Sample records for inverse modelling system

  1. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  2. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.

  3. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  4. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    DOE PAGES

    Locatelli, R.; Bousquet, P.; Chevallier, F.; ...

    2013-10-08

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less

  5. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  6. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  7. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    PubMed Central

    Li, YuHui; Jin, FeiTeng

    2017-01-01

    The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680

  8. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  9. Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states

    NASA Astrophysics Data System (ADS)

    Fedele, Micaela; Vernia, Cecilia

    2017-10-01

    In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.

  10. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  11. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  12. Using the in-line component for fixed-wing EM 1D inversion

    NASA Astrophysics Data System (ADS)

    Smiarowski, Adam

    2015-09-01

    Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.

  13. Dynamic inverse models in human-cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar

    2016-05-01

    Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.

  14. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis

    NASA Astrophysics Data System (ADS)

    Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.

    2018-03-01

    The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.

  15. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.

  16. Inverse estimation of parameters for an estuarine eutrophication model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less

  17. Multiple estimation channel decoupling and optimization method based on inverse system

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  18. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  19. Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; Rödenbeck, Christian; Karstens, Ute; Koch, Thomas Frank; Heimann, Martin

    2018-03-01

    Atmospheric inversions are widely used in the optimization of surface carbon fluxes on a regional scale using information from atmospheric CO2 dry mole fractions. In many studies the prior flux uncertainty applied to the inversion schemes does not directly reflect the true flux uncertainties but is used to regularize the inverse problem. Here, we aim to implement an inversion scheme using the Jena inversion system and applying a prior flux error structure derived from a model-data residual analysis using high spatial and temporal resolution over a full year period in the European domain. We analyzed the performance of the inversion system with a synthetic experiment, in which the flux constraint is derived following the same residual analysis but applied to the model-model mismatch. The synthetic study showed a quite good agreement between posterior and true fluxes on European, country, annual and monthly scales. Posterior monthly and country-aggregated fluxes improved their correlation coefficient with the known truth by 7 % compared to the prior estimates when compared to the reference, with a mean correlation of 0.92. The ratio of the SD between the posterior and reference and between the prior and reference was also reduced by 33 % with a mean value of 1.15. We identified temporal and spatial scales on which the inversion system maximizes the derived information; monthly temporal scales at around 200 km spatial resolution seem to maximize the information gain.

  20. Computer Model Inversion and Uncertainty Quantification in the Geosciences

    NASA Astrophysics Data System (ADS)

    White, Jeremy T.

    The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.

  1. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  2. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    PubMed

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  3. Inverse modeling with RZWQM2 to predict water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models such as RZWQM2 are complex and have numerous parameters that are unknown and difficult to estimate. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitanidis, Peter

    As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less

  5. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  6. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  7. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  8. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  9. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  10. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    PubMed

    Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  12. Development of a coupled FLEXPART-TM5 CO2 inverse modeling system

    NASA Astrophysics Data System (ADS)

    Monteil, Guillaume; Scholze, Marko

    2017-04-01

    Inverse modeling techniques are used to derive information on surface CO2 fluxes from measurements of atmospheric CO2 concentrations. The principle is to use an atmospheric transport model to compute the CO2 concentrations corresponding to a prior estimate of the surface CO2 fluxes. From the mismatches between observed and modeled concentrations, a correction of the flux estimate is computed, that represents the best statistical compromise between the prior knowledge and the new information brought in by the observations. Such "top-down" CO2 flux estimates are useful for a number of applications, such as the verification of CO2 emission inventories reported by countries in the framework of international greenhouse gas emission reduction treaties (Paris agreement), or for the validation and improvement of the bottom-up models used in future climate predictions. Inverse modeling CO2 flux estimates are limited in resolution (spatial and temporal) by the lack of observational constraints and by the very heavy computational cost of high-resolution inversions. The observational limitation is however being lifted, with the expansion of regional surface networks such as ICOS in Europe, and with the launch of new satellite instruments to measure tropospheric CO2 concentrations. To make an efficient use of these new observations, it is necessary to step up the resolution of atmospheric inversions. We have developed an inverse modeling system, based on a coupling between the TM5 and the FLEXPART transport models. The coupling follows the approach described in Rodenbeck et al., 2009: a first global, coarse resolution, inversion is performed using TM5-4DVAR, and is used to provide background constraints to a second, regional, fine resolution inversion, using FLEXPART as a transport model. The inversion algorithm is adapted from the 4DVAR algorithm used by TM5, but has been developed to be model-agnostic: it would be straightforward to replace TM5 and/or FLEXPART by other transport models, thus making it well suited to study transport model uncertainties. We will present preliminary European CO2 inversions using ICOS observations, and comparisons with TM5-4DVAR and TM3-STILT inversions. Reference: Rödenbeck, C., Gerbig, C., Trusilova, K., & Heimann, M. (2009). A two-step scheme for high-resolution regional atmospheric trace gas inversions based on independent models. Atmospheric Chemistry and Physics Discussions, 9(1), 1727-1756. http://doi.org/10.5194/acpd-9-1727-2009

  13. Inverse simulation system for evaluating handling qualities during rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan

    2017-08-01

    The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.

  14. Performance of Dower's inverse transform and Frank lead system for Identification of Myocardial Infarction.

    PubMed

    Aranda, A; Bonizzi, P; Karel, J; Peeters, R

    2015-08-01

    This study performs a comparison between Dower's inverse transform and Frank lead system for Myocardial Infarction (MI) identification. We have selected a set of relevant features for MI detection from the vectorcardiogram and used the lasso method after that to build a model for the Dower's inverse transform and one for the Frank leads system. Then we analyzed the performance between both models on MI detection. The proposed methods have been tested using PhysioNet PTB database that contains 550 records from which 368 are MIs. Two main conclusions are coming from this study. The first one is that Dower's inverse transform performs equally well than Frank leads in identification of MI patients. The second one is that lead positions have a large influence on the accuracy of MI patient identification.

  15. A trade-off solution between model resolution and covariance in surface-wave inversion

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.

    2010-01-01

    Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.

  16. Development of the WRF-CO2 4D-Var assimilation system v1.0

    NASA Astrophysics Data System (ADS)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  17. Identification of an internal combustion engine model by nonlinear multi-input multi-output system identification. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luh, G.C.

    1994-01-01

    This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less

  18. Interpreting OCO-2 Constrained CO2 Surface Flux Estimates Through the Lens of Atmospheric Transport Uncertainty.

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Jacobson, A. R.; Basu, S.; Weir, B.; Baker, D. F.; Bowman, K. W.; Chevallier, F.; Crowell, S.; Deng, F.; Denning, S.; Feng, L.; Liu, J.

    2017-12-01

    The orbiting carbon observatory (OCO-2) was launched in July 2014 and has collected three years of column mean CO2 (XCO2) data. The OCO-2 model inter-comparison project (MIP) was formed to provide a means of analysis of results from many different atmospheric inversion modeling systems. Certain facets of the inversion systems, such as observations and fossil fuel CO2 fluxes were standardized to remove first order sources of difference between the systems. Nevertheless, large variations amongst the flux results from the systems still exist. In this presentation, we explore one dimension of this uncertainty, the impact of different atmospheric transport fields, i.e. wind speeds and directions. Early results illustrate a large systematic difference between two classes of atmospheric transport, arising from winds in the parent GEOS-DAS (NASA-GMAO) and ERA-Interim (ECMWF) data assimilation models. We explore these differences and their effect on inversion-based estimates of surface CO2 flux by using a combination of simplified inversion techniques as well as the full OCO-2 MIP suite of CO2 flux estimates.

  19. 2D Unstructured Grid Based Constrained Inversion of Magnetic Data Using Fuzzy C Means Clustering and Lithology Classification

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, A.; Sharma, S. P.

    2016-12-01

    Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.

  20. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  1. Voxel inversion of airborne electromagnetic data for improved model integration

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054 spatially constrained 1D models with 29 layers. For comparison, the SCI inversion models have been gridded on the same grid of the voxel inversion. The new voxel inversion and the classic SCI give similar data fit and inversion models. The voxel inversion decouples the geophysical model from the position of acquired data, and at the same time fits the data as well as the classic SCI inversion. Compared to the classic approach, the voxel inversion is better suited for informing directly (hydro)geological models and for sequential/Joint/Coupled (hydro)geological inversion. We believe that this new approach will facilitate the integration of geophysics, geology and hydrology for improved groundwater and environmental management.

  2. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop

    2017-08-01

    We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.

  3. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oleron Estuary, France

    EPA Science Inventory

    We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...

  4. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  5. Optimization of CO2 Surface Flux using GOSAT Total Column CO2: First Results for 2009-2010

    NASA Astrophysics Data System (ADS)

    Basu, S.; Houweling, S.

    2011-12-01

    Constraining surface flux estimates of CO2 using satellite measurements has been one of the long-standing goals of the atmospheric inverse modeling community. We present the first results of inverting GOSAT total column CO2 measurements for obtaining global monthly CO2 flux maps over one year (June 2009 to May 2010). We use the SRON RemoTeC retrieval of CO2 for our inversions. The SRON retrieval has been shown to have no bias when compared to TCCON total column measurements, and latitudinal gradients of the retrieved CO2 are consistent with gradients deduced from the surface flask network [Butz et al, 2011]. This makes this retrieval an ideal candidate for atmospheric inversions, which are highly sensitive to spurious gradients. Our inversion system is analogous to the CarbonTracker (CT) data assimilation system; it is initialized with the prior CO2 fluxes of CT, and uses the same atmospheric transport model, i.e., TM5. The two major differences are (a) we add GOSAT CO2 data to the inversion in addition to flask data, and (b) we use a 4DVAR optimization system instead of a Kalman filter. We compare inversions using (a) only GOSAT total column CO2 measurements, (b) only surface flask CO2 measurements, and (c) the joint data set of GOSAT and surface flask measurements. We validate GOSAT-only inversions against the NOAA surface flask network and joint inversions against CONTRAIL and other aircraft campaigns. We see that inverted fluxes from a GOSAT-only inversion are consistent with fluxes from a stations-only inversion, reaffirming the low biases in SRON retrievals. From the joint inversion, we estimate the amount of added constraints upon adding GOSAT total column measurements to existing surface layer measurements.

  6. 3-D linear inversion of gravity data: method and application to Basse-Terre volcanic island, Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien

    2016-04-01

    We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.

  7. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  8. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  9. Inverse approaches with lithologic information for a regional groundwater system in southwest Kansas

    USGS Publications Warehouse

    Tsou, Ming‐shu; Perkins, S.P.; Zhan, X.; Whittemore, Donald O.; Zheng, Lingyun

    2006-01-01

    Two practical approaches incorporating lithologic information for groundwater modeling calibration are presented to estimate distributed, cell-based hydraulic conductivity. The first approach is to estimate optimal hydraulic conductivities for geological materials by incorporating thickness distribution of materials into inverse modeling. In the second approach, residuals for the groundwater model solution are minimized according to a globalized Newton method with the aid of a Geographic Information System (GIS) to calculate a cell-wise distribution of hydraulic conductivity. Both approaches honor geologic data and were effective in characterizing the heterogeneity of a regional groundwater modeling system in southwest Kansas. ?? 2005 Elsevier Ltd All rights reserved.

