings. The Inverse Bayes Filter utilizes Bayes theorem to estimate the relative impact of contextual factors and internal student factors on student performance using time series…

  11. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  12. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  13. jInv: A Modular and Scalable Framework for Electromagnetic Inverse Problems

    NASA Astrophysics Data System (ADS)

    Belliveau, P. T.; Haber, E.

    2016-12-01

    Inversion is a key tool in the interpretation of geophysical electromagnetic (EM) data. Three-dimensional (3D) EM inversion is very computationally expensive and practical software for inverting large 3D EM surveys must be able to take advantage of high performance computing (HPC) resources. It has traditionally been difficult to achieve those goals in a high level dynamic programming environment that allows rapid development and testing of new algorithms, which is important in a research setting. With those goals in mind, we have developed jInv, a framework for PDE constrained parameter estimation problems. jInv provides optimization and regularization routines, a framework for user defined forward problems, and interfaces to several direct and iterative solvers for sparse linear systems. The forward modeling framework provides finite volume discretizations of differential operators on rectangular tensor product meshes and tetrahedral unstructured meshes that can be used to easily construct forward modeling and sensitivity routines for forward problems described by partial differential equations. jInv is written in the emerging programming language Julia. Julia is a dynamic language targeted at the computational science community with a focus on high performance and native support for parallel programming. We have developed frequency and time-domain EM forward modeling and sensitivity routines for jInv. We will illustrate its capabilities and performance with two synthetic time-domain EM inversion examples. First, in airborne surveys, which use many sources, we achieve distributed memory parallelism by decoupling the forward and inverse meshes and performing forward modeling for each source on small, locally refined meshes. Secondly, we invert grounded source time-domain data from a gradient array style induced polarization survey using a novel time-stepping technique that allows us to compute data from different time-steps in parallel. These examples both show that it is possible to invert large scale 3D time-domain EM datasets within a modular, extensible framework written in a high-level, easy to use programming language.

  14. Bayesian Inversion of 2D Models from Airborne Transient EM Data

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Key, K.; Ray, A.

    2016-12-01

    The inherent non-uniqueness in most geophysical inverse problems leads to an infinite number of Earth models that fit observed data to within an adequate tolerance. To resolve this ambiguity, traditional inversion methods based on optimization techniques such as the Gauss-Newton and conjugate gradient methods rely on an additional regularization constraint on the properties that an acceptable model can possess, such as having minimal roughness. While allowing such an inversion scheme to converge on a solution, regularization makes it difficult to estimate the uncertainty associated with the model parameters. This is because regularization biases the inversion process toward certain models that satisfy the regularization constraint and away from others that don't, even when both may suitably fit the data. By contrast, a Bayesian inversion framework aims to produce not a single `most acceptable' model but an estimate of the posterior likelihood of the model parameters, given the observed data. In this work, we develop a 2D Bayesian framework for the inversion of transient electromagnetic (TEM) data. Our method relies on a reversible-jump Markov Chain Monte Carlo (RJ-MCMC) Bayesian inverse method with parallel tempering. Previous gradient-based inversion work in this area used a spatially constrained scheme wherein individual (1D) soundings were inverted together and non-uniqueness was tackled by using lateral and vertical smoothness constraints. By contrast, our work uses a 2D model space of Voronoi cells whose parameterization (including number of cells) is fully data-driven. To make the problem work practically, we approximate the forward solution for each TEM sounding using a local 1D approximation where the model is obtained from the 2D model by retrieving a vertical profile through the Voronoi cells. The implicit parsimony of the Bayesian inversion process leads to the simplest models that adequately explain the data, obviating the need for explicit smoothness constraints. In addition, credible intervals in model space are directly obtained, resolving some of the uncertainty introduced by regularization. An example application shows how the method can be used to quantify the uncertainty in airborne EM soundings for imaging subglacial brine channels and groundwater systems.

  15. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  16. A Solution Framework for Environmental Characterization Problems

    EPA Science Inventory

    This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...

  17. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  18. Nitrous oxide emissions estimated with the Carbon Tracker Lagrange regional inversion framework suggest the North American source comes predominantly from agricultural regions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Andrews, A. E.; Thoning, K. W.; Saikawa, E.; Dlugokencky, E. J.; Sweeney, C.; Benmergui, J. S.

    2016-12-01

    The Carbon Tracker Lagrange (CTL) regional inversion framework is used to estimate North American nitrous oxide (N2O) emissions of 1.6 ± 0.4 Tg N/yr over 2008-2013. More than half of the North American emissions are estimated to come from the central agricultural belt, extending from southern Canada to Texas, and are strongest in spring and early summer, consistent with a nitrogen fertilizer-driven source. The estimated N2O flux from the Midwestern corn/soybean belt and the more northerly wheat belt corresponds to 5% of synthetic + organic N fertilizer applied to those regions. While earlier regional atmospheric inversion studies have suggested that global inventories such as EDGAR may be underestimating U.S. anthropogenic N2O emissions by a factor of 3 or more, our results, integrated over a full calendar year, are generally consistent with those inventories and with global inverse model results and budget constraints. The CTL framework is a Bayesian method based on footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model applied to atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. The CTL inversion results are sensitive to the prescribed boundary condition or background value of N2O, which is estimated based on a new Empirical BackGround (EBG) product derived from STILT back trajectories applied to NOAA data. Analysis of the N2O EBG products suggests a significant, seasonally-varying influence on surface N2O data due to the stratospheric influx of N2O-depleted air. Figure 1. Posterior annual mean N2O emissions for 2010 estimated with the CTL regional inversion framework. The locations of NOAA surface and aircraft data used in the inversion are superimposed as black circles and grey triangles, respectively. Mobile surface sites are indicated with asterisks.

  19. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling

    NASA Astrophysics Data System (ADS)

    Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.

    2018-04-01

    We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope measurements would be a beneficial component of an atmospheric monitoring programme aimed at MRV of CO2 for any city which has significant biogenic influence, allowing improved separation of contributions from NEE and fossil fuel fluxes to the observed CO2 concentration.

  20. Statistical methods for incomplete data: Some results on model misspecification.

    PubMed

    McIsaac, Michael; Cook, R J

    2017-02-01

    Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.

  1. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, S.

    1999-03-01

    In this paper, a prestack inversion method using a genetic algorithm (GA) is presented, and issues relating to the implementation of prestack GA inversion in practice are discussed. GA is a Monte-Carlo type inversion, using a natural analogy to the biological evolution process. When GA is cast into a Bayesian framework, a priori information of the model parameters and the physics of the forward problem are used to compute synthetic data. These synthetic data can then be matched with observations to obtain approximate estimates of the marginal a posteriori probability density (PPD) functions in the model space. Plots of thesemore » PPD functions allow an interpreter to choose models which best describe the specific geologic setting and lead to an accurate prediction of seismic lithology. Poststack inversion and prestack GA inversion were applied to a Woodbine gas sand data set from East Texas. A comparison of prestack inversion with poststack inversion demonstrates that prestack inversion shows detailed stratigraphic features of the subsurface which are not visible on the poststack inversion.« less

  2. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  3. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  4. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  5. Adaptive framework to better characterize errors of apriori fluxes and observational residuals in a Bayesian setup for the urban flux inversions.

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.

    2017-12-01

    The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.

  6. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for eff ective properties

    USGS Publications Warehouse

    Mirus, B.B.; Perkins, K.S.; Nimmo, J.R.; Singha, K.

    2009-01-01

    To understand their relation to pedogenic development, soil hydraulic properties in the Mojave Desert were investi- gated for three deposit types: (i) recently deposited sediments in an active wash, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. Eff ective parameter values were estimated for a simplifi ed model based on Richards' equation using a fl ow simulator (VS2D), an inverse algorithm (UCODE-2005), and matric pressure and water content data from three ponded infi ltration experiments. The inverse problem framework was designed to account for the eff ects of subsurface lateral spreading of infi ltrated water. Although none of the inverse problems converged on a unique, best-fi t parameter set, a minimum standard error of regression was reached for each deposit type. Parameter sets from the numerous inversions that reached the minimum error were used to develop probability distribu tions for each parameter and deposit type. Electrical resistance imaging obtained for two of the three infi ltration experiments was used to independently test fl ow model performance. Simulations for the active wash and Holocene soil successfully depicted the lateral and vertical fl uxes. Simulations of the more pedogenically developed Pleistocene soil did not adequately replicate the observed fl ow processes, which would require a more complex conceptual model to include smaller scale heterogeneities. The inverse-modeling results, however, indicate that with increasing age, the steep slope of the soil water retention curve shitis toward more negative matric pressures. Assigning eff ective soil hydraulic properties based on soil age provides a promising framework for future development of regional-scale models of soil moisture dynamics in arid environments for land-management applications. ?? Soil Science Society of America.

  7. Fast Geostatistical Inversion using Randomized Matrix Decompositions and Sketchings for Heterogeneous Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Le, E. B.; Vesselinov, V. V.

    2015-12-01

    We present a fast, scalable, and highly-implementable stochastic inverse method for characterization of aquifer heterogeneity. The method utilizes recent advances in randomized matrix algebra and exploits the structure of the Quasi-Linear Geostatistical Approach (QLGA), without requiring a structured grid like Fast-Fourier Transform (FFT) methods. The QLGA framework is a more stable version of Gauss-Newton iterates for a large number of unknown model parameters, but provides unbiased estimates. The methods are matrix-free and do not require derivatives or adjoints, and are thus ideal for complex models and black-box implementation. We also incorporate randomized least-square solvers and data-reduction methods, which speed up computation and simulate missing data points. The new inverse methodology is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. Inversion results based on series of synthetic problems with steady-state and transient calibration data are presented.

  8. Comparison of Optimal Design Methods in Inverse Problems

    PubMed Central

    Banks, H. T.; Holm, Kathleen; Kappel, Franz

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762

  9. Sequential Inverse Problems Bayesian Principles and the Logistic Map Example

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Farmer, Chris L.; Moroz, Irene M.

    2010-09-01

    Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.

  10. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  11. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  12. Probing sterile neutrinos in the framework of inverse seesaw mechanism through leptoquark productions

    NASA Astrophysics Data System (ADS)

    Das, Debottam; Ghosh, Kirtiman; Mitra, Manimala; Mondal, Subhadeep

    2018-01-01

    We consider an extension of the standard model (SM) augmented by two neutral singlet fermions per generation and a leptoquark. In order to generate the light neutrino masses and mixing, we incorporate inverse seesaw mechanism. The right-handed neutrino production in this model is significantly larger than the conventional inverse seesaw scenario. We analyze the different collider signatures of this model and find that the final states associated with three or more leptons, multijet and at least one b -tagged and (or) τ -tagged jet can probe larger RH neutrino mass scale. We have also proposed a same-sign dilepton signal region associated with multiple jets and missing energy that can be used to distinguish the present scenario from the usual inverse seesaw extended SM.

  13. Investigating the constraint imposed by column averaged PBL CO2 data within an atmospheric inversion framework

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Kawa, S. R.; Denning, A. S.; Baker, D. F.; Ramanathan, A. K.

    2014-12-01

    It was initially hoped that the proposed Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) NASA mission could rectify diurnal fluxes through it's ability to measure during both days and nights. However, initial simulation results (Kawa et al 2010) showed limited skill at identifying diurnal differences in fluxes. We investigate the possibility of (1) supplementing ASCENDS with well chosen in-situ surface sites and/or (2) adding distinct column measurements for the PBL and free troposphere into the inversion framework to determine the impact on recovering net ecosystem exchange (NEE), as well as distinct gross primary production (GPP) and respiration fluxes. In particular, we run forward simulations and inversions with distinct respiration and GPP fluxes calculated from the SiB model (Baker et al 2008) and test the ability of an EnKF based inversion framework to recover a hypothetical tropical CO2 fertilization effect resulting in enhanced GPP. Baker, I. T.; Prihodko, L.; Denning, A. S.; Goulden, M.; Miller, S. & da Rocha, H. R. (2008), 'Seasonal drought stress in the Amazon: Reconciling 3 models and observations', Journal of Geophysical Research 113. Kawa, S. R.; MAO, J.; ABSHIRE, J. B.; J., C. G.; SUN, X. & WEAVER, C. J. (2010), 'Simulation studies for a space-based CO2 lidar mission.', Tellus B 62, 759-769.

  14. Inverse estimation of parameters for an estuarine eutrophication model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less

  15. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.

  16. Computer Model Inversion and Uncertainty Quantification in the Geosciences

    NASA Astrophysics Data System (ADS)

    White, Jeremy T.

    The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.

  17. WE-AB-209-02: A New Inverse Planning Framework with Principle-Based Modeling of Inter-Structural Dosimetric Tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Dong, P; Xing, L

    Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less

  18. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  19. A Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment

    PubMed Central

    Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S

    2012-01-01

    Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems. PMID:22254301

  20. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  1. Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Schwede, R. L.; Li, W.

    2012-12-01

    Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.

  2. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  3. 3D Magnetization Vector Inversion of Magnetic Data: Improving and Comparing Methods

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Zhang, Henglei; Geng, Meixia; Zuo, Boxin

    2017-12-01

    Magnetization vector inversion is an useful approach to invert for magnetic anomaly in the presence of significant remanent magnetization and self-demagnetization. However, magnetizations are usually obtained in many different directions under the influences of geophysical non-uniqueness. We propose an iteration algorithm of magnetization vector inversion (M-IDI) that one couple of magnetization direction is iteratively computed after the magnetization intensity is recovered from the magnitude magnetic anomaly. And we compare it with previous methods of (1) three orthogonal components inversion of total magnetization vector at Cartesian framework (MMM), (2) intensity, inclination and declination inversion at spherical framework (MID), (3) directly recovering the magnetization inclination and declination (M-IDCG) and (4) estimating the magnetization direction using correlation method (M-IDC) at the sequential inversion frameworks. The synthetic examples indicate that MMM returns multiply magnetization directions and MID results are strongly dependent on initial model and parameter weights. M-IDI computes faster than M-IDC and achieves a constant magnetization direction compared with M-IDCG. Additional priori information constraints can improve the results of MMM, MID and M-IDCG. Obtaining one magnetization direction, M-IDC and M-IDI are suitable for single and isolated anomaly. Finally, M-IDI and M-IDC are used to invert and interpret the magnetic anomaly of the Galinge iron-ore deposit (NW China) and the results are verified by information from drillholes and physical properties measurements of ore and rock samples. Magnetization vector inversion provides a comprehensive way to evaluate and investigate the remanent magnetization and self-demagnetization.

  4. Viscoelastic material inversion using Sierra-SD and ROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  5. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  6. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  7. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  8. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    PubMed

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  9. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  10. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  11. Demonstration of risk based, goal driven framework for hydrological field campaigns and inverse modeling with case studies

    NASA Astrophysics Data System (ADS)

    Harken, B.; Geiges, A.; Rubin, Y.

    2013-12-01

    There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and forward modeling and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration, plume travel time, or aquifer recharge rate. These predictions often have significant bearing on some decision that must be made. Examples include: how to allocate limited remediation resources between multiple contaminated groundwater sites, where to place a waste repository site, and what extraction rates can be considered sustainable in an aquifer. Providing an answer to these questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in model parameters, such as hydraulic conductivity, leads to uncertainty in EPM predictions. Often, field campaigns and inverse modeling efforts are planned and undertaken with reduction of parametric uncertainty as the objective. The tool of hypothesis testing allows this to be taken one step further by considering uncertainty reduction in the ultimate prediction of the EPM as the objective and gives a rational basis for weighing costs and benefits at each stage. When using the tool of statistical hypothesis testing, the EPM is cast into a binary outcome. This is formulated as null and alternative hypotheses, which can be accepted and rejected with statistical formality. When accounting for all sources of uncertainty at each stage, the level of significance of this test provides a rational basis for planning, optimization, and evaluation of the entire campaign. Case-specific information, such as consequences prediction error and site-specific costs can be used in establishing selection criteria based on what level of risk is deemed acceptable. This framework is demonstrated and discussed using various synthetic case studies. The case studies involve contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a given location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical value of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. Different field campaigns are analyzed based on effectiveness in reducing the probability of selecting the wrong hypothesis, which in this case corresponds to reducing uncertainty in the prediction of plume arrival time. To examine the role of inverse modeling in this framework, case studies involving both Maximum Likelihood parameter estimation and Bayesian inversion are used.

  12. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  13. Variational methods to estimate terrestrial ecosystem model parameters

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian

    2016-04-01

    Carbon is at the basis of the chemistry of life. Its ubiquity in the Earth system is the result of complex recycling processes. Present in the atmosphere in the form of carbon dioxide it is adsorbed by marine and terrestrial ecosystems and stored within living biomass and decaying organic matter. Then soil chemistry and a non negligible amount of time transform the dead matter into fossil fuels. Throughout this cycle, carbon dioxide is released in the atmosphere through respiration and combustion of fossils fuels. Model-data fusion techniques allow us to combine our understanding of these complex processes with an ever-growing amount of observational data to help improving models and predictions. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Over the last decade several studies have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF, 4DVAR) to estimate model parameters and initial carbon stocks for DALEC and to quantify the uncertainty in the predictions. Despite its simplicity, DALEC represents the basic processes at the heart of more sophisticated models of the carbon cycle. Using adjoint based methods we study inverse problems for DALEC with various data streams (8 days MODIS LAI, monthly MODIS LAI, NEE). The framework of constraint optimization allows us to incorporate ecological common sense into the variational framework. We use resolution matrices to study the nature of the inverse problems and to obtain data importance and information content for the different type of data. We study how varying the time step affect the solutions, and we show how "spin up" naturally improves the conditioning of the inverse problems.

  14. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    DOE PAGES

    Locatelli, R.; Bousquet, P.; Chevallier, F.; ...

    2013-10-08

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less

  15. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  16. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  17. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  18. Inverse Optimization: A New Perspective on the Black-Litterman Model.

    PubMed

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch

    2012-12-11

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.

  19. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  20. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  1. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  2. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  3. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    PubMed Central

    Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli. PMID:23801941

  4. How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.

    PubMed

    Mantovani, Giulia; Lamontagne, Mario

    2017-04-01

    The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.

  5. Low frequency full waveform seismic inversion within a tree based Bayesian framework

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe

    2018-01-01

    Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.

  6. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  7. Large-scale inverse model analyses employing fast randomized data reduction

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  8. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    PubMed

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  9. A4 flavour model for Dirac neutrinos: Type I and inverse seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Karmakar, Biswajit

    2018-05-01

    We propose two different seesaw models namely, type I and inverse seesaw to realise light Dirac neutrinos within the framework of A4 discrete flavour symmetry. The additional fields and their transformations under the flavour symmetries are chosen in such a way that naturally predicts the hierarchies of different elements of the seesaw mass matrices in these two types of seesaw mechanisms. For generic choices of flavon alignments, both the models predict normal hierarchical light neutrino masses with the atmospheric mixing angle in the lower octant. Apart from predicting interesting correlations between different neutrino parameters as well as between neutrino and model parameters, the model also predicts the leptonic Dirac CP phase to lie in a specific range - π / 3 to π / 3. While the type I seesaw model predicts smaller values of absolute neutrino mass, the inverse seesaw predictions for the absolute neutrino masses can saturate the cosmological upper bound on sum of absolute neutrino masses for certain choices of model parameters.

  10. Assimilating data into open ocean tidal models

    NASA Astrophysics Data System (ADS)

    Kivman, Gennady A.

    The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.

  11. An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations

    PubMed Central

    Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.

    2016-01-01

    We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360

  12. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  13. Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao

    2017-10-18

    Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less

  14. Comparison of optimal design methods in inverse problems

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  15. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    NASA Astrophysics Data System (ADS)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  16. Action understanding as inverse planning.

    PubMed

    Baker, Chris L; Saxe, Rebecca; Tenenbaum, Joshua B

    2009-12-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent's behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an "intentional stance" [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a "teleological stance" [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.

  17. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes generated from a different biosphere model (BIOME-BGC). Initially we perform single-station inversions for Ochsenkopf tall tower located in Germany. Further expansion of the inversion framework to multiple stations and its application to network design will address the questions of how well a set of network stations can constrain a given target quantity, and whether there are objective criteria to select an optimal configuration for new stations that maximizes the uncertainty reduction.

  18. Inverse Optimization: A New Perspective on the Black-Litterman Model

    PubMed Central

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.

    2014-01-01

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873

  19. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula

    NASA Astrophysics Data System (ADS)

    Mavrodiev, S. Cht.; Deliyergiyev, M. A.

    We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker. It was solved in a step-by-step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6MeV, starting from the number of protons and number of neutrons equal to 1. The explicit form of unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified least χ2 procedure, that realized in the algorithms which were developed by Lubomir Aleksandrov to solve the nonlinear systems of equations via the Gauss-Newton method, lets us to choose the better one between two functions with same χ2. In the obtained generalized model, the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. The obtained results were compared with the predictions of other models.

  20. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  1. The nuclear shell model toward the drip lines

    NASA Astrophysics Data System (ADS)

    Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.

    2012-10-01

    We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.

  2. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  3. 20th Annual Systems Engineering Conference, Thursday, Volume 4

    DTIC Science & Technology

    2017-10-26

    Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego

  4. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  5. Comment on 'A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon' by Flowers, Farley and Ketcham

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry

    2016-05-01

    Flowers et al. (2015) propose a framework for reporting modeling results for thermochronological data problems, particularly when using inversion approaches. In the final paragraph, they state 'we hope that the suggested reporting table template will stimulate additional community discussion about modeling philosophies and reporting formats'. In this spirit the purpose of this comment is to suggest that they have underplayed the importance of presenting a comparison of the model predictions with the observations. An inversion-based modeling approach aims to identify those models which makes predictions consistent, perhaps to varying degrees, with the observed data. The concluding section includes the phrase 'clear documentation of the model inputs and outputs', but their example from the Grand Canyon shows only the observed data.

  6. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  7. On braneworld inverse power-law inflation

    NASA Astrophysics Data System (ADS)

    Es-Sobbahi, H.; Nach, M.

    2018-04-01

    In the framework of the braneworld Randall-Sundrum type II model, we investigate an inflationary scalar model in the high-energy regime. In this regime, the slow-roll parameters and the perturbation spectrum of the model are derived. The corresponding results are dealt with according to the known observational data. Then the solutions to the equations of motion on the brane are given.

  8. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-07-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the inversion framework. The next step of using this framework to study the aerosol information content in GEO-TASO measurements is also discussed.

  9. Applications of Bayesian spectrum representation in acoustics

    NASA Astrophysics Data System (ADS)

    Botts, Jonathan M.

    This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v

  10. Development of a coupled FLEXPART-TM5 CO2 inverse modeling system

    NASA Astrophysics Data System (ADS)

    Monteil, Guillaume; Scholze, Marko

    2017-04-01

    Inverse modeling techniques are used to derive information on surface CO2 fluxes from measurements of atmospheric CO2 concentrations. The principle is to use an atmospheric transport model to compute the CO2 concentrations corresponding to a prior estimate of the surface CO2 fluxes. From the mismatches between observed and modeled concentrations, a correction of the flux estimate is computed, that represents the best statistical compromise between the prior knowledge and the new information brought in by the observations. Such "top-down" CO2 flux estimates are useful for a number of applications, such as the verification of CO2 emission inventories reported by countries in the framework of international greenhouse gas emission reduction treaties (Paris agreement), or for the validation and improvement of the bottom-up models used in future climate predictions. Inverse modeling CO2 flux estimates are limited in resolution (spatial and temporal) by the lack of observational constraints and by the very heavy computational cost of high-resolution inversions. The observational limitation is however being lifted, with the expansion of regional surface networks such as ICOS in Europe, and with the launch of new satellite instruments to measure tropospheric CO2 concentrations. To make an efficient use of these new observations, it is necessary to step up the resolution of atmospheric inversions. We have developed an inverse modeling system, based on a coupling between the TM5 and the FLEXPART transport models. The coupling follows the approach described in Rodenbeck et al., 2009: a first global, coarse resolution, inversion is performed using TM5-4DVAR, and is used to provide background constraints to a second, regional, fine resolution inversion, using FLEXPART as a transport model. The inversion algorithm is adapted from the 4DVAR algorithm used by TM5, but has been developed to be model-agnostic: it would be straightforward to replace TM5 and/or FLEXPART by other transport models, thus making it well suited to study transport model uncertainties. We will present preliminary European CO2 inversions using ICOS observations, and comparisons with TM5-4DVAR and TM3-STILT inversions. Reference: Rödenbeck, C., Gerbig, C., Trusilova, K., & Heimann, M. (2009). A two-step scheme for high-resolution regional atmospheric trace gas inversions based on independent models. Atmospheric Chemistry and Physics Discussions, 9(1), 1727-1756. http://doi.org/10.5194/acpd-9-1727-2009

  11. Covariance specification and estimation to improve top-down Green House Gas emission estimates

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2015-12-01

    The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.

  12. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations

    PubMed Central

    Feder, Jeffrey L.; Nosil, Patrik; Flaxman, Samuel M.

    2014-01-01

    Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow. PMID:25206365

  13. Model-based elastography: a survey of approaches to the inverse elasticity problem

    PubMed Central

    Doyley, M M

    2012-01-01

    Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839

  14. Variational approach to direct and inverse problems of atmospheric pollution studies

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition quality// Russian meteorology and hydrology, V. 40, Issue: 6, Pages: 365-373, DOI: 10.3103/S1068373915060023. 4. A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. 5. V.V. Penenko, E.A. Tsvetova, A.V. Penenko Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, 2014, V.67, Issue 12, Pages 2240-2256, DOI:10.1016/j.camwa.2014.04.004 6. V.V. Penenko, E.A. Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220, DOI 10.1134/S199542391303004X

  15. Audiomagnetotelluric Data and Two-Dimensional Models from Spring, Snake, and Three Lakes Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2007-01-01

    Audiomagnetotelluric (AMT) data along thirteen profiles in Spring, Snake, and Three Lakes Valleys, and the corresponding two-dimensional (2-D) inverse models, are presented. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges of a few meters to roughly one kilometer. It is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada that can be used to define the geohydrologic framework of the region. We collected AMT data using the Geometrics StrataGem EH4 system. Profiles were 1.2 to 4.6 km in length with station spacing of 100-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the assumed regional geologic strike direction. We show station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data using the conjugate gradient, finite-difference method of Rodi and Mackie (2001). Preliminary interpretation of these models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate/clastic rocks.

  16. Assessing CO2 emissions from Canada's oil sands developments - an inversion approach combined with stable isotope data

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Lin, J. C.; Huang, L.; Edwards, T. W.; Jones, J. P.; Polavarapu, S.; Nassar, R.

    2012-12-01

    Reducing uncertainties in the projections of atmospheric CO2 concentration levels relies on increasing our scientific understanding of the exchange processes between atmosphere and land at regional scales, which is highly dependent on climate, ecosystem processes, and anthropogenic disturbances. In order for researchers to reduce the uncertainties, a combined framework that mutually addresses these independent variables to account for each process is invaluable. In this research, an example of top-down inversion modeling approach that is combined with stable isotope measurement data is presented. The potential for the proposed analysis framework is demonstrated using the Stochastic Time-Inverted Lagrangian Transport (STILT) model runs combined with high precision CO2 concentration data measured at a Canadian greenhouse gas monitoring site as well as multiple tracers: stable isotopes and combustion-related species. This framework yields a unique regional scale constraint that can be used to relate the measured changes of tracer concentrations to processes in their upwind source regions. The inversion approach both reproduces source areas in a spatially explicit way through sophisticated Lagrangian transport modeling and infers emission processes that leave imprints on atmospheric tracers. The understanding gained through the combined approach can also be used to verify reported emissions as part of regulatory regimes. The results indicate that changes in CO2 concentration is strongly influenced by regional sources, including significant fossil fuel emissions, and that the combined approach can be used to test reported emissions of the greenhouse gas from oil sands developments. Also, methods to further reduce uncertainties in the retrieved emissions by incorporating additional constraints including tracer-to-tracer correlations and satellite measurements are discussed briefly.

  17. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Jacques, Diederik; Linde, Niklas

    2018-01-01

    Probabilistic inversion within a multiple-point statistics framework is often computationally prohibitive for high-dimensional problems. To partly address this, we introduce and evaluate a new training-image based inversion approach for complex geologic media. Our approach relies on a deep neural network of the generative adversarial network (GAN) type. After training using a training image (TI), our proposed spatial GAN (SGAN) can quickly generate 2-D and 3-D unconditional realizations. A key characteristic of our SGAN is that it defines a (very) low-dimensional parameterization, thereby allowing for efficient probabilistic inversion using state-of-the-art Markov chain Monte Carlo (MCMC) methods. In addition, available direct conditioning data can be incorporated within the inversion. Several 2-D and 3-D categorical TIs are first used to analyze the performance of our SGAN for unconditional geostatistical simulation. Training our deep network can take several hours. After training, realizations containing a few millions of pixels/voxels can be produced in a matter of seconds. This makes it especially useful for simulating many thousands of realizations (e.g., for MCMC inversion) as the relative cost of the training per realization diminishes with the considered number of realizations. Synthetic inversion case studies involving 2-D steady state flow and 3-D transient hydraulic tomography with and without direct conditioning data are used to illustrate the effectiveness of our proposed SGAN-based inversion. For the 2-D case, the inversion rapidly explores the posterior model distribution. For the 3-D case, the inversion recovers model realizations that fit the data close to the target level and visually resemble the true model well.