  10. Impact of transport and modelling errors on the estimation of methane sources and sinks by inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric

    2013-04-01

    Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors lead to a discrepancy of 27 TgCH4 per year at global scale, representing 5% of the total methane emissions for 2005. At continental scale, transport and modelling errors have bigger impacts in proportion to the area of the regions, ranging from 36 TgCH4 in North America to 7 TgCH4 in Boreal Eurasian, with a percentage range from 23% to 48%. Thus, contribution of transport and modelling errors to the mismatch between measurements and simulated methane concentrations is large considering the present questions on the methane budget. Moreover, diagnostics of statistics errors included in our inversions have been computed. It shows that errors contained in measurement errors covariance matrix are under-estimated in current inversions, suggesting to include more properly transport and modelling errors in future inversions.

  11. FAST TRACK COMMUNICATION Unexpected systematic degeneracy in a system of two coupled Gaudin models with homogeneous couplings

    NASA Astrophysics Data System (ADS)

    Erbe, B.; Schliemann, J.

    2010-12-01

    We report an unexpected systematic degeneracy between different multiplets in an inversion symmetric system of two coupled Gaudin models with homogeneous couplings, as occurring for example in the context of solid state quantum information processing. We construct the full degenerate subspace (being of macroscopic dimension), which turns out to lie in the kernel of the commutator between the two Gaudin models and the coupling term. Finally we investigate to what extent the degeneracy is related to the inversion symmetry of the system and find that indeed there is a large class of systems showing the same type of degeneracy.

  12. Restart Operator Meta-heuristics for a Problem-Oriented Evolutionary Strategies Algorithm in Inverse Mathematical MISO Modelling Problem Solving

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.

    2017-02-01

    This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.

  13. Geological modeling and infiltration pattern of a karstic system based upon crossed geophysical methods and image-guided inversion

    NASA Astrophysics Data System (ADS)

    Duran, Lea; Jardani, Abderrahim; Fournier, Matthieu; Massei, Nicolas

    2015-04-01

    Karstic aquifers represent an important part of the water resources worldwide. Though they have been widely studied on many aspects, their geological and hydrogeological modeling is still complex. Geophysical methods can provide useful subsurface information for the characterization and mapping of karstic systems, especially when not accessible by speleology. The site investigated in this study is a sinkhole-spring system, with small diameter conduits that run within a chalk aquifer (Norville, in Upper Normandy, France). This site was investigated using several geophysical methods: electrical tomography, self-potential, mise-à-la-masse methods, and electromagnetic method (EM34). Coupling those results with boreholes data, a 3D geological model of the hydrogeological basin was established, including tectonic features as well as infiltration structures (sinkhole, covered dolines). The direction of the karstic conduits near the main sinkhole could be established, and the major fault was shown to be a hydraulic barrier. Also the average concentration of dolines on the basin could be estimated, as well as their depth. At last, several hypotheses could be made concerning the location of the main conduit network between the sinkhole and the spring, using previous hydrodynamic study of the site along with geophysical data. In order to validate the 3D geological model, an image-guided inversion of the apparent resistivity data was used. With this approach it is possible to use geological cross sections to constrain the inversion of apparent resistivity data, preserving both discontinuities and coherences in the inversion of the resistivity data. This method was used on the major fault, enabling to choose one geological interpretation over another (fault block structure near the fault, rather than important folding). The constrained inversion was also applied on covered dolines, to validate the interpretation of their shape and depth. Key words: Magnetic and electrical methods, karstic system modeling; image-guided inversion

  14. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.« less

  15. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  16. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  17. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  18. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.

  19. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  20. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    PubMed Central

    Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli. PMID:23801941

  1. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  2. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim

    PubMed Central

    Modenese, L.; Lloyd, D.G.

    2017-01-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992

  3. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

    PubMed

    Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G

    2017-03-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.

  4. Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin

    2009-01-01

    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.

  5. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  6. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  7. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is influenced by the strength of measurement errors and it is not significantly diminished or increased by adding noisy reciprocal information.

  8. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  9. A regional high-resolution carbon flux inversion of North America for 2004

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America. We perform the inversion with two independently derived boundary inflow conditions and calculate jackknife-based statistics to test the robustness of the model results. We then compare final results to estimates obtained from the CarbonTracker inversion system and at the Southern Great Plains flux site. Results are promising, showing the ability to correct carbon fluxes from the biosphere models over annual and seasonal time scales, as well as over the different GPP and ER components. Additionally, the correlation of an estimated sink of carbon in the South Central United States with regional anomalously high precipitation in an area of managed agricultural and forest lands provides interesting hypotheses for future work.

  10. A comparison of discrete versus continuous adjoint states to invert groundwater flow in heterogeneous dual porosity systems

    NASA Astrophysics Data System (ADS)

    Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe

    2017-12-01

    Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.

  11. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  12. Bayesian Inversion of 2D Models from Airborne Transient EM Data

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Key, K.; Ray, A.

    2016-12-01

    The inherent non-uniqueness in most geophysical inverse problems leads to an infinite number of Earth models that fit observed data to within an adequate tolerance. To resolve this ambiguity, traditional inversion methods based on optimization techniques such as the Gauss-Newton and conjugate gradient methods rely on an additional regularization constraint on the properties that an acceptable model can possess, such as having minimal roughness. While allowing such an inversion scheme to converge on a solution, regularization makes it difficult to estimate the uncertainty associated with the model parameters. This is because regularization biases the inversion process toward certain models that satisfy the regularization constraint and away from others that don't, even when both may suitably fit the data. By contrast, a Bayesian inversion framework aims to produce not a single `most acceptable' model but an estimate of the posterior likelihood of the model parameters, given the observed data. In this work, we develop a 2D Bayesian framework for the inversion of transient electromagnetic (TEM) data. Our method relies on a reversible-jump Markov Chain Monte Carlo (RJ-MCMC) Bayesian inverse method with parallel tempering. Previous gradient-based inversion work in this area used a spatially constrained scheme wherein individual (1D) soundings were inverted together and non-uniqueness was tackled by using lateral and vertical smoothness constraints. By contrast, our work uses a 2D model space of Voronoi cells whose parameterization (including number of cells) is fully data-driven. To make the problem work practically, we approximate the forward solution for each TEM sounding using a local 1D approximation where the model is obtained from the 2D model by retrieving a vertical profile through the Voronoi cells. The implicit parsimony of the Bayesian inversion process leads to the simplest models that adequately explain the data, obviating the need for explicit smoothness constraints. In addition, credible intervals in model space are directly obtained, resolving some of the uncertainty introduced by regularization. An example application shows how the method can be used to quantify the uncertainty in airborne EM soundings for imaging subglacial brine channels and groundwater systems.

  13. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  14. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  15. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  16. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.

  17. On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt

    2012-09-01

    Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that adding helicopter system X-component to a 1D inversion can be used to facilitate higher confidence in the layered result, as the requirements for fitting the data into a 1D model envelope becomes more stringent and the model result thus less prone to misinterpretation.

  18. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.

  19. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  20. In-depth study of 16CygB using inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Salmon, S. J. A. J.; Reese, D. R.; Dupret, M. A.

    2016-12-01

    Context. The 16Cyg binary system hosts the solar-like Kepler targets with the most stringent observational constraints. Indeed, we benefit from very high quality oscillation spectra, as well as spectroscopic and interferometric observations. Moreover, this system is particularly interesting since both stars are very similar in mass but the A component is orbited by a red dwarf, whereas the B component is orbited by a Jovian planet and thus could have formed a more complex planetary system. In our previous study, we showed that seismic inversions of integrated quantities could be used to constrain microscopic diffusion in the A component. In this study, we analyse the B component in the light of a more regularised inversion. Aims: We wish to analyse independently the B component of the 16Cyg binary system using the inversion of an indicator dedicated to analyse core conditions, denoted tu. Using this independent determination, we wish to analyse any differences between both stars due to the potential influence of planetary formation on stellar structure and/or their respective evolution. Methods: First, we recall the observational constraints for 16CygB and the method we used to generate reference stellar models of this star. We then describe how we improved the inversion and how this approach could be used for future targets with a sufficient number of observed frequencies. The inversion results were then used to analyse the differences between the A and B components. Results: The inversion of the tu indicator for 16CygB shows a disagreement with models including microscopic diffusion and sharing the chemical composition previously derived for 16CygA. We show that small changes in chemical composition are insufficient to solve the problem but that extra mixing can account for the differences seen between both stars. We use a parametric approach to analyse the impact of extra mixing in the form of turbulent diffusion on the behaviour of the tu values. We conclude on the necessity of further investigations using models with a physically motivated implementation of extra mixing processes including additional constraints to further improve the accuracy with which the fundamental parameters of this system are determined.

  1. 3D magnetotelluric inversion system with static shift correction and theoretical assessment in oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Dong, H.; Kun, Z.; Zhang, L.

    2015-12-01

    This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the interfaces of every layer overall, but the relative positions of the interface of the two-way travel time vary, and the interface between limestone and oil at the sides of the section is not reflected. So 3-D MT can make up for the deficiency of the seismic results such as the fake sync-phase axis and multiple waves.

  2. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  3. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models

    PubMed Central

    Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos

    2018-01-01

    This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781

  4. Inverse Gaussian gamma distribution model for turbulence-induced fading in free-space optical communication.

    PubMed

    Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin

    2018-04-20

    We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.

  5. A method for the quantification of biased signalling at constitutively active receptors.

    PubMed

    Hall, David A; Giraldo, Jesús

    2018-06-01

    Biased agonism, the ability of an agonist to differentially activate one of several signal transduction pathways when acting at a given receptor, is an increasingly recognized phenomenon at many receptors. The Black and Leff operational model lacks a way to describe constitutive receptor activity and hence inverse agonism. Thus, it is impossible to analyse the biased signalling of inverse agonists using this model. In this theoretical work, we develop and illustrate methods for the analysis of biased inverse agonism. Methods were derived for quantifying biased signalling in systems that demonstrate constitutive activity using the modified operational model proposed by Slack and Hall. The methods were illustrated using Monte Carlo simulations. The Monte Carlo simulations demonstrated that, with an appropriate experimental design, the model parameters are 'identifiable'. The method is consistent with methods based on the measurement of intrinsic relative activity (RA i ) (ΔΔlogR or ΔΔlog(τ/K a )) proposed by Ehlert and Kenakin and their co-workers but has some advantages. In particular, it allows the quantification of ligand bias independently of 'system bias' removing the requirement to normalize to a standard ligand. In systems with constitutive activity, the Slack and Hall model provides methods for quantifying the absolute bias of agonists and inverse agonists. This provides an alternative to methods based on RA i and is complementary to the ΔΔlog(τ/K a ) method of Kenakin et al. in systems where use of that method is inappropriate due to the presence of constitutive activity. © 2018 The British Pharmacological Society.