  18. Evaluating the UK's carbon budget using a dense network of tall-tower observations

    NASA Astrophysics Data System (ADS)

    White, E.; Rigby, M. L.; Manning, A.; Lunt, M. F.; Ganesan, A.; O'Doherty, S.; Stavert, A.; Stanley, K. M.; Williams, M. D.; Smallman, T. L.; Comyn-Platt, E.; Levy, P. E.

    2017-12-01

    The UK has committed to reducing greenhouse gas (GHG) emissions to 80% of 1990 levels by 2050. Evaluating the UK's GHG emissions, and in particular those of carbon dioxide, is imperative to the UK's ability to track progress towards these goals. Making top-down estimates of regional carbon dioxide emissions is challenging due to the rapid temporal variability in the biogenic flux, and the co-location of anthropogenic and biogenic sources and sinks. We present a hierarchical Bayesian inverse modelling framework, which is able to estimate a yearly total (anthropogenic and biogenic) carbon dioxide budget for the UK. Using observations from a high-density GHG monitoring network, combined with high temporal resolution prior information and a Lagrangian atmospheric transport model (NAME, developed by the UK Met Office), we derive a net positive flux for the UK of 0.39 Pg/yr in 2014. We will compare the outcome of inversions that used prior information from two different biosphere models, CARDAMOM and JULES. This comparison helps to understand more about the biogenic processes contributing to the UK's carbon dioxide budget, limitations with different modelling approaches and the sensitivity of the inversion framework to the choice of prior. A better understanding of how the biogenic flux changes throughout the year can, in turn, help to improve the UK's anthropogenic carbon dioxide inventory by identifying times in the year when the anthropogenic signal may be possible to detect.

  19. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  20. Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond.

    PubMed

    Perdikaris, Paris; Karniadakis, George Em

    2016-05-01

    We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. © 2016 The Author(s).

  1. Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond

    PubMed Central

    Perdikaris, Paris; Karniadakis, George Em

    2016-01-01

    We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. PMID:27194481

  2. Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization

    PubMed Central

    Melchor, Juan; Muñoz, Rafael; Rus, Guillermo

    2017-01-01

    Torsion mechanical waves have the capability to characterize shear stiffness moduli of soft tissue. Under this hypothesis, a computational methodology is proposed to design and optimize a piezoelectrics-based transmitter and receiver to generate and measure the response of torsional ultrasonic waves. The procedure employed is divided into two steps: (i) a finite element method (FEM) is developed to obtain a transmitted and received waveform as well as a resonance frequency of a previous geometry validated with a semi-analytical simplified model and (ii) a probabilistic optimality criteria of the design based on inverse problem from the estimation of robust probability of detection (RPOD) to maximize the detection of the pathology defined in terms of changes of shear stiffness. This study collects different options of design in two separated models, in transmission and contact, respectively. The main contribution of this work describes a framework to establish such as forward, inverse and optimization procedures to choose a set of appropriate parameters of a transducer. This methodological framework may be generalizable for other different applications. PMID:28617353

  3. Induced polarization imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Revil, Andre; Soueid Ahmed, Abdellahi

    2017-04-01

    The first part of the presentation is related to the petrophysics of induced polarization of volcanic rocks. We described induced polarization of these rocks using a dynamic Stern layer model describing the polarization of the electrical double layer around the mineral grains. This model shows that the normalized chargeability and quadrature conductivity of volcanic rocks is sensitive to the cation exchange capacity (CEC) of these materials and therefore to their alteration. In the second part pf the presentation, we use a geostatistical inversion framework to image chargeability in 2.5D or in 3D. This new framework is benchmarked using synthetic data and data from various volcanoes (Kilaua, Furnas, Yellowstone). We show that chargeability tomography is very complementary to the now classical electrical resistivity tomography in order to image volcanic structures and to separate the conduction in the bulk pore network from interfacial effects such as surface conductivity. This approach appears to be promising as a first step toward joint inversion with seismic and gravity data.

  4. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  5. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio

    2015-07-01

    We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.

  6. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  7. Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.

    2016-12-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  8. SISYPHUS: A high performance seismic inversion factory

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).

  9. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  10. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  11. Revisiting the 2004 Sumatra-Andaman earthquake in a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Sladen, A.; Jiang, J.; Simons, M.

    2015-12-01

    The 2004 Mw 9.25 Sumatra-Andaman earthquake is the largest seismic event of the modern instrumental era. Despite considerable effort to analyze the characteristics of its rupture, the different available observations have proven difficult to simultaneously integrate jointly into a finite-fault slip model. In particular, the critical near-field geodetic records contain variable and significant post-seismic signal (between 2 weeks and 2 months) while the satellite altimetry records of the associated tsunami are affected by various sources of uncertainties (e.g. source rupture velocity, meso-scale oceanic currents). In this study, we investigate the quasi-static slip distribution of the Sumatra-Andaman earthquake by carefully accounting for the different sources of uncertainties in the joint inversion of an extended set of geodetic and tsunami data. To do so, we use non-diagonal covariance matrices reflecting both data and model uncertainties in a fully Bayesian inversion framework. As model errors are particularly large for mega-earthquakes, we also rely on advanced simulation codes (normal mode theory on a layered spherical Earth for the static displacement field and non-hydrostatic equations for the tsunami) and account for the 3D curvature of the megathrust interface to reduce the associated epistemic uncertainties. The fully Bayesian inversion framework then enables us to derive the families of possible models compatible with the unevenly distributed and sometimes ambiguous measurements. We find two regions of high slip at latitudes 3°-4°N and 7°-8°N with amplitudes that probably reached values as large as 40 m and possibly larger. Such amounts of slip were not proposed by previous studies, which might have been biased by smoothing regularizations. We also find significant slip (around 20 m) offshore Andaman islands absent in earlier studies. Furthermore, we find that the rupture very likely involved shallow slip, with the possibility of reaching the trench.

  12. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.

    PubMed

    Gómez, Pablo; Schützenberger, Anne; Kniesburges, Stefan; Bohr, Christopher; Döllinger, Michael

    2018-06-01

    This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories' fundamental frequency matches the one of the experimental trajectories in [Formula: see text] of the recordings. The relative error of the model trajectory amplitudes is on average [Formula: see text]. The experiments feature a mean subglottal pressure of 10.16 (SD [Formula: see text]) [Formula: see text]; in the model, it was on average 7.61 (SD [Formula: see text]) [Formula: see text]. A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD [Formula: see text]) [Formula: see text] or [Formula: see text]. A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.

  13. Modern Workflow Full Waveform Inversion Applied to North America and the Northern Atlantic

    NASA Astrophysics Data System (ADS)

    Krischer, Lion; Fichtner, Andreas; Igel, Heiner

    2015-04-01

    We present the current state of a new seismic tomography model obtained using full waveform inversion of the crustal and upper mantle structure beneath North America and the Northern Atlantic, including the westernmost part of Europe. Parts of the eastern portion of the initial model consists of previous models by Fichtner et al. (2013) and Rickers et al. (2013). The final results of this study will contribute to the 'Comprehensive Earth Model' being developed by the Computational Seismology group at ETH Zurich. Significant challenges include the size of the domain, the uneven event and station coverage, and the strong east-west alignment of seismic ray paths across the North Atlantic. We use as much data as feasible, resulting in several thousand recordings per event depending on the receivers deployed at the earthquakes' origin times. To manage such projects in a reproducible and collaborative manner, we, as tomographers, should abandon ad-hoc scripts and one-time programs, and adopt sustainable and reusable solutions. Therefore we developed the LArge-scale Seismic Inversion Framework (LASIF - http://lasif.net), an open-source toolbox for managing seismic data in the context of non-linear iterative inversions that greatly reduces the time to research. Information on the applied processing, modelling, iterative model updating, what happened during each iteration, and so on are systematically archived. This results in a provenance record of the final model which in the end significantly enhances the reproducibility of iterative inversions. Additionally, tools for automated data download across different data centers, window selection, misfit measurements, parallel data processing, and input file generation for various forward solvers are provided.

  14. Complex optimization for big computational and experimental neutron datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Oak Ridge National Lab.; Archibald, Richard

    Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less

  15. Complex optimization for big computational and experimental neutron datasets

    DOE PAGES

    Bao, Feng; Oak Ridge National Lab.; Archibald, Richard; ...

    2016-11-07

    Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less

  16. Using a pseudo-dynamic source inversion approach to improve earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.

    2014-12-01

    Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.

  17. Reproducible Hydrogeophysical Inversions through the Open-Source Library pyGIMLi

    NASA Astrophysics Data System (ADS)

    Wagner, F. M.; Rücker, C.; Günther, T.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by a single measurement method and require the integration of geophysical, geotechnical and hydrological methods. In the emerging field of hydrogeophysics, researchers strive to gain quantitative information on process-relevant subsurface parameters by means of multi-physical models, which simulate the dynamic process of interest as well as its geophysical response. However, such endeavors are associated with considerable technical challenges, since they require coupling of different numerical models. This represents an obstacle for many practitioners and students. Even technically versatile users tend to build individually tailored solutions by coupling different (and potentially proprietary) forward simulators at the cost of scientific reproducibility. We argue that the reproducibility of studies in computational hydrogeophysics, and therefore the advancement of the field itself, requires versatile open-source software. To this end, we present pyGIMLi - a flexible and computationally efficient framework for modeling and inversion in geophysics. The object-oriented library provides management for structured and unstructured meshes in 2D and 3D, finite-element and finite-volume solvers, various geophysical forward operators, as well as Gauss-Newton based frameworks for constrained, joint and fully-coupled inversions with flexible regularization. In a step-by-step demonstration, it is shown how the hydrogeophysical response of a saline tracer migration can be simulated. Tracer concentration data from boreholes and measured voltages at the surface are subsequently used to estimate the hydraulic conductivity distribution of the aquifer within a single reproducible Python script.

  18. Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan

    2016-09-01

    Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.

  19. Flexible kinematic earthquake rupture inversion of tele-seismic waveforms: Application to the 2013 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Yagi, Y.; Okuwaki, R.; Kasahara, A.

    2017-12-01

    The kinematic earthquake rupture models are useful to derive statistics and scaling properties of the large and great earthquakes. However, the kinematic rupture models for the same earthquake are often different from one another. Such sensitivity of the modeling prevents us to understand the statistics and scaling properties of the earthquakes. Yagi and Fukahata (2011) introduces the uncertainty of Green's function into the tele-seismic waveform inversion, and shows that the stable spatiotemporal distribution of slip-rate can be obtained by using an empirical Bayesian scheme. One of the unsolved problems in the inversion rises from the modeling error originated from an uncertainty of a fault-model setting. Green's function near the nodal plane of focal mechanism is known to be sensitive to the slight change of the assumed fault geometry, and thus the spatiotemporal distribution of slip-rate should be distorted by the modeling error originated from the uncertainty of the fault model. We propose a new method accounting for the complexity in the fault geometry by additionally solving the focal mechanism on each space knot. Since a solution of finite source inversion gets unstable with an increasing of flexibility of the model, we try to estimate a stable spatiotemporal distribution of focal mechanism in the framework of Yagi and Fukahata (2011). We applied the proposed method to the 52 tele-seismic P-waveforms of the 2013 Balochistan, Pakistan earthquake. The inverted-potency distribution shows unilateral rupture propagation toward southwest of the epicenter, and the spatial variation of the focal mechanisms shares the same pattern as the fault-curvature along the tectonic fabric. On the other hand, the broad pattern of rupture process, including the direction of rupture propagation, cannot be reproduced by an inversion analysis under the assumption that the faulting occurred on a single flat plane. These results show that the modeling error caused by simplifying the fault model is non-negligible in the tele-seismic waveform inversion of the 2013 Balochistan, Pakistan earthquake.

  20. Audiomagnetotelluric Data and Preliminary Two-Dimensional Models from Spring, Dry Lake, and Delamar Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2008-01-01

    This report presents audiomagnetotelluric (AMT) data along fourteen profiles in Spring, Delamar, and Dry Lake Valleys, and the corresponding preliminary two-dimensional (2-D) inverse models. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges from a few meters to less than one kilometer, and it is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada, which can be used to define the geohydrologic framework of the region. We collected AMT data by using the Geometrics StrataGem EH4 system. Profiles were 0.7 - 3.2 km in length with station spacing of 50-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the regional geologic-strike direction with Z positive down. We show AMT station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models of subsurface resistivity along the profiles. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data by using a conjugate gradient, finite-difference method. Preliminary interpretation of the 2-D models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate basement rocks.

  1. A framework for fast probabilistic centroid-moment-tensor determination—inversion of regional static displacement measurements

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; O'Toole, Thomas B.; Trampert, Jeannot

    2014-03-01

    The determination of earthquake source parameters is an important task in seismology. For many applications, it is also valuable to understand the uncertainties associated with these determinations, and this is particularly true in the context of earthquake early warning (EEW) and hazard mitigation. In this paper, we develop a framework for probabilistic moment tensor point source inversions in near real time. Our methodology allows us to find an approximation to p(m|d), the conditional probability of source models (m) given observations (d). This is obtained by smoothly interpolating a set of random prior samples, using Mixture Density Networks (MDNs)-a class of neural networks which output the parameters of a Gaussian mixture model. By combining multiple networks as `committees', we are able to obtain a significant improvement in performance over that of a single MDN. Once a committee has been constructed, new observations can be inverted within milliseconds on a standard desktop computer. The method is therefore well suited for use in situations such as EEW, where inversions must be performed routinely and rapidly for a fixed station geometry. To demonstrate the method, we invert regional static GPS displacement data for the 2010 MW 7.2 El Mayor Cucapah earthquake in Baja California to obtain estimates of magnitude, centroid location and depth and focal mechanism. We investigate the extent to which we can constrain moment tensor point sources with static displacement observations under realistic conditions. Our inversion results agree well with published point source solutions for this event, once the uncertainty bounds of each are taken into account.

  2. Impact of transport and modelling errors on the estimation of methane sources and sinks by inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric

    2013-04-01

    Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors lead to a discrepancy of 27 TgCH4 per year at global scale, representing 5% of the total methane emissions for 2005. At continental scale, transport and modelling errors have bigger impacts in proportion to the area of the regions, ranging from 36 TgCH4 in North America to 7 TgCH4 in Boreal Eurasian, with a percentage range from 23% to 48%. Thus, contribution of transport and modelling errors to the mismatch between measurements and simulated methane concentrations is large considering the present questions on the methane budget. Moreover, diagnostics of statistics errors included in our inversions have been computed. It shows that errors contained in measurement errors covariance matrix are under-estimated in current inversions, suggesting to include more properly transport and modelling errors in future inversions.

  3. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  4. Multi-Species Inversion and IAGOS Airborne Data for a Better Constraint of Continental Scale Fluxes

    NASA Astrophysics Data System (ADS)

    Boschetti, F.; Gerbig, C.; Janssens-Maenhout, G. G. A.; Thouret, V.; Totsche, K. U.; Nedelec, P.; Marshall, J.

    2016-12-01

    Airborne measurements of CO2, CO, and CH4 in the context of IAGOS (In-service Aircraft for a Global Observing System) will provide profiles from take-off and landing of airliners. These observations are useful for constraining sources and sinks in the vicinity of major metropolitan areas. A proposed improvement of the top-down method to constrain sources and sinks is the use of a multispecies inversion. Different species such as CO2 and CO have partial overlapping in emission patterns for given fuel-combustion related sectors, and thus share part of the uncertainties, both related to the a priori knowledge of emissions, and to model-data mismatch error. Our approach employs a regional modeling framework that combines the Lagrangian particle dispersion model STILT with high resolution (10 km x 10 km) EDGARv4.3 emission inventory, differentiated by emission sector and fuel type for CO2, CO, and CH4, and combined with VPRM for biospheric fluxes of CO2. We validated the modeling framework with observations of CO profiles available through IAGOS. Using synthetic IAGOS profile observations, we evaluate the benefits using correlation between different species' uncertainties on the performance of the atmospheric inversion. With this approach we were able to reproduce CO observations with an average correlation of 0.56. Yet, simulated mixing where lower ratio by a factor of 2.3 reflecting a low bias in the emission inventory. Mean uncertainty reduction achieved for CO2 fossil fuel emissions amounts to 41%; for photosynthesis and respiration flux it is 41% and 45%, respectively. For CO and CH4 the uncertainty reduction is roughly 62% and 66% respectively. Considering correlation between different species, posterior uncertainty can be reduced up to 23%; such reduction depends on the assumed error structure of the prior and on the considered timeframe. The study suggests a significant constraint on regional emissions using multi-species inversions of IAGOS in-situ observations.

  5. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  6. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and true estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model-data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.

  7. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less

  8. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, M. Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  9. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom (6-DOF) simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle 6-DOF performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  10. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    PubMed

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  11. Optimization schemes for the inversion of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.

  12. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew

    2017-11-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  13. A regional high-resolution carbon flux inversion of North America for 2004

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America. We perform the inversion with two independently derived boundary inflow conditions and calculate jackknife-based statistics to test the robustness of the model results. We then compare final results to estimates obtained from the CarbonTracker inversion system and at the Southern Great Plains flux site. Results are promising, showing the ability to correct carbon fluxes from the biosphere models over annual and seasonal time scales, as well as over the different GPP and ER components. Additionally, the correlation of an estimated sink of carbon in the South Central United States with regional anomalously high precipitation in an area of managed agricultural and forest lands provides interesting hypotheses for future work.

  14. A Framework for Estimating Stratospheric Wind Speeds from Infrasound Noise

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Marcillo, O. E.

    2012-12-01

    We present a methodology for infrasonic remote sensing of winds in the stratosphere that does not require discrete ground-truth events. Our method uses measured time delays between arrays of sensors to provide group velocities and then minimizes the difference between observed and predicted group velocities. Because we focus on inter-array propagation effects, it is not necessary to simulate the full propagation path from source to receiver. This feature allows us to use a relatively simple forward model that is applicable over short-regional distances. By focusing on stratospheric returns, we show that our nonlinear inversion scheme converges much better if the starting model contains a strong stratospheric duct. Using the HWM/MSISE model, we demonstrate that the inversion scheme is robust to large uncertainties in backazimuth, but that uncertainties in the measured trace velocity and group velocity should be controlled through the addition of adjoint constraints. Using realistic estimates of measurement error, our results show that the inversion scheme will nevertheless improve upon a starting model under most scenarios for the 9-array Utah infrasound network. Future research should investigate the effects of model error associated with these measurements.

  15. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    NASA Astrophysics Data System (ADS)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  16. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  17. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.

  18. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  19. Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source. 2. Numerical Modeling

    DTIC Science & Technology

    2010-07-14

    apex. The external field is thus mainly poloidal, with the ratio between toroidal and poloidal components at the flux rope apex being Bet/ Bep = 0.075...eruption involved a kink-unstable flux rope that had a high twist of Φ & 6π. This yields a coherent framework to understand the inverse gamma shape...leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement n 218816

  20. Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.

    2012-01-01

    Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.

  1. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  2. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  3. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    DOE PAGES

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less

  4. Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Dagnino, D.; Sallarès, V.; Biescas, B.; Ranero, C. R.

    2016-08-01

    This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ˜ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulation.

  5. Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Akyurek, Bengu Ozge

    Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.

  6. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis

    NASA Astrophysics Data System (ADS)

    Cao, Pei; Qi, Shuai; Tang, J.

    2018-03-01

    The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.

  7. Inverse estimation of the elastic and anelastic properties of the porous frame of anisotropic open-cell foams.

    PubMed

    Cuenca, Jacques; Göransson, Peter

    2012-08-01

    This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke's law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.

  8. Nonlinear functional approximation with networks using adaptive neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1992-01-01

    A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.

  9. Uncertainty quantification for PZT bimorph actuators

    NASA Astrophysics Data System (ADS)

    Bravo, Nikolas; Smith, Ralph C.; Crews, John

    2018-03-01

    In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.

  10. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  11. Primary Cosmic-Ray Spectra in the Knee Region

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel V.; Biermann, P. L.

    2003-07-01

    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  12. The impact of approximations and arbitrary choices on geophysical images

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew P.; Trampert, Jeannot

    2016-01-01

    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the density structure of a vibrating string.

  13. Global carbon monoxide cycle: Modeling and data analysis

    NASA Astrophysics Data System (ADS)

    Arellano, Avelino F., Jr.

    The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other atmospheric observations but differ with satellite area-burned observations, is a significant overestimation in southern Africa for June/July relative to satellite-and-model-constrained BIOM emissions of CO. Sensitivity inverse analyses on observation error covariance and structure, and sequential inversion using NOAA CMDL to fully exploit available information, confirm the robustness of the estimates and further recognize the limitations of the approach, implying the need to further improve the methodology and to reconcile discrepancies.

  14. Approaches in highly parameterized inversion: bgaPEST, a Bayesian geostatistical approach implementation with PEST: documentation and instructions

    USGS Publications Warehouse

    Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.

    2013-01-01

    The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.

  15. Almost but not quite 2D, Non-linear Bayesian Inversion of CSEM Data

    NASA Astrophysics Data System (ADS)

    Ray, A.; Key, K.; Bodin, T.

    2013-12-01

    The geophysical inverse problem can be elegantly stated in a Bayesian framework where a probability distribution can be viewed as a statement of information regarding a random variable. After all, the goal of geophysical inversion is to provide information on the random variables of interest - physical properties of the earth's subsurface. However, though it may be simple to postulate, a practical difficulty of fully non-linear Bayesian inversion is the computer time required to adequately sample the model space and extract the information we seek. As a consequence, in geophysical problems where evaluation of a full 2D/3D forward model is computationally expensive, such as marine controlled source electromagnetic (CSEM) mapping of the resistivity of seafloor oil and gas reservoirs, Bayesian studies have largely been conducted with 1D forward models. While the 1D approximation is indeed appropriate for exploration targets with planar geometry and geological stratification, it only provides a limited, site-specific idea of uncertainty in resistivity with depth. In this work, we extend our fully non-linear 1D Bayesian inversion to a 2D model framework, without requiring the usual regularization of model resistivities in the horizontal or vertical directions used to stabilize quasi-2D inversions. In our approach, we use the reversible jump Markov-chain Monte-Carlo (RJ-MCMC) or trans-dimensional method and parameterize the subsurface in a 2D plane with Voronoi cells. The method is trans-dimensional in that the number of cells required to parameterize the subsurface is variable, and the cells dynamically move around and multiply or combine as demanded by the data being inverted. This approach allows us to expand our uncertainty analysis of resistivity at depth to more than a single site location, allowing for interactions between model resistivities at different horizontal locations along a traverse over an exploration target. While the model is parameterized in 2D, we efficiently evaluate the forward response using 1D profiles extracted from the model at the common-midpoints of the EM source-receiver pairs. Since the 1D approximation is locally valid at different midpoint locations, the computation time is far lower than is required by a full 2D or 3D simulation. We have applied this method to both synthetic and real CSEM survey data from the Scarborough gas field on the Northwest shelf of Australia, resulting in a spatially variable quantification of resistivity and its uncertainty in 2D. This Bayesian approach results in a large database of 2D models that comprise a posterior probability distribution, which we can subset to test various hypotheses about the range of model structures compatible with the data. For example, we can subset the model distributions to examine the hypothesis that a resistive reservoir extends overs a certain spatial extent. Depending on how this conditions other parts of the model space, light can be shed on the geological viability of the hypothesis. Since tackling spatially variable uncertainty and trade-offs in 2D and 3D is a challenging research problem, the insights gained from this work may prove valuable for subsequent full 2D and 3D Bayesian inversions.

  16. Estimate the effective connectivity in multi-coupled neural mass model using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile

    2017-03-01

    Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.

  17. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  18. North American CO2 fluxes for 2007-2015 from NOAA's CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North American CO2 fluxes from CT-L. Furthermore, our derived CO2 flux anomalies over North America corresponding to the 2012 North American drought and the 2015 El Niño are larger than derived by the CarbonTracker. They also indicate different responses of ecosystems to those anomalous climatic events.

  19. Lithospheric layering in the North American craton revealed by including Short Period Constraints in Full Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2017-12-01

    Recent receiver function studies of the North American craton suggest the presence of significant layering within the cratonic lithosphere, with significant lateral variations in the depth of the velocity discontinuities. These structural boundaries have been confirmed recently using a transdimensional Markov Chain Monte Carlo approach (TMCMC), inverting surface wave dispersion data and converted phases simultaneously (Calò et al., 2016; Roy and Romanowicz 2017). The lateral resolution of upper mantle structure can be improved with a high density of broadband seismic stations, or with a sparse network using full waveform inversion based on numerical wavefield computation methods such as the Spectral Element Method (SEM). However, inverting for discontinuities with strong topography such as MLDS's or LAB, presents challenges in an inversion framework, both computationally, due to the short periods required, and from the point of view of stability of the inversion. To overcome these limitations, and to improve resolution of layering in the upper mantle, we are developing a methodology that combines full waveform inversion tomography and information provided by short period seismic observables. We have extended the 30 1D radially anisotropic shear velocity profiles of Calò et al. 2016 to several other stations, for which we used a recent shear velocity model (Clouzet et al., 2017) as constraint in the modeling. These 1D profiles, including both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) homogenization of the layered 1D models and 2) interpolation between the 1D smooth profiles and the model of Clouzet et al. 2017, resulting in a smooth 3D starting model. Waveforms used in the inversion are filtered at periods longer than 30s. We use the SEM code "RegSEM" for forward computations and a quasi-Newton inversion approach in which kernels are computed using normal mode perturbation theory. The resulting volumetric velocity perturbations around the homogenized starting model are then added to the discontinuous 3D starting model by dehomogenizing the model. We present here the first results of such an approach for refining structure in the North American continent.

  20. Calibrating the Spatiotemporal Root Density Distribution for Macroscopic Water Uptake Models Using Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Li, N.; Yue, X. Y.

    2018-03-01

    Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.

  1. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.; ...

    2017-11-21

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  2. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  3. Solving constrained inverse problems for waveform tomography with Salvus

    NASA Astrophysics Data System (ADS)

    Boehm, C.; Afanasiev, M.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.

    2016-12-01

    Finding a good balance between flexibility and performance is often difficult within domain-specific software projects. To achieve this balance, we introduce Salvus: an open-source high-order finite element package built upon PETSc and Eigen, that focuses on large-scale full-waveform modeling and inversion. One of the key features of Salvus is its modular design, based on C++ mixins, that separates the physical equations from the numerical discretization and the mathematical optimization. In this presentation we focus on solving inverse problems with Salvus and discuss (i) dealing with inexact derivatives resulting, e.g., from lossy wavefield compression, (ii) imposing additional constraints on the model parameters, e.g., from effective medium theory, and (iii) integration with a workflow management tool. We present a feasible-point trust-region method for PDE-constrained inverse problems that can handle inexactly computed derivatives. The level of accuracy in the approximate derivatives is controlled by localized error estimates to ensure global convergence of the method. Additional constraints on the model parameters are typically cheap to compute without the need for further simulations. Hence, including them in the trust-region subproblem introduces only a small computational overhead, but ensures feasibility of the model in every iteration. We show examples with homogenization constraints derived from effective medium theory (i.e. all fine-scale updates must upscale to a physically meaningful long-wavelength model). Salvus has a built-in workflow management framework to automate the inversion with interfaces to user-defined misfit functionals and data structures. This significantly reduces the amount of manual user interaction and enhances reproducibility which we demonstrate for several applications from the laboratory to global scale.

  4. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  5. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  6. Spatially constrained Bayesian inversion of frequency- and time-domain electromagnetic data from the Tellus projects

    NASA Astrophysics Data System (ADS)

    Kiyan, Duygu; Rath, Volker; Delhaye, Robert

    2017-04-01

    The frequency- and time-domain airborne electromagnetic (AEM) data collected under the Tellus projects of the Geological Survey of Ireland (GSI) which represent a wealth of information on the multi-dimensional electrical structure of Ireland's near-surface. Our project, which was funded by GSI under the framework of their Short Call Research Programme, aims to develop and implement inverse techniques based on various Bayesian methods for these densely sampled data. We have developed a highly flexible toolbox using Python language for the one-dimensional inversion of AEM data along the flight lines. The computational core is based on an adapted frequency- and time-domain forward modelling core derived from the well-tested open-source code AirBeo, which was developed by the CSIRO (Australia) and the AMIRA consortium. Three different inversion methods have been implemented: (i) Tikhonov-type inversion including optimal regularisation methods (Aster el al., 2012; Zhdanov, 2015), (ii) Bayesian MAP inversion in parameter and data space (e.g. Tarantola, 2005), and (iii) Full Bayesian inversion with Markov Chain Monte Carlo (Sambridge and Mosegaard, 2002; Mosegaard and Sambridge, 2002), all including different forms of spatial constraints. The methods have been tested on synthetic and field data. This contribution will introduce the toolbox and present case studies on the AEM data from the Tellus projects.

  7. Using informative priors in facies inversion: The case of C-ISR method

    NASA Astrophysics Data System (ADS)

    Valakas, G.; Modis, K.

    2016-08-01

    Inverse problems involving the characterization of hydraulic properties of groundwater flow systems by conditioning on observations of the state variables are mathematically ill-posed because they have multiple solutions and are sensitive to small changes in the data. In the framework of McMC methods for nonlinear optimization and under an iterative spatial resampling transition kernel, we present an algorithm for narrowing the prior and thus producing improved proposal realizations. To achieve this goal, we cosimulate the facies distribution conditionally to facies observations and normal scores transformed hydrologic response measurements, assuming a linear coregionalization model. The approach works by creating an importance sampling effect that steers the process to selected areas of the prior. The effectiveness of our approach is demonstrated by an example application on a synthetic underdetermined inverse problem in aquifer characterization.

  8. SeisFlows-Flexible waveform inversion software

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Borisov, Dmitry; Lefebvre, Matthieu; Tromp, Jeroen

    2018-06-01

    SeisFlows is an open source Python package that provides a customizable waveform inversion workflow and framework for research in oil and gas exploration, earthquake tomography, medical imaging, and other areas. New methods can be rapidly prototyped in SeisFlows by inheriting from default inversion or migration classes, and code can be tested on 2D examples before application to more expensive 3D problems. Wave simulations must be performed using an external software package such as SPECFEM3D. The ability to interface with external solvers lends flexibility, and the choice of SPECFEM3D as a default option provides optional GPU acceleration and other useful capabilities. Through support for massively parallel solvers and interfaces for high-performance computing (HPC) systems, inversions with thousands of seismic traces and billions of model parameters can be performed. So far, SeisFlows has run on clusters managed by the Department of Defense, Chevron Corp., Total S.A., Princeton University, and the University of Alaska, Fairbanks.

  9. Inverse Problems in Complex Models and Applications to Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bosch, M. E.

    2015-12-01

    The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied for the estimation of lithological structure of the crust, with the lithotype body regions conditioning the mass density and magnetic susceptibility fields. At planetary scale, the Earth mantle temperature and element composition is inferred from seismic travel-time and geodetic data.

  10. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Zhou, Junjie; Meng, Xiaohong; Guo, Lianghui; Zhang, Sheng

    2015-08-01

    Three-dimensional cross-gradient joint inversion of gravity and magnetic data has the potential to acquire improved density and magnetization distribution information. This method usually adopts the commonly held assumption that remanent magnetization can be ignored and all anomalies present are the result of induced magnetization. Accordingly, this method might fail to produce accurate results where significant remanent magnetization is present. In such a case, the simplification brings about unwanted and unknown deviations in the inverted magnetization model. Furthermore, because of the information transfer mechanism of the joint inversion framework, the inverted density results may also be influenced by the effect of remanent magnetization. The normalized magnetic source strength (NSS) is a transformed quantity that is insensitive to the magnetization direction. Thus, it has been applied in the standard magnetic inversion scheme to mitigate the remanence effects, especially in the case of varying remanence directions. In this paper, NSS data were employed along with gravity data for three-dimensional cross-gradient joint inversion, which can significantly reduce the remanence effects and enhance the reliability of both density and magnetization models. Meanwhile, depth-weightings and bound constraints were also incorporated in this joint algorithm to improve the inversion quality. Synthetic and field examples show that the proposed combination of cross-gradient constraints and the NSS transform produce better results in terms of the data resolution, compatibility, and reliability than that of separate inversions and that of joint inversions with the total magnetization intensity (TMI) data. Thus, this method was found to be very useful and is recommended for applications in the presence of strong remanent magnetization.

  11. Equilibrium Field Theoretic and Dynamic Mean Field Simulations of Inhomogeneous Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Chao, Huikuan

    Inhomogeneous polymeric materials is a large family of promising materials including but limited to block copolymers (BCPs), polymer nanocomposites (PNCs) and microscopically confined polymer films. The promising application of the materials originates from the materials' unique microstructures, which offer enhanced mechanical, thermal, optical and electrical properties to the materials. Due to the complex interactions and the large parameter space, behaviors of the microstructures formed by grafted nanoparticles and nanorods in PNCs are difficult to understand. Separately, because of relatively weak interactions, the microstructures are typically achieved through rapid processing that are kinetically controlled and beyond equilibrium. However, efficient simulation framework to study nonequilbrium dynamics of the materials is currently not available. To attack the first difficulty, I extended an efficient simulation framework, polymer nanocomposite field theory (PNC-FT), to incorporate grafted nanoparticles and nanorods. This extended framework is demonstrated against existing experimental studies and implemented to study how the nanoparticle design affects the nanoparticle distribution in binary homopolymer blends. The grafted nanoparticle model is also used as a platform to adopt an advanced optimization method to inversely design nanoparticles which are able to self-assemble into targeted two dimensional lattices. The nanorod model under PNC-FT framework is used to investigate the design of nanorod and block copolymer thin films to control the nanorod distribution. To attack the second difficulty, I established an efficient framework (SCMF-LD) based on a recently proposed dynamic mean field theory and used SCMF-LD to study how to kinetically control the nanoparticle distribution at the end of solvent annealing block copolymer thin films. The framework is then extended to incorporate hydrodynamics (SCMF-DPD) and the extended framework is implemented to study morphology development in phase inversion processing polymer thin films, where hydrodynamic effects play an important role. By exploring both equilibrium and nonequilibrium properties in a spectrum of inhomogeneous polymeric material systems, I successfully extended PNC-FT and established SCMF-LD and SCMF-DPD frameworks, which are expected to be efficient and powerful tools in studies of inhomogeneous polymeric material design and processing.

  12. Assimilation of concentration measurements for retrieving multiple point releases in atmosphere: A least-squares approach to inverse modelling

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2015-10-01

    The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.

  13. A python framework for environmental model uncertainty analysis

    USGS Publications Warehouse

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  14. Bilinear Inverse Problems: Theory, Algorithms, and Applications

    NASA Astrophysics Data System (ADS)

    Ling, Shuyang

    We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical guarantees and stability theory are derived and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

  15. Top-down estimates of methane and nitrogen oxide emissions from shale gas production regions using aircraft measurements and a mesoscale Bayesian inversion system together with a flux ratio inversion technique

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Brioude, J. F.; Angevine, W. M.; McKeen, S. A.; Henze, D. K.; Bousserez, N.; Liu, Z.; McDonald, B.; Peischl, J.; Ryerson, T. B.; Frost, G. J.; Trainer, M.

    2016-12-01

    Production of unconventional natural gas grew rapidly during the past ten years in the US which led to an increase in emissions of methane (CH4) and, depending on the shale region, nitrogen oxides (NOx). In terms of radiative forcing, CH4 is the second most important greenhouse gas after CO2. NOx is a precursor of ozone (O3) in the troposphere and nitrate particles, both of which are regulated by the US Clean Air Act. Emission estimates of CH4 and NOx from the shale regions are still highly uncertain. We present top-down estimates of CH4 and NOx surface fluxes from the Haynesville and Fayetteville shale production regions using aircraft data collected during the Southeast Nexus of Climate Change and Air Quality (SENEX) field campaign (June-July, 2013) and the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign (March-May, 2015) within a mesoscale inversion framework. The inversion method is based on a mesoscale Bayesian inversion system using multiple transport models. EPA's 2011 National CH4 and NOx Emission Inventories are used as prior information to optimize CH4 and NOx emissions. Furthermore, the posterior CH4 emission estimates are used to constrain NOx emission estimates using a flux ratio inversion technique. Sensitivity of the posterior estimates to the use of off-diagonal terms in the error covariance matrices, the transport models, and prior estimates is discussed. Compared to the ground-based in-situ observations, the optimized CH4 and NOx inventories improve ground level CH4 and O3 concentrations calculated by the Weather Research and Forecasting mesoscale model coupled with chemistry (WRF-Chem).

  16. Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations

    NASA Astrophysics Data System (ADS)

    Capdeville, Yann; Métivier, Ludovic

    2018-05-01

    Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different imaging techniques currently used, including the so-called full waveform inversion (FWI), are based on limited frequency band data. Such data are not sensitive to the true earth model, but to a smooth version of it. This smooth version can be related to the true model by the homogenization technique. Homogenization for wave propagation in deterministic media with no scale separation, such as geological media, has been recently developed. With such an asymptotic theory, it is possible to compute an effective medium valid for a given frequency band such that effective waveforms and true waveforms are the same up to a controlled error. In this work we make the link between limited frequency band inversion, mainly FWI, and homogenization. We establish the relation between a true model and an FWI result model. This relation is important for a proper interpretation of FWI images. We numerically illustrate, in the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover, it appears that the homogenized FWI model is quite independent of the FWI parametrization, as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor is, in each of our tests, always a good choice. We show how the homogenization can help to understand FWI behaviour and help to improve its robustness and convergence by efficiently constraining the solution space of the inverse problem.

  17. Earth Science Computational Architecture for Multi-disciplinary Investigations

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.

    2005-12-01

    Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with visual response. At the platform level, multi-physics application development and workflow are available in the enriched environment of the Pyre framework. Advantages for combining separate expert domains include: multiple application components efficiently interact through Python shared libraries, investigators may nimbly swap models and try new parameter values, and a rich array of common tools are inherent in the Pyre system. The first four specific investigations to use this framework are: Gulf Coast subsidence: understanding of partitioning between compaction, subsidence and growth faulting; Gravity & deformation of a layered spherical earth model due to large earthquakes; Rift setting of Lake Vostok, Antarctica; and global ice mass changes.

  18. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  19. Simulation of Constrained Musculoskeletal Systems in Task Space.

    PubMed

    Stanev, Dimitar; Moustakas, Konstantinos

    2018-02-01

    This paper proposes an operational task space formalization of constrained musculoskeletal systems, motivated by its promising results in the field of robotics. The change of representation requires different algorithms for solving the inverse and forward dynamics simulation in the task space domain. We propose an extension to the direct marker control and an adaptation of the computed muscle control algorithms for solving the inverse kinematics and muscle redundancy problems, respectively. Experimental evaluation demonstrates that this framework is not only successful in dealing with the inverse dynamics problem, but also provides an intuitive way of studying and designing simulations, facilitating assessment prior to any experimental data collection. The incorporation of constraints in the derivation unveils an important extension of this framework toward addressing systems that use absolute coordinates and topologies that contain closed kinematic chains. Task space projection reveals a more intuitive encoding of the motion planning problem, allows for better correspondence between observed and estimated variables, provides the means to effectively study the role of kinematic redundancy, and most importantly, offers an abstract point of view and control, which can be advantageous toward further integration with high level models of the precommand level. Task-based approaches could be adopted in the design of simulation related to the study of constrained musculoskeletal systems.

  20. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  1. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  2. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  3. Foundations for a multiscale collaborative Earth model

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas

    2016-01-01

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.

  4. Applied Mathematics in EM Studies with Special Emphasis on an Uncertainty Quantification and 3-D Integral Equation Modelling

    NASA Astrophysics Data System (ADS)

    Pankratov, Oleg; Kuvshinov, Alexey

    2016-01-01

    Despite impressive progress in the development and application of electromagnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical conductivity within the Earth, there is one question which remains poorly addressed—uncertainty quantification of the recovered conductivity models. Apparently, only an inversion based on a statistical approach provides a systematic framework to quantify such uncertainties. The Metropolis-Hastings (M-H) algorithm is the most popular technique for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. However, all statistical inverse schemes require an enormous amount of forward simulations and thus appear to be extremely demanding computationally, if not prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D modelling codes which can run large-scale 3-D models of practical interest for fractions of a second on high-performance multi-core platforms. But, even with these codes, the challenge for M-H methods is to construct proposal functions that simultaneously provide a good approximation of the target density function while being inexpensive to be sampled. In this paper we address both of these issues. First we introduce a variant of the M-H method which uses information about the local gradient and Hessian of the penalty function. This, in particular, allows us to exploit adjoint-based machinery that has been instrumental for the fast solution of deterministic inverse problems. We explain why this modification of M-H significantly accelerates sampling of the posterior probability distribution. In addition we show how Hessian handling (inverse, square root) can be made practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we discuss uncertainty analysis based on stochastic inversion results. In addition, we demonstrate how this analysis can be performed within a deterministic approach. In the second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.

  5. Fire emissions constrained by the synergistic use of formaldehyde and glyoxal SCIAMACHY columns in a two-compound inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J.; de Smedt, I.; van Roozendael, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.

    2008-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are carbonyls formed in the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. They are also directly emitted by fires. Although this primary production represents only a small part of the global source for both species, yet it can be locally important during intense fire events. Simultaneous observations of formaldehyde and glyoxal retrieved from the SCIAMACHY satellite instrument in 2005 and provided by the BIRA/IASB and the Bremen group, respectively, are compared with the corresponding columns simulated with the IMAGESv2 global CTM. The chemical mechanism has been optimized with respect to HCHO and CHOCHO production from pyrogenically emitted NMVOCs, based on the Master Chemical Mechanism (MCM) and on an explicit profile for biomass burning emissions. Gas-to-particle conversion of glyoxal in clouds and in aqueous aerosols is considered in the model. In this study we provide top-down estimates for fire emissions of HCHO and CHOCHO precursors by performing a two- compound inversion of emissions using the adjoint of the IMAGES model. The pyrogenic fluxes are optimized at the model resolution. The two-compound inversion offers the advantage that the information gained from measurements of one species constrains the sources of both compounds, due to the existence of common precursors. In a first inversion, only the burnt biomass amounts are optimized. In subsequent simulations, the emission factors for key individual NMVOC compounds are also varied.

  6. Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.

    2016-12-01

    Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.

  7. Manifestation of remote response over the equatorial Pacific in a climate model

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Marx, L.

    2007-10-01

    In this paper we examine the simulations over the tropical Pacific Ocean from long-term simulations of two different versions of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model that have a different global distribution of the inversion clouds. We find that subtle changes made to the numerics of an empirical parameterization of the inversion clouds can result in a significant change in the coupled climate of the equatorial Pacific Ocean. In one coupled simulation of this study we enforce a simple linear spatial filtering of the diagnostic inversion clouds to ameliorate its spatial incoherency (as a result of the Gibbs effect) while in the other we conduct no such filtering. It is found from the comparison of these two simulations that changing the distribution of the shallow inversion clouds prevalent in the subsidence region of the subtropical high over the eastern oceans in this manner has a direct bearing on the surface wind stress through surface pressure modifications. The SST in the warm pool region responds to this modulation of the wind stress, thus affecting the convective activity over the warm pool region and also the large-scale Walker and Hadley circulation. The interannual variability of SST in the eastern equatorial Pacific Ocean is also modulated by this change to the inversion clouds. Consequently, this sensitivity has a bearing on the midlatitude height response. The same set of two experiments were conducted with the respective versions of the atmosphere general circulation model uncoupled to the ocean general circulation model but forced with observed SST to demonstrate that this sensitivity of the mean climate of the equatorial Pacific Ocean is unique to the coupled climate model where atmosphere, ocean and land interact. Therefore a strong case is made for adopting coupled ocean-land-atmosphere framework to develop climate models as against the usual practice of developing component models independent of each other.

  8. Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors

    NASA Astrophysics Data System (ADS)

    Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.

    2007-12-01

    Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.

  9. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve the spatial structure in the inverse model, which leads to better parameter estimates and improved predictions when using the inverse-conditioned realizations of parameter fields.

  10. Iterative Inverse Modeling for Reconciliation of Emission Inventories during the 2006 TexAQS Intensive Field Campaign

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Cohan, D. S.

    2009-12-01

    Substantial uncertainties in current emission inventories have been detected by the Texas Air Quality Study 2006 (TexAQS 2006) intensive field program. These emission uncertainties have caused large inaccuracies in model simulations of air quality and its responses to management strategies. To improve the quantitative understanding of the temporal, spatial, and categorized distributions of primary pollutant emissions by utilizing the corresponding measurements collected during TexAQS 2006, we implemented both the recursive Kalman filter and a batch matrix inversion 4-D data assimilation (FDDA) method in an iterative inverse modeling framework of the CMAQ-DDM model. Equipped with the decoupled direct method, CMAQ-DDM enables simultaneous calculation of the sensitivity coefficients of pollutant concentrations to emissions to be used in the inversions. Primary pollutant concentrations measured by the multiple platforms (TCEQ ground-based, NOAA WP-3D aircraft and Ronald H. Brown vessel, and UH Moody Tower) during TexAQS 2006 have been integrated for the use in the inverse modeling. Firstly pseudo-data analyses have been conducted to assess the two methods, taking a coarse spatial resolution emission inventory as a case. Model base case concentrations of isoprene and ozone at arbitrarily selected ground grid cells were perturbed to generate pseudo measurements with different assumed Gaussian uncertainties expressed by 1-sigma standard deviations. Single-species inversions have been conducted with both methods for isoprene and NOx surface emissions from eight states in the Southeastern United States by using the pseudo measurements of isoprene and ozone, respectively. Utilization of ozone pseudo data to invert for NOx emissions serves only for the purpose of method assessment. Both the Kalman filter and FDDA methods show good performance in tuning arbitrarily shifted a priori emissions to the base case “true” values within 3-4 iterations even for the nonlinear responses of ozone to NOx emissions. While the Kalman filter has better performance under the situation of very large observational uncertainties, the batch matrix FDDA method is better suited for incorporating temporally and spatially irregular data such as those measured by NOAA aircraft and ship. After validating the methods with the pseudo data, the inverse technique is applied to improve emission estimates of NOx from different source sectors and regions in the Houston metropolitan area by using NOx measurements during TexAQS 2006. EPA NEI2005-based and Texas-specified Emission Inventories for 2006 are used as the a priori emission estimates before optimization. The inversion results will be presented and discussed. Future work will conduct inverse modeling for additional species, and then perform a multi-species inversion for emissions consistency and reconciliation with secondary pollutants such as ozone.

  11. Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.

    PubMed

    Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor

    2017-12-01

    In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.

  12. Anomalous cooling and heating - the Mpemba effect and its inverse

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyue; Raz, Oren

    Under certain conditions, it takes a shorter time to cool a hot object than to cool the same object initiated at a lower temperature. This counter-intuitive phenomenon - the 'Mpemba Effect'\\x9D, has been observed in a variety of systems. So far, no generic mechanism was suggested to explain this effect. In the theoretical framework of non-equilibrium thermodynamics, we construct a model to describe this effect and illustrates the fundamental principles behind it. In addition, we predict and demonstrate an inverse Mpemba effect: it can take a shorter time to heat a cold object than a warmer one. We derive sufficient conditions for the occurrences of both the forward and the inverse Mpemba effects, and suggest experiments to further study the non-equilibrium nature of these effects. Z.L. acknowledges financial support from the NSF under Grant DMR-1206971. O.R. acknowledges financial support from the James S. McDonnell Foundation.

  13. Using machine learning to accelerate sampling-based inversion

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Sambridge, M.

    2017-12-01

    In most cases, a complete solution to a geophysical inverse problem (including robust understanding of the uncertainties associated with the result) requires a sampling-based approach. However, the computational burden is high, and proves intractable for many problems of interest. There is therefore considerable value in developing techniques that can accelerate sampling procedures.The main computational cost lies in evaluation of the forward operator (e.g. calculation of synthetic seismograms) for each candidate model. Modern machine learning techniques-such as Gaussian Processes-offer a route for constructing a computationally-cheap approximation to this calculation, which can replace the accurate solution during sampling. Importantly, the accuracy of the approximation can be refined as inversion proceeds, to ensure high-quality results.In this presentation, we describe and demonstrate this approach-which can be seen as an extension of popular current methods, such as the Neighbourhood Algorithm, and bridges the gap between prior- and posterior-sampling frameworks.

  14. Development of the WRF-CO2 4D-Var assimilation system v1.0

    NASA Astrophysics Data System (ADS)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  15. Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.

    2016-12-01

    Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.

  16. exocartographer: Constraining surface maps orbital parameters of exoplanets

    NASA Astrophysics Data System (ADS)

    Farr, Ben; Farr, Will M.; Cowan, Nicolas B.; Haggard, Hal M.; Robinson, Tyler

    2018-05-01

    exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.

  17. Turning Teacher Education Upside Down: Enacting the Inversion of Teacher Preparation through the Symbiotic Relationship of Theory and Practice

    ERIC Educational Resources Information Center

    Gelfuso, Andrea; Dennis, Danielle V.; Parker, Audra

    2015-01-01

    Recent calls for a shift to clinically-based models of teacher preparation prompt a research focus on the quality of classroom experiences in which pre-service teachers engage and the level to which theory and practice connect to inform those experiences. Developing a theoretical framework to conceptualize an approach to this work is an essential…

  18. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tupek, Michael R.

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- putmore » parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.« less

  19. Dynamic motion planning of 3D human locomotion using gradient-based optimization.

    PubMed

    Kim, Hyung Joo; Wang, Qian; Rahmatalla, Salam; Swan, Colby C; Arora, Jasbir S; Abdel-Malek, Karim; Assouline, Jose G

    2008-06-01

    Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.

  20. The 2-D magnetotelluric inverse problem solved with optimization

    NASA Astrophysics Data System (ADS)

    van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven

    2011-02-01

    The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.

  1. On the Impact of Granularity of Space-Based Urban CO2 Emissions in Urban Atmospheric Inversions: A Case Study for Indianapolis, IN

    NASA Technical Reports Server (NTRS)

    Oda, Tomohiro; Lauvaux, Thomas; Lu, Dengsheng; Rao, Preeti; Miles, Natasha L.; Richardson, Scott J.; Gurney, Kevin R.

    2017-01-01

    Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network deployed across the city. However, city-level emission data, used as a priori emissions, are also a key component in the atmospheric inversion framework. Currently, fine-grained emission inventories (EIs) able to resolve GHG city emissions at high spatial resolution, are only available for few major cities across the globe. Following the INFLUX inversion case with a global 1x1 km ODIAC fossil fuel CO2 emission dataset, we further improved the ODIAC emission field and examined its utility as a prior for the city scale inversion. We disaggregated the 1x1 km ODIAC non-point source emissions using geospatial datasets such as the global road network data and satellite-data driven surface imperviousness data to a 3030 m resolution. We assessed the impact of the improved emission field on the inversion result, relative to priors in previous studies (Hestia and ODIAC). The posterior total emission estimate (5.1 MtC/yr) remains statistically similar to the previous estimate with ODIAC (5.3 MtC/yr). However, the distribution of the flux corrections was very close to those of Hestia inversion and the model-observation mismatches were significantly reduced both in forward and inverse runs, even without hourly temporal changes in emissions. EIs reported by cities often do not have estimates of spatial extents. Thus, emission disaggregation is a required step when verifying those reported emissions using atmospheric models. Our approach offers gridded emission estimates for global cities that could serves as a prior for inversion, even without locally reported EIs in a systematic way to support city-level Measuring, Reporting and Verification (MRV) practice implementation.

  2. The Inverse Relation between Multiplication and Division: Concepts, Procedures, and a Cognitive Framework

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; LeFevre, Jo-Anne

    2012-01-01

    Researchers have speculated that children find it more difficult to acquire conceptual understanding of the inverse relation between multiplication and division than that between addition and subtraction. We reviewed research on children and adults' use of shortcut procedures that make use of the inverse relation on two kinds of problems:…

  3. Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi

    2017-11-01

    Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.

  4. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    PubMed

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Framework GRASP: routine library for optimize processing of aerosol remote sensing observation

    NASA Astrophysics Data System (ADS)

    Fuertes, David; Torres, Benjamin; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Federspiel, Christian

    The present the development of a Framework for the Generalized Retrieval of Aerosol and Surface Properties (GRASP) developed by Dubovik et al., (2011). The framework is a source code project that attempts to strengthen the value of the GRASP inversion algorithm by transforming it into a library that will be used later for a group of customized application modules. The functions of the independent modules include the managing of the configuration of the code execution, as well as preparation of the input and output. The framework provides a number of advantages in utilization of the code. First, it implements loading data to the core of the scientific code directly from memory without passing through intermediary files on disk. Second, the framework allows consecutive use of the inversion code without the re-initiation of the core routine when new input is received. These features are essential for optimizing performance of the data production in processing of large observation sets, such as satellite images by the GRASP. Furthermore, the framework is a very convenient tool for further development, because this open-source platform is easily extended for implementing new features. For example, it could accommodate loading of raw data directly onto the inversion code from a specific instrument not included in default settings of the software. Finally, it will be demonstrated that from the user point of view, the framework provides a flexible, powerful and informative configuration system.

  6. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    NASA Astrophysics Data System (ADS)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The aircraft mixing ratios are applied as a top down constraint in Maximum Likelihood Estimation (MLE) and Bayesian inversion frameworks that solves for parameters controlling the flux. Posterior parameter estimates are used to estimate the carbon budget of the BAB. Preliminary results show that the STILT-VPRM model simulates the net emission of CO2 during both transition periods reasonably well. There is significant enhancement from biomass burning during the November 2008 profiles and some from fossil fuel combustion during the May 2009 flights. ΔCO/ΔCO2 emission ratios are used in combination with continuous observations of CO to remove the CO2 contributions from biomass burning and fossil fuel combustion from the observed CO2 measurements resulting in better agreement of observed and modeled aircraft data. Comparing column calculations for each of the vertical profiles shows our model represents the variability in the diurnal cycle. The high altitude CO2 values from above 3500m are similar to the lateral boundary conditions from CarbonTracker 2010 and GEOS-Chem indicating little influence from surface fluxes at these levels. The MLE inversion provides scaling factors for GEE and R for each of the 8 vegetation types and a Bayesian inversion is being conducted. Our initial inversion results suggest the BAB represents a small net source of CO2 during both of the BARCA intensives.

  7. Signature inversion / chiral-twin bands in odd-odd Pr nuclei?

    NASA Astrophysics Data System (ADS)

    Fetea, Mirela; Thompson, Sarah

    2001-10-01

    Over the past few years, sufficient data have been accumulated to enable a meaningful study of the systematic trends of the signature inversion (inversion point shift in spin with increasing proton and neutron numbers in a chain of isotones / isotopes as well as the magnitude of odd-even staggering). Our aim is to understand these systematic features within the framework of particle rotor model including both a residual pn interaction and a γ deformation. Signature inversion is present in the bands of odd-odd nuclei , ^120-130Cs, ^124-132La, ^126-134Pr and ^132-136Pm and having an yrast structure built on π h_11/2ν h_11/2 orbitals. Pr isotopes seem to indicate an inversion decreasing for smaller neutron numbers, trend that is opposite for the Cs nuclei(J.F. Smith et al., Phys. Lett B 406, 7 (1997)). Why? A question that remains to be answered is if there is any relation of signature inversion to chiral twin bands (two ''look alike positive parity'' bands proposed for as in ). The lower band has signature inversion all the way up. Could these effects be related to triaxiality? Can one trust an apparent conclusion suggested by L.L. Riedinger( L.L. Riedinger, talk presented at High) Spin Physics 2001, Warsaw, Poland, February, 2001, to be published in Acta Phys. Pol.: ''signature inversion in an odd-odd band of two quasiparticles pointed along different axes is always associated with the formation of chiral twin bands''?

  8. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  9. A test of geographic assignment using isotope tracers in feathers of known origin

    USGS Publications Warehouse

    Wunder, Michael B.; Kester, C.L.; Knopf, F.L.; Rye, R.O.

    2005-01-01

    We used feathers of known origin collected from across the breeding range of a migratory shorebird to test the use of isotope tracers for assigning breeding origins. We analyzed δD, δ13C, and δ15N in feathers from 75 mountain plover (Charadrius montanus) chicks sampled in 2001 and from 119 chicks sampled in 2002. We estimated parameters for continuous-response inverse regression models and for discrete-response Bayesian probability models from data for each year independently. We evaluated model predictions with both the training data and by using the alternate year as an independent test dataset. Our results provide weak support for modeling latitude and isotope values as monotonic functions of one another, especially when data are pooled over known sources of variation such as sample year or location. We were unable to make even qualitative statements, such as north versus south, about the likely origin of birds using both δD and δ13C in inverse regression models; results were no better than random assignment. Probability models provided better results and a more natural framework for the problem. Correct assignment rates were highest when considering all three isotopes in the probability framework, but the use of even a single isotope was better than random assignment. The method appears relatively robust to temporal effects and is most sensitive to the isotope discrimination gradients over which samples are taken. We offer that the problem of using isotope tracers to infer geographic origin is best framed as one of assignment, rather than prediction.