  6. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  7. The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System

    DTIC Science & Technology

    2013-02-01

    In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia...implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates...references within, Hacker, 2008) have given us the tools to better interpret geophysical evidence. Improvements in the thermal modeling of subduction zones

  8. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  9. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  10. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser

    2018-04-01

    The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT and ERT data particularly helps to improve the resolution of the resistivity models in areas where the profile traverses shallow water and land sections. Our modification of the joint inversion of RMT and ERT data improves the study of geological units underneath shallow water bodies where underground infrastructures are planned. Thus, it allows better planning and mitigating the risks and costs associated with conductive weakness zones.

  11. Flatness-based model inverse for feed-forward braking control

    NASA Astrophysics Data System (ADS)

    de Vries, Edwin; Fehn, Achim; Rixen, Daniel

    2010-12-01

    For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.

  12. 2.5D transient electromagnetic inversion with OCCAM method

    NASA Astrophysics Data System (ADS)

    Li, R.; Hu, X.

    2016-12-01

    In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.

  13. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm

    PubMed Central

    Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A.; Francis, Joseph T.; Principe, Jose C.; Lytton, William W.

    2016-01-01

    Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796

  14. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    NASA Astrophysics Data System (ADS)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  15. Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves

    PubMed Central

    Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.

    2017-01-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311

  16. Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves.

    PubMed

    Gopinathan, D; Venugopal, M; Roy, D; Rajendran, K; Guillas, S; Dias, F

    2017-09-01

    Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra-Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems.

  17. Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.

    PubMed

    Charin, R M; Nele, M; Tavares, F W

    2013-05-21

    Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III.

  18. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    PubMed Central

    2011-01-01

    Background Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator. PMID:22206406

  19. Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps

    NASA Astrophysics Data System (ADS)

    Carrillo Lopez, J.; Gallardo, L. A.

    2016-12-01

    Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.

  20. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes generated from a different biosphere model (BIOME-BGC). Initially we perform single-station inversions for Ochsenkopf tall tower located in Germany. Further expansion of the inversion framework to multiple stations and its application to network design will address the questions of how well a set of network stations can constrain a given target quantity, and whether there are objective criteria to select an optimal configuration for new stations that maximizes the uncertainty reduction.

  1. An inverse dynamics approach to face animation.

    PubMed

    Pitermann, M; Munhall, K G

    2001-09-01

    Muscle-based models of the human face produce high quality animation but rely on recorded muscle activity signals or synthetic muscle signals that are often derived by trial and error. This paper presents a dynamic inversion of a muscle-based model (Lucero and Munhall, 1999) that permits the animation to be created from kinematic recordings of facial movements. Using a nonlinear optimizer (Powell's algorithm), the inversion produces a muscle activity set for seven muscles in the lower face that minimize the root mean square error between kinematic data recorded with OPTOTRAK and the corresponding nodes of the modeled facial mesh. This inverted muscle activity is then used to animate the facial model. In three tests of the inversion, strong correlations were observed for kinematics produced from synthetic muscle activity, for OPTOTRAK kinematics recorded from a talker for whom the facial model is morphologically adapted and finally for another talker with the model morphology adapted to a different individual. The correspondence between the animation kinematics and the three-dimensional OPTOTRAK data are very good and the animation is of high quality. Because the kinematic to electromyography (EMG) inversion is ill posed, there is no relation between the actual EMG and the inverted EMG. The overall redundancy of the motor system means that many different EMG patterns can produce the same kinematic output.

  2. 3D electromagnetic modelling of a TTI medium and TTI effects in inversion

    NASA Astrophysics Data System (ADS)

    Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien

    2016-04-01

    We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.

  3. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  4. Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia

    NASA Astrophysics Data System (ADS)

    Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.

    2010-07-01

    We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.

  5. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.

  6. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  7. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.

    PubMed

    Borbély, Bence J; Szolgay, Péter

    2017-01-17

    Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.

  8. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  9. Development of a database for the verification of trans-ionospheric remote sensing systems

    NASA Astrophysics Data System (ADS)

    Leitinger, R.

    2005-08-01

    Remote sensing systems need verification by means of in-situ data or by means of model data. In the case of ionospheric occultation inversion, ionosphere tomography and other imaging methods on the basis of satellite-to-ground or satellite-to-satellite electron content, the availability of in-situ data with adequate spatial and temporal co-location is a very rare case, indeed. Therefore the method of choice for verification is to produce artificial electron content data with realistic properties, subject these data to the inversion/retrieval method, compare the results with model data and apply a suitable type of “goodness of fit” classification. Inter-comparison of inversion/retrieval methods should be done with sets of artificial electron contents in a “blind” (or even “double blind”) way. The set up of a relevant database for the COST 271 Action is described. One part of the database will be made available to everyone interested in testing of inversion/retrieval methods. The artificial electron content data are calculated by means of large-scale models that are “modulated” in a realistic way to include smaller scale and dynamic structures, like troughs and traveling ionospheric disturbances.

  10. Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of themore » SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  11. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUAROmore » Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  12. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, Walter; Fregolent, Annalisa

    2014-04-01

    The paper deals with the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the remaining part of the structural system (residual subsystem). This topic is also known as decoupling problem, subsystem subtraction or inverse dynamic substructuring. Whenever it is necessary to combine numerical models (e.g. FEM) and test models (e.g. FRFs), one speaks of experimental dynamic substructuring. Substructure decoupling techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. On the contrary, direct decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem. Starting from a reduced version of the 3-field formulation (dynamic equilibrium using FRFs, compatibility and equilibrium of interface forces), a direct hybrid assembly is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not be the same: this generates the so-called non-collocated approach. The technique is applied using experimental data from an assembled system made by a plate and a rigid mass.

  13. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  14. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  15. Identification and Control of Non-Linear Time-Varying Dynamical Systems Using Artificial Neural Networks

    DTIC Science & Technology

    1992-09-01

    finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the

  16. Spatial operator approach to flexible multibody system dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1991-01-01

    The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.

  17. Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae.

    PubMed

    Cirulli, Elizabeth T; Noor, Mohamed A F

    2007-01-01

    Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.

  18. An inverse problem for a mathematical model of aquaponic agriculture

    NASA Astrophysics Data System (ADS)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  19. Constraining inverse-curvature gravity with supernovae.

    PubMed

    Mena, Olga; Santiago, José; Weller, Jochen

    2006-02-03

    We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07

  20. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  1. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow.

  2. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.

    PubMed

    Lombardi, D

    2014-02-01

    In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Inverse problems and computational cell metabolic models: a statistical approach

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Somersalo, E.

    2008-07-01

    In this article, we give an overview of the Bayesian modelling of metabolic systems at the cellular and subcellular level. The models are based on detailed description of key biochemical reactions occurring in tissue, which may in turn be compartmentalized into cytosol and mitochondria, and of transports between the compartments. The classical deterministic approach which models metabolic systems as dynamical systems with Michaelis-Menten kinetics, is replaced by a stochastic extension where the model parameters are interpreted as random variables with an appropriate probability density. The inverse problem of cell metabolism in this setting consists of estimating the density of the model parameters. After discussing some possible approaches to solving the problem, we address the issue of how to assess the reliability of the predictions of a stochastic model by proposing an output analysis in terms of model uncertainties. Visualization modalities for organizing the large amount of information provided by the Bayesian dynamic sensitivity analysis are also illustrated.

  4. Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS)

    NASA Astrophysics Data System (ADS)

    Audebert, M.; Clément, R.; Touze-Foltz, N.; Günther, T.; Moreau, S.; Duquennoi, C.

    2014-12-01

    Leachate recirculation is a key process in municipal waste landfills functioning as bioreactors. To quantify the water content and to assess the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). This geophysical method is based on the inversion process, which presents two major problems in terms of delimiting the infiltration area. First, it is difficult for ERT users to choose an appropriate inversion parameter set. Indeed, it might not be sufficient to interpret only the optimum model (i.e. the model with the chosen regularisation strength) because it is not necessarily the model which best represents the physical process studied. Second, it is difficult to delineate the infiltration front based on resistivity models because of the smoothness of the inversion results. This paper proposes a new methodology called MICS (multiple inversions and clustering strategy), which allows ERT users to improve the delimitation of the infiltration area in leachate injection monitoring. The MICS methodology is based on (i) a multiple inversion step by varying the inversion parameter values to take a wide range of resistivity models into account and (ii) a clustering strategy to improve the delineation of the infiltration front. In this paper, MICS was assessed on two types of data. First, a numerical assessment allows us to optimise and test MICS for different infiltration area sizes, contrasts and shapes. Second, MICS was applied to a field data set gathered during leachate recirculation on a bioreactor.

  5. Goal Directed Model Inversion: A Study of Dynamic Behavior

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.

  6. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  7. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  8. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  9. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    NASA Astrophysics Data System (ADS)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  10. 3D CSEM inversion based on goal-oriented adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.

  11. Hydrometeorology as an Inversion Problem: Can River Discharge Observations Improve the Atmosphere by Ensemble Data Assimilation?

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa

    2018-01-01

    We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.

  12. Research Advances on Radiation Transfer Modeling and Inversion for Multi-scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.

    2011-12-01

    As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  13. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and true estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model-data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.

  14. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  15. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    NASA Astrophysics Data System (ADS)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.

  16. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input file, with preferred parameters values, is given in Appendix A. An example of the plot generated at a normal completion of the inversion is shown in Appendix B.

  17. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.

  18. Analog design optimization methodology for ultralow-power circuits using intuitive inversion-level and saturation-level parameters

    NASA Astrophysics Data System (ADS)

    Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki

    2014-01-01

    A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.

  19. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  20. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  1. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  2. An Inversion Analysis of Recent Variability in CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.

    2016-12-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks and their location and year-to-year variability are not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations. We also use measurement-based ocean flux estimates and fixed fossil CO2 emissions. Our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM transport model with MERRA meteorology. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble each other and those from other studies. For example, a GOSAT-only inversion suggests a shift in the global sink from the tropics/south to the north relative to the prior and to an in-situ-only inversion. The posterior fluxes of the GOSAT inversion are better constrained in most regions than those of the in situ inversion because of the greater spatial coverage of the GOSAT observations. The GOSAT inversion also indicates a significantly smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009, consistent with observed drought conditions.

  3. Inverse problem of HIV cell dynamics using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  4. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio

    2015-07-01

    We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.

  5. Uncertainty Quantification in Remaining Useful Life of Aerospace Components using State Space Models and Inverse FORM

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2013-01-01

    This paper investigates the use of the inverse first-order reliability method (inverse- FORM) to quantify the uncertainty in the remaining useful life (RUL) of aerospace components. The prediction of remaining useful life is an integral part of system health prognosis, and directly helps in online health monitoring and decision-making. However, the prediction of remaining useful life is affected by several sources of uncertainty, and therefore it is necessary to quantify the uncertainty in the remaining useful life prediction. While system parameter uncertainty and physical variability can be easily included in inverse-FORM, this paper extends the methodology to include: (1) future loading uncertainty, (2) process noise; and (3) uncertainty in the state estimate. The inverse-FORM method has been used in this paper to (1) quickly obtain probability bounds on the remaining useful life prediction; and (2) calculate the entire probability distribution of remaining useful life prediction, and the results are verified against Monte Carlo sampling. The proposed methodology is illustrated using a numerical example.

  6. Symbolic inversion of control relationships in model-based expert systems

    NASA Technical Reports Server (NTRS)

    Thomas, Stan

    1988-01-01

    Symbolic inversion is examined from several perspectives. First, a number of symbolic algebra and mathematical tool packages were studied in order to evaluate their capabilities and methods, specifically with respect to symbolic inversion. Second, the KATE system (without hardware interface) was ported to a Zenith Z-248 microcomputer running Golden Common Lisp. The interesting thing about the port is that it allows the user to have measurements vary and components fail in a non-deterministic manner based upon random value from probability distributions. Third, INVERT was studied as currently implemented in KATE, its operation documented, some of its weaknesses identified, and corrections made to it. The corrections and enhancements are primarily in the way that logical conditions involving AND's and OR's and inequalities are processed. In addition, the capability to handle equalities was also added. Suggestions were also made regarding the handling of ranges in INVERT. Last, other approaches to the inversion process were studied and recommendations were made as to how future versions of KATE should perform symbolic inversion.

  7. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Top-down estimates of methane and nitrogen oxide emissions from shale gas production regions using aircraft measurements and a mesoscale Bayesian inversion system together with a flux ratio inversion technique

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Brioude, J. F.; Angevine, W. M.; McKeen, S. A.; Henze, D. K.; Bousserez, N.; Liu, Z.; McDonald, B.; Peischl, J.; Ryerson, T. B.; Frost, G. J.; Trainer, M.

    2016-12-01

    Production of unconventional natural gas grew rapidly during the past ten years in the US which led to an increase in emissions of methane (CH4) and, depending on the shale region, nitrogen oxides (NOx). In terms of radiative forcing, CH4 is the second most important greenhouse gas after CO2. NOx is a precursor of ozone (O3) in the troposphere and nitrate particles, both of which are regulated by the US Clean Air Act. Emission estimates of CH4 and NOx from the shale regions are still highly uncertain. We present top-down estimates of CH4 and NOx surface fluxes from the Haynesville and Fayetteville shale production regions using aircraft data collected during the Southeast Nexus of Climate Change and Air Quality (SENEX) field campaign (June-July, 2013) and the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign (March-May, 2015) within a mesoscale inversion framework. The inversion method is based on a mesoscale Bayesian inversion system using multiple transport models. EPA's 2011 National CH4 and NOx Emission Inventories are used as prior information to optimize CH4 and NOx emissions. Furthermore, the posterior CH4 emission estimates are used to constrain NOx emission estimates using a flux ratio inversion technique. Sensitivity of the posterior estimates to the use of off-diagonal terms in the error covariance matrices, the transport models, and prior estimates is discussed. Compared to the ground-based in-situ observations, the optimized CH4 and NOx inventories improve ground level CH4 and O3 concentrations calculated by the Weather Research and Forecasting mesoscale model coupled with chemistry (WRF-Chem).

  9. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-07-01

    The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  10. Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09

    USGS Publications Warehouse

    Payne, Jason; Teeple, Andrew

    2011-01-01

    Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model inversions. The TDEM data collected were considered good results on the basis of root mean square errors calculated after inversion modeling, comparisons with borehole geophysical logging, and repeatability.

  11. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore useful for improving the partitioning between ocean and land sinks and the spatial distribution of the inverted carbon flux.

  12. Stochastic inversion of cross-borehole radar data from metalliferous vein detection

    NASA Astrophysics Data System (ADS)

    Zeng, Zhaofa; Huai, Nan; Li, Jing; Zhao, Xueyu; Liu, Cai; Hu, Yingsa; Zhang, Ling; Hu, Zuzhi; Yang, Hui

    2017-12-01

    In the exploration and evaluation of the metalliferous veins with a cross-borehole radar system, traditional linear inversion methods (least squares inversion, LSQR) only get indirect parameters (permittivity, resistivity, or velocity) to estimate the target structure. They cannot accurately reflect the geological parameters of the metalliferous veins’ media properties. In order to get the intrinsic geological parameters and internal distribution, in this paper, we build a metalliferous veins model based on the stochastic effective medium theory, and carry out stochastic inversion and parameter estimation based on the Monte Carlo sampling algorithm. Compared with conventional LSQR, the stochastic inversion can get higher resolution inversion permittivity and velocity of the target body. We can estimate more accurately the distribution characteristics of abnormality and target internal parameters. It provides a new research idea to evaluate the properties of complex target media.

  13. Flight instrument and telemetry response and its inversion

    NASA Technical Reports Server (NTRS)

    Weinberger, M. R.

    1971-01-01

    Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.

  14. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  15. CSAMT Data Processing with Source Effect and Static Corrections, Application of Occam's Inversion, and Its Application in Geothermal System

    NASA Astrophysics Data System (ADS)

    Hamdi, H.; Qausar, A. M.; Srigutomo, W.

    2016-08-01

    Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.

  16. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  17. An Inverse Modeling Plugin for HydroDesktop using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio, C.; Over, M. W.; Rubin, Y.

    2011-12-01

    The CUAHSI Hydrologic Information System (HIS) software stack is based on an open and extensible architecture that facilitates the addition of new functions and capabilities at both the server side (using HydroServer) and the client side (using HydroDesktop). The HydroDesktop client plugin architecture is used here to expose a new scripting based plugin that makes use of the R statistics software as a means for conducting inverse modeling using the Method of Anchored Distributions (MAD). MAD is a Bayesian inversion technique for conditioning computational model parameters on relevant field observations yielding probabilistic distributions of the model parameters, related to the spatial random variable of interest, by assimilating multi-type and multi-scale data. The implementation of a desktop software tool for using the MAD technique is expected to significantly lower the barrier to use of inverse modeling in education, research, and resource management. The HydroDesktop MAD plugin is being developed following a community-based, open-source approach that will help both its adoption and long term sustainability as a user tool. This presentation will briefly introduce MAD, HydroDesktop, and the MAD plugin and software development effort.

  18. MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi,; Li, W; Chung, C

    2015-06-15

    Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target,more » and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta, Sweden (vendor of Gamma Knife Perfexion)« less

  19. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  20. Recent variability of the tropical tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Wang, Wuke; Matthes, Katja; Schmidt, Torsten; Neef, Lisa

    2013-12-01

    The recent variability of the tropopause temperature and the tropopause inversion layer (TIL) are investigated with Global Positioning System Radio Occultation data and simulations with the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). Over the past decade (2001-2011) the data show an increase of 0.8 K in the tropopause temperature and a decrease of 0.4 K in the strength of the tropopause inversion layer in the tropics, meaning that the vertical temperature gradient has declined, and therefore that the stability above the tropopause has weakened. WACCM simulations with finer vertical resolution show a more realistic TIL structure and variability. Model simulations show that the increased tropopause temperature and the weaker tropopause inversion layer are related to weakened upwelling in the tropics. Such changes in the thermal structure of the upper troposphere and lower stratosphere may have important implications for climate, such as a possible rise in water vapor in the lower stratosphere.

  1. The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.

    ERIC Educational Resources Information Center

    Harth, E.; And Others

    1987-01-01

    Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)

  2. Near real time inverse source modeling and stress filed assessment: the requirement of a volcano fast response system

    NASA Astrophysics Data System (ADS)

    Shirzaei, Manoochehr; Walter, Thomas

    2010-05-01

    Volcanic unrest and eruptions are one of the major natural hazards next to earthquakes, floods, and storms. It has been shown that many of volcanic and tectonic unrests are triggered by changes in the stress field induced by nearby seismic and magmatic activities. In this study, as part of a mobile volcano fast response system so-called "Exupery" (www.exupery-vfrs.de) we present an arrangement for semi real time assessing the stress field excited by volcanic activity. This system includes; (1) an approach called "WabInSAR" dedicated for advanced processing of the satellite data and providing an accurate time series of the surface deformation [1, 2], (2) a time dependent inverse source modeling method to investigate the source of volcanic unrest using observed surface deformation data [3, 4], (3) the assessment of the changes in stress field induced by magmatic activity at the nearby volcanic and tectonic systems. This system is implemented in a recursive manner that allows handling large 3D data sets in an efficient and robust way which is requirement of an early warning system. We have applied and validated this arrangement on Mauna Loa volcano, Hawaii Island, to assess the influence of the time dependent activities of Mauna Loa on earthquake occurrence at the Kaoiki seismic zone. References [1] M. Shirzaei and T. R. Walter, "Wavelet based InSAR (WabInSAR): a new advanced time series approach for accurate spatiotemporal surface deformation monitoring," IEEE, pp. submitted, 2010. [2] M. Shirzaei and R. T. Walter, "Deformation interplay at Hawaii Island through InSAR time series and modeling," J. Geophys Res., vol. submited, 2009. [3] M. Shirzaei and T. R. Walter, "Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data," J. Geophys. Res., vol. 114, B10401, doi:10.1029/2008JB006071, 2009. [4] M. Shirzaei and T. R. Walter, "Genetic algorithm combined with Kalman filter as powerful tool for nonlinear time dependent inverse modelling: Application to volcanic deformation time series," J. Geophys. Res., pp. submitted, 2010.

  3. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  4. Nested Global Inversion for the Carbon Flux Distribution in Canada and USA from 1994 to 2003

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.

    2007-12-01

    Based on TransCom inverse modeling for 22 global regions, we developed a nested global inversion system for estimating carbon fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA GlobalView database). Responses of these stations to carbon fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial carbon flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the carbon source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are carbon sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.

  5. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  6. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lin, Guang, E-mail: guanglin@purdue.edu

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  7. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  8. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  9. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers

    2013-06-01

    Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses obtained from the various forward models are comfortingly very similar, and discrepancies are mainly related to the adopted mesh. For the inversions, the results show how the inversion outcome is affected by distortion and the choice of errors, as well as by the completeness of the data set. We hope that these compilations will become useful not only for those that were involved in the workshops, but for the entire MT community and also the broader geoscience community who may be interested in the resolution offered by MT.

  10. Forward and inverse solutions for three-element Risley prism beam scanners.

    PubMed

    Li, Anhu; Liu, Xingsheng; Sun, Wansong

    2017-04-03

    Scan blind zone and control singularity are two adverse issues for the beam scanning performance in double-prism Risley systems. In this paper, a theoretical model which introduces a third prism is developed. The critical condition for a fully eliminated scan blind zone is determined through a geometric derivation, providing several useful formulae for three-Risley-prism system design. Moreover, inverse solutions for a three-prism system are established, based on the damped least-squares iterative refinement by a forward ray tracing method. It is shown that the efficiency of this iterative calculation of the inverse solutions can be greatly enhanced by a numerical differentiation method. In order to overcome the control singularity problem, the motion law of any one prism in a three-prism system needs to be conditioned, resulting in continuous and steady motion profiles for the other two prisms.

  11. Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration

    USGS Publications Warehouse

    Doherty, John E.; Hunt, Randall J.

    2010-01-01

    Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.

  12. Finite-fault source inversion using adjoint methods in 3D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-04-01

    Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.