  10. Dynamical Dark Matter from thermal freeze-out

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Fennick, Jacob; Kumar, Jason; Thomas, Brooks

    2018-03-01

    In the Dynamical Dark-Matter (DDM) framework, the dark sector comprises a large number of constituent dark particles whose individual masses, lifetimes, and cosmological abundances obey specific scaling relations with respect to each other. In particular, the most natural versions of this framework tend to require a spectrum of cosmological abundances which scale inversely with mass, so that dark-sector states with larger masses have smaller abundances. Thus far, DDM model-building has primarily relied on nonthermal mechanisms for abundance generation such as misalignment production, since these mechanisms give rise to abundances that have this property. By contrast, the simplest versions of thermal freeze-out tend to produce abundances that increase, rather than decrease, with the mass of the dark-matter component. In this paper, we demonstrate that there exist relatively simple modifications of the traditional thermal freeze-out mechanism which "flip" the resulting abundance spectrum, producing abundances that scale inversely with mass. Moreover, we demonstrate that a far broader variety of scaling relations between lifetimes, abundances, and masses can emerge through thermal freeze-out than through the nonthermal mechanisms previously considered for DDM ensembles. The results of this paper thus extend the DDM framework into the thermal domain and essentially allow us to "design" our resulting DDM ensembles at will in order to realize a rich array of resulting dark-matter phenomenologies.

  11. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  12. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these machine learning models and the advantages and disadvantages for each approach are discussed. These results indicate that using the proposed two-step methodology leads to significant reduction in user-fatigue without deteriorating the solution quality of the IMOGA.

  13. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  14. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our practices and experiences will help other researchers who are creating communities around their own scientific software. As this session suggests, "software is critical to the success of science," but, it is the *communities* of researchers that must be supported as we strive to create top quality research tools.

  15. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate fractionation from a pure marine source, indicating a link between inversion strength and moistening of the lower troposphere from the outflow of shallow convection. This approach can be applied in other settings and the results can be used to test parameterizations in climate models.

  16. Using airborne geophysical surveys to improve groundwater resource management models

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  17. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  18. Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model

    PubMed Central

    Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther

    2009-01-01

    In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale. PMID:22399948

  19. Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model.

    PubMed

    Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther

    2009-01-01

    In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.

  20. Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies

    NASA Astrophysics Data System (ADS)

    Harken, B.; Rubin, Y.

    2014-12-01

    There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.

  1. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  2. Accounting for the Complex Surface Structure in Ellipsometric Studies of the Effects of Magnetron Sputtering Modes on the Growth and Optical Properties of In2O3 Films

    NASA Astrophysics Data System (ADS)

    Tikhii, A. A.; Nikolaenko, Yu. M.; Gritskih, V. A.; Svyrydova, K. A.; Murga, V. V.; Zhikhareva, Yu. I.; Zhikharev, I. V.

    2018-03-01

    The efficiency of invoking additional information on optical transmission in solving the inverse problem of ellipsometry by a minimization method is demonstrated in practice for In2O3 fi doped and nondoped with Sn on Al2O3 (012) substrates. This approach allows the thickness and refractive index of thin films with rough surfaces to be uniquely determined. Solutions of the inverse problem in the framework of one-, two-, and multilayer models are compared. The last provides the best description of the experimental data and the correct parameters of the samples. The dependences of the investigated properties of films produced with different magnetron sputtering modes are found using the above methods and models and do not contradict general concepts about the film formation by this material.

  3. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  4. Computational modelling of cellular level metabolism

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Heino, J.; Somersalo, E.

    2008-07-01

    The steady and stationary state inverse problems consist of estimating the reaction and transport fluxes, blood concentrations and possibly the rates of change of some of the concentrations based on data which are often scarce noisy and sampled over a population. The Bayesian framework provides a natural setting for the solution of this inverse problem, because a priori knowledge about the system itself and the unknown reaction fluxes and transport rates can compensate for the insufficiency of measured data, provided that the computational costs do not become prohibitive. This article identifies the computational challenges which have to be met when analyzing the steady and stationary states of multicompartment model for cellular metabolism and suggest stable and efficient ways to handle the computations. The outline of a computational tool based on the Bayesian paradigm for the simulation and analysis of complex cellular metabolic systems is also presented.

  5. Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Vira, Julius; Bocquet, Marc; Sofiev, Mikhail; Saunier, Olivier

    2011-06-01

    In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to help in the assessment of the source term. In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison between French and Finnish frameworks. Two dispersion models have been used: Polair3D and Silam developed in two different research centres. Different release locations, as well as different meteorological situations are tested. The existing and newly planned surveillance networks are used and realistically large multiplicative observational errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors. The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the average performance of the data assimilation system is strong. However there are outlying situations where the inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.

  6. Inverse problems in heterogeneous and fractured media using peridynamics

    DOE PAGES

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less

  7. Ground-penetrating radar research in Belgium: from developments to applications

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Van Meirvenne, Marc; Craeye, Christophe

    2014-05-01

    Ground-penetrating radar research in Belgium spans a series of developments and applications, including mainly ultra wideband radar antenna design and optimization, non-destructive testing for the characterization of the electrical properties of soils and materials, and high-resolution subsurface imaging in agricultural engineering, archeology and transport infrastructures (e.g., road inspection and pipe detection). Security applications have also been the topic of active research for several years (i.e., landmine detection) and developments in forestry have recently been initiated (i.e., for root zone and tree trunk imaging and characterization). In particular, longstanding research has been devoted to the intrinsic modeling of antenna-medium systems for full-wave inversion, thereby providing an effective way for retrieving the electrical properties of soils and materials. Full-wave modeling is a prerequisite for benefiting from the full information contained in the radar data and is necessary to provide robust and accurate estimates of the properties of interest. Nevertheless, this has remained a major challenge in geophysics and electromagnetics for many years, mainly due to the complex interactions between the antennas and the media as well as to the significant computing resources that are usually required. Efforts have also been dedicated to the development of specific inversion strategies to cope with the complexity of the inverse problems usually dealt with as well as ill-posedness issues that arise from a lack of information in the radar data. To circumvent this last limitation, antenna arrays have been developed and modeled in order to provide additional information. Moreover, data fusion ways have been investigated, by mainly combining GPR data with electromagnetic induction complementary information in joint interpretation analyses and inversion procedures. Finally, inversions have been regularized by combining electromagnetics models together with soil hydrodynamic models in mechanistic data assimilation frameworks, assuming process knowledge as information as well. Acknowledgement: GPR research in Belgium benefits from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  8. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  9. Surface Pressure Dependencies in the Geos-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  10. The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian—MCMC method

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng

    2013-02-01

    The estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem. This paper deals with the RFC problem in a Bayesian framework. It uses the unbiased Markov Chain Monte Carlo (MCMC) sampling technique, which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework. In contrast to the global optimization algorithm, the Bayesian—MCMC can obtain not only the approximate solutions, but also the probability distributions of the solutions, that is, uncertainty analyses of solutions. The Bayesian—MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar sea-clutter data. Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter. The inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.

  11. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  12. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  13. Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation.

    PubMed

    Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A; Massafra, Andrea; Pellè, Piergiuseppe

    2015-01-01

    The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages.

  14. Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation

    PubMed Central

    Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A.; Massafra, Andrea; Pellè, Piergiuseppe

    2015-01-01

    The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages. PMID:26617539

  15. A stochastic approach for model reduction and memory function design in hydrogeophysical inversion

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Kellogg, A.; Terry, N.

    2009-12-01

    Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.

  16. A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization.

    PubMed

    Cao, Cheng; Akalin Acar, Zeynep; Kreutz-Delgado, Kenneth; Makeig, Scott

    2012-01-01

    Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.

  17. A framework for estimating stratospheric wind speeds from unknown sources and application to the 2010 December 25 bolide

    NASA Astrophysics Data System (ADS)

    Arrowsmith, Stephen J.; Marcillo, Omar; Drob, Douglas P.

    2013-10-01

    We present a methodology for infrasonic remote sensing of winds in the stratosphere that does not require discrete ground-truth events. Our method uses measured time delays between arrays of sensors to provide group velocities (referred to here as celerities) and then minimizes the difference between observed and predicted celerities by perturbing an initial atmospheric specification. Because we focus on interarray propagation effects, it is not necessary to simulate the full propagation path from source to receiver. This feature allows us to use a relatively simple forward model that is applicable over short-regional distances. By focusing on stratospheric returns, we show that our non-linear inversion scheme converges much better if the starting model contains a strong stratospheric duct. Using the Horizontal Wind Model (HWM)/Mass Spectrometer Incoherent Scatter (MSISE) empirical climatology as a starting model, we demonstrate that the inversion scheme is robust to large uncertainties in backazimuth, but that uncertainties in the measured trace velocity and celerity require the use of prior constraints to ensure suitable convergence. The inversion of synthetic data, using realistic estimates of measurement error, shows that our scheme will nevertheless improve upon a starting model under most scenarios. The inversion scheme is applied to infrasound data recorded from a large event on 2010 December 25, which is presumed to be a bolide, using data from a nine-element infrasound network in Utah. We show that our recorded data require a stronger zonal wind speed in the stratosphere than is present in the HWM profile, and are more consistent with the Ground-to-Space (G2S) profile.

  18. Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin

    NASA Astrophysics Data System (ADS)

    Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.

    2015-12-01

    Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity/permeability and electrical conductivity. The formulae are based on generalized Archie's law for multiple phases. The conductive layers are interpreted as water bearing or geothermal fluids and estimated porosity and permeability indicates potential to act as geothermal aquifer.

  19. Inverse odds ratio-weighted estimation for causal mediation analysis.

    PubMed

    Tchetgen Tchetgen, Eric J

    2013-11-20

    An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Mixed-order phase transition in a one-dimensional model.

    PubMed

    Bar, Amir; Mukamel, David

    2014-01-10

    We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.

  1. Uncertainty Estimation in Tsunami Initial Condition From Rapid Bayesian Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Benavente, R. F.; Dettmer, J.; Cummins, P. R.; Urrutia, A.; Cienfuegos, R.

    2017-12-01

    It is well known that kinematic rupture models for a given earthquake can present discrepancies even when similar datasets are employed in the inversion process. While quantifying this variability can be critical when making early estimates of the earthquake and triggered tsunami impact, "most likely models" are normally used for this purpose. In this work, we quantify the uncertainty of the tsunami initial condition for the great Illapel earthquake (Mw = 8.3, 2015, Chile). We focus on utilizing data and inversion methods that are suitable to rapid source characterization yet provide meaningful and robust results. Rupture models from teleseismic body and surface waves as well as W-phase are derived and accompanied by Bayesian uncertainty estimates from linearized inversion under positivity constraints. We show that robust and consistent features about the rupture kinematics appear when working within this probabilistic framework. Moreover, by using static dislocation theory, we translate the probabilistic slip distributions into seafloor deformation which we interpret as a tsunami initial condition. After considering uncertainty, our probabilistic seafloor deformation models obtained from different data types appear consistent with each other providing meaningful results. We also show that selecting just a single "representative" solution from the ensemble of initial conditions for tsunami propagation may lead to overestimating information content in the data. Our results suggest that rapid, probabilistic rupture models can play a significant role during emergency response by providing robust information about the extent of the disaster.

  2. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.

  3. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    NASA Astrophysics Data System (ADS)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances between the different methane and acetylene sources. The results from these controlled experiments demonstrate that, when the targeted and tracer gases are not well collocated, this new approach provides a better estimate of the emission rates than the tracer release technique. As an example, the relative error between the estimated and actual emission rates is reduced from 32 % with the tracer release technique to 16 % with the combined approach in the case of a tracer located 60 m upwind of a single methane source. Further studies and more complex implementations with more advanced transport models and more advanced optimisations of their configuration will be required to generalise the applicability of the approach and strengthen its robustness.

  4. Diagnostic methods for atmospheric inversions of long-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Randazzo, Nina A.; Chevallier, Frédéric

    2017-06-01

    The ability to predict the trajectory of climate change requires a clear understanding of the emissions and uptake (i.e., surface fluxes) of long-lived greenhouse gases (GHGs). Furthermore, the development of climate policies is driving a need to constrain the budgets of anthropogenic GHG emissions. Inverse problems that couple atmospheric observations of GHG concentrations with an atmospheric chemistry and transport model have increasingly been used to gain insights into surface fluxes. Given the inherent technical challenges associated with their solution, it is imperative that objective approaches exist for the evaluation of such inverse problems. Because direct observation of fluxes at compatible spatiotemporal scales is rarely possible, diagnostics tools must rely on indirect measures. Here we review diagnostics that have been implemented in recent studies and discuss their use in informing adjustments to model setup. We group the diagnostics along a continuum starting with those that are most closely related to the scientific question being targeted, and ending with those most closely tied to the statistical and computational setup of the inversion. We thus begin with diagnostics based on assessments against independent information (e.g., unused atmospheric observations, large-scale scientific constraints), followed by statistical diagnostics of inversion results, diagnostics based on sensitivity tests, and analyses of robustness (e.g., tests focusing on the chemistry and transport model, the atmospheric observations, or the statistical and computational framework), and close with the use of synthetic data experiments (i.e., observing system simulation experiments, OSSEs). We find that existing diagnostics provide a crucial toolbox for evaluating and improving flux estimates but, not surprisingly, cannot overcome the fundamental challenges associated with limited atmospheric observations or the lack of direct flux measurements at compatible scales. As atmospheric inversions are increasingly expected to contribute to national reporting of GHG emissions, the need for developing and implementing robust and transparent evaluation approaches will only grow.

  5. Advanced Machine Learning Emulators of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  6. Development of accelerated Raman and fluorescent Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dumont, Alexander P.; Patil, Chetan

    2018-02-01

    Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lin; Dai, Zhenxue; Gong, Huili

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less

  8. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework

    PubMed Central

    Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.

    2015-01-01

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765

  9. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.

    PubMed

    Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A

    2015-02-21

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.

  10. Ground-State Properties of Mg Isotopes in and Beyond the Island of Inversion through Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Minomo, Kosho; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu

    We analyze recently measured total reaction cross sections (σR) for 24-38Mg incident on 12C targets at 240 MeV/nucleon by using the microscopic framework based on the double folding model and antisymmetrized molecular dynamics (AMD). The framework reproduces not only the measured σR but also other existing measured ground-state properties of Mg Isotopes (spin parity, total binding energy, one-neutron separation energy, and 2+ and 4+ excitation energies) quite well. AMD predicts large deformation from 31Mg19 to a drip-line nucleus 40Mg28, indicating that both the N = 20 and 28 magicities disappear.

  11. Molecular mechanism of polyacrylate helix sense switching across its free energy landscape.

    PubMed

    Pietropaolo, Adriana; Nakano, Tamaki

    2013-04-17

    Helical polymers with switchable screw sense are versatile frameworks for chiral functional materials. In this work, we reconstructed the free energy landscape of helical poly(2,7-bis(4-tert-butylphenyl)fluoren-9-yl acrylate) [poly(BBPFA)], as its racemization is selectively driven by light without any rearrangement of chemical bonds. The chirality inversion was enforced by atomistic free energy simulations using chirality indices as reaction coordinates. The free energy landscape reproduced the experimental electronic circular dichroism spectra. We propose that the chirality inversion of poly(BBPFA) proceeds from a left-handed 31 helix via multistate free energy pathways to reach the right-handed 31 helix. The inversion is triggered by the rotation of biphenyl units with an activation barrier of 38 kcal/mol. To the best of our knowledge, this is the first report on the chiral inversion mechanism of a helical polymer determined in a quantitative way in the framework of atomistic free energy simulations.

  12. Action-based effects on music perception

    PubMed Central

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M.

    2013-01-01

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance. PMID:24454299

  13. Action-based effects on music perception.

    PubMed

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M

    2014-01-03

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance.

  14. A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves

    NASA Astrophysics Data System (ADS)

    Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.

    2017-12-01

    This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.

  15. Intelligent earthquake data processing for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Li, T.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Tromp, J.

    2016-12-01

    Due to the increased computational capability afforded by modern and future computing architectures, the seismology community is demanding a more comprehensive understanding of the full waveform information from the recorded earthquake seismograms. Global waveform tomography is a complex workflow that matches observed seismic data with synthesized seismograms by iteratively updating the earth model parameters based on the adjoint state method. This methodology allows us to compute a very accurate model of the earth's interior. The synthetic data is simulated by solving the wave equation in the entire globe using a spectral-element method. In order to ensure the inversion accuracy and stability, both the synthesized and observed seismograms must be carefully pre-processed. Because the scale of the inversion problem is extremely large and there is a very large volume of data to both be read and written, an efficient and reliable pre-processing workflow must be developed. We are investigating intelligent algorithms based on a machine-learning (ML) framework that will automatically tune parameters for the data processing chain. One straightforward application of ML in data processing is to classify all possible misfit calculation windows into usable and unusable ones, based on some intelligent ML models such as neural network, support vector machine or principle component analysis. The intelligent earthquake data processing framework will enable the seismology community to compute the global waveform tomography using seismic data from an arbitrarily large number of earthquake events in the fastest, most efficient way.

  16. Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework

    NASA Astrophysics Data System (ADS)

    Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.

    2015-12-01

    Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.

  17. Constraining planetary atmospheric density: application of heuristic search algorithms to aerodynamic modeling of impact ejecta trajectories

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y. C.; Shirzaei, M.

    2015-12-01

    Impact craters on the terrestrial planets are typically surrounded by a continuous ejecta blanket that the initial emplacement is via ballistic sedimentation. Following an impact event, a significant volume of material is ejected and falling debris surrounds the crater. Aerodynamics rule governs the flight path and determines the spatial distribution of these ejecta. Thus, for the planets with atmosphere, the preserved ejecta deposit directly recorded the interaction of ejecta and atmosphere at the time of impact. In this study, we develop a new framework to establish links between distribution of the ejecta, age of the impact and the properties of local atmosphere. Given the radial distance of the continuous ejecta extent from crater, an inverse aerodynamic modeling approach is employed to estimate the local atmospheric drags and density as well as the lift forces at the time of impact. Based on earlier studies, we incorporate reasonable value ranges for ejection angle, initial velocity, aerodynamic drag, and lift in the model. In order to solve the trajectory differential equations, obtain the best estimate of atmospheric density, and the associated uncertainties, genetic algorithm is applied. The method is validated using synthetic data sets as well as detailed maps of impact ejecta associated with five fresh martian and two lunar impact craters, with diameter of 20-50 m, 10-20 m, respectively. The estimated air density for martian carters range 0.014-0.028 kg/m3, consistent with the recent surface atmospheric density measurement of 0.015-0.020 kg/m3. This constancy indicates the robustness of the presented methodology. In the following, the inversion results for the lunar craters yield air density of 0.003-0.008 kg/m3, which suggest the inversion results are accurate to the second decimal place. This framework will be applied to older martian craters with preserved ejecta blankets, which expect to constrain the long-term evolution of martian atmosphere.

  18. Pseudo-dynamic source characterization accounting for rough-fault effects

    NASA Astrophysics Data System (ADS)

    Galis, Martin; Thingbaijam, Kiran K. S.; Mai, P. Martin

    2016-04-01

    Broadband ground-motion simulations, ideally for frequencies up to ~10Hz or higher, are important for earthquake engineering; for example, seismic hazard analysis for critical facilities. An issue with such simulations is realistic generation of radiated wave-field in the desired frequency range. Numerical simulations of dynamic ruptures propagating on rough faults suggest that fault roughness is necessary for realistic high-frequency radiation. However, simulations of dynamic ruptures are too expensive for routine applications. Therefore, simplified synthetic kinematic models are often used. They are usually based on rigorous statistical analysis of rupture models inferred by inversions of seismic and/or geodetic data. However, due to limited resolution of the inversions, these models are valid only for low-frequency range. In addition to the slip, parameters such as rupture-onset time, rise time and source time functions are needed for complete spatiotemporal characterization of the earthquake rupture. But these parameters are poorly resolved in the source inversions. To obtain a physically consistent quantification of these parameters, we simulate and analyze spontaneous dynamic ruptures on rough faults. First, by analyzing the impact of fault roughness on the rupture and seismic radiation, we develop equivalent planar-fault kinematic analogues of the dynamic ruptures. Next, we investigate the spatial interdependencies between the source parameters to allow consistent modeling that emulates the observed behavior of dynamic ruptures capturing the rough-fault effects. Based on these analyses, we formulate a framework for pseudo-dynamic source model, physically consistent with the dynamic ruptures on rough faults.

  19. Decadal trends in regional CO2 fluxes estimated from atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.

    2016-12-01

    Top-down approach (or atmospheric inversion) using atmospheric transport models and CO2 observations are an effective way to optimize surface fluxes at subcontinental scales and monthly time intervals. We used the CCSR/NIES/FRCGC AGCM-based Chemistry Transport Model (JAMSTEC's ACTM) and atmospheric CO2 concentrations at NOAA, CSIRO, JMA, NIES, NIES-MRI sites from Obspack GLOBALVIEW-CO2 data product (2013) for estimating CO2 fluxes for the period of 1990-2011. Carbon fluxes were estimated for 84 partitions (54 lands + 30 oceans) of the globe by using a Bayesian synthesis inversion framework. A priori fluxes are (1) atmosphere-ocean exchange from Takahashi et al. (2009), (2) 3-hourly terrestrial biosphere fluxes (annually balanced) from CASA model, and (3) fossil fuel fluxes from CDIAC global totals and EDGAR4.2 spatial distributions. Four inversion cases have been tested with 1) 21 sites (sites which have real data fraction of 90 % or more for 1989-2012), 2) 21 sites + CONTRAIL data, 3) 66 sites (over 70 % coverage), and 4) 157 sites. As a result of time-dependent inversions, mean total flux (excluding fossil fuel) for the period 1990-2011 is estimated to be -3.09 ±0.16 PgC/yr (mean and standard deviation of the four cases), where land (incl. biomass burning and land use change) and ocean absorb an average rate of -1.80 ±0.18 and -1.29 ±0.08 PgC/yr, respectively. The average global total sink from 1991-2000 to 2001-2010 increases by about 0.5 PgC/yr, mainly due to the increase in northern and tropical land sinks (Africa, Boreal Eurasia, East Asia and Europe), while ocean sinks show no clear trend. Inversion with CONTRAIL data estimates large positive flux anomalies in late 1997 associated with the 1997/98 El-Nino, while inversion without CONTARIL data between Japan and Australia fails to estimate such large anomalies. Acknowledgements. This work is supported by the Environment Research and Technology Development Fund (2-1401) of the Ministry of the Environment, Japan. We thank all measurement groups for submitting CO2 concentration data to the obspack-GLOBALVIEW product.

  20. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.

  1. Gaussian process regression of chirplet decomposed ultrasonic B-scans of a simulated design case

    NASA Astrophysics Data System (ADS)

    Wertz, John; Homa, Laura; Welter, John; Sparkman, Daniel; Aldrin, John

    2018-04-01

    The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic response from damage features; however, the computational expense of modeling the ultrasonic waves within composites is a major hurdle to implementation. A surrogate forward model with sufficient accuracy and greater computational efficiency is therefore critical to enabling model-based inversion and damage characterization. In this work, a surrogate model is developed on the simulated ultrasonic response from delamination-like structures placed at different locations within a representative composite layup. The resulting B-scans are decomposed via the chirplet transform, and a Gaussian process model is trained on the chirplet parameters. The quality of the surrogate is tested by comparing the B-scan for a delamination configuration not represented within the training data set. The estimated B-scan has a maximum error of ˜15% for an estimated reduction in computational runtime of ˜95% for 200 function calls. This considerable reduction in computational expense makes full 3D characterization of impact damage tractable.

  2. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    NASA Astrophysics Data System (ADS)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  3. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  4. On the potential of GHG emissions estimation by multi-species inverse modeling

    NASA Astrophysics Data System (ADS)

    Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute

    2016-04-01

    Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.

  5. Zeolitic imidazolate framework-methacrylate composite monolith characterization by inverse gas chromatography.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; Aouak, Taieb; ALOthman, Zeid Abdullah

    2016-04-22

    Thermodynamic characterization of butyl methacrylate-co-ethylene dimethacrylate neat monolith and zeolitic imidazolate framework-8 incorporated with butyl methacrylate-co-ethylene dimethacrylate composite monolith were studied using inverse gas chromatography at infinite dilution under 1MPa column pressure and various column temperatures. The free energy of adsorption (ΔGA), enthalpy of adsorption (ΔHA) and entropy of adsorption (ΔSA) were determined using a series of n-alkanes. The dispersive component of surface energy (γS(D)) was estimated by Dorris-Gray and Schultz et al. The composite monolith showed a more energetic surface than the neat monolith. The acidic, KA, and basic, KD, parameters for both materials were estimated using a group of polar probes. A basic character was concluded with more basic behavior for the neat monolith. Flory-Huggins parameter, χ, was taken as a measure of miscibility between the probes with the low molecular weight and the high molecular weight monolith. Inverse gas chromatography provides a better understanding of the role of incorporated zeolitic imidazolate framework (ZIF-8) into the polymer matrix in its monolithic form. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings

    NASA Astrophysics Data System (ADS)

    Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad

    2014-03-01

    Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution. Any existing modelling technique can be included into our framework of mesh decoupling and adaptive sampling to accelerate large-scale 3-D EM inversions.

  7. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    NASA Astrophysics Data System (ADS)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  8. Where's the reef: the role of framework in the Holocene

    USGS Publications Warehouse

    Hubbard, D.K.; Burke, R.B.; Gill, I.P.

    1998-01-01

    Holocene reef models generally emphasize the role of in-place and interlocking framework in the creation of a rigid structure that rises above its surroundings. By extension, a number of ancient biohermal deposits have been disqualified as 'true reefs' owing to their lack of recognizable framework. Fifty-four cores from several eastern Caribbean sites clearly demonstrate that in-place and interlocking framework is not common in these reefs that are comprised of varying mixtures of recognizable coral (primary framework), loose sediment/rubble and secondary framework made up mostly of coralgal fragments bound together by submarine cementation and biological encrustation. Recvovery of primary and secondary framework ranged from 22% (avg.) in branching-coral facies to 33% in intervals dominated by head corals. Accretion rate decreases as expected with water depth. However, the recovery of recognizable coral generally increased with water depth, inversely to presumed coral-growth rates. This pattern reflects a spectrum in the relative importance of coral growth (primary construction), bioerosion, hydromechanical breakdown and the transport of sediment and detritus. The relative importance of each is controlled by the physical-oceanographic conditions at the stie of reef development and will dictate both the architecture and the character of its internal fabric. We do not propose that framework reeds do not exist, as they most assuredly do. However, the fact that so many modern reefs are not dominated by in-place and interlocking framework suggests that its use as the primary determinant of ancient reefs may be unreasonable. We, therefore, propose the abandonment of framework-based models in favor of those that treat framework generation, physical/biological degradation, sedimentation, and encrustation as equal partners in the development of modern and ancient reefs alike.

  9. Heuristics for the inversion median problem

    PubMed Central

    2010-01-01

    Background The study of genome rearrangements has become a mainstay of phylogenetics and comparative genomics. Fundamental in such a study is the median problem: given three genomes find a fourth that minimizes the sum of the evolutionary distances between itself and the given three. Many exact algorithms and heuristics have been developed for the inversion median problem, of which the best known is MGR. Results We present a unifying framework for median heuristics, which enables us to clarify existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new insight: the best strategies continue to refer to the input data rather than reducing the problem to smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses input data to the end of its computation and leverages our previous work with DCJ medians. Finally, we present the results of extensive experimentation showing that our new heuristic outperforms all others in accuracy and, especially, in running time: the heuristic typically returns solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25'000 genes--in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1'000 genes. Conclusion Finding good rearrangement medians, in particular inversion medians, had long been regarded as the computational bottleneck in whole-genome studies. Our new heuristic for inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by providing near-optimal solutions within seconds to minutes on even the largest genomes. PMID:20122203

  10. New Inversion and Interpretation of Public-Domain Electromagnetic Survey Data from Selected Areas in Alaska

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Kass, A.; Saltus, R. W.; Minsley, B. J.; Deszcz-Pan, M.; Bloss, B. R.; Burns, L. E.