  13. Finite-fault source inversion using adjoint methods in 3-D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-07-01

    Accounting for lateral heterogeneities in the 3-D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1-D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3-D heterogeneity in source inversion involves pre-computing 3-D Green's functions, which requires a number of 3-D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense data sets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3-D heterogeneous velocity model. The velocity model comprises a uniform background and a 3-D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3-D velocity model are performed for two different station configurations, a dense and a sparse network with 1 and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak-slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect, homogeneous velocity model. We find that, for velocity uncertainties that have standard deviation and correlation length typical of available 3-D crustal models, the inverted sources can be severely contaminated by spurious features even if the station density is high. When data from thousand or more receivers is used in source inversions in 3-D heterogeneous media, the computational cost of the method proposed in this work is at least two orders of magnitude lower than source inversion based on pre-computed Green's functions.

  14. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    NASA Astrophysics Data System (ADS)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances between the different methane and acetylene sources. The results from these controlled experiments demonstrate that, when the targeted and tracer gases are not well collocated, this new approach provides a better estimate of the emission rates than the tracer release technique. As an example, the relative error between the estimated and actual emission rates is reduced from 32 % with the tracer release technique to 16 % with the combined approach in the case of a tracer located 60 m upwind of a single methane source. Further studies and more complex implementations with more advanced transport models and more advanced optimisations of their configuration will be required to generalise the applicability of the approach and strengthen its robustness.

  15. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  16. Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.

    PubMed

    Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V

    2016-10-01

    An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A full potential inverse method based on a density linearization scheme for wing design

    NASA Technical Reports Server (NTRS)

    Shankar, V.

    1982-01-01

    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.

  18. CARBON AND NITROGEN ALLOCATION MODEL FOR THE SEAGRASS THALASSIA TESTUDUNUM IN LOWER LAGUNA MADRE

    EPA Science Inventory

    Inverse modeling methods are a powerful tool for understanding complex physiological relationships between seagrasses and their environment. The power of the method is a result of using ranges of data in a system of constraints to describe the biological system, in this case, t...

  19. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    NASA Technical Reports Server (NTRS)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  20. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet

  1. A Study on Multi-Swing Stability Analysis of Power System using Damping Rate Inversion

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Morii, Yuki; Oyama, Tsutomu; Hashiguchi, Takuhei; Goda, Tadahiro; Nomiyama, Fumitoshi; Kosugi, Narifumi

    In recent years, much attention is paid to the nonlinear analysis method in the field of stability analysis of power systems. Especially for the multi-swing stability analysis, the unstable limit cycle has an important meaning as a stability margin. It is required to develop a high speed calculation method of stability boundary regarding multi-swing stability because the real-time calculation of ATC is necessary to realize the flexible wheeling trades. Therefore, the authors have developed a new method which can calculate the unstable limit cycle based on damping rate inversion method. Using the unstable limit cycle, it is possible to predict the multi-swing stability at the time when the fault transmission line is reclosed. The proposed method is tested in Lorenz equation, single-machine infinite-bus system model and IEEJ WEST10 system model.

  2. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  3. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  4. Heat-flow properties of systems with alternate masses or alternate on-site potentials.

    PubMed

    Pereira, Emmanuel; Santana, Leonardo M; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  5. Study on queueing behavior in pedestrian evacuation by extended cellular automata model

    NASA Astrophysics Data System (ADS)

    Hu, Jun; You, Lei; Zhang, Hong; Wei, Juan; Guo, Yangyong

    2018-01-01

    This paper proposes a pedestrian evacuation model for effective simulation of evacuation efficiency based on extended cellular automata. In the model, pedestrians' momentary transition probability to a target position is defined in terms of the floor field and queueing time, and the critical time is defined as the waiting time threshold in a queue. Queueing time and critical time are derived using Fractal Brownian Motion through analysis of pedestrian arrival characteristics. Simulations using the platform and actual evacuations were conducted to study the relationships among system evacuation time, average system velocity, pedestrian density, flow rate, and critical time. The results demonstrate that at low pedestrian density, evacuation efficiency can be improved through adoption of the shortest route strategy, and critical time has an inverse relationship with average system velocity. Conversely, at higher pedestrian densities, it is better to adopt the shortest queueing time strategy, and critical time is inversely related to flow rate.

  6. On the potential of GHG emissions estimation by multi-species inverse modeling

    NASA Astrophysics Data System (ADS)

    Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute

    2016-04-01

    Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.

  7. Spatial delineation, fluid-lithology characterization, and petrophysical modeling of deepwater Gulf of Mexico reservoirs though joint AVA deterministic and stochastic inversion of three-dimensional partially-stacked seismic amplitude data and well logs

    NASA Astrophysics Data System (ADS)

    Contreras, Arturo Javier

    This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.

  8. A developed nearly analytic discrete method for forward modeling in the frequency domain

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai

    2018-02-01

    High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.

  9. Use of Ensemble Numerical Weather Prediction Data for Inversely Determining Atmospheric Refractivity in Surface Ducting Conditions

    NASA Astrophysics Data System (ADS)

    Greenway, D. P.; Hackett, E.

    2017-12-01

    Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.

  10. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.

  11. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  12. New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Sun, J.

    2011-12-01

    Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.

  13. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  14. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  15. A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Zuo, B.; Hu, X.; Li, H.

    2011-12-01

    A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.

  16. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    PubMed

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  17. Universal inverse power-law distribution for temperature and rainfall in the UK region

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-06-01

    Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.

  18. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  19. Control Theory based Shape Design for the Incompressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Cowles, G.; Martinelli, L.

    2003-12-01

    A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.

  20. Geoacoustic inversion of a shallow fresh-water environment

    NASA Astrophysics Data System (ADS)

    Stotts, Steven A.; Knobles, David P.; Koch, Robert A.; Piper, James N.; Keller, Jason A.

    2003-10-01

    A recent experiment was conducted at The University of Texas/Applied Research Laboratories test station located at Lake Travis, Austin, TX. Implosive (light bulb), explosive (firecracker), and tonal sources were recorded on a dual receiver system located on the bottom next to a range-independent underwater river channel. Inversion results of the broadband time series obtained over ranges less than 1.5 km were used to predict measured transmission loss at several tonal frequencies in the band from 250-1000 Hz. The average water depth was approximately 38 m along the channel during the experiment. Sound speed profiles were calculated from recorded temperature readings measured as a function of depth. Implosive source spectrums were measured and used to evaluate a model/data correlation cost function in a simulated annealing algorithm. Comparisons of inversion results using both a normal mode and a ray-based plane wave reflection coefficient forward model [Stotts et al., J. Acoust. Soc. Am. (submitted)] are discussed. Predicted transmission loss based on the inversion results are compared to the measured transmission loss. Differences between fluid and elastic layer bottom models will also be presented.

  1. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.

  2. Constraining CO emission estimates using atmospheric observations

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, P. B.

    2012-06-01

    We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr higher compared to the stations-only inversion. Second, MOPITT-only derived biomass burning emissions are reduced with respect to the prior which is in contrast to previous (inverse) modeling studies. Finally, MOPITT derived total emissions are significantly higher for South America and Africa compared to the stations-only inversion. This is likely due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation with surface stations and ground-truth FTIR columns. In the final study we present the first inverse modeling study to estimate CO emissions constrained by both surface (NOAA) and satellite (MOPITT) observations using a bias correction scheme. This approach leads to the identification of a positive bias of maximum 5 ppb in MOPITT column-averaged CO mixing ratios in the remote Southern Hemisphere (SH). The 4D-Var system is used to estimate CO emissions over South America in the period 2006-2010 and to analyze the interannual variability (IAV) of these emissions. We infer robust, high spatial resolution CO emission estimates that show slightly smaller IAV due to fires compared to the Global Fire Emissions Database (GFED3) prior emissions. Moreover, CO emissions probably associated with pre-harvest burning of sugar cane plantations are underestimated in current inventories by 50-100%.

  3. Performance recovery of a class of uncertain non-affine systems with unmodelled dynamics: an indirect dynamic inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Bowen; Lin, Shuyi; Yang, Bo; Zhang, Weidong

    2018-02-01

    This paper presents an output feedback indirect dynamic inversion (IDI) approach for a class of uncertain nonaffine systems with input unmodelled dynamics. Compared with previous approaches to achieve performance recovery, the proposed method aims at dealing with a broader class of nonaffine-in-control systems with triangular structure. An IDI state feedback law is designed first, in which less knowledge of the model plant is needed compared to earlier approximate dynamic inversion methods, thus yielding more robust performance. After that, an extended high-gain observer is designed to accomplish the task with output feedback. Finally, we prove that the designed IDI controller is equivalent to an adaptive proportional-integral (PI) controller, with respect to both time response equivalence and robustness equivalence. The conclusion implies that for the studied strict-feedback non-affine systems with unmodelled dynamics, there always exits a PI controller to stabilise the systems. The effectiveness and benefits of the designed approach are verified by three examples.

  4. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    USGS Publications Warehouse

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  5. NetpathXL - An Excel Interface to the Program NETPATH

    USGS Publications Warehouse

    Parkhurst, David L.; Charlton, Scott R.

    2008-01-01

    NetpathXL is a revised version of NETPATH that runs under Windows? operating systems. NETPATH is a computer program that uses inverse geochemical modeling techniques to calculate net geochemical reactions that can account for changes in water composition between initial and final evolutionary waters in hydrologic systems. The inverse models also can account for the isotopic composition of waters and can be used to estimate radiocarbon ages of dissolved carbon in ground water. NETPATH relies on an auxiliary, database program, DB, to enter the chemical analyses and to perform speciation calculations that define total concentrations of elements, charge balance, and redox state of aqueous solutions that are then used in inverse modeling. Instead of DB, NetpathXL relies on Microsoft Excel? to enter the chemical analyses. The speciation calculation formerly included in DB is implemented within the program NetpathXL. A program DBXL can be used to translate files from the old DB format (.lon files) to NetpathXL spreadsheets, or to create new NetpathXL spreadsheets. Once users have a NetpathXL spreadsheet with the proper format, new spreadsheets can be generated by copying or saving NetpathXL spreadsheets. In addition, DBXL can convert NetpathXL spreadsheets to PHREEQC input files. New capabilities in PHREEQC (version 2.15) allow solution compositions to be written to a .lon file, and inverse models developed in PHREEQC to be written as NetpathXL .pat and model files. NetpathXL can open NetpathXL spreadsheets, NETPATH-format path files (.pat files), and NetpathXL-format path files (.pat files). Once the speciation calculations have been performed on a spreadsheet file or a .pat file has been opened, the NetpathXL calculation engine is identical to the original NETPATH. Development of models and viewing results in NetpathXL rely on keyboard entry as in NETPATH.

  6. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-squares method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.

  7. Relationship between synoptic scale weather systems and column averaged atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.

    2005-12-01

    Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0.4-0.6 ppmv in summer over Siberia. Therefore it is essential to consider this bias due to covariance with vertical motion, while analyzing the column CO2 from space-borne observations together with in-situ observations, because most optical observations are not available under cloudy conditions typical for the low-pressure system.

  8. The UCERF3 grand inversion: Solving for the long‐term rate of ruptures in a fault system

    USGS Publications Warehouse

    Page, Morgan T.; Field, Edward H.; Milner, Kevin; Powers, Peter M.

    2014-01-01

    We present implementation details, testing, and results from a new inversion‐based methodology, known colloquially as the “grand inversion,” developed for the Uniform California Earthquake Rupture Forecast (UCERF3). We employ a parallel simulated annealing algorithm to solve for the long‐term rate of all ruptures that extend through the seismogenic thickness on major mapped faults in California while simultaneously satisfying available slip‐rate, paleoseismic event‐rate, and magnitude‐distribution constraints. The inversion methodology enables the relaxation of fault segmentation and allows for the incorporation of multifault ruptures, which are needed to remove magnitude‐distribution misfits that were present in the previous model, UCERF2. The grand inversion is more objective than past methodologies, as it eliminates the need to prescriptively assign rupture rates. It also provides a means to easily update the model as new data become available. In addition to UCERF3 model results, we present verification of the grand inversion, including sensitivity tests, tuning of equation set weights, convergence metrics, and a synthetic test. These tests demonstrate that while individual rupture rates are poorly resolved by the data, integrated quantities such as magnitude–frequency distributions and, most importantly, hazard metrics, are much more robust.

  9. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    NASA Astrophysics Data System (ADS)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  10. Permittivity and conductivity parameter estimations using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.

    2018-04-01

    Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.

  11. Neural control and transient analysis of the LCL-type resonant converter

    NASA Astrophysics Data System (ADS)

    Zouggar, S.; Nait Charif, H.; Azizi, M.

    2000-07-01

    This paper proposes a generalised inverse learning structure to control the LCL converter. A feedforward neural network is trained to act as an inverse model of the LCL converter then both are cascaded such that the composed system results in an identity mapping between desired response and the LCL output voltage. Using the large signal model, we analyse the transient output response of the controlled LCL converter in the case of large variation of the load. The simulation results show the efficiency of using neural networks to regulate the LCL converter.

  12. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less

  13. A 3D generic inverse dynamic method using wrench notation and quaternion algebra.

    PubMed

    Dumas, R; Aissaoui, R; de Guise, J A

    2004-06-01

    In the literature, conventional 3D inverse dynamic models are limited in three aspects related to inverse dynamic notation, body segment parameters and kinematic formalism. First, conventional notation yields separate computations of the forces and moments with successive coordinate system transformations. Secondly, the way conventional body segment parameters are defined is based on the assumption that the inertia tensor is principal and the centre of mass is located between the proximal and distal ends. Thirdly, the conventional kinematic formalism uses Euler or Cardanic angles that are sequence-dependent and suffer from singularities. In order to overcome these limitations, this paper presents a new generic method for inverse dynamics. This generic method is based on wrench notation for inverse dynamics, a general definition of body segment parameters and quaternion algebra for the kinematic formalism.

  14. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  15. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. ERBE Geographic Scene and Monthly Snow Data

    NASA Technical Reports Server (NTRS)

    Coleman, Lisa H.; Flug, Beth T.; Gupta, Shalini; Kizer, Edward A.; Robbins, John L.

    1997-01-01

    The Earth Radiation Budget Experiment (ERBE) is a multisatellite system designed to measure the Earth's radiation budget. The ERBE data processing system consists of several software packages or sub-systems, each designed to perform a particular task. The primary task of the Inversion Subsystem is to reduce satellite altitude radiances to fluxes at the top of the Earth's atmosphere. To accomplish this, angular distribution models (ADM's) are required. These ADM's are a function of viewing and solar geometry and of the scene type as determined by the ERBE scene identification algorithm which is a part of the Inversion Subsystem. The Inversion Subsystem utilizes 12 scene types which are determined by the ERBE scene identification algorithm. The scene type is found by combining the most probable cloud cover, which is determined statistically by the scene identification algorithm, with the underlying geographic scene type. This Contractor Report describes how the geographic scene type is determined on a monthly basis.

  17. A probabilistic process model for pelagic marine ecosystems informed by Bayesian inverse analysis

    EPA Science Inventory

    Marine ecosystems are complex systems with multiple pathways that produce feedback cycles, which may lead to unanticipated effects. Models abstract this complexity and allow us to predict, understand, and hypothesize. In ecological models, however, the paucity of empirical data...

  18. FORGE Newberry 3D Gravity Density Model for Newberry Volcano

    DOE Data Explorer

    Alain Bonneville

    2016-03-11

    These data are Pacific Northwest National Lab inversions of an amalgamation of two surface gravity datasets: Davenport-Newberry gravity collected prior to 2012 stimulations and Zonge International gravity collected for the project "Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems" in 2012. Inversions of surface gravity recover a 3D distribution of density contrast from which intrusive igneous bodies are identified. The data indicate a body name, body type, point type, UTM X and Y coordinates, Z data is specified as meters below sea level (negative values then indicate elevations above sea level), thickness of the body in meters, suscept, density anomaly in g/cc, background density in g/cc, and density in g/cc. The model was created using a commercial gravity inversion software called ModelVision 12.0 (http://www.tensor-research.com.au/Geophysical-Products/ModelVision). The initial model is based on the seismic tomography interpretation (Beachly et al., 2012). All the gravity data used to constrain this model are on the GDR: https://gdr.openei.org/submissions/760.

  19. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  20. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  1. Simultaneous stochastic inversion for geomagnetic main field and secular variation. I - A large-scale inverse problem

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1987-01-01

    The method of stochastic inversion is extended to the simultaneous inversion of both main field and secular variation. In the present method, the time dependency is represented by an expansion in Legendre polynomials, resulting in a simple diagonal form for the a priori covariance matrix. The efficient preconditioned Broyden-Fletcher-Goldfarb-Shanno algorithm is used to solve the large system of equations resulting from expansion of the field spatially to spherical harmonic degree 14 and temporally to degree 8. Application of the method to observatory data spanning the 1900-1980 period results in a data fit of better than 30 nT, while providing temporally and spatially smoothly varying models of the magnetic field at the core-mantle boundary.

  2. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.

    2014-03-01

    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

  3. Information fusion in regularized inversion of tomographic pumping tests

    USGS Publications Warehouse

    Bohling, Geoffrey C.; ,

    2008-01-01

    In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.

  4. Centroid-moment tensor inversions using high-rate GPS waveforms

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas B.; Valentine, Andrew P.; Woodhouse, John H.

    2012-10-01

    Displacement time-series recorded by Global Positioning System (GPS) receivers are a new type of near-field waveform observation of the seismic source. We have developed an inversion method which enables the recovery of an earthquake's mechanism and centroid coordinates from such data. Our approach is identical to that of the 'classical' Centroid-Moment Tensor (CMT) algorithm, except that we forward model the seismic wavefield using a method that is amenable to the efficient computation of synthetic GPS seismograms and their partial derivatives. We demonstrate the validity of our approach by calculating CMT solutions using 1 Hz GPS data for two recent earthquakes in Japan. These results are in good agreement with independently determined source models of these events. With wider availability of data, we envisage the CMT algorithm providing a tool for the systematic inversion of GPS waveforms, as is already the case for teleseismic data. Furthermore, this general inversion method could equally be applied to other near-field earthquake observations such as those made using accelerometers.

  5. A non-Hermitian analysis of strongly correlated quantum systems

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Hatano, Naomichi

    2006-03-01

    We study a non-Hermitian generalization of strongly correlated quantum systems in which the transfer energy of electrons is asymmetric. Hatano and Nelson[1] applied this technique to non-interacting random electron systems. They related a non-Hermitian critical point to the inverse localization length of the Hermitian systems. We here conjecture that we can obtain in the same way the correlation length of Hermitian interacting non-random systems[2]. We show for the Hubbard model and the antiferromagnetic XXZ model in one dimension that the non-Hermitian critical point of the ground state, where the energy gap vanishes, is equal to the inverse correlation length. We also show that the conjecture is consistent with numerical results for S=1/2 frustrated quantum spin chains with the nearest- and next-nearest-neighbor interactions including the Majumdar-Ghosh model[3]. [1] N. Hatano and D. R. Nelson, PRL 77 (1996) 570; PRB 56 (1997) 8651. [2] Y. Nakamura and N. Hatano, Physica B, accepted. [3] C. K. Majumdar and D. K. Ghosh, J. Phys. C3 (1970) 911; J. Math. Phys. 10 (1969) 1388, 1399.

  6. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    NASA Astrophysics Data System (ADS)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  7. A model to study finite-size and magnetic effects on the phase transition of a fermion interacting system

    NASA Astrophysics Data System (ADS)

    Corrêa, Emerson B. S.; Linhares, César A.; Malbouisson, Adolfo P. C.

    2018-03-01

    We present a model to study the effects from external magnetic field, chemical potential and finite size on the phase structures of a massive four- and six-fermion interacting systems. These effects are introduced by a method of compactification of coordinates, a generalization of the standard Matsubara prescription. Through the compactification of the z-coordinate and of imaginary time, we describe a heated system with the shape of a film of thickness L, at temperature β-1 undergoing first- or second-order phase transition. We have found a strong dependence of the temperature transition on the coupling constants λ and η. Besides inverse magnetic catalysis and symmetry breaking for both kinds of transition, we have found an inverse symmetry breaking phenomenon with respect to first-order phase transition.

  8. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  9. Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Vira, Julius; Bocquet, Marc; Sofiev, Mikhail; Saunier, Olivier

    2011-06-01

    In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to help in the assessment of the source term. In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison between French and Finnish frameworks. Two dispersion models have been used: Polair3D and Silam developed in two different research centres. Different release locations, as well as different meteorological situations are tested. The existing and newly planned surveillance networks are used and realistically large multiplicative observational errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors. The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the average performance of the data assimilation system is strong. However there are outlying situations where the inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.

  10. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    USGS Publications Warehouse

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  11. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  12. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  13. What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.

    PubMed

    Schilling, Malte; Cruse, Holk

    2012-01-01

    Even comparatively simple, reactive systems are able to control complex motor tasks, such as hexapod walking on unpredictable substrate. The capability of such a controller can be improved by introducing internal models of the body and of parts of the environment. Such internal models can be applied as inverse models, as forward models or to solve the problem of sensor fusion. Usually, separate models are used for these functions. Furthermore, separate models are used to solve different tasks. Here we concentrate on internal models of the body as the brain considers its own body the most important part of the world. The model proposed is formed by a recurrent neural network with the property of pattern completion. The model shows a hierarchical structure but nonetheless comprises a holistic system. One and the same model can be used as a forward model, as an inverse model, for sensor fusion, and, with a simple expansion, as a model to internally simulate (new) behaviors to be used for prediction. The model embraces the geometrical constraints of a complex body with many redundant degrees of freedom, and allows finding geometrically possible solutions. To control behavior such as walking, climbing, or reaching, this body model is complemented by a number of simple reactive procedures together forming a procedural memory. In this article, we illustrate the functioning of this network. To this end we present examples for solutions of the forward function and the inverse function, and explain how the complete network might be used for predictive purposes. The model is assumed to be "innate," so learning the parameters of the model is not (yet) considered.

  14. Analysis and Inverse Design of the HSR Arrow Wing Configuration with Fuselage, Wing, and Flow Through Nacelles

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.

    1999-01-01

    The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.

  15. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.; Ott, L. E.

    2015-12-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in the global sink from the tropics/south to the north relative to the prior and to an in-situ-only inversion. We also find a smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009.