    2013-12-01

    Public-domain airborne geophysical surveys (combined electromagnetics and magnetics), mostly collected for and released by the State of Alaska, Division of Geological and Geophysical Surveys (DGGS), are a unique and valuable resource for both geologic interpretation and geophysical methods development. A new joint effort by the US Geological Survey (USGS) and the DGGS aims to add value to these data through the application of novel advanced inversion methods and through innovative and intuitive display of data: maps, profiles, voxel-based models, and displays of estimated inversion quality and confidence. Our goal is to make these data even more valuable for interpretation of geologic frameworks, geotechnical studies, and cryosphere studies, by producing robust estimates of subsurface resistivity that can be used by non-geophysicists. The available datasets, which are available in the public domain, include 39 frequency-domain electromagnetic datasets collected since 1993, and continue to grow with 5 more data releases pending in 2013. The majority of these datasets were flown for mineral resource purposes, with one survey designed for infrastructure analysis. In addition, several USGS datasets are included in this study. The USGS has recently developed new inversion methodologies for airborne EM data and have begun to apply these and other new techniques to the available datasets. These include a trans-dimensional Markov Chain Monte Carlo technique, laterally-constrained regularized inversions, and deterministic inversions which include calibration factors as a free parameter. Incorporation of the magnetic data as an additional constraining dataset has also improved the inversion results. Processing has been completed in several areas, including Fortymile and the Alaska Highway surveys, and continues in others such as the Styx River and Nome surveys. Utilizing these new techniques, we provide models beyond the apparent resistivity maps supplied by the original contractors, allowing us to produce a variety of products, such as maps of resistivity as a function of depth or elevation, cross section maps, and 3D voxel models, which have been treated consistently both in terms of processing and error analysis throughout the state. These products facilitate a more fruitful exchange between geologists and geophysicists and a better understanding of uncertainty, and the process results in iterative development and improvement of geologic models, both on small and large scales.

  11. Unified Bayesian Estimator of EEG Reference at Infinity: rREST (Regularized Reference Electrode Standardization Technique).

    PubMed

    Hu, Shiang; Yao, Dezhong; Valdes-Sosa, Pedro A

    2018-01-01

    The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved issue resulting in inconsistent usages and endless debates. Currently, both the average reference (AR) and the reference electrode standardization technique (REST) are two primary, apparently irreconcilable contenders. We propose a theoretical framework to resolve this reference issue by formulating both (a) estimation of potentials at infinity, and (b) determination of the reference, as a unified Bayesian linear inverse problem, which can be solved by maximum a posterior estimation. We find that AR and REST are very particular cases of this unified framework: AR results from biophysically non-informative prior; while REST utilizes the prior based on the EEG generative model. To allow for simultaneous denoising and reference estimation, we develop the regularized versions of AR and REST, named rAR and rREST, respectively. Both depend on a regularization parameter that is the noise to signal variance ratio. Traditional and new estimators are evaluated with this framework, by both simulations and analysis of real resting EEGs. Toward this end, we leverage the MRI and EEG data from 89 subjects which participated in the Cuban Human Brain Mapping Project. Generated artificial EEGs-with a known ground truth, show that relative error in estimating the EEG potentials at infinity is lowest for rREST. It also reveals that realistic volume conductor models improve the performances of REST and rREST. Importantly, for practical applications, it is shown that an average lead field gives the results comparable to the individual lead field. Finally, it is shown that the selection of the regularization parameter with Generalized Cross-Validation (GCV) is close to the "oracle" choice based on the ground truth. When evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest GCV. This study provides a novel perspective to the EEG reference problem by means of a unified inverse solution framework. It may allow additional principled theoretical formulations and numerical evaluation of performance.

  12. Finite‐fault Bayesian inversion of teleseismic body waves

    USGS Publications Warehouse

    Clayton, Brandon; Hartzell, Stephen; Moschetti, Morgan P.; Minson, Sarah E.

    2017-01-01

    Inverting geophysical data has provided fundamental information about the behavior of earthquake rupture. However, inferring kinematic source model parameters for finite‐fault ruptures is an intrinsically underdetermined problem (the problem of nonuniqueness), because we are restricted to finite noisy observations. Although many studies use least‐squares techniques to make the finite‐fault problem tractable, these methods generally lack the ability to apply non‐Gaussian error analysis and the imposition of nonlinear constraints. However, the Bayesian approach can be employed to find a Gaussian or non‐Gaussian distribution of all probable model parameters, while utilizing nonlinear constraints. We present case studies to quantify the resolving power and associated uncertainties using only teleseismic body waves in a Bayesian framework to infer the slip history for a synthetic case and two earthquakes: the 2011 Mw 7.1 Van, east Turkey, earthquake and the 2010 Mw 7.2 El Mayor–Cucapah, Baja California, earthquake. In implementing the Bayesian method, we further present two distinct solutions to investigate the uncertainties by performing the inversion with and without velocity structure perturbations. We find that the posterior ensemble becomes broader when including velocity structure variability and introduces a spatial smearing of slip. Using the Bayesian framework solely on teleseismic body waves, we find rake is poorly constrained by the observations and rise time is poorly resolved when slip amplitude is low.

  13. Estimating National-scale Emissions using Dense Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.

    2014-12-01

    The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.

  14. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    PubMed

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis.

    PubMed

    Akyildiz, Ali C; Hansen, Hendrik H G; Nieuwstadt, Harm A; Speelman, Lambert; De Korte, Chris L; van der Steen, Antonius F W; Gijsen, Frank J H

    2016-04-01

    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental-numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.

  16. Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms.

    PubMed

    Ghobadi, Kimia; Ghaffari, Hamid R; Aleman, Dionne M; Jaffray, David A; Ruschin, Mark

    2012-06-01

    The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife(®) Perfexion™ (PFX) for intracranial targets. The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to +0.03) and +0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V(100)) between forward and inverse plans was 0.2% (range: -2.4% to +2.0%). After plan renormalization for equivalent coverage (i.e., V(100)), the mean difference in dose to 1 mm(3) of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to +2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to +91 min) when normalized to a calibration dose rate of 3.5 Gy/min. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity. © 2012 American Association of Physicists in Medicine.

  17. Evaluating the impacts of different measurement and model configurations on top-down estimates of UK methane emissions

    NASA Astrophysics Data System (ADS)

    Lunt, Mark; Rigby, Matt; Manning, Alistair; O'Doherty, Simon; Stavert, Ann; Stanley, Kieran; Young, Dickon; Pitt, Joseph; Bauguitte, Stephane; Allen, Grant; Helfter, Carole; Palmer, Paul

    2017-04-01

    The Greenhouse gAs Uk and Global Emissions (GAUGE) project aims to quantify the magnitude and uncertainty of key UK greenhouse gas emissions more robustly than previously achieved. Measurements of methane have been taken from a number of tall-tower and surface sites as well as mobile measurement platforms such as a research aircraft and a ferry providing regular transects off the east coast of the UK. Using the UK Met Office's atmospheric transport model, NAME, and a novel Bayesian inversion technique we present estimates of methane emissions from the UK from a number of different combinations of sites to show the robustness of the UK total emissions to network configuration. The impact on uncertainties will be discussed, focusing on the usefulness of the various measurement platforms for constraining UK emissions. We will examine the effects of observation selection and how a priori assumptions about model uncertainty can affect the emission estimates, even within a data-driven hierarchical inversion framework. Finally, we will show the impact of the resolution of the meteorology used to drive the NAME model on emissions estimates, and how to rationalise our understanding of the ability of transport models to represent reality.

  18. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    PubMed

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  19. Nano-Transistor Modeling: Two Dimensional Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    Two quantum mechanical effects that impact the operation of nanoscale transistors are inversion layer energy quantization and ballistic transport. While the qualitative effects of these features are reasonably understood, a comprehensive study of device physics in two dimensions is lacking. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL (Drain Induced Barrier Lowering), and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI).

  20. Seismic tomography of northeastern Tibetan Plateau from body wave arrival times and surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Fang, H.; Yao, H.; Zhang, H.

    2017-12-01

    Reliable crustal and upper mantle structure is important to understand expansion of material from the Tibetan plateau to its northeastern margin. Previous studies have used either ambient noise tomography or body wave traveltime tomography to obtain the crustal velocity models in northeastern Tibetan Plateau. However, clear differences appear in these models obtained using different datasets. Here we propose to jointly invert local and teleseismic body wave arrival times and surface wave dispersion data from ambient noise cross correlation to obtain a unified P and S wavespeed model of the crust and upper mantle in NE Tibetan Plateau. Following Fang et al. (2016), we adopt the direct inversion strategy for surface wave data (Fang et al., 2015), which eliminates the need to construct the phase/group velocity maps and allows the straightforward incorporation of surface wave dispersion data into the body wave inversion framework. For body wave data including both local and teleseismic arrival times, we use the fast marching method (Rawlinson et al., 2004) in order to trace multiple seismic phases simultaneously. The joint inversion method takes advantage of the complementary strengths of different data types, with local body wave data constraining more on the P than S wavespeed in the crust, surface wave data most sensitive to S wavespeed in the crust and upper mantle, teleseismic body wave data resolving the upper mantle structure. A series of synthetic tests will be used to show the robustness and superiority of the joint inversion method. Besides, the inverted model will be validated by waveform simulation and comparison with other studies, like receiver function imaging. The resultant P and S wavespeed models, as well as the derived Vp/Vs model, will be essential to understand the regional tectonics of the northeastern Tibetan Plateau, and to address the related geodynamic questions of the Tibetan Plateau formation and expansion.

  1. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  2. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-08-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  3. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  4. Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model

    NASA Technical Reports Server (NTRS)

    Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.

    1997-01-01

    A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.

  5. A New Paradigm for Satellite Retrieval of Hydrologic Variables: The CDRD Methodology

    NASA Astrophysics Data System (ADS)

    Smith, E. A.; Mugnai, A.; Tripoli, G. J.

    2009-09-01

    Historically, retrieval of thermodynamically active geophysical variables in the atmosphere (e.g., temperature, moisture, precipitation) involved some time of inversion scheme - embedded within the retrieval algorithm - to transform radiometric observations (a vector) to the desired geophysical parameter(s) (either a scalar or a vector). Inversion is fundamentally a mathematical operation involving some type of integral-differential radiative transfer equation - often resisting a straightforward algebraic solution - in which the integral side of the equation (typically the right-hand side) contains the desired geophysical vector, while the left-hand side contains the radiative measurement vector often free of operators. Inversion was considered more desirable than forward modeling because the forward model solution had to be selected from a generally unmanageable set of parameter-observation relationships. However, in the classical inversion problem for retrieval of temperature using multiple radiative frequencies along the wing of an absorption band (or line) of a well-mixed radiatively active gas, in either the infrared or microwave spectrums, the inversion equation to be solved consists of a Fredholm integral equation of the 2nd kind - a specific type of transform problem in which there are an infinite number of solutions. This meant that special treatment of the transform process was required in order to obtain a single solution. Inversion had become the method of choice for retrieval in the 1950s because it appealed to the use of mathematical elegance, and because the numerical approaches used to solve the problems (typically some type of relaxation or perturbation scheme) were computationally fast in an age when computers speeds were slow. Like many solution schemes, inversion has lingered on regardless of the fact that computer speeds have increased many orders of magnitude and forward modeling itself has become far more elegant in combination with Bayesian averaging procedures given that the a priori probabilities of occurrence in the true environment of the parameter(s) in question can be approximated (or are actually known). In this presentation, the theory of the more modern retrieval approach using a combination of cloud, radiation and other specialized forward models in conjunction with Bayesian weighted averaging will be reviewed in light of a brief history of inversion. The application of the theory will be cast in the framework of what we call the Cloud-Dynamics-Radiation-Database (CDRD) methodology - which we now use for the retrieval of precipitation from spaceborne passive microwave radiometers. In a companion presentation, we will specifically describe the CDRD methodology and present results for its application within the Mediterranean basin.

  6. A Computationally-Efficient Inverse Approach to Probabilistic Strain-Based Damage Diagnosis

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.; Leser, William P.; Leser, Patrick E.; Newman, John A

    2016-01-01

    This work presents a computationally-efficient inverse approach to probabilistic damage diagnosis. Given strain data at a limited number of measurement locations, Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling are used to estimate probability distributions of the unknown location, size, and orientation of damage. Substantial computational speedup is obtained by replacing a three-dimensional finite element (FE) model with an efficient surrogate model. The approach is experimentally validated on cracked test specimens where full field strains are determined using digital image correlation (DIC). Access to full field DIC data allows for testing of different hypothetical sensor arrangements, facilitating the study of strain-based diagnosis effectiveness as the distance between damage and measurement locations increases. The ability of the framework to effectively perform both probabilistic damage localization and characterization in cracked plates is demonstrated and the impact of measurement location on uncertainty in the predictions is shown. Furthermore, the analysis time to produce these predictions is orders of magnitude less than a baseline Bayesian approach with the FE method by utilizing surrogate modeling and effective numerical sampling approaches.

  7. Intelligence rules of hysteresis in the feedforward trajectory control of piezoelectrically-driven nanostagers

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Jalili, Nader

    2007-02-01

    Piezoelectrically-driven nanostagers have limited performance in a variety of feedforward and feedback positioning applications because of their nonlinear hysteretic response to input voltage. The hysteresis phenomenon is well known for its complex and multi-path behavior. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligence properties of hysteresis with the effects of non-local memories are discussed here. Through performing a set of experiments on a piezoelectrically-driven nanostager with a high resolution capacitive position sensor, it is shown that for the precise prediction of the hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of the hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the ever-present nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect, if memory units are sufficiently chosen for the inverse model.

  8. Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Jalili, Nader

    2006-03-01

    Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.

  9. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Coarse-graining errors and numerical optimization using a relative entropy framework

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2011-03-01

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, Srel, that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.

  11. Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.

    2005-05-01

    Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.

  12. Introducing Python tools for magnetotellurics: MTpy

    NASA Astrophysics Data System (ADS)

    Krieger, L.; Peacock, J.; Inverarity, K.; Thiel, S.; Robertson, K.

    2013-12-01

    Within the framework of geophysical exploration techniques, the magnetotelluric method (MT) is relatively immature: It is still not as widely spread as other geophysical methods like seismology, and its processing schemes and data formats are not thoroughly standardized. As a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, which are sometimes highly adapted to the respective local specifications. Although tools for the estimation of the frequency dependent MT transfer function, as well as inversion and modelling codes, are available, the standards and software for handling MT data are generally not unified throughout the community. To overcome problems that arise from missing standards, and to simplify the general handling of MT data, we have developed the software package "MTpy", which allows the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for various tasks within the standard MT data processing and handling scheme. Besides pure Python classes and functions, MTpy provides wrappers and convenience scripts to call external software, e.g. modelling and inversion codes. Even though still under development, MTpy already contains ca. 250 functions that work on raw and preprocessed data. However, as our aim is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended in the future. It then has the potential to help standardise processing procedures and at same time be a versatile supplement for existing algorithms. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilising MTpy on an example data set collected over a geothermal exploration site in South Australia. Workflow of MT data processing. Within the structural diagram, the MTpy sub-packages are shown in red (time series data processing), green (handling of EDI files and impedance tensor data), yellow (connection to modelling/inversion algorithms), black (impedance tensor interpretation, e.g. by Phase Tensor calculations), and blue (generation of visual representations, e.g pseudo sections or resistivity models).

  13. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the high probability zones of the model space while avoiding the chains to end stuck in a probability maximum. This approach supplies thus a robust way to analyze the tomography imaging uncertainties. The interacting MCMC approach is illustrated on two synthetic examples of tomography of calibration shots such as encountered in induced microseismic studies. On the second application, a wavelet based model parameterization is presented that allows to significantly reduce the dimension of the problem, making thus the algorithm efficient even for a complex velocity model.

  14. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  15. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  16. A framework for testing the use of electric and electromagnetic data to reduce the prediction error of groundwater models

    NASA Astrophysics Data System (ADS)

    Christensen, N. K.; Christensen, S.; Ferre, T. P. A.

    2015-09-01

    Despite geophysics is being used increasingly, it is still unclear how and when the integration of geophysical data improves the construction and predictive capability of groundwater models. Therefore, this paper presents a newly developed HYdrogeophysical TEst-Bench (HYTEB) which is a collection of geological, groundwater and geophysical modeling and inversion software wrapped to make a platform for generation and consideration of multi-modal data for objective hydrologic analysis. It is intentionally flexible to allow for simple or sophisticated treatments of geophysical responses, hydrologic processes, parameterization, and inversion approaches. It can also be used to discover potential errors that can be introduced through petrophysical models and approaches to correlating geophysical and hydrologic parameters. With HYTEB we study alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity. It is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by regularization. For purely hydrologic inversion (HI, only using hydrologic data) we used Tikhonov regularization combined with singular value decomposition. For joint hydrogeophysical inversion (JHI) and sequential hydrogeophysical inversion (SHI) the resistivity estimates from TEM are used together with a petrophysical relationship to formulate the regularization term. In all cases, the regularization stabilizes the inversion, but neither the HI nor the JHI objective function could be minimized uniquely. SHI or JHI with regularization based on the use of TEM data produced estimated hydraulic conductivity fields that bear more resemblance to the reference fields than when using HI with Tikhonov regularization. However, for the studied system the resistivities estimated by SHI or JHI must be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. Much of the lack of value of the geophysical data arises from a mistaken faith in the power of the petrophysical model in combination with geophysical data of low sensitivity, thereby propagating geophysical estimation errors into the hydrologic model parameters. With respect to reducing model prediction error, it depends on the type of prediction whether it has value to include geophysical data in the model calibration. It is found that all calibrated models are good predictors of hydraulic head. When the stress situation is changed from that of the hydrologic calibration data, then all models make biased predictions of head change. All calibrated models turn out to be a very poor predictor of the pumping well's recharge area and groundwater age. The reason for this is that distributed recharge is parameterized as depending on estimated hydraulic conductivity of the upper model layer which tends to be underestimated. Another important insight from the HYTEB analysis is thus that either recharge should be parameterized and estimated in a different way, or other types of data should be added to better constrain the recharge estimates.

  17. Accounting for uncertain fault geometry in earthquake source inversions - I: theory and simplified application

    NASA Astrophysics Data System (ADS)

    Ragon, Théa; Sladen, Anthony; Simons, Mark

    2018-05-01

    The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)

  18. A Flexible framework for forward and inverse modeling of stormwater control measures

    NASA Astrophysics Data System (ADS)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  19. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE PAGES

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...

    2016-06-09

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less

  20. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less

  1. Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Weis, Jared A.; Granero-Molto, Froilan; Spagnoli, Anna

    2010-03-01

    Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. To test this framework, the Lame' constants were reconstructed within the context of a murine cohort (n=6) where there were no differences in treatment post tibia fracture except that half of the mice were allowed to heal 4 days longer (10 day, and 14 day healing time point, respectively). The properties reconstructed were a shear modulus of G=511.2 +/- 295.6 kPa, and 833.3+/- 352.3 kPa for the 10 day, and 14 day time points respectively. The second Lame' constant reconstructed at λ=1002.9 +/-42.9 kPa, and 14893.7 +/- 863.3 kPa for the 10 day, and 14 day time points respectively. An unpaired Student t-test was used to test for statistically significant differences among the groups. While the shear modulus did not meet our criteria for significance, the second Lame' constant did at a value p<0.0001. Traditional metrics that are commonly used within the bone fracture healing research community were not found to be statistically significant.

  2. Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models

    USGS Publications Warehouse

    Nimmo, J.R.; Herkelrath, W.N.; Laguna, Luna A.M.

    2007-01-01

    Numerous models are in widespread use for the estimation of soil water retention from more easily measured textural data. Improved models are needed for better prediction and wider applicability. We developed a basic framework from which new and existing models can be derived to facilitate improvements. Starting from the assumption that every particle has a characteristic dimension R associated uniquely with a matric pressure ?? and that the form of the ??-R relation is the defining characteristic of each model, this framework leads to particular models by specification of geometric relationships between pores and particles. Typical assumptions are that particles are spheres, pores are cylinders with volume equal to the associated particle volume times the void ratio, and that the capillary inverse proportionality between radius and matric pressure is valid. Examples include fixed-pore-shape and fixed-pore-length models. We also developed alternative versions of the model of Arya and Paris that eliminate its interval-size dependence and other problems. The alternative models are calculable by direct application of algebraic formulas rather than manipulation of data tables and intermediate results, and they easily combine with other models (e.g., incorporating structural effects) that are formulated on a continuous basis. Additionally, we developed a family of models based on the same pore geometry as the widely used unsaturated hydraulic conductivity model of Mualem. Predictions of measurements for different suitable media show that some of the models provide consistently good results and can be chosen based on ease of calculations and other factors. ?? Soil Science Society of America. All rights reserved.

  3. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    PubMed

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  4. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries

    PubMed Central

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-01-01

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications. PMID:27600885

  5. Downscaling the NOAA CarbonTracker Inversion for North America

    NASA Astrophysics Data System (ADS)

    Petron, G.; Andrews, A. E.; Chen, H.; Trudeau, M. E.; Eluszkiewicz, J.; Nehrkorn, T.; Henderson, J.; Sweeney, C.; Karion, A.; Masarie, K.; Bruhwiler, L.; Miller, J. B.; Miller, B. R.; Peters, W.; Gourdji, S. M.; Mueller, K. L.; Michalak, A. M.; Tans, P. P.

    2011-12-01

    We are developing a regional extension of the NOAA CarbonTracker CO2 data-assimilation system for a limited domain covering North America. The regional assimilation will use pre-computed and species-independent atmospheric sampling footprints from a Lagrangian Particle Dispersion Model. Each footprint relates an observed trace gas concentration to upwind fluxes. Once a footprint library has been computed, it can be used repeatedly to quickly test different inversion strategies and, importantly, for inversions using multiple species data (e.g., anthropogenic tracers such as radiocarbon and carbon monoxide and biological tracers such as carbonyl sulfide and stable isotopes of CO2). The current global CarbonTracker (CT) assimilation framework has some important limitations. For example, the assimilation adjusts scaling factors for different vegetation classes within large regions. This means, for example, that all crops within temperate North America are scaled together. There is currently no distinction between crops such as corn and sorghum, which utilize the C4 photosynthesis pathway and C3 crops like soybeans, wheat, cotton, etc. The optimization scales only the net CO2 flux, rather than adjusting photosynthesis and respiration fluxes separately, which limits the flexibility of the inversion and sometimes results in unrealistic diurnal cycles of CO2 flux. The time-series of residuals (CT - observed) for continental sites in North America reveals a persistent excess of CO2 during summer. This summertime positive bias is also apparent in the comparison of CT posterior CO2 with aircraft data and with data from Pacific marine boundary layer sites, suggesting that some of the problem may originate outside of North America. For the regional inversion, we will use footprints from the Stochastic Time-Inverted Lagrangian Transport Model driven by meteorological fields from a customized high-resolution simulation with the Weather Research Forecast (WRF) model. We will use empirically corrected boundary conditions in order to minimize sensitivity to inaccurate fluxes or transport outside of our domain. We plan to test a variety of inversion strategies that effectively exploit CO2 and isotopic data from the relatively dense North American sampling network for 2007-2010.

  6. Using sequential self-calibration method to identify conductivity distribution: Conditioning on tracer test data

    USGS Publications Warehouse

    Hu, B.X.; He, C.

    2008-01-01

    An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.

  7. Uncertainty quantification of crustal scale thermo-chemical properties in Southeast Australia

    NASA Astrophysics Data System (ADS)

    Mather, B.; Moresi, L. N.; Rayner, P. J.

    2017-12-01

    The thermo-chemical properties of the crust are essential to understanding the mechanical and thermal state of the lithosphere. The uncertainties associated with these parameters are connected to the available geophysical observations and a priori information to constrain the objective function. Often, it is computationally efficient to reduce the parameter space by mapping large portions of the crust into lithologies that have assumed homogeneity. However, the boundaries of these lithologies are, in themselves, uncertain and should also be included in the inverse problem. We assimilate geological uncertainties from an a priori geological model of Southeast Australia with geophysical uncertainties from S-wave tomography and 174 heat flow observations within an adjoint inversion framework. This reduces the computational cost of inverting high dimensional probability spaces, compared to probabilistic inversion techniques that operate in the `forward' mode, but at the sacrifice of uncertainty and covariance information. We overcome this restriction using a sensitivity analysis, that perturbs our observations and a priori information within their probability distributions, to estimate the posterior uncertainty of thermo-chemical parameters in the crust.

  8. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  9. Rank distributions: A panoramic macroscopic outlook

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  10. Rank distributions: a panoramic macroscopic outlook.

    PubMed

    Eliazar, Iddo I; Cohen, Morrel H

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions-top-down, bottom-up, and global-and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  11. Towards "Inverse" Character Tables? A One-Step Method for Decomposing Reducible Representations

    ERIC Educational Resources Information Center

    Piquemal, J.-Y.; Losno, R.; Ancian, B.

    2009-01-01

    In the framework of group theory, a new procedure is described for a one-step automated reduction of reducible representations. The matrix inversion tool, provided by standard spreadsheet software, is applied to the central part of the character table that contains the characters of the irreducible representation. This method is not restricted to…

  12. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  13. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms.

    PubMed

    Babier, Aaron; Boutilier, Justin J; Sharpe, Michael B; McNiven, Andrea L; Chan, Timothy C Y

    2018-05-10

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate 'inverse plans' that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  14. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  15. Geochemistry and the Understanding of Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.

  16. Seismic velocity and crustal thickness inversions: Moon and Mars

    NASA Astrophysics Data System (ADS)

    Drilleau, Melanie; Blanchette-Guertin, Jean-François; Kawamura, Taichi; Lognonné, Philippe; Wieczorek, Mark

    2017-04-01

    We present results from new inversions of seismic data arrival times acquired by the Apollo active and passive experiments. Markov chain Monte Carlo inversions are used to constrain (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models under the Apollo stations and the artificial and natural impact sites. A full 3-D model of the lunar crustal thickness is then obtained using the GRAIL gravimetric data, anchored by the crustal thicknesses under each Apollo station and impact site. To avoid the use of any seismic reference model, a Bayesian inversion technique is implemented. The advantage of such an approach is to obtain robust probability density functions of interior structure parameters governed by uncertainties on the seismic data arrival times. 1-D seismic velocities are parameterized using C1-Bézier curves, which allow the exploration of both smoothly varying models and first-order discontinuities. The parameters of the inversion include the seismic velocities of P and S waves as a function of depth, the thickness of the crust under each Apollo station and impact epicentre. The forward problem consists in a ray tracing method enabling both the relocation of the natural impact epicenters, and the computation of time corrections associated to the surface topography and the crustal thickness variations under the stations and impact sites. The results show geology-related differences between the different sites, which are due to contrasts in megaregolith thickness and to shallow subsurface composition and structure. Some of the finer structural elements might be difficult to constrain and might fall within the uncertainties of the dataset. However, we use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV upper stage artificial impacts, reducing some of the uncertainties observed in past studies. In the framework of the NASA InSight/SEIS mission to Mars, the method developed in this study will be used to constrain the Martian crustal thickness as soon as the first data will be available (late 2018). For Insight, impacts will be located by MRO data differential analysis, which provide a known location enabling the direct inversion of all differential travel times with respect to P arrival time. We have performed resolution tests to investigate to what extend impact events might help us to constrain the Martian crustal thickness. Due to the high flexibility of the Bayesian algorithm, the interior model will be refined each time a new event will be detected.

  17. Tissue multifractality and hidden Markov model based integrated framework for optimum precancer detection

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-10-01

    We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.

  18. Interpretation of searches for supersymmetry with simplified models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98 inverse femtobarns. The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrainmore » other theoretical models and to compare different supersymmetry-inspired analyses.« less

  19. Exploiting virtual sediment deposits to explore conceptual foundations

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian

    2017-04-01

    Geomorphic concepts and hypotheses are usually formulated based on empiric data from the field or the laboratory (deduction). After translation into models they can be applied to case study scenarios (induction). However, the other way around - expressing hypotheses explicitly by models and test these by empiric data - is a rarely touched trail. There are several models tailored to investigate the boundary conditions and processes that generate, mobilise, route and eventually deposit sediment in a landscape. Thereby, the last part, sediment deposition, is usually omitted. Essentially, there is no model that explicitly focuses on mapping out the characteristics of sedimentary deposits - the material that is used by many disciplines to reconstruct landscape evolution. This contribution introduces the R-package sandbox, a model framework that allows creating and analysing virtual sediment sections for exploratory, explanatory, forecasting and inverse research questions. The R-package sandbox is a probabilistic and rule-based model framework for a wide range of possible applications. The model framework is used here to discuss a set of conceptual questions revolving around geochemical and geochronological methods, such as: How does sample size and sample volume affect age uncertainty? What determines the robustness of sediment fingerprinting results? How does the prepared grain size of the material of interest affect the analysis outcomes? Most of the concepts used in geosciences are underpinned by a set of assumptions, whose robustness and boundary conditions need to be assessed quantitatively. The R-package sandbox is a universal and flexible tool to engage with this challenge.

  20. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.

    2011-12-01

    In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  1. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input file, with preferred parameters values, is given in Appendix A. An example of the plot generated at a normal completion of the inversion is shown in Appendix B.