  16. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Wang, James S.; Kawa, S. Randolph; Collatz, G. James; Baker, David F.; Ott, Lesley

    2015-01-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in the global sink from the tropics south to the north relative to the prior and to an in-situ-only inversion. We also find a smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009.

  17. Software Development for a Three-Dimensional Gravity Inversion and Application to Study of the Border Ranges Fault System, South-Central Alaska

    NASA Astrophysics Data System (ADS)

    Cardenas, R.; Doser, D. I.; Baker, M. R.

    2011-12-01

    Summary The Border Ranges Fault (BRFS) system bounds the Cook Inlet and Susitna Basins, an important petroleum province within south-central Alaska. An initial research goal is to test several plausible models of structure along the Border Ranges Fault System by developing a novel, 3D inversion software package. The inversion utilizes gravity data constrained with geophysical, borehole, and surface geological information. The novel inversion approach involves directly modeling known geology, initially free-air corrected data, and revising a priori uncertainties on the geologic model to allow comparisons to alternative interpretations. This technique to evaluate 3D structure in regions of highly complex geology can be applied in other studies of energy resources. The software reads an ASCII text file containing the latitude, longitude, elevation, and Free Air anomalies of each gravity station as well as gridded surface files of known topology. The contributions of each node in the grid are computed in order to compare the theoretical gravity calculations from a forward model to the gravity observations. The computation of solutions to the "linearized" inversion yields a range of plausible densities. The user will have the option of varying body proportions and dimensions to compare variations in density for changing depths of the gridded surface. Introduction Previous modeling of the BRFS using geophysical data has been limited due to the complexity of local geology and structure, both of shallow crustal features and the deeper subduction zone. Since the inversion is based on a sequence of gridded surfaces, it is feasible to develop software to help build these gridded geologic models. Without a way to modify grid surface elevations, density, and magnetic susceptibility in real time, the inversion process for the geologist would be highly nonlinear and poorly constrained, especially in structural geology this complex. Without a basic understanding of the geometry of the BRFS, its role in the formation and petroleum generation processes of the upper Cook Inlet and Susitna Basins is poorly understood. Model Generation The gravitational contributions are computed using a geophysics formulation, namely the vertical line element. g = πR2Gρ(x2+y2+z2)-1/2 Each line element is semi-infinite and extends from the top to the bottom of each structural layer. The user may define a three-dimensional body at a location on the surface. Each vertex of the body will be represented as separate nodes in the grid. The contribution of the body to the gravity value will be computed as a volume integral and added to the overall gravity contributions of other nodes on the surface. The user will also be able to modify the elevation and density of the defined body in real time. The most noted effectiveness of the software is in the user-defined a priori information facilitating real time interpretations and the computational efficiency of the model solution by using vertical line elements to address structural bodies with complex geometry.

  18. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    USGS Publications Warehouse

    Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable databases to validate and improve MODIS NPP algorithms.

  19. Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.

    2017-09-01

    Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint inversion improves the previous inversions methods making it a powerful tool applicable to different research areas.

  20. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  1. Recent Airborne EM surveying and processing - Studies from the North Sea coast

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; Steuer, A.; Wiederhold, H.

    2012-12-01

    The last decade has shown numerous improvements in AEM instrumentation as well as in AEM data processing and evaluation. The latter is essential for successfully using AEM data to derive reliable spatial conductivity distributions for, e.g. geological and hydrogeological 3D modeling. Besides sound data acquisition in order to measure AEM data having a sufficiently high S/N ratio, calibration, leveling and handling of man-made effects are essential to get data sets which are ready for enhanced inversion and interpretation. The Federal Institute for Geosciences and Natural resources (BGR) has been using frequency-domain helicopter-borne electromagnetic systems for more than three decades. The current system is a six-frequency FAS-RESOLVE system operating at 0.4 to 133 kHz. Particularly the high-frequency data require specific evaluation as the widely used quasi-static approximation is not sufficiently accurate for both forward and inverse modeling. The inversion results can be further improved by using internal (from AEM sites to AEM sites) or external (from boreholes or ground geophysical sites to AEM sites) constraints or by jointly inverting AEM and other geophysical data. Finally, examples from recent AEM surveys at the North Sea coast will be presented.

  2. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  3. A Model-Based Architecture Approach to Ship Design Linking Capability Needs to System Solutions

    DTIC Science & Technology

    2012-06-01

    NSSM NATO Sea Sparrow Missile RAM Rolling Airframe Missile CIWS Close-In Weapon System 3D Three Dimensional Ps Probability of Survival PHit ...example effectiveness model. The primary MOP is the inverse of the probability of taking a hit (1- PHit ), which in, this study, will be referred to as

  4. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  5. Results from a Year of Column CO2 Measurements over Paris France using Harris GreenLITE™

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Broquet, G.; Ramonet, M.; Staufer, J.; Vogel, F. R.

    2016-12-01

    In 2013 Harris Corporation and Atmospheric and Environmental Research developed the GreenLITE™ system under a cooperative agreement with the Department of Energy, National Energy Technology Laboratory, to monitor geologic carbon storage sites on the square km scale. Since that time the system has expanded to enable coverage of areas >25 km2, and was deployed over the city of Paris, France, in November 2015. The system consists of two scanning continuous wave laser absorption spectroscopy instruments and a number of reflectors arranged to provide a number of overlapping 2-5 km chords across the 25 km2 area. The system was deployed as a demonstration for the 21st Conference of Parties (COP21), and has since been extended to a full year experiment. Operating GreenLITE for a full year will allow evaluations of seasonalvariability and enable ingestion of these measurements into inversion model frameworks to estimate the city'semissions. High resolution emissions models currently function on scales of 1-4 km2 and use in situ instrumentation located outside of the urban environment for the inversions due to challenges related to high spatio-temporal variability within the complex urban environment. GreenLITE measurements, on the other hand, provide integrated measurements on spatial and temporal scales that are more suitable for these models.This presentation will review the GreenLITE measurement approach and discuss results of the GreenLITE demonstration, including: comparisons with well calibrated Picarro and ThermoFisher in situ instruments located in or near the GreenLITE footprint, comparisons with high resolution model results, and recent steps toward using the GreenLITE data directly in the inversion models.

  6. Stress pattern of the Shanxi rift system, North China, inferred from the inversion of new focal mechanisms

    NASA Astrophysics Data System (ADS)

    Li, Bin; Atakan, Kuvvet; Sørensen, Mathilde Bøttger; Havskov, Jens

    2015-05-01

    Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965-April 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined in this study by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions in the Shanxi rift system exhibit normal or strike-slip faulting, and the regional stress field is transtensional and dominated by NNW-SSE extension. This correlates well with results from GPS data, geological field observations and levelling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly along the strike of the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed for the Shanxi rift system, in which the rift is situated between two opposite rotating crustal blocks, exhibiting a transtensional stress regimes. This model illustrates the present-day stress field and its correlation to the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region.

  7. Hybrid-dual-fourier tomographic algorithm for a fast three-dimensionial optical image reconstruction in turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor)

    2007-01-01

    A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.

  8. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    USGS Publications Warehouse

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of M6.5–7 earthquake rates and also includes types of multifault ruptures seen in nature. Although UCERF3 fits the data better than UCERF2 overall, there may be areas that warrant further site-specific investigation. Supporting products may be of general interest, and we list key assumptions and avenues for future model improvements.

  9. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  10. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.

    PubMed

    Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P

    2010-11-01

    The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC

    NASA Technical Reports Server (NTRS)

    Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.

    2010-01-01

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric

  12. The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism.

    PubMed

    Salm, Maximilian P A; Horswell, Stuart D; Hutchison, Claire E; Speedy, Helen E; Yang, Xia; Liang, Liming; Schadt, Eric E; Cookson, William O; Wierzbicki, Anthony S; Naoumova, Rossi P; Shoulders, Carol C

    2012-06-01

    Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion's phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the ∼4.5-Mb 8p23.1 inversion), a structure that encompasses numerous signals of natural selection and disease association. We developed and validated a flexible bioinformatics tool that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion. This tool was applied retrospectively to diverse genome-wide data sets, revealing significant population stratification that largely follows a clinal "serial founder effect" distribution model. Phylogenetic analyses establish the inversion's ancestral origin within the Homo lineage, indicating that 8p23.1 inversion has occurred independently in the Pan lineage. The human inversion breakpoint was localized to an inverted pair of human endogenous retrovirus elements within the large, flanking low-copy repeats; experimental validation of this breakpoint confirmed these elements as the likely intermediary substrates that sponsored inversion formation. In five data sets, mRNA levels of disease-associated genes were robustly associated with inversion genotype. Moreover, a haplotype associated with systemic lupus erythematosus was restricted to the derived inversion state. We conclude that the 8p23.1 inversion is an evolutionarily dynamic structure that can now be accommodated into the understanding of human genetic and phenotypic diversity.

  13. The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism

    PubMed Central

    Salm, Maximilian P.A.; Horswell, Stuart D.; Hutchison, Claire E.; Speedy, Helen E.; Yang, Xia; Liang, Liming; Schadt, Eric E.; Cookson, William O.; Wierzbicki, Anthony S.; Naoumova, Rossi P.; Shoulders, Carol C.

    2012-01-01

    Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion's phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the ∼4.5-Mb 8p23.1 inversion), a structure that encompasses numerous signals of natural selection and disease association. We developed and validated a flexible bioinformatics tool that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion. This tool was applied retrospectively to diverse genome-wide data sets, revealing significant population stratification that largely follows a clinal “serial founder effect” distribution model. Phylogenetic analyses establish the inversion's ancestral origin within the Homo lineage, indicating that 8p23.1 inversion has occurred independently in the Pan lineage. The human inversion breakpoint was localized to an inverted pair of human endogenous retrovirus elements within the large, flanking low-copy repeats; experimental validation of this breakpoint confirmed these elements as the likely intermediary substrates that sponsored inversion formation. In five data sets, mRNA levels of disease-associated genes were robustly associated with inversion genotype. Moreover, a haplotype associated with systemic lupus erythematosus was restricted to the derived inversion state. We conclude that the 8p23.1 inversion is an evolutionarily dynamic structure that can now be accommodated into the understanding of human genetic and phenotypic diversity. PMID:22399572

  14. Improving atomic force microscopy imaging by a direct inverse asymmetric PI hysteresis model.

    PubMed

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-02-03

    A modified Prandtl-Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.

  15. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Kashcheyev, A.

    2017-01-01

    Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.

  16. 3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia

    NASA Astrophysics Data System (ADS)

    Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.

    2012-12-01

    Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.

  17. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  18. Estimation of the full-field dynamic response of a floating bridge using Kalman-type filtering algorithms

    NASA Astrophysics Data System (ADS)

    Petersen, Ø. W.; Øiseth, O.; Nord, T. S.; Lourens, E.