  2. Characterizing Volumetric Strain at Brady Hot Springs, Nevada, USA Using Geodetic Data, Numerical Models, and Prior Information

    NASA Astrophysics Data System (ADS)

    Reinisch, E. C.; Feigl, K. L.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Akerley, J.

    2017-12-01

    Time-dependent deformation has been observed at Brady Hot Springs using data from the Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) [e.g., Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. We seek to determine the geophysical process governing the observed subsidence. As two end-member hypotheses, we consider thermal contraction and a decrease in pore fluid pressure. A decrease in temperature would cause contraction in the subsurface and subsidence at the surface. A decrease in pore fluid pressure would allow the volume of pores to shrink and also produce subsidence. To simulate these processes, we use a dislocation model that assumes uniform elastic properties in a half space [Okada, 1985]. The parameterization consists of many cubic volume elements (voxels), each of which contracts by closing its three mutually orthogonal bisecting square surfaces. Then we use linear inversion to solve for volumetric strain in each voxel given a measurement of range change. To differentiate between the two possible hypotheses, we use a Bayesian framework with geostatistical prior information. We perform inversion using each prior to decide if one leads to a more geophysically reasonable interpretation than the other. This work is part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" and is supported by the Geothermal Technology Office of the U.S. Department of Energy [DE-EE0006760].

  3. Recent global methane trends: an investigation using hierarchical Bayesian methods

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Stavert, A.; Ganesan, A.; Lunt, M. F.

    2014-12-01

    Following a decade with little growth, methane concentrations began to increase across the globe in 2007, and have continued to rise ever since. The reasons for this renewed growth are currently the subject of much debate. Here, we discuss the recent observed trends, and highlight some of the strengths and weaknesses in current "inverse" methods for quantifying fluxes using observations. In particular, we focus on the outstanding problems of accurately quantifying uncertainties in inverse frameworks. We examine to what extent the recent methane changes can be explained by the current generation of flux models and inventories. We examine the major modes of variability in wetland models along with the Global Fire Emissions Database (GFED) and the Emissions Database for Global Atmospheric Research (EDGAR). Using the Model for Ozone and Related Tracers (MOZART), we determine whether the spatial and temporal atmospheric trends predicted using these emissions can be brought into consistency with in situ atmospheric observations. We use a novel hierarchical Bayesian methodology in which scaling factors applied to the principal components of the flux fields are estimated simultaneously with the uncertainties associated with the a priori fluxes and with model representations of the observations. Using this method, we examine the predictive power of methane flux models for explaining recent fluctuations.

  4. Lagrangian modeling of global atmospheric methane (1990-2012)

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  5. Effect of strain on the electron effective mobility in biaxially strained silicon inversion layers: An experimental and theoretical analysis via atomic force microscopy measurements and Kubo-Greenwood mobility calculations

    NASA Astrophysics Data System (ADS)

    Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François

    2008-03-01

    Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.

  6. A three-dimensional inverse finite element analysis of the heel pad.

    PubMed

    Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet

    2012-03-01

    Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.

  7. Joint Model and Parameter Dimension Reduction for Bayesian Inversion Applied to an Ice Sheet Flow Problem

    NASA Astrophysics Data System (ADS)

    Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.

    2016-12-01

    Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.

  8. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    USGS Publications Warehouse

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of M6.5–7 earthquake rates and also includes types of multifault ruptures seen in nature. Although UCERF3 fits the data better than UCERF2 overall, there may be areas that warrant further site-specific investigation. Supporting products may be of general interest, and we list key assumptions and avenues for future model improvements.

  9. Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: The Llobregat case

    NASA Astrophysics Data System (ADS)

    Vázquez-Suñé, E.; Abarca, E.; Carrera, J.; Capino, B.; Gámez, D.; Pool, M.; Simó, T.; Batlle, F.; Niñerola, J. M.; Ibáñez, X.

    The European Water Framework Directive establishes the basis for Community action in the field of water policy. Water authorities in Catalonia, together with users are designing a management program to improve groundwater status and to assess the impact of infrastructures and city-planning activities on the aquifers and their associated natural systems. The objective is to describe the role of groundwater modelling in addressing the issues raised by the Water Framework Directive, and its application to the Llobregat Delta, Barcelona, Spain. In this case modelling was used to address Water Framework Directive in the following: (1) Characterisation of aquifers and the status of groundwater by integration of existing knowledge and new hydrogeological information. Inverse modelling allowed us to reach an accurate description of the paths and mechanisms for the evolution of seawater intrusion. (2) Quantification of groundwater budget (mass balance). This is especially relevant for those terms that are difficult to asses, such as recharge from river infiltration during floods, which we have found to be very important. (3) Evaluation of groundwater-related environmental needs in aquatic ecosystems. The model allows quantifying groundwater input under natural conditions, which can be used as a reference level for stressed conditions. (4) Evaluation of possible impacts of territory planning (Llobregat river course modification, new railway tunnels, airport and docks enlargement, etc.). (5) Definition of management areas. (6) The assessment of possible future scenarios combined with optimization processes to quantify sustainable pumping rates and design measures to control seawater intrusion. The resulting model has been coupled to a user-friendly interface to allow water managers to design and address corrective measures in an agile and effective way.

  10. The importance of coherence in inverse problems in optics

    NASA Astrophysics Data System (ADS)

    Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.

    1981-12-01

    Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.

  11. The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis

    NASA Astrophysics Data System (ADS)

    Quek, Siu Sin; Chooi, Zheng Hoe; Wu, Zhaoxuan; Zhang, Yong Wei; Srolovitz, David J.

    2016-03-01

    When the grain size in polycrystalline materials is reduced to the nanometer length scale (nanocrystallinity), observations from experiments and atomistic simulations suggest that the yield strength decreases (softening) as the grain size is decreased. This is in contrast to the Hall-Petch relation observed in larger sized grains. We incorporated grain boundary (GB) sliding and dislocation emission from GB junctions into the classical DDD framework, and recovered the smaller is weaker relationship observed in nanocrystalline materials. This current model shows that the inverse Hall-Petch behavior can be obtained through a relief of stress buildup at GB junctions from GB sliding by emitting dislocations from the junctions. The yield stress is shown to vary with grain size, d, by a d 1 / 2 relationship when grain sizes are very small. However, pure GB sliding alone without further plastic accomodation by dislocation emission is grain size independent.

  12. Advances in Geoscience Modeling: Smart Modeling Frameworks, Self-Describing Models and the Role of Standardized Metadata

    NASA Astrophysics Data System (ADS)

    Peckham, Scott

    2016-04-01

    Over the last decade, model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that make it much easier for modelers to connect heterogeneous sets of process models in a plug-and-play manner to create composite "system models". These mechanisms greatly simplify code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing with standardized metadata. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can use the self description functions to learn about each process model in a collection to be coupled and then automatically call framework service components (e.g. regridders, time interpolators and unit converters) as necessary to mediate the differences between them so they can work together. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model or data set to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. Recent efforts to bring powerful uncertainty analysis and inverse modeling toolkits such as DAKOTA into modeling frameworks will also be described. This talk will conclude with an overview of several related modeling projects that have been funded by NSF's EarthCube initiative, namely the Earth System Bridge, OntoSoft and GeoSemantics projects.

  13. OPC and PSM design using inverse lithography: a nonlinear optimization approach

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2006-03-01

    We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.

  14. Results from a Year of Column CO2 Measurements over Paris France using Harris GreenLITE™

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Broquet, G.; Ramonet, M.; Staufer, J.; Vogel, F. R.

    2016-12-01

    In 2013 Harris Corporation and Atmospheric and Environmental Research developed the GreenLITE™ system under a cooperative agreement with the Department of Energy, National Energy Technology Laboratory, to monitor geologic carbon storage sites on the square km scale. Since that time the system has expanded to enable coverage of areas >25 km2, and was deployed over the city of Paris, France, in November 2015. The system consists of two scanning continuous wave laser absorption spectroscopy instruments and a number of reflectors arranged to provide a number of overlapping 2-5 km chords across the 25 km2 area. The system was deployed as a demonstration for the 21st Conference of Parties (COP21), and has since been extended to a full year experiment. Operating GreenLITE for a full year will allow evaluations of seasonalvariability and enable ingestion of these measurements into inversion model frameworks to estimate the city'semissions. High resolution emissions models currently function on scales of 1-4 km2 and use in situ instrumentation located outside of the urban environment for the inversions due to challenges related to high spatio-temporal variability within the complex urban environment. GreenLITE measurements, on the other hand, provide integrated measurements on spatial and temporal scales that are more suitable for these models.This presentation will review the GreenLITE measurement approach and discuss results of the GreenLITE demonstration, including: comparisons with well calibrated Picarro and ThermoFisher in situ instruments located in or near the GreenLITE footprint, comparisons with high resolution model results, and recent steps toward using the GreenLITE data directly in the inversion models.

  15. Coarse-graining errors and numerical optimization using a relative entropy framework.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2011-03-07

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, S(rel), that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework. © 2011 American Institute of Physics.

  16. Predictive assimilation framework to support contaminated site understanding and remediation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.

    2014-12-01

    Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.

  17. Interaction of railway vehicles with track in cross-winds

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Ding, Q. S.

    2006-04-01

    This paper presents a framework for simulating railway vehicle and track interaction in cross-wind. Each 4-axle vehicle in a train is modeled by a 27-degree-of-freedom dynamic system. Two parallel rails of a track are modeled as two continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The vehicle subsystem and the track subsystem are coupled through contacts between wheels and rails based on contact theory. Vertical and lateral rail irregularities simulated using an inverse Fourier transform are also taken into consideration. The simulation of steady and unsteady aerodynamic forces on a moving railway vehicle in cross-wind is then discussed in the time domain. The Hilber Hughes Taylor α-method is employed to solve the nonlinear equations of motion of coupled vehicle and track systems in cross-wind. The proposed framework is finally applied to a railway vehicle running on a straight track substructure in cross-wind. The safety and comfort performance of the moving vehicle in cross-wind are discussed. The results demonstrate that the proposed framework and the associated computer program can be used to investigate interaction problems of railway vehicles with track in cross-wind.

  18. NASA Astrophysics Data System (ADS)

    2018-05-01

    Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.

  19. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  20. Unified Bayesian Estimator of EEG Reference at Infinity: rREST (Regularized Reference Electrode Standardization Technique)

    PubMed Central

    Hu, Shiang; Yao, Dezhong; Valdes-Sosa, Pedro A.

    2018-01-01

    The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved issue resulting in inconsistent usages and endless debates. Currently, both the average reference (AR) and the reference electrode standardization technique (REST) are two primary, apparently irreconcilable contenders. We propose a theoretical framework to resolve this reference issue by formulating both (a) estimation of potentials at infinity, and (b) determination of the reference, as a unified Bayesian linear inverse problem, which can be solved by maximum a posterior estimation. We find that AR and REST are very particular cases of this unified framework: AR results from biophysically non-informative prior; while REST utilizes the prior based on the EEG generative model. To allow for simultaneous denoising and reference estimation, we develop the regularized versions of AR and REST, named rAR and rREST, respectively. Both depend on a regularization parameter that is the noise to signal variance ratio. Traditional and new estimators are evaluated with this framework, by both simulations and analysis of real resting EEGs. Toward this end, we leverage the MRI and EEG data from 89 subjects which participated in the Cuban Human Brain Mapping Project. Generated artificial EEGs—with a known ground truth, show that relative error in estimating the EEG potentials at infinity is lowest for rREST. It also reveals that realistic volume conductor models improve the performances of REST and rREST. Importantly, for practical applications, it is shown that an average lead field gives the results comparable to the individual lead field. Finally, it is shown that the selection of the regularization parameter with Generalized Cross-Validation (GCV) is close to the “oracle” choice based on the ground truth. When evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest GCV. This study provides a novel perspective to the EEG reference problem by means of a unified inverse solution framework. It may allow additional principled theoretical formulations and numerical evaluation of performance. PMID:29780302

  1. Bayesian inversion using a geologically realistic and discrete model space

    NASA Astrophysics Data System (ADS)

    Jaeggli, C.; Julien, S.; Renard, P.

    2017-12-01

    Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.

  2. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  3. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.

  4. Estimation of effective connectivity via data-driven neural modeling

    PubMed Central

    Freestone, Dean R.; Karoly, Philippa J.; Nešić, Dragan; Aram, Parham; Cook, Mark J.; Grayden, David B.

    2014-01-01

    This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. PMID:25506315

  5. Rainfall assimilation in RAMS by means of the Kuo parameterisation inversion: method and preliminary results

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.

    2004-03-01

    In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).

  6. Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Zhan, Z.

    2017-12-01

    Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.

  7. Quantifying VOC emissions from East Asia using 10 years of satellite observations

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; Boersma, F.; van der A, R. J.; Pierre-Francois, C.; Clerbaux, C.

    2016-12-01

    China's emissions are in the spotlight of efforts to mitigate climate change and improve regional and city-scale air quality. Despite growing efforts to better quantify China's emissions, the current estimates are often poor or inadequate. Complementary to bottom-up inventories, inverse modeling of fluxes has the potential to improve those estimates through the use of atmospheric observations of trace gas compounds. As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by anthropogenic and natural sources, satellite observations of HCHO hold the potential to inform us on the spatial and temporal variability of the underlying VOC sources. The 10-year record of space-based HCHO column observations from the OMI instrument is used to constrain VOC emission fluxes in East Asia in a source inversion framework built on the IMAGES chemistry-transport model and its adjoint. The interannual and seasonal variability, spatial distribution and potential trends of the top-down VOC fluxes (anthropogenic, pyrogenic and biogenic) are presented and confronted to existing emission inventories, satellite observations of other species (e.g. glyoxal and nitrogen oxides), and past studies.

  8. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  9. Middle East emissions of VOCs estimated using OMI HCHO observations and the MAGRITTE regional model

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Stavrakou, Trisevgeni; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel

    2017-04-01

    Air quality in the Middle East has considerably deteriorated in the last decades. In particular tropospheric ozone reaches very high levels during summer due to the combination of high solar irradiances with often very high and rapidly evolving anthropogenic emissions of NOx and VOCs associated to oil/gas exploitation and fast urbanisation. In addition, high biogenic VOC emissions are expected in non-desert areas, in particular during summer due to scorching temperatures and high solar irradiances. Both anthropogenic and biogenic VOC emissions are poorly known, however, due to near-absence of experimental constraints on emission factors for local vegetation and industrial and extraction processes. Furthermore, the dependence of emissions on environmental conditions (e.g. soil moisture in the case of biogenic isoprene emissions) is only very crudely parameterized in emission models. Here we use spaceborne (OMI) observations of formaldehyde, a known product of anthropogenic and biogenic VOC oxidation, as constraint in an inversion framework built on a regional model, MAGRITTE (Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace Gas Emissions). MAGRITTE is run at 0.5x0.5 degree resolution, with lateral boundary conditions provided by the global CTM IMAGESv2 (Bauwens et al., 2016). The global and regional models share essentially the same chemistry and physical parameterizations. Emission inversion with MAGRITTE is performed using an adjoint-based iterative procedure, similar to previous inversions using IMAGES. Biogenic VOC emissions are calculated using MEGAN (Muller et al., 2008; Stavrakou et al., 2015), whereas the HTAPv2 emission dataset is used for anthropogenic emissions, with several adjustments for oil/gas exploitation and traffic emissions. The OMI data are regridded onto the model resolution and averaged seasonally in order to reduce noise. Preliminary results indicate that biogenic isoprene emissions are a major VOC source in summertime throughout the "Fertile Crescent" from the Nile Valley to Iraq. Anthropogenic emissions from many large cities (e.g. Bagdad and Cairo) as well as from known oil extraction/refining/handling sites are well detected, while other cities (such as Riyadh) are elusive.

  10. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes

    NASA Astrophysics Data System (ADS)

    Amsallem, David; Tezaur, Radek; Farhat, Charbel

    2016-12-01

    A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.

  11. A theoretical framework for convergence and continuous dependence of estimates in inverse problems for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1988-01-01

    Numerical techniques for parameter identification in distributed-parameter systems are developed analytically. A general convergence and stability framework (for continuous dependence on observations) is derived for first-order systems on the basis of (1) a weak formulation in terms of sesquilinear forms and (2) the resolvent convergence form of the Trotter-Kato approximation. The extension of this framework to second-order systems is considered.

  12. Physics-based subsurface visualization of human tissue.

    PubMed

    Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert

    2007-01-01

    In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.

  13. Multi-Dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques

    NASA Technical Reports Server (NTRS)

    Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.

  14. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-01-01

    The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.

  15. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  16. Reconstructing population exposures to environmental chemicals from biomarkers: challenges and opportunities.

    PubMed

    Georgopoulos, Panos G; Sasso, Alan F; Isukapalli, Sastry S; Lioy, Paul J; Vallero, Daniel A; Okino, Miles; Reiter, Larry

    2009-02-01

    A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.

  17. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less

  18. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Aubert, Julien; Thébault, Erwan

    2015-05-01

    In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.

  19. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Luan, Y.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R.; Steele, L. P.; Kort, E. A.; Wofsy, S. C.; Umezawa, T.

    2015-07-01

    We describe a new 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint, and apply this framework in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples aboard a commercial aircraft (CARIBIC), and quasi-continuous measurements from an airborne pole-to-pole sampling campaign (HIPPO). For a two-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the two-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate of the inverse Hessian for the inversion to evaluate the spatial resolution of emission constraints provided by the observations, and find that significant, spatially explicit constraints can be achieved in locations near and immediately upwind of surface measurements and the HIPPO flight tracks; however, these are mostly confined to North America, Europe, and Australia. None of the current observing networks are able to provide significant spatial information on tropical N2O emissions. There, averaging kernels are highly smeared spatially and extend even to the midlatitudes, so that tropical emissions risk being conflated with those elsewhere. For global inversions, therefore, the current lack of constraints on the tropics also places an important limit on our ability to understand extratropical emissions. Based on the error reduction statistics from the inverse Hessian, we characterize the atmospheric distribution of unconstrained N2O, and identify regions in and downwind of South America, Central Africa, and Southeast Asia where new surface or profile measurements would have the most value for reducing present uncertainty in the global N2O budget.

  20. Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, D. J.; Johnson, J. V.

    2013-07-01

    We introduce a novel, higher order, finite element ice sheet model called VarGlaS (Variational Glacier Simulator), which is built on the finite element framework FEniCS. Contrary to standard procedure in ice sheet modelling, VarGlaS formulates ice sheet motion as the minimization of an energy functional, conferring advantages such as a consistent platform for making numerical approximations, a coherent relationship between motion and heat generation, and implicit boundary treatment. VarGlaS also solves the equations of enthalpy rather than temperature, avoiding the solution of a contact problem. Rather than include a lengthy model spin-up procedure, VarGlaS possesses an automated framework for model inversion. These capabilities are brought to bear on several benchmark problems in ice sheet modelling, as well as a 500 yr simulation of the Greenland ice sheet at high resolution. VarGlaS performs well in benchmarking experiments and, given a constant climate and a 100 yr relaxation period, predicts a mass evolution of the Greenland ice sheet that matches present-day observations of mass loss. VarGlaS predicts a thinning in the interior and thickening of the margins of the ice sheet.

  1. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Venkatakrishnan, Singanallur V.; Clayton, Dwight A.

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials beingmore » imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.« less

  2. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Venkatakrishnan, Singanallur; Clayton, Dwight; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2018-04-01

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials being imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.

  3. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    NASA Astrophysics Data System (ADS)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  4. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    PubMed

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America

  5. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  6. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse

    PubMed Central

    Raz, Oren

    2017-01-01

    Under certain conditions, it takes a shorter time to cool a hot system than to cool the same system initiated at a lower temperature. This phenomenon—the “Mpemba effect”—was first observed in water and has recently been reported in other systems. Whereas several detail-dependent explanations were suggested for some of these observations, no common underlying mechanism is known. Using the theoretical framework of nonequilibrium thermodynamics, we present a widely applicable mechanism for a similar effect, the Markovian Mpemba effect, derive a sufficient condition for its appearance, and demonstrate it explicitly in three paradigmatic systems: the Ising model, diffusion dynamics, and a three-state system. In addition, we predict an inverse Markovian Mpemba effect in heating: Under proper conditions, a cold system can heat up faster than the same system initiated at a higher temperature. We numerically demonstrate that this inverse effect is expected in a 1D antiferromagnet nearest-neighbors interacting Ising chain in the presence of an external magnetic field. Our results shed light on the mechanism behind anomalous heating and cooling and suggest that it should be possible to observe these in a variety of systems. PMID:28461467

  7. Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density

    NASA Astrophysics Data System (ADS)

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.

    2016-11-01

    The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.

  8. Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models

    NASA Astrophysics Data System (ADS)

    Aubert, Julien

    2013-02-01

    This paper introduces inverse geodynamo modelling, a framework imaging flow throughout the Earth's core from observations of the geomagnetic field and its secular variation. The necessary prior information is provided by statistics from 3-D and self-consistent numerical simulations of the geodynamo. The core method is a linear estimation (or Kalman filtering) procedure, combined with standard frozen-flux core surface flow inversions in order to handle the non-linearity of the problem. The inversion scheme is successfully validated using synthetic test experiments. A set of four numerical dynamo models of increasing physical complexity and similarity to the geomagnetic field is then used to invert for flows at single epochs within the period 1970-2010, using data from the geomagnetic field models CM4 and gufm-sat-Q3. The resulting core surface flows generally provide satisfactory fits to the secular variation within the level of modelled errors, and robustly reproduce the most commonly observed patterns while additionally presenting a high degree of equatorial symmetry. The corresponding deep flows present a robust, highly columnar structure once rotational constraints are enforced to a high level in the prior models, with patterns strikingly similar to the results of quasi-geostrophic inversions. In particular, the presence of a persistent planetary scale, eccentric westward columnar gyre circling around the inner core is confirmed. The strength of the approach is to uniquely determine the trade-off between fit to the data and complexity of the solution by clearly connecting it to first principle physics; statistical deviations observed between the inverted flows and the standard model behaviour can then be used to quantitatively assess the shortcomings of the physical modelling. Such deviations include the (i) westwards and (ii) hemispherical character of the eccentric gyre. A prior model with angular momentum conservation of the core-mantle inner-core system, and gravitational coupling of reasonable strength between the mantle and the inner core, is shown to produce enough westward drift to resolve statistical deviation (i). Deviation (ii) is resolved by a prior with an hemispherical buoyancy release at the inner-core boundary, with excess buoyancy below Asia. This latter result suggests that the recently proposed inner-core translational instability presently transports the solid inner-core material westwards, opposite to the seismologically inferred long-term trend but consistently with the eccentricity of the geomagnetic dipole in recent times.

  9. Computational structural analysis of an anti-l-amino acid antibody and inversion of its stereoselectivity

    PubMed Central

    Ranieri, Daniel I.; Hofstetter, Heike; Hofstetter, Oliver

    2009-01-01

    The binding site of a monoclonal anti-l-amino acid antibody was modeled using the program SWISS-MODEL. Docking experiments with the enantiomers of phenylalanine revealed that the antibody interacts with l-phenylalanine via hydrogen bonds and hydrophobic contacts, whereas the d-enantiomer is rejected due to steric hindrance. Comparison of the sequences of this antibody and an anti-d-amino acid antibody indicates that both immunoglobulins derived from the same germline progenitor. Substitution of four amino acids residues, three in the framework and one in the complementarity determining regions, allowed in silico conversion of the anti-l-amino acid antibody into an antibody that stereoselectively binds d-phenylalanine. PMID:19472280

  10. Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates

    PubMed Central

    Solway, A.; Botvinick, M.

    2013-01-01

    Recent work has given rise to the view that reward-based decision making is governed by two key controllers: a habit system, which stores stimulus-response associations shaped by past reward, and a goal-oriented system that selects actions based on their anticipated outcomes. The current literature provides a rich body of computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less progress has been made toward formalizing the processes involved in goal-directed decision making. We draw on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology and machine learning, to outline a new theory of goal-directed decision making. Our basic proposal is that the brain, within an identifiable network of cortical and subcortical structures, implements a probabilistic generative model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model. We present a set of simulations implementing the account, which address benchmark behavioral and neuroscientific findings, and which give rise to a set of testable predictions. We also discuss the relationship between the proposed framework and other models of decision making, including recent models of perceptual choice, to which our theory bears a direct connection. PMID:22229491

  11. Towards Interpreting the Signal of CO2 Emissions from Megacities by Applying a Lagrangian Receptor-oriented Model to OCO-2 XCO2 data

    NASA Astrophysics Data System (ADS)

    Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.

    2017-12-01

    Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.

  12. Practices to enable the geophysical research spectrum: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.

  13. A theoretical formulation of the electrophysiological inverse problem on the sphere

    NASA Astrophysics Data System (ADS)

    Riera, Jorge J.; Valdés, Pedro A.; Tanabe, Kunio; Kawashima, Ryuta

    2006-04-01

    The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.

  14. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  15. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    DTIC Science & Technology

    2015-01-01

    for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of

  16. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  17. A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Zuo, B.; Hu, X.; Li, H.

    2011-12-01

    A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.

  18. Synergising Public Health Concepts with the Sendai Framework for Disaster Risk Reduction: A Conceptual Glossary

    PubMed Central

    Phibbs, Suzanne; Kenney, Christine; Severinsen, Christina; Mitchell, Jon; Hughes, Roger

    2016-01-01

    The Sendai Framework for Disaster Risk Reduction (2015) is a global strategy for addressing disaster risk and resilience that has been ratified by member countries of the United Nations. Its guiding principles emphasise building resilience through inter-sectoral collaboration, as well as partnerships that facilitate community empowerment and address underlying risk factors. Both public health and the emergency management sector face similar challenges related to developing and implementing strategies that involve structural change, facilitating community resilience and addressing individual risk factors. Familiarity with public health principles enables an understanding of the holistic approach to risk reduction that is outlined within the Sendai Framework. We present seven concepts that resonate with contemporary public health practice, namely: the social determinants of health; inequality and inequity; the inverse care law; community-based and community development approaches; hard to reach communities and services; the prevention paradox; and the inverse prevention law. These ideas from public health provide a useful conceptual base for the ”new” agenda in disaster risk management that underpins the 2015 Sendai Framework. The relevance of these ideas to disaster risk management and research is illustrated through drawing on the Sendai Framework, disaster literature and exemplars from the 2010–2011 earthquakes in Canterbury, New Zealand. PMID:27983666

  19. Synergising Public Health Concepts with the Sendai Framework for Disaster Risk Reduction: A Conceptual Glossary.

    PubMed

    Phibbs, Suzanne; Kenney, Christine; Severinsen, Christina; Mitchell, Jon; Hughes, Roger

    2016-12-14

    The Sendai Framework for Disaster Risk Reduction (2015) is a global strategy for addressing disaster risk and resilience that has been ratified by member countries of the United Nations. Its guiding principles emphasise building resilience through inter-sectoral collaboration, as well as partnerships that facilitate community empowerment and address underlying risk factors. Both public health and the emergency management sector face similar challenges related to developing and implementing strategies that involve structural change, facilitating community resilience and addressing individual risk factors. Familiarity with public health principles enables an understanding of the holistic approach to risk reduction that is outlined within the Sendai Framework. We present seven concepts that resonate with contemporary public health practice, namely: the social determinants of health; inequality and inequity; the inverse care law; community-based and community development approaches; hard to reach communities and services; the prevention paradox; and the inverse prevention law. These ideas from public health provide a useful conceptual base for the "new" agenda in disaster risk management that underpins the 2015 Sendai Framework. The relevance of these ideas to disaster risk management and research is illustrated through drawing on the Sendai Framework, disaster literature and exemplars from the 2010-2011 earthquakes in Canterbury, New Zealand.

  20. Herding, minority game, market clearing and efficient markets in a simple spin model framework

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2018-01-01

    We present a novel approach towards the financial Ising model. Most studies utilize the model to find settings which generate returns closely mimicking the financial stylized facts such as fat tails, volatility clustering and persistence, and others. We tackle the model utility from the other side and look for the combination of parameters which yields return dynamics of the efficient market in the view of the efficient market hypothesis. Working with the Ising model, we are able to present nicely interpretable results as the model is based on only two parameters. Apart from showing the results of our simulation study, we offer a new interpretation of the Ising model parameters via inverse temperature and entropy. We show that in fact market frictions (to a certain level) and herding behavior of the market participants do not go against market efficiency but what is more, they are needed for the markets to be efficient.

  1. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.

  2. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  3. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  4. Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Warner, James E.; Leser, William P.; Hochhalter, Jacob D.; Yuan, Fuh-Gwo

    2016-01-01

    Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis data from sources such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finite element-based damage growth models unusable due to prohibitive computation times. However, these types of models are often the only option when attempting to model complex damage growth in real-world structures. Here, a recently developed high-fidelity crack growth model is used which, when compared to finite element-based modeling, has demonstrated reductions in computation times of three orders of magnitude through the use of surrogate models and machine learning. The model is flexible in that only the expensive computation of the crack driving forces is replaced by the surrogate models, leaving the remaining parameters accessible for uncertainty quantification. A probabilistic prognosis framework incorporating this model is developed and demonstrated for non-planar crack growth in a modified, edge-notched, aluminum tensile specimen. Predictions of remaining useful life are made over time for five updates of the damage diagnosis data, and prognostic metrics are utilized to evaluate the performance of the prognostic framework. Challenges specific to the probabilistic prognosis of non-planar fatigue crack growth are highlighted and discussed in the context of the experimental results.

  5. Network design for quantifying urban CO 2 emissions: assessing trade-offs between precision and network density

    DOE PAGES

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...

    2016-11-01

    The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less

  6. Network design for quantifying urban CO 2 emissions: assessing trade-offs between precision and network density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.

    The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less

  7. Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data [Regularized maximum likelihood estimation of ground reflectivity from stripmap SAR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R. Derek; Gunther, Jacob H.; Moon, Todd K.

    In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less

  8. Inverse problems-based maximum likelihood estimation of ground reflectivity for selected regions of interest from stripmap SAR data [Regularized maximum likelihood estimation of ground reflectivity from stripmap SAR data

    DOE PAGES

    West, R. Derek; Gunther, Jacob H.; Moon, Todd K.

    2016-12-01

    In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less

  9. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  10. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  11. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  12. Understanding the relationship between audiomagnetotelluric data and models, and borehole data in a hydrological environment

    USGS Publications Warehouse

    McPhee, D.K.; Pellerin, L.

    2008-01-01

    Audiomagnetotelluric (AMT) data and resulting models are analyzed with respect to geophysical and geological borehole logs in order to clarify the relationship between the two methodologies of investigation of a hydrological environment. Several profiles of AMT data collected in basins in southwestern United States are being used for groundwater exploration and hydrogeological framework studies. In a systematic manner, the AMT data and models are compared to borehole data by computing the equivalent one-dimensional AMT model and comparing with the two-dimensional (2-D) inverse AMT model. The spatial length is used to determine if the well is near enough to the AMT profile to quantify the relationship between the two datasets, and determine the required resolution of the AMT data and models. The significance of the quality of the borehole data when compared to the AMT data is also examined.

  13. Voxel inversion of airborne electromagnetic data for improved model integration

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054 spatially constrained 1D models with 29 layers. For comparison, the SCI inversion models have been gridded on the same grid of the voxel inversion. The new voxel inversion and the classic SCI give similar data fit and inversion models. The voxel inversion decouples the geophysical model from the position of acquired data, and at the same time fits the data as well as the classic SCI inversion. Compared to the classic approach, the voxel inversion is better suited for informing directly (hydro)geological models and for sequential/Joint/Coupled (hydro)geological inversion. We believe that this new approach will facilitate the integration of geophysics, geology and hydrology for improved groundwater and environmental management.

  14. Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes

    NASA Astrophysics Data System (ADS)

    Mehanee, Salah A.

    2015-01-01

    This paper describes a new method for tracing paleo-shear zones of the continental crust by self-potential (SP) data inversion. The method falls within the deterministic inversion framework, and it is exclusively applicable for the interpretation of the SP anomalies measured along a profile over sheet-type structures such as conductive thin films of interconnected graphite precipitations formed on shear planes. The inverse method fits a residual SP anomaly by a single thin sheet and recovers the characteristic parameters (depth to the top h, extension in depth a, amplitude coefficient k, and amount and direction of dip θ) of the sheet. This method minimizes an objective functional in the space of the logarithmed and non-logarithmed model parameters (log( h), log( a), log( k), and θ) successively by the steepest descent (SD) and Gauss-Newton (GN) techniques in order to essentially maintain the stability and convergence of this inverse method. Prior to applying the method to real data, its accuracy, convergence, and stability are successfully verified on numerical examples with and without noise. The method is then applied to SP profiles from the German Continental Deep Drilling Program (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschla - KTB), Rittsteig, and Grossensees sites in Germany for tracing paleo-shear planes coated with graphitic deposits. The comparisons of geologic sections constructed in this paper (based on the proposed deterministic approach) against the existing published interpretations (obtained based on trial-and-error modeling) for the SP data of the KTB and Rittsteig sites have revealed that the deterministic approach suggests some new details that are of some geological significance. The findings of the proposed inverse scheme are supported by available drilling and other geophysical data. Furthermore, the real SP data of the Grossensees site have been interpreted (apparently for the first time ever) by the deterministic inverse scheme from which interpretive geologic cross sections are suggested. The computational efficiency, analysis of the numerical examples investigated, and comparisons of the real data inverted here have demonstrated that the developed deterministic approach is advantageous to the existing interpretation methods, and it is suitable for meaningful interpretation of SP data acquired elsewhere over graphitic occurrences on fault planes.

  15. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  16. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  17. Towards national-scale greenhouse gas emissions evaluation with robust uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Rigby, Matthew; Swallow, Ben; Lunt, Mark; Manning, Alistair; Ganesan, Anita; Stavert, Ann; Stanley, Kieran; O'Doherty, Simon

    2016-04-01

    Through the Deriving Emissions related to Climate Change (DECC) network and the Greenhouse gAs Uk and Global Emissions (GAUGE) programme, the UK's greenhouse gases are now monitored by instruments mounted on telecommunications towers and churches, on a ferry that performs regular transects of the North Sea, on-board a research aircraft and from space. When combined with information from high-resolution chemical transport models such as the Met Office Numerical Atmospheric dispersion Modelling Environment (NAME), these measurements are allowing us to evaluate emissions more accurately than has previously been possible. However, it has long been appreciated that current methods for quantifying fluxes using atmospheric data suffer from uncertainties, primarily relating to the chemical transport model, that have been largely ignored to date. Here, we use novel model reduction techniques for quantifying the influence of a set of potential systematic model errors on the outcome of a national-scale inversion. This new technique has been incorporated into a hierarchical Bayesian framework, which can be shown to reduce the influence of subjective choices on the outcome of inverse modelling studies. Using estimates of the UK's methane emissions derived from DECC and GAUGE tall-tower measurements as a case study, we will show that such model systematic errors have the potential to significantly increase the uncertainty on national-scale emissions estimates. Therefore, we conclude that these factors must be incorporated in national emissions evaluation efforts, if they are to be credible.

  18. Ultra-Scalable Algorithms for Large-Scale Uncertainty Quantification in Inverse Wave Propagation

    DTIC Science & Technology

    2016-03-04

    53] N. Petra , J. Martin , G. Stadler, and O. Ghattas, A computational framework for infinite-dimensional Bayesian inverse problems: Part II...positions: Alen Alexanderian (NC State), Tan Bui-Thanh (UT-Austin), Carsten Burstedde (University of Bonn), Noemi Petra (UC Merced), Georg Stalder (NYU), Hari...Baltimore, MD, Nov. 2002. SC2002 Best Technical Paper Award. [3] A. Alexanderian, N. Petra , G. Stadler, and O. Ghattas, A-optimal design of exper

  19. Energy harvesting from mouse click of robot finger using piezoelectrics

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2017-04-01

    In this paper, we investigate the feasibility of energy harvesting from the mouse click motion using a piezoelectric energy transducer. Specifically, we use a robotic finger to realize repeatable mouse click motion. The robotic finger wears a glove with a pocket for including the piezoelectric material as an energy transducer. We propose a model for the energy harvesting system through the inverse kinematic framework of parallel joints in the finger and the electromechanical coupling equations of the piezoelectric material. Experiments are performed to elucidate the effect of the load resistance and the mouse click motion on energy harvesting.

  20. Effect of Hydrogen Adsorption on the Stone-Wales Transformation in Small-Diameter Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Openov, L. A.; Podlivaev, A. I.

    2018-04-01

    The effect of hydrogenation of (4, 0) and (3, 0) carbon nanotubes on the Stone-Wales transformation is studied in the framework of the nonorthogonal tight-binding model. It is shown that the atomic hydrogen adsorption can lead to both a decrease and an increase in the barriers for the direct and inverse transformations depending on the orientation of a rotating C-C bond with respect to the nanotube axis. The characteristic times of formation and annealing the Stone-Wales defects have been estimated. The Young's moduli have been calculated.

  1. On the Duality of Forward and Inverse Light Transport.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ng, Tian-Tsong; Ramamoorthi, Ravi

    2011-10-01

    Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, it can be shown that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large light transport matrix, which is impractical for realistic resolutions using standard techniques. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion--analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering--that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation, to display images free of global illumination artifacts in real-world environments.

  2. Lattice enumeration for inverse molecular design using the signature descriptor.

    PubMed

    Martin, Shawn

    2012-07-23

    We describe an inverse quantitative structure-activity relationship (QSAR) framework developed for the design of molecular structures with desired properties. This framework uses chemical fragments encoded with a molecular descriptor known as a signature. It solves a system of linear constrained Diophantine equations to reorganize the fragments into novel molecular structures. The method has been previously applied to problems in drug and materials design but has inherent computational limitations due to the necessity of solving the Diophantine constraints. We propose a new approach to overcome these limitations using the Fincke-Pohst algorithm for lattice enumeration. We benchmark the new approach against previous results on LFA-1/ICAM-1 inhibitory peptides, linear homopolymers, and hydrofluoroether foam blowing agents. Software implementing the new approach is available at www.cs.otago.ac.nz/homepages/smartin.

  3. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  4. Constraining gross primary production and ecosystem respiration estimates for North America using atmospheric observations of carbonyl sulfide (OCS) and CO2

    NASA Astrophysics Data System (ADS)

    He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.

    2016-12-01

    Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with observations for OCS, implicating that OCS could provide independent constraint in joint inversion. Optimization makes less total GPP and Re but more NEE, when testing with prior CO2 fluxes from two biosphere models. This study gives an in-depth insight into the role of joint atmospheric OCS and CO2 observations in constraining CO2 fluxes.

  5. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  6. A constrained robust least squares approach for contaminant release history identification

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.

    2006-04-01

    Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.

  7. Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models.

    PubMed

    Lappi, Otto; Mole, Callum

    2018-06-11

    The authors present an approach to the coordination of eye movements and locomotion in naturalistic steering tasks. It is based on recent empirical research, in particular, on driver eye movements, that poses challenges for existing accounts of how we visually steer a course. They first analyze how the ideas of feedback and feedforward processes and internal models are treated in control theoretical steering models within vision science and engineering, which share an underlying architecture but have historically developed in very separate ways. The authors then show how these traditions can be naturally (re)integrated with each other and with contemporary neuroscience, to better understand the skill and gaze strategies involved. They then propose a conceptual model that (a) gives a unified account to the coordination of gaze and steering control, (b) incorporates higher-level path planning, and (c) draws on the literature on paired forward and inverse models in predictive control. Although each of these (a-c) has been considered before (also in the context of driving), integrating them into a single framework and the authors' multiple waypoint identification hypothesis within that framework are novel. The proposed hypothesis is relevant to all forms of visually guided locomotion. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Infrasound data inversion for atmospheric sounding

    NASA Astrophysics Data System (ADS)

    Lalande, J.-M.; Sèbe, O.; Landès, M.; Blanc-Benon, Ph.; Matoza, R. S.; Le Pichon, A.; Blanc, E.

    2012-07-01

    The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) continuously records acoustic waves in the 0.01-10 Hz frequency band, known as infrasound. These waves propagate through the layered structure of the atmosphere. Coherent infrasonic waves are produced by a variety of anthropogenic and natural sources and their propagation is controlled by spatiotemporal variations of temperature and wind velocity. Natural stratification of atmospheric properties (e.g. temperature, density and winds) forms waveguides, allowing long-range propagation of infrasound waves. However, atmospheric specifications used in infrasound propagation modelling suffer from lack and sparsity of available data above an altitude of 50 km. As infrasound can propagate in the upper atmosphere up to 120 km, we assume that infrasonic data could be used for sounding the atmosphere, analogous to the use of seismic data to infer solid Earth structure and the use of hydroacoustic data to infer oceanic structure. We therefore develop an inversion scheme for vertical atmospheric wind profiles in the framework of an iterative linear inversion. The forward problem is treated in the high-frequency approximation using a Hamiltonian formulation and complete first-order ray perturbation theory is developed to construct the Fréchet derivatives matrix. We introduce a specific parametrization for the unknown model parameters based on Principal Component Analysis. Finally, our algorithm is tested on synthetic data cases spanning different seasonal periods and network configurations. The results show that our approach is suitable for infrasound atmospheric sounding on a regional scale.

  9. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.

  10. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.

    2014-03-01

    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

  11. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  12. Neutrino masses and leptogenesis in left-right symmetric models: a review from a model building perspective

    NASA Astrophysics Data System (ADS)

    Hati, Chandan; Patra, Sudhanwa; Pritimita, Prativa; Sarkar, Utpal

    2018-03-01

    In this review, we present several variants of left-right symmetric models in the context of neutrino masses and leptogenesis. In particular, we discuss various low scale seesaw mechanisms like linear seesaw, inverse seesaw, extended seesaw and their implications to lepton number violating process like neutrinoless double beta decay. We also visit an alternative framework of left-right models with the inclusion of vector-like fermions to analyze the aspects of universal seesaw. The symmetry breaking of left-right symmetric model around few TeV scale predicts the existence of massive right-handed gauge bosons W_R and Z_R which might be detected at the LHC in near future. If such signals are detected at the LHC that can have severe implications for leptogenesis, a mechanism to explain the observed baryon asymmetry of the Universe. We review the implications of TeV scale left-right symmetry breaking for leptogenesis.

  13. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  14. The trade-off between number and size of offspring in humans and other primates

    PubMed Central

    Walker, Robert S; Gurven, Michael; Burger, Oskar; Hamilton, Marcus J

    2007-01-01

    Life-history theory posits a fundamental trade-off between number and size of offspring that structures the variability in parental investment across and within species. We investigate this ‘quantity–quality’ trade-off across primates and present evidence that a similar trade-off is also found across natural-fertility human societies. Restating the classic Smith–Fretwell model in terms of allometric scaling of resource supply and offspring investment predicts an inverse scaling relation between birth rate and offspring size and a −¼ power scaling between birth rate and body size. We show that these theoretically predicted relationships, in particular the inverse scaling between number and size of offspring, tend to hold across increasingly finer scales of analyses (i.e. from mammals to primates to apes to humans). The advantage of this approach is that the quantity–quality trade-off in humans is placed into a general framework of parental investment that follows directly from first principles of energetic allocation. PMID:18077252

  15. High spin states in 164Lu

    NASA Astrophysics Data System (ADS)

    Juneja, P.; Gupta, S. L.; Pancholi, S. C.; Kumar, Ashok; Mehta, D.; Chaturvedi, L.; Katoch, S. K.; Malik, S.; Shanker, G.; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.

    1996-03-01

    High spin states in the odd-odd 164Lu nucleus have been investigated for the first time, through in-beam gamma-ray spectroscopy, following the 150Sm(19F,5n) reaction at beam energy Elab=105 MeV. Four bands, including two signature split bands are identified. The interpretation of the experimental results is discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranked shell model. The πh11/2⊗νi13/2 yrast band exhibits anomalous signature splitting and signature inversion is observed at a spin of 18ħ. This provides the missing datum for the systematics of staggering and signature inversion for the neighboring odd-odd N=93 isotones and supports the predictions of angular-momentum projection calculations by Hara and Sun. In the second signature split πh 11/2h9/2 band, the AB neutron crossing occurs at a rotational frequency of ~0.29 MeV. This is indicative of the disappearance of the blocking effect of the odd neutron.

  16. Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Basso, Vittorio; Sasso, Carlo P.; Skokov, Konstantin P.; Gutfleisch, Oliver; Khovaylo, Vladimir V.

    2012-01-01

    Hysteresis features of the direct and inverse magnetocaloric effect associated with first-order magnetostructural phase transitions in Ni-Mn-X (X = Ga, Sn) Heusler alloys have been disclosed by differential calorimetry measurements performed either under a constant magnetic field, H, or by varying H in isothermal conditions. We have shown that the magnetocaloric effect in these alloys crucially depends on the employed measuring protocol. Experimentally observed peculiarities of the magnetocaloric effect have been explained in the framework of a model that accounts for different contributions to the Gibbs energy of austenitic gA and martensitic gM phases. Obtained experimental results have been summarized by plotting a phase fraction of the austenite xA versus the driving force gM-gA. The developed approach allows one to predict reversible and irreversible features of the direct as well as inverse magnetocaloric effect in a variety of materials with first-order magnetic phase transitions.

  17. Text extraction via an edge-bounded averaging and a parametric character model

    NASA Astrophysics Data System (ADS)

    Fan, Jian

    2003-01-01

    We present a deterministic text extraction algorithm that relies on three basic assumptions: color/luminance uniformity of the interior region, closed boundaries of sharp edges and the consistency of local contrast. The algorithm is basically independent of the character alphabet, text layout, font size and orientation. The heart of this algorithm is an edge-bounded averaging for the classification of smooth regions that enhances robustness against noise without sacrificing boundary accuracy. We have also developed a verification process to clean up the residue of incoherent segmentation. Our framework provides a symmetric treatment for both regular and inverse text. We have proposed three heuristics for identifying the type of text from a cluster consisting of two types of pixel aggregates. Finally, we have demonstrated the advantages of the proposed algorithm over adaptive thresholding and block-based clustering methods in terms of boundary accuracy, segmentation coherency, and capability to identify inverse text and separate characters from background patches.

  18. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  19. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography

    PubMed Central

    Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-01-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291

  20. Two-dimensional free-energy surface on the exchange reaction of alkyl chloride/chloride using the QM/MM-MC method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohisa, M.; Yamataka, H.; Dupuis, Michel

    2007-12-05

    Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl- + RCl (R = Me and t-Bu) surrounded by one hundred H2O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R = t-Bu on the free-energy surfacemore » is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R = Me system that proceeds as a typical SN2 reaction. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  1. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.

  2. Hybrid-dual-fourier tomographic algorithm for a fast three-dimensionial optical image reconstruction in turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor)

    2007-01-01

    A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.

  3. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Hamm, L.; Garcia, H.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less

  4. Prescribing joint co-ordinates during model preparation to improve inverse kinematic estimates of elbow joint angles.

    PubMed

    Wells, D J M; Alderson, J A; Dunne, J; Elliott, B C; Donnelly, C J

    2017-01-25

    To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MR PC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MR PC : SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MR PC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  6. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.

    PubMed

    Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti

    2006-02-01

    Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.

  7. Lq -Lp optimization for multigrid fluorescence tomography of small animals using simplified spherical harmonics

    NASA Astrophysics Data System (ADS)

    Edjlali, Ehsan; Bérubé-Lauzière, Yves

    2018-01-01

    We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.

  8. First results from a full-waveform inversion of the African continent using Salvus

    NASA Astrophysics Data System (ADS)

    van Herwaarden, D. P.; Afanasiev, M.; Krischer, L.; Trampert, J.; Fichtner, A.

    2017-12-01

    We present the initial results from an elastic full-waveform inversion (FWI) of the African continent which is melded together within the framework of the Collaborative Seismic Earth Model (CSEM) project. The continent of Africa is one of the most geophysically interesting regions on the planet. More specifically, Africa contains the Afar Depression, which is the only place on Earth where incipient seafloor spreading is sub-aerially exposed, along with other anomalous features such as the topography in the south, and several smaller surface expressions such as the Cameroon Volcanic Line and Congo Basin. Despite its significance, relatively few tomographic images exist of Africa, and, as a result, the debate on the geophysical origins of Africa's anomalies is rich and ongoing. Tomographic images of Africa present unique challenges due to uneven station coverage: while tectonically active areas such as the Afar rift are well sampled, much of the continent exhibits a severe lack of seismic stations. And, while Africa is mostly surrounded by tectonically active spreading plate boundaries, the interior of the continent is seismically quiet. To mitigate such issues, our simulation domain is extended to include earthquakes occurring in the South Atlantic and along the western edge of South America. Waveform modelling and inversion is performed using Salvus, a flexible and high-performance software suite based on the spectral-element method. Recently acquired recordings from the AfricaArray and NARS seismic networks are used to complement data obtained from global networks. We hope that this new model presents a fresh high-resolution image of African geodynamic structure, and helps advance the debate regarding the causative mechanisms of its surface anomalies.

  9. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  10. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    PubMed

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  11. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.« less

  12. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NASA Astrophysics Data System (ADS)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  13. Ground resistivity method and DCIP2D forward and inversion modelling to identify alteration at the Midwest uranium deposit, northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Long, Samuel R. M.; Smith, Richard S.; Hearst, Robert B.

    2017-06-01

    Resistivity methods are commonly used in mineral exploration to map lithology, structure, sulphides and alteration. In the Athabasca Basin, resistivity methods are used to detect alteration associated with uranium. At the Midwest deposit, there is an alteration zone in the Athabasca sandstones that is above a uraniferous conductive graphitic fault in the basement and below a conductive lake at surface. Previous geophysical work in this area has yielded resistivity sections that we feel are ambiguous in the area where the alteration is expected. Resolve® and TEMPEST sections yield an indistinct alteration zone, while two-dimensional (2D) inversions of the ground resistivity data show an equivocal smeared conductive feature in the expected location between the conductive graphite and the conductive lake. Forward modelling alone cannot identify features in the pseudosections that are clearly associated with alteration, as the section is dominated by the feature associated with the near-surface conductive lake; inverse modelling alone produces sections that are smeared and equivocal. We advocate an approach that uses a combination of forward and inverse modelling. We generate a forward model from a synthetic geoelectric section; this forward data is then inverse modelled and compared with the inverse model generated from the field data using the same inversion parameters. The synthetic geoelectric section is then adjusted until the synthetic inverse model closely matches the field inverse model. We found that this modelling process required a conductive alteration zone in the sandstone above the graphite, as removing the alteration zone from the sandstone created an inverse section very dissimilar to the inverse section derived from the field data. We therefore conclude that the resistivity method is able to identify conductive alteration at Midwest even though it is below a conductive lake and above a conductive graphitic fault. We also concluded that resistivity inversions suggest a conductive paleoweathering surface on the top of the basement rocks at the basin/basement unconformity.

  14. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  15. Quantile regression via vector generalized additive models.

    PubMed

    Yee, Thomas W

    2004-07-30

    One of the most popular methods for quantile regression is the LMS method of Cole and Green. The method naturally falls within a penalized likelihood framework, and consequently allows for considerable flexible because all three parameters may be modelled by cubic smoothing splines. The model is also very understandable: for a given value of the covariate, the LMS method applies a Box-Cox transformation to the response in order to transform it to standard normality; to obtain the quantiles, an inverse Box-Cox transformation is applied to the quantiles of the standard normal distribution. The purposes of this article are three-fold. Firstly, LMS quantile regression is presented within the framework of the class of vector generalized additive models. This confers a number of advantages such as a unifying theory and estimation process. Secondly, a new LMS method based on the Yeo-Johnson transformation is proposed, which has the advantage that the response is not restricted to be positive. Lastly, this paper describes a software implementation of three LMS quantile regression methods in the S language. This includes the LMS-Yeo-Johnson method, which is estimated efficiently by a new numerical integration scheme. The LMS-Yeo-Johnson method is illustrated by way of a large cross-sectional data set from a New Zealand working population. Copyright 2004 John Wiley & Sons, Ltd.

  16. Model-based image analysis of a tethered Brownian fibre for shear stress sensing

    PubMed Central

    2017-01-01

    The measurement of fluid dynamic shear stress acting on a biologically relevant surface is a challenging problem, particularly in the complex environment of, for example, the vasculature. While an experimental method for the direct detection of wall shear stress via the imaging of a synthetic biology nanorod has recently been developed, the data interpretation so far has been limited to phenomenological random walk modelling, small-angle approximation, and image analysis techniques which do not take into account the production of an image from a three-dimensional subject. In this report, we develop a mathematical and statistical framework to estimate shear stress from rapid imaging sequences based firstly on stochastic modelling of the dynamics of a tethered Brownian fibre in shear flow, and secondly on a novel model-based image analysis, which reconstructs fibre positions by solving the inverse problem of image formation. This framework is tested on experimental data, providing the first mechanistically rational analysis of the novel assay. What follows further develops the established theory for an untethered particle in a semi-dilute suspension, which is of relevance to, for example, the study of Brownian nanowires without flow, and presents new ideas in the field of multi-disciplinary image analysis. PMID:29212755

  17. Autocorrelated residuals in inverse modelling of soil hydrological processes: a reason for concern or something that can safely be ignored?

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Durner, Wolfgang

    2013-04-01

    Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.

  18. GNSS-ISR data fusion: General framework with application to the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Semeter, Joshua; Hirsch, Michael; Lind, Frank; Coster, Anthea; Erickson, Philip; Pankratius, Victor

    2016-03-01

    A mathematical framework is presented for the fusion of electron density measured by incoherent scatter radar (ISR) and total electron content (TEC) measured using global navigation satellite systems (GNSS). Both measurements are treated as projections of an unknown density field (for GNSS-TEC the projection is tomographic; for ISR the projection is a weighted average over a local spatial region) and discrete inverse theory is applied to obtain a higher fidelity representation of the field than could be obtained from either modality individually. The specific implementation explored herein uses the interpolated ISR density field as initial guess to the combined inverse problem, which is subsequently solved using maximum entropy regularization. Simulations involving a dense meridional network of GNSS receivers near the Poker Flat ISR demonstrate the potential of this approach to resolve sub-beam structure in ISR measurements. Several future directions are outlined, including (1) data fusion using lower level (lag product) ISR data, (2) consideration of the different temporal sampling rates, (3) application of physics-based regularization, (4) consideration of nonoptimal observing geometries, and (5) use of an ISR simulation framework for optimal experiment design.

  19. Real time groove characterization combining partial least squares and SVR strategies: application to eddy current testing

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Salucci, M.; Miorelli, R.; Anselmi, N.; Oliveri, G.; Calmon, P.; Reboud, C.; Massa, A.

    2017-10-01

    A quasi real-time inversion strategy is presented for groove characterization of a conductive non-ferromagnetic tube structure by exploiting eddy current testing (ECT) signal. Inversion problem has been formulated by non-iterative Learning-by-Examples (LBE) strategy. Within the framework of LBE, an efficient training strategy has been adopted with the combination of feature extraction and a customized version of output space filling (OSF) adaptive sampling in order to get optimal training set during offline phase. Partial Least Squares (PLS) and Support Vector Regression (SVR) have been exploited for feature extraction and prediction technique respectively to have robust and accurate real time inversion during online phase.

  20. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    NASA Astrophysics Data System (ADS)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the statistics of the limited number of error sources. These OSSEs indicate that the image resolution has to be finer than 4 km to decrease the uncertainty in the 6 h mean emissions by more than 50 %. More complex experiments assess the impact of more realistic error estimates that current inversion methods do not properly account for, in particular, the systematic measurement errors with spatially correlated patterns. These experiments highlight the difficulty to improve current knowledge on CO2 emissions for urban areas like Paris with CO2 observations from satellites, and call for more technological innovations in the remote sensing of vertically integrated columns of CO2 and in the inversion systems that exploit it.

  1. 3D tomographic reconstruction using geometrical models

    NASA Astrophysics Data System (ADS)

    Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.

    1997-04-01

    We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.

  2. Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms

    NASA Astrophysics Data System (ADS)

    Das, Arindam; Dev, P. S. Bhupal; Mohapatra, Rabindra N.

    2018-01-01

    We calculate the ratio Rℓℓ of same sign (SS) to opposite sign (OS) dileptons in type I and generalized inverse seesaw models and show that it can be anywhere between 0 and 1 depending on the detailed texture of the right-handed neutrino mass matrix. Measurement of Rℓℓ in hadron colliders can therefore provide a way to probe the nature of seesaw mechanism and also to distinguish between the two types of seesaw mechanisms. We work within the framework of left-right symmetric model as an example. We emphasize that coherence of the final states in the WR decay is crucial for this discussion and it requires the right-handed neutrinos to be highly degenerate. We isolate the range of parameters in the model where this effect is observable at the LHC and future colliders.

  3. A model predictive speed tracking control approach for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  4. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  5. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    NASA Astrophysics Data System (ADS)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306

  6. Acoustic response characteristics of unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Zhao, Haibo; Wang, Xiuming; Chen, Shumin; Li, Lailin

    2010-08-01

    By employing the plane wave analysis method, the dispersion equations associated with compressional and shear waves using Santos’s three-phase poroelastic theory were driven. Considering the reservoir pressure, the high frequency corrections and the coupling drag of two fluids in pores, the influences of frequency and gas saturation on the phase velocities and the inverse quality factors of four body waves predicted by Santos’s theory were discussed in detail. The theoretical velocities of the fast compressional and shear waves were compared with the results of the low and high frequency experiments from open publications, respectively. The results showed that they are in good agreement in the low frequency case rather than in the high frequency case. In the latter case, several popular poroelastic models were considered and compared with the experimental data. In the models, the results of White’s theory fit the experimental data, but the parameter b in White’s model has a significant impact on the results. Under the framework of the linear viscoelasticity theory, the attenuation mechanism of Santos’s model was extended, and the comparisons between the experimental and theoretical results were also made with respect to attenuation. For the case of water saturation less than 90%, the extended model makes good predictions of the inverse quality factor of shear wave. There is a significant difference between the experimental and theoretical results for the compressional wave, but the difference can be explained by the experimental data available.

  7. Constraining CO emission estimates using atmospheric observations

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, P. B.

    2012-06-01

    We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr higher compared to the stations-only inversion. Second, MOPITT-only derived biomass burning emissions are reduced with respect to the prior which is in contrast to previous (inverse) modeling studies. Finally, MOPITT derived total emissions are significantly higher for South America and Africa compared to the stations-only inversion. This is likely due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation with surface stations and ground-truth FTIR columns. In the final study we present the first inverse modeling study to estimate CO emissions constrained by both surface (NOAA) and satellite (MOPITT) observations using a bias correction scheme. This approach leads to the identification of a positive bias of maximum 5 ppb in MOPITT column-averaged CO mixing ratios in the remote Southern Hemisphere (SH). The 4D-Var system is used to estimate CO emissions over South America in the period 2006-2010 and to analyze the interannual variability (IAV) of these emissions. We infer robust, high spatial resolution CO emission estimates that show slightly smaller IAV due to fires compared to the Global Fire Emissions Database (GFED3) prior emissions. Moreover, CO emissions probably associated with pre-harvest burning of sugar cane plantations are underestimated in current inventories by 50-100%.

  8. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  9. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.

  10. Remarks on a financial inverse problem by means of Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Cuomo, Salvatore; Di Somma, Vittorio; Sica, Federica

    2017-10-01

    Estimating the price of a barrier option is a typical inverse problem. In this paper we present a numerical and statistical framework for a market with risk-free interest rate and a risk asset, described by a Geometric Brownian Motion (GBM). After approximating the risk asset with a numerical method, we find the final option price by following an approach based on sequential Monte Carlo methods. All theoretical results are applied to the case of an option whose underlying is a real stock.

  11. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  12. The Prediction-Focused Approach: An opportunity for hydrogeophysical data integration and interpretation

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef

    2017-04-01

    Hydrogeophysics is an interdisciplinary field of sciences aiming at a better understanding of subsurface hydrological processes. If geophysical surveys have been successfully used to qualitatively characterize the subsurface, two important challenges remain for a better quantification of hydrological processes: (1) the inversion of geophysical data and (2) their integration in hydrological subsurface models. The classical inversion approach using regularization suffers from spatially and temporally varying resolution and yields geologically unrealistic solutions without uncertainty quantification, making their utilization for hydrogeological calibration less consistent. More advanced techniques such as coupled inversion allow for a direct use of geophysical data for conditioning groundwater and solute transport model calibration. However, the technique is difficult to apply in complex cases and remains computationally demanding to estimate uncertainty. In a recent study, we investigate a prediction-focused approach (PFA) to directly estimate subsurface physical properties from geophysical data, circumventing the need for classic inversions. In PFA, we seek a direct relationship between the data and the subsurface variables we want to predict (the forecast). This relationship is obtained through a prior set of subsurface models for which both data and forecast are computed. A direct relationship can often be derived through dimension reduction techniques. PFA offers a framework for both hydrogeophysical "inversion" and hydrogeophysical data integration. For hydrogeophysical "inversion", the considered forecast variable is the subsurface variable, such as the salinity. An ensemble of possible solutions is generated, allowing uncertainty quantification. For hydrogeophysical data integration, the forecast variable becomes the prediction we want to make with our subsurface models, such as the concentration of contaminant in a drinking water production well. Geophysical and hydrological data are combined to derive a direct relationship between data and forecast. We illustrate the process for the design of an aquifer thermal energy storage (ATES) system. An ATES system can theoretically recover in winter the heat stored in the aquifer during summer. In practice, the energy efficiency is often lower than expected due to spatial heterogeneity of hydraulic properties combined to a non-favorable hydrogeological gradient. A proper design of ATES systems should consider the uncertainty of the prediction related to those parameters. With a global sensitivity analysis, we identify sensitive parameters for heat storage prediction and validate the use of a short term heat tracing experiment monitored with geophysics to generate informative data. First, we illustrate how PFA can be used to successfully derive the distribution of temperature in the aquifer from ERT during the heat tracing experiment. Then, we successfully integrate the geophysical data to predict medium-term heat storage in the aquifer using PFA. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data in a relatively limited time budget.

  13. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  14. Using coupled hydrogeophysical models and data assimilation to enhance the information content in geoelectrical leak detection

    NASA Astrophysics Data System (ADS)

    Tso, C. H. M.; Johnson, T. C.; Song, X.; Chen, X.; Binley, A. M.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) measurements provides indirect observation of hydrological processes in the Earth's shallow subsurface at high spatial and temporal resolutions. ERT has been used for a number of decades to detect leaks and monitor the evolution of associated contaminant plumes. However, this has been limited to a few hazardous environmental sites. Furthermore, an assessment of uncertainty in such applications has thus far been neglected, despite the clear need to provide site managers with appropriate information for decision making purposes. There is a need to establish a framework that allows leak detection with uncertainty assessment from geophysical observations. Ideally such a framework should allow the incorporation of additional data sources in order to reduce uncertainty in predictions. To tackle these issues, we propose an ensemble-based data assimilation framework that evaluates proposed hydrological models (i.e. different hydrogeological units, different leak locations and loads) against observed time-lapse ERT measurements. Each proposed hydrological model is run through the parallel coupled hydrogeophysical code PFLOTRAN-E4D (Johnson et al 2016) to obtain simulated ERT measurements. The ensemble of model proposals is then updated based on data misfit. Our approach does not focus on obtaining detailed images of hydraulic properties or plume movement. Rather, it seeks to estimate the contaminant mass discharge (CMD) across a user-defined plane in space probabilistically. The proposed approach avoids the ambiguity in interpreting detailed hydrological processes from geophysical images. The resultant distributions of CMD give a straightforward metric, with realistic uncertainty bounds, for decision making. The proposed framework is also computationally efficient so that it can exploit large, long-term ERT datasets, making it possible to track time-varying loadings of plume sources. In this presentation, we illustrate our framework on synthetic data and field data collected from an ERT trial simulating a leak at the Sellafield nuclear facility in the UK (Kuras et al 2016). We compare our results to interpretation from geophysical inversion and discuss the additional information that hydrological model proposals provide.

  15. Wavefield complexity and stealth structures: Resolution constraints by wave physics

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Leng, K.

    2017-12-01

    Imaging the Earth's interior relies on understanding how waveforms encode information from heterogeneous multi-scale structure. This relation is given by elastodynamics, but forward modeling in the context of tomography primarily serves to deliver synthetic waveforms and gradients for the inversion procedure. While this is entirely appropriate, it depreciates a wealth of complementary inference that can be obtained from the complexity of the wavefield. Here, we are concerned with the imprint of realistic multi-scale Earth structure on the wavefield, and the question on the inherent physical resolution limit of structures encoded in seismograms. We identify parameter and scattering regimes where structures remain invisible as a function of seismic wavelength, structural multi-scale geometry, scattering strength, and propagation path. Ultimately, this will aid in interpreting tomographic images by acknowledging the scope of "forgotten" structures, and shall offer guidance for optimising the selection of seismic data for tomography. To do so, we use our novel 3D modeling method AxiSEM3D which tackles global wave propagation in visco-elastic, anisotropic 3D structures with undulating boundaries at unprecedented resolution and efficiency by exploiting the inherent azimuthal smoothness of wavefields via a coupled Fourier expansion-spectral-element approach. The method links computational cost to wavefield complexity and thereby lends itself well to exploring the relation between waveforms and structures. We will show various examples of multi-scale heterogeneities which appear or disappear in the waveform, and argue that the nature of the structural power spectrum plays a central role in this. We introduce the concept of wavefield learning to examine the true wavefield complexity for a complexity-dependent modeling framework and discriminate which scattering structures can be retrieved by surface measurements. This leads to the question of physical invisibility and the tomographic resolution limit, and offers insight as to why tomographic images still show stark differences for smaller-scale heterogeneities despite progress in modeling and data resolution. Finally, we give an outlook on how we expand this modeling framework towards an inversion procedure guided by wavefield complexity.

  16. WRF-Chem simulations in the Amazon region during wet and dry season transitions: evaluation of methane models and wetland inundation maps

    NASA Astrophysics Data System (ADS)

    Beck, V.; Gerbig, C.; Koch, T.; Bela, M. M.; Longo, K. M.; Freitas, S. R.; Kaplan, J. O.; Prigent, C.; Bergamaschi, P.; Heimann, M.

    2013-08-01

    The Amazon region, being a large source of methane (CH4), contributes significantly to the global annual CH4 budget. For the first time, a forward and inverse modelling framework on regional scale for the purpose of assessing the CH4 budget of the Amazon region is implemented. Here, we present forward simulations of CH4 as part of the forward and inverse modelling framework based on a modified version of the Weather Research and Forecasting model with chemistry that allows for passive tracer transport of CH4, carbon monoxide, and carbon dioxide (WRF-GHG), in combination with two different process-based bottom-up models of CH4 emissions from anaerobic microbial production in wetlands and additional datasets prescribing CH4 emissions from other sources such as biomass burning, termites, or other anthropogenic emissions. We compare WRF-GHG simulations on 10 km horizontal resolution to flask and continuous CH4 observations obtained during two airborne measurement campaigns within the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) project in November 2008 and May 2009. In addition, three different wetland inundation maps, prescribing the fraction of inundated area per grid cell, are evaluated. Our results indicate that the wetland inundation maps based on remote-sensing data represent the observations best except for the northern part of the Amazon basin and the Manaus area. WRF-GHG was able to represent the observed CH4 mixing ratios best at days with less convective activity. After adjusting wetland emissions to match the averaged observed mixing ratios of flights with little convective activity, the monthly CH4 budget for the Amazon basin obtained from four different simulations ranges from 1.5 to 4.8 Tg for November 2008 and from 1.3 to 5.5 Tg for May 2009. This corresponds to an average CH4 flux of 9-31 mg m-2 d-1 for November 2008 and 8-36 mg m-2 d-1 for May 2009.

  17. Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions

    NASA Astrophysics Data System (ADS)

    Boulic, Ronan; Raunhardt, Daniel

    Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.

  18. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    NASA Astrophysics Data System (ADS)

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-04-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  19. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.

  20. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  1. Linking axionlike dark matter to neutrino masses

    NASA Astrophysics Data System (ADS)

    Carvajal, C. D. R.; Sánchez-Vega, B. L.; Zapata, O.

    2017-12-01

    We present a framework linking axionlike particles (ALPs) to neutrino masses through the minimal inverse seesaw (ISS) mechanism in order to explain the dark matter (DM) puzzle. Specifically, we explore three minimal ISS cases where mass scales are generated through gravity-induced operators involving a scalar field hosting ALPs. In all of these cases, we find gravity-stable models that provide the observed DM relic density and, simultaneously, are consistent with the phenomenology of neutrinos and ALPs. Remarkably, in one of the ISS cases, the DM can be made of ALPs and sterile neutrinos. Furthermore, other considered ISS cases have ALPs with parameters that are within the reach of proposed ALP experiments.

  2. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    USGS Publications Warehouse

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  3. Objectified quantification of uncertainties in Bayesian atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Berchet, A.; Pison, I.; Chevallier, F.; Bousquet, P.; Bonne, J.-L.; Paris, J.-D.

    2015-05-01

    Classical Bayesian atmospheric inversions process atmospheric observations and prior emissions, the two being connected by an observation operator picturing mainly the atmospheric transport. These inversions rely on prescribed errors in the observations, the prior emissions and the observation operator. When data pieces are sparse, inversion results are very sensitive to the prescribed error distributions, which are not accurately known. The classical Bayesian framework experiences difficulties in quantifying the impact of mis-specified error distributions on the optimized fluxes. In order to cope with this issue, we rely on recent research results to enhance the classical Bayesian inversion framework through a marginalization on a large set of plausible errors that can be prescribed in the system. The marginalization consists in computing inversions for all possible error distributions weighted by the probability of occurrence of the error distributions. The posterior distribution of the fluxes calculated by the marginalization is not explicitly describable. As a consequence, we carry out a Monte Carlo sampling based on an approximation of the probability of occurrence of the error distributions. This approximation is deduced from the well-tested method of the maximum likelihood estimation. Thus, the marginalized inversion relies on an automatic objectified diagnosis of the error statistics, without any prior knowledge about the matrices. It robustly accounts for the uncertainties on the error distributions, contrary to what is classically done with frozen expert-knowledge error statistics. Some expert knowledge is still used in the method for the choice of an emission aggregation pattern and of a sampling protocol in order to reduce the computation cost. The relevance and the robustness of the method is tested on a case study: the inversion of methane surface fluxes at the mesoscale with virtual observations on a realistic network in Eurasia. Observing system simulation experiments are carried out with different transport patterns, flux distributions and total prior amounts of emitted methane. The method proves to consistently reproduce the known "truth" in most cases, with satisfactory tolerance intervals. Additionally, the method explicitly provides influence scores and posterior correlation matrices. An in-depth interpretation of the inversion results is then possible. The more objective quantification of the influence of the observations on the fluxes proposed here allows us to evaluate the impact of the observation network on the characterization of the surface fluxes. The explicit correlations between emission aggregates reveal the mis-separated regions, hence the typical temporal and spatial scales the inversion can analyse. These scales are consistent with the chosen aggregation patterns.

  4. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  5. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.

  6. A trade-off solution between model resolution and covariance in surface-wave inversion

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.

    2010-01-01

    Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.

  7. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  8. Development OF A Multi-Scale Framework for Mapping Global Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Hain, Christopher R.; Anderson, Martha C.; Schull, Mitchell; Neale, Christopher; Zhan, Xiwu

    2017-01-01

    As the worlds water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use (e.g, ET) are becoming increasingly important, especially in areas of significant water and food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in mid-morning land surface temperature to estimate the partitioning of sensible and latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring.

  9. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    PubMed Central

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  10. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  11. Using Tranformation Group Priors and Maximum Relative Entropy for Bayesian Glaciological Inversions

    NASA Astrophysics Data System (ADS)

    Arthern, R. J.; Hindmarsh, R. C. A.; Williams, C. R.

    2014-12-01

    One of the key advances that has allowed better simulations of the large ice sheets of Greenland and Antarctica has been the use of inverse methods. These have allowed poorly known parameters such as the basal drag coefficient and ice viscosity to be constrained using a wide variety of satellite observations. Inverse methods used by glaciologists have broadly followed one of two related approaches. The first is minimization of a cost function that describes the misfit to the observations, often accompanied by some kind of explicit or implicit regularization that promotes smallness or smoothness in the inverted parameters. The second approach is a probabilistic framework that makes use of Bayes' theorem to update prior assumptions about the probability of parameters, making use of data with known error estimates. Both approaches have much in common and questions of regularization often map onto implicit choices of prior probabilities that are made explicit in the Bayesian framework. In both approaches questions can arise that seem to demand subjective input. What should the functional form of the cost function be if there are alternatives? What kind of regularization should be applied, and how much? How should the prior probability distribution for a parameter such as basal slipperiness be specified when we know so little about the details of the subglacial environment? Here we consider some approaches that have been used to address these questions and discuss ways that probabilistic prior information used for regularizing glaciological inversions might be specified with greater objectivity.

  12. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  13. An Adjoint-Based Analysis of the Sampling Footprints of Tall Tower, Aircraft and Potential Future Lidar Observations of CO2

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn; Kawa, Randy; Zhu, Zhengxin; Burris, John; Abshire, Jim

    2004-01-01

    A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future CO2 levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an 'inverse problem', where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from longterm surface and aircraft monitoring stations with data from intensive field campaigns and with proposed future satellite observations. We have recently developed an adjoint for the GSFC 3-D Parameterized Chemistry and Transport Model (PCTM). Here, we will present results from a PCTM Adjoint study comparing the sampling footprints of tall tower, aircraft and potential future lidar observations of CO2. The vertical resolution and extent of the profiles and the observation frequency will be considered for several sites in North America.

  14. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  15. Inverse analysis and regularisation in conditional source-term estimation modelling

    NASA Astrophysics Data System (ADS)

    Labahn, Jeffrey W.; Devaud, Cecile B.; Sipkens, Timothy A.; Daun, Kyle J.

    2014-05-01

    Conditional Source-term Estimation (CSE) obtains the conditional species mass fractions by inverting a Fredholm integral equation of the first kind. In the present work, a Bayesian framework is used to compare two different regularisation methods: zeroth-order temporal Tikhonov regulatisation and first-order spatial Tikhonov regularisation. The objectives of the current study are: (i) to elucidate the ill-posedness of the inverse problem; (ii) to understand the origin of the perturbations in the data and quantify their magnitude; (iii) to quantify the uncertainty in the solution using different priors; and (iv) to determine the regularisation method best suited to this problem. A singular value decomposition shows that the current inverse problem is ill-posed. Perturbations to the data may be caused by the use of a discrete mixture fraction grid for calculating the mixture fraction PDF. The magnitude of the perturbations is estimated using a box filter and the uncertainty in the solution is determined based on the width of the credible intervals. The width of the credible intervals is significantly reduced with the inclusion of a smoothing prior and the recovered solution is in better agreement with the exact solution. The credible intervals for temporal and spatial smoothing are shown to be similar. Credible intervals for temporal smoothing depend on the solution from the previous time step and a smooth solution is not guaranteed. For spatial smoothing, the credible intervals are not dependent upon a previous solution and better predict characteristics for higher mixture fraction values. These characteristics make spatial smoothing a promising alternative method for recovering a solution from the CSE inversion process.

  16. Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy

    NASA Astrophysics Data System (ADS)

    Penfold, Scott; Zalas, Rafał; Casiraghi, Margherita; Brooke, Mark; Censor, Yair; Schulte, Reinhard

    2017-05-01

    A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy treatment planning with dose-volume constraints included in the planning algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a percentage-violation constraint in the model problem and its handling by continuous (as opposed to integer) methods. We propose an iterative algorithmic framework for solving such a problem by applying the feasibility-seeking CQ-algorithm of Byrne combined with the automatic relaxation method that uses cyclic projections. Detailed implementation instructions are furnished. Functionality of the algorithm was demonstrated through the creation of an intensity-modulated proton therapy plan for a simple 2D C-shaped geometry and also for a realistic base-of-skull chordoma treatment site. Monte Carlo simulations of proton pencil beams of varying energy were conducted to obtain dose distributions for the 2D test case. A research release of the Pinnacle 3 proton treatment planning system was used to extract pencil beam doses for a clinical base-of-skull chordoma case. In both cases the beamlet doses were calculated to satisfy dose-volume constraints according to our new algorithm. Examination of the dose-volume histograms following inverse planning with our algorithm demonstrated that it performed as intended. The application of our proposed algorithm to dose-volume constraint inverse planning was successfully demonstrated. Comparison with optimized dose distributions from the research release of the Pinnacle 3 treatment planning system showed the algorithm could achieve equivalent or superior results.

  17. Greenhouse gas network design using backward Lagrangian particle dispersion modelling - Part 1: Methodology and Australian test case

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Nickless, A.; Rayner, P. J.; Law, R. M.; Roff, G.; Fraser, P.

    2014-09-01

    This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.

  18. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  19. INVERSE MODEL ESTIMATION AND EVALUATION OF SEASONAL NH 3 EMISSIONS

    EPA Science Inventory

    The presentation topic is inverse modeling for estimate and evaluation of emissions. The case study presented is the need for seasonal estimates of NH3 emissions for air quality modeling. The inverse modeling application approach is first described, and then the NH

  20. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Yuguo; Han, Bo; Liu, Zhan

    2018-01-01

    In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 3-D frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modelling algorithms, assumes that the electric or magnetic field values are zero at the boundaries. This requires the boundaries to be sufficiently far away from the area of interest. To mitigate the boundary artefacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we use the PML for CSEM field simulation instead of the conventional Dirichlet, the modelling area for these two different geophysical data collected from the same survey area could be the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3-D marine CSEM modelling by using the staggered finite-difference discretization. Numerical test indicates that the modelling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modelling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3-D example in this study, the memory saving using the PML is nearly 42 per cent and the time saving is around 48 per cent compared to using the Dirichlet.

  1. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting rates when mixed phase clouds are present.

  2. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    NASA Astrophysics Data System (ADS)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically. These results will be discussed in the tectonic framework of the area.

  3. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  4. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    PubMed

    Aggarwal, Ankush; Sacks, Michael S

    2016-08-01

    Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be established. Herein we present and evaluate a novel leaflet shape-based framework to estimate the biomechanical behavior of heart valves from surface deformations by exploiting tissue structure. We determined accuracy levels using an "ideal" in vitro dataset, in which the leaflet geometry, strains, mechanical behavior, and fibrous structure were known to a high level of precision. By utilizing a simplified structural model for the leaflet mechanical behavior, we were able to limit the number of parameters to be determined per leaflet to only two. This approach allowed us to dramatically reduce the computational time and easily visualize the cost function to guide the minimization process. We determined that the image resolution and the number of available imaging frames were important components in the accuracy of our framework. Furthermore, our results suggest that it is possible to detect differences in fiber structure using our framework, thus allowing an opportunity to diagnose asymptomatic valve diseases and begin treatment at their early stages. Lastly, we observed good agreement of the final resulting stress-strain response when an averaged fiber architecture was used. This suggests that population-averaged fiber structural data may be sufficient for the application of the present framework to in vivo studies, although clearly much work remains to extend the present approach to in vivo problems.

  5. Dynamic Inversion based Control of a Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje

    2006-01-01

    The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,

  6. A Comparison between Model Base Hardconstrain, Bandlimited, and Sparse-Spike Seismic Inversion: New Insights for CBM Reservoir Modelling on Muara Enim Formation, South Sumatra

    NASA Astrophysics Data System (ADS)

    Mohamad Noor, Faris; Adipta, Agra

    2018-03-01

    Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.

  7. A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Cui, C.; Wang, Y.

    2017-12-01

    Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.

  8. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  9. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  10. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  11. New shape models of asteroids reconstructed from sparse-in-time photometry

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Hanus, Josef; Vanco, Radim; Oszkiewicz, Dagmara Anna

    2015-08-01

    Asteroid physical parameters - the shape, the sidereal rotation period, and the spin axis orientation - can be reconstructed from the disk-integrated photometry either dense (classical lightcurves) or sparse in time by the lightcurve inversion method. We will review our recent progress in asteroid shape reconstruction from sparse photometry. The problem of finding a unique solution of the inverse problem is time consuming because the sidereal rotation period has to be found by scanning a wide interval of possible periods. This can be efficiently solved by splitting the period parameter space into small parts that are sent to computers of volunteers and processed in parallel. We will show how this approach of distributed computing works with currently available sparse photometry processed in the framework of project Asteroids@home. In particular, we will show the results based on the Lowell Photometric Database. The method produce reliable asteroid models with very low rate of false solutions and the pipelines and codes can be directly used also to other sources of sparse photometry - Gaia data, for example. We will present the distribution of spin axis of hundreds of asteroids, discuss the dependence of the spin obliquity on the size of an asteroid,and show examples of spin-axis distribution in asteroid families that confirm the Yarkovsky/YORP evolution scenario.

  12. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  13. Bayesian optimization of the Community Land Model simulated biosphere-atmosphere exchange using CO 2 observations from a dense tower network and aircraft campaigns over Oregon

    DOE PAGES

    Schmidt, Andres; Law, Beverly E.; Göckede, Mathias; ...

    2016-09-15

    Here, the vast forests and natural areas of the Pacific Northwest comprise one of the most productive ecosystems in the northern hemisphere. The heterogeneous landscape of Oregon poses a particular challenge to ecosystem models. We present a framework using a scaling factor Bayesian inversion to improve the modeled atmosphere-biosphere exchange of carbon dioxide. Observations from 5 CO/CO 2 towers, eddy covariance towers, and airborne campaigns were used to constrain the Community Land Model CLM4.5 simulated terrestrial CO 2 exchange at a high spatial and temporal resolution (1/24°, 3-hourly). To balance aggregation errors and the degrees of freedom in the inversemore » modeling system, we applied an unsupervised clustering approach for the spatial structuring of our model domain. Data from flight campaigns were used to quantify the uncertainty introduced by the Lagrangian particle dispersion model that was applied for the inversions. The average annual statewide net ecosystem productivity (NEP) was increased by 32% to 29.7 TgC per year by assimilating the tropospheric mixing ratio data. The associated uncertainty was decreased by 28.4% to 29%, on average over the entire Oregon model domain with the lowest uncertainties of 11% in western Oregon. The largest differences between posterior and prior CO 2 fluxes were found for the Coast Range ecoregion of Oregon that also exhibits the highest availability of atmospheric observations and associated footprints. In this area, covered by highly productive Douglas-fir forest, the differences between the prior and posterior estimate of NEP averaged 3.84 TgC per year during the study period from 2012 through 2014.« less

  14. Bayesian optimization of the Community Land Model simulated biosphere-atmosphere exchange using CO 2 observations from a dense tower network and aircraft campaigns over Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Andres; Law, Beverly E.; Göckede, Mathias

    Here, the vast forests and natural areas of the Pacific Northwest comprise one of the most productive ecosystems in the northern hemisphere. The heterogeneous landscape of Oregon poses a particular challenge to ecosystem models. We present a framework using a scaling factor Bayesian inversion to improve the modeled atmosphere-biosphere exchange of carbon dioxide. Observations from 5 CO/CO 2 towers, eddy covariance towers, and airborne campaigns were used to constrain the Community Land Model CLM4.5 simulated terrestrial CO 2 exchange at a high spatial and temporal resolution (1/24°, 3-hourly). To balance aggregation errors and the degrees of freedom in the inversemore » modeling system, we applied an unsupervised clustering approach for the spatial structuring of our model domain. Data from flight campaigns were used to quantify the uncertainty introduced by the Lagrangian particle dispersion model that was applied for the inversions. The average annual statewide net ecosystem productivity (NEP) was increased by 32% to 29.7 TgC per year by assimilating the tropospheric mixing ratio data. The associated uncertainty was decreased by 28.4% to 29%, on average over the entire Oregon model domain with the lowest uncertainties of 11% in western Oregon. The largest differences between posterior and prior CO 2 fluxes were found for the Coast Range ecoregion of Oregon that also exhibits the highest availability of atmospheric observations and associated footprints. In this area, covered by highly productive Douglas-fir forest, the differences between the prior and posterior estimate of NEP averaged 3.84 TgC per year during the study period from 2012 through 2014.« less

  15. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.

  16. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  17. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  18. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  19. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk.

    PubMed

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Cofán, Montserrat; Calder, Philip C; Fitó, Montserrat; Corella, Dolores; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-09-20

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque ( n = 38), with plaques <2.0 mm thick ( n = 65), and with plaques ≥2.0 mm ( n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence ( n = 31) or presence ( n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques.

  20. Red Blood Cell Eicosapentaenoic Acid Inversely Relates to MRI-Assessed Carotid Plaque Lipid Core Burden in Elders at High Cardiovascular Risk

    PubMed Central

    Bargalló, Núria; Gilabert, Rosa; Romero-Mamani, Edwin-Saúl; Calder, Philip C.; Fitó, Montserrat; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2017-01-01

    Supplemental marine omega-3 eicosapentaenoic acid (EPA) has an anti-atherosclerotic effect. Clinical research on EPA supplied by the regular diet and atherosclerosis is scarce. In the framework of the PREvención con DIeta MEDiterránea (PREDIMED) trial, we conducted a cross-sectional study in 161 older individuals at high vascular risk grouped into different stages of carotid atherosclerosis severity, including those without ultrasound-detected atheroma plaque (n = 38), with plaques <2.0 mm thick (n = 65), and with plaques ≥2.0 mm (n = 79). The latter were asked to undergo contrast-enhanced 3T magnetic resonance imaging (MRI) and were subsequently grouped into absence (n = 31) or presence (n = 27) of MRI-detectable plaque lipid, a main feature of unstable atheroma plaques. We determined the red blood cell (RBC) proportion of EPA (a valid marker of long-term EPA intake) at enrolment by gas chromatography. In multivariate models, EPA related inversely to MRI-assessed plaque lipid volume, but not to maximum intima-media thickness of internal carotid artery, plaque burden, or MRI-assessed normalized wall index. The inverse association between EPA and plaque lipid content in patients with advanced atherosclerosis supports the notion that this fatty acid might improve cardiovascular health through stabilization of advanced atheroma plaques. PMID:28930197

Top