    2018-07-01

    Numerical predictions of the dynamic response of complex structures are often uncertain due to uncertainties inherited from the assumed load effects. Inverse methods can estimate the true dynamic response of a structure through system inversion, combining measured acceleration data with a system model. This article presents a case study of full-field dynamic response estimation of a long-span floating bridge: the Bergøysund Bridge in Norway. This bridge is instrumented with a network of 14 triaxial accelerometers. The system model consists of 27 vibration modes with natural frequencies below 2 Hz, obtained from a tuned finite element model that takes the fluid-structure interaction with the surrounding water into account. Two methods, a joint input-state estimation algorithm and a dual Kalman filter, are applied to estimate the full-field response of the bridge. The results demonstrate that the displacements and the accelerations can be estimated at unmeasured locations with reasonable accuracy when the wave loads are the dominant source of excitation.

  19. Phase-locked bifrequency Raman lasing in a double-Λ system

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Shahriar, M. S.

    2018-05-01

    We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.

  20. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  1. On the Development of Multi-Step Inverse FEM with Shell Model

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Du, R.

    2005-08-01

    The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.

  2. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  3. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    NASA Astrophysics Data System (ADS)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  4. 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids

    NASA Astrophysics Data System (ADS)

    Jahandari, H.; Farquharson, C. G.

    2017-11-01

    Unstructured grids enable representing arbitrary structures more accurately and with fewer cells compared to regular structured grids. These grids also allow more efficient refinements compared to rectilinear meshes. In this study, tetrahedral grids are used for the inversion of magnetotelluric (MT) data, which allows for the direct inclusion of topography in the model, for constraining an inversion using a wireframe-based geological model and for local refinement at the observation stations. A minimum-structure method with an iterative model-space Gauss-Newton algorithm for optimization is used. An iterative solver is employed for solving the normal system of equations at each Gauss-Newton step and the sensitivity matrix-vector products that are required by this solver are calculated using pseudo-forward problems. This method alleviates the need to explicitly form the Hessian or Jacobian matrices which significantly reduces the required computation memory. Forward problems are formulated using an edge-based finite-element approach and a sparse direct solver is used for the solutions. This solver allows saving and re-using the factorization of matrices for similar pseudo-forward problems within a Gauss-Newton iteration which greatly minimizes the computation time. Two examples are presented to show the capability of the algorithm: the first example uses a benchmark model while the second example represents a realistic geological setting with topography and a sulphide deposit. The data that are inverted are the full-tensor impedance and the magnetic transfer function vector. The inversions sufficiently recovered the models and reproduced the data, which shows the effectiveness of unstructured grids for complex and realistic MT inversion scenarios. The first example is also used to demonstrate the computational efficiency of the presented model-space method by comparison with its data-space counterpart.

  5. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse

    PubMed Central

    Raz, Oren

    2017-01-01

    Under certain conditions, it takes a shorter time to cool a hot system than to cool the same system initiated at a lower temperature. This phenomenon—the “Mpemba effect”—was first observed in water and has recently been reported in other systems. Whereas several detail-dependent explanations were suggested for some of these observations, no common underlying mechanism is known. Using the theoretical framework of nonequilibrium thermodynamics, we present a widely applicable mechanism for a similar effect, the Markovian Mpemba effect, derive a sufficient condition for its appearance, and demonstrate it explicitly in three paradigmatic systems: the Ising model, diffusion dynamics, and a three-state system. In addition, we predict an inverse Markovian Mpemba effect in heating: Under proper conditions, a cold system can heat up faster than the same system initiated at a higher temperature. We numerically demonstrate that this inverse effect is expected in a 1D antiferromagnet nearest-neighbors interacting Ising chain in the presence of an external magnetic field. Our results shed light on the mechanism behind anomalous heating and cooling and suggest that it should be possible to observe these in a variety of systems. PMID:28461467

  6. Stable modeling based control methods using a new RBF network.

    PubMed

    Beyhan, Selami; Alci, Musa

    2010-10-01

    This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  8. Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; Scheepmaker, R. A.; Dlugokencky, E.; Sweeney, C.; Wofsy, S. C.; Kort, E. A.

    2015-01-01

    At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent {methane (CH4) retrievals} were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4 retrievals can be compared during the period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellite-based inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North America, the satellite inversions result in a significant redistribution of CH4 emissions from North-East to South-Central United States. This result is consistent with recent independent studies suggesting a systematic underestimation of CH4 emissions from North American fossil fuel sources in bottom-up inventories, likely related to natural gas production facilities. Furthermore, all four satellite inversions yield lower CH4 fluxes across the Congo basin compared to the NOAA-only scenario, but higher emissions across tropical East Africa. The GOSAT and SCIAMACHY inversions show similar performance when validated against independent shipboard and aircraft observations, and XCH4 retrievals available from the Total Carbon Column Observing Network (TCCON).

  9. Engineering bacteria to solve the Burnt Pancake Problem

    PubMed Central

    Haynes, Karmella A; Broderick, Marian L; Brown, Adam D; Butner, Trevor L; Dickson, James O; Harden, W Lance; Heard, Lane H; Jessen, Eric L; Malloy, Kelly J; Ogden, Brad J; Rosemond, Sabriya; Simpson, Samantha; Zwack, Erin; Campbell, A Malcolm; Eckdahl, Todd T; Heyer, Laurie J; Poet, Jeffrey L

    2008-01-01

    Background We investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA. Results Inversions (or "flips") of the DNA fragment pancakes are driven by the Salmonella typhimurium Hin/hix DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in E. coli. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; E. coli cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of in vivo flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes. Conclusion The Hin/hix system is a proof-of-concept demonstration of in vivo computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/hix may provide a flexible new tool for manipulating transgenic DNA in vivo. PMID:18492232

  10. Research Advances on Radiation Transfer Modeling and Inversion for Multi-Scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2011-09-01

    At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  11. Inverse problem of radiofrequency sounding of ionosphere

    NASA Astrophysics Data System (ADS)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  12. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    PubMed

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Scattering of clusters of spherical particles—Modeling and inverse problem solution in the Rayleigh-Gans approximation

    NASA Astrophysics Data System (ADS)

    Eliçabe, Guillermo E.

    2013-09-01

    In this work, an exact scattering model for a system of clusters of spherical particles, based on the Rayleigh-Gans approximation, has been parameterized in such a way that it can be solved in inverse form using Thikhonov Regularization to obtain the morphological parameters of the clusters. That is to say, the average number of particles per cluster, the size of the primary spherical units that form the cluster, and the Discrete Distance Distribution Function from which the z-average square radius of gyration of the system of clusters is obtained. The methodology is validated through a series of simulated and experimental examples of x-ray and light scattering that show that the proposed methodology works satisfactorily in unideal situations such as: presence of error in the measurements, presence of error in the model, and several types of unideallities present in the experimental cases.

  14. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  15. Ground resistivity method and DCIP2D forward and inversion modelling to identify alteration at the Midwest uranium deposit, northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Long, Samuel R. M.; Smith, Richard S.; Hearst, Robert B.

    2017-06-01

    Resistivity methods are commonly used in mineral exploration to map lithology, structure, sulphides and alteration. In the Athabasca Basin, resistivity methods are used to detect alteration associated with uranium. At the Midwest deposit, there is an alteration zone in the Athabasca sandstones that is above a uraniferous conductive graphitic fault in the basement and below a conductive lake at surface. Previous geophysical work in this area has yielded resistivity sections that we feel are ambiguous in the area where the alteration is expected. Resolve® and TEMPEST sections yield an indistinct alteration zone, while two-dimensional (2D) inversions of the ground resistivity data show an equivocal smeared conductive feature in the expected location between the conductive graphite and the conductive lake. Forward modelling alone cannot identify features in the pseudosections that are clearly associated with alteration, as the section is dominated by the feature associated with the near-surface conductive lake; inverse modelling alone produces sections that are smeared and equivocal. We advocate an approach that uses a combination of forward and inverse modelling. We generate a forward model from a synthetic geoelectric section; this forward data is then inverse modelled and compared with the inverse model generated from the field data using the same inversion parameters. The synthetic geoelectric section is then adjusted until the synthetic inverse model closely matches the field inverse model. We found that this modelling process required a conductive alteration zone in the sandstone above the graphite, as removing the alteration zone from the sandstone created an inverse section very dissimilar to the inverse section derived from the field data. We therefore conclude that the resistivity method is able to identify conductive alteration at Midwest even though it is below a conductive lake and above a conductive graphitic fault. We also concluded that resistivity inversions suggest a conductive paleoweathering surface on the top of the basement rocks at the basin/basement unconformity.

  16. Recursive partitioned inversion of large (1500 x 1500) symmetric matrices

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Brownd, J. E.; Gomez, R. A.

    1976-01-01

    A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.

  17. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  18. Application of Inverse Modeling to Estimate Groundwater Recharge under Future Climate Scenario

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Wang, T.; Bartelt-Hunt, S.; Li, Y.

    2016-12-01

    Climate variability and change will impose profound influences on groundwater systems. Accurate estimation of groundwater recharge is extremely important for predicting the flow and contaminant transport in the subsurface, which, however, remains as one of the most challenging tasks in the field of hydrology. Using an inverse modeling technique and HYDRUS 1D software, we predicted the spatial distribution of groundwater recharge across the Upper Platte basin in Nebraska, USA, based on 5-year projected future climate and soil moisture data (2057-2060). The climate data was obtained from Weather Research and Forecasting (WRF) model under RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. Precipitation, potential evapotranspiration, and soil moisture data were extracted from 76 grids located within the Upper Platte basin to perform the inverse modeling. Hargreaves equation was used to calculate the potential evapotranspiration according to latitude, maximum and minimum temperature, and leaf area index (LAI) data at each node. Van-Genuchten parameters were optimized using the inverse algorithm to minimize the error between input and modeled soil moisture data. The groundwater recharge was calculated as the amount of water that passed the lower boundary of the best fitted model. The year of 2057 was used as a spin-up period to minimize the impact of initial conditions. The model was calibrated for years 2058 to 2059 and validation was performed for 2060. This work demonstrates an efficient approach to estimating groundwater recharge based on climate modeling results, which will aid groundwater resources management under future climate scenarios.

  19. Inverse-collimated proton radiography for imaging thin materials

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Andrews, Malcolm; Ferm, Eric; Goett, John J.; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Marr-Lyon, Mark; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morris, Chris L.; Murray, Matthew M.; Nedrow, Paul; Neukirch, Levi P.; Prestridge, Katherine; Rigg, Paolo; Saunders, Alexander; Schurman, Tamsen; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Vogan-McNeil, Wendy; Wilde, Carl

    2017-01-01

    Relativistic, magnetically focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam and is inherently well-suited to imaging dense objects, at areal densities >20 g cm-2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm-2. Here, this inverse-collimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ˜25 mg cm-2 to 100 g cm-2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.

  20. Inverse-collimated proton radiography for imaging thin materials.

    PubMed

    Freeman, Matthew S; Allison, Jason; Andrews, Malcolm; Ferm, Eric; Goett, John J; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Marr-Lyon, Mark; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E; Morris, Chris L; Murray, Matthew M; Nedrow, Paul; Neukirch, Levi P; Prestridge, Katherine; Rigg, Paolo; Saunders, Alexander; Schurman, Tamsen; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Vogan-McNeil, Wendy; Wilde, Carl

    2017-01-01

    Relativistic, magnetically focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam and is inherently well-suited to imaging dense objects, at areal densities >20 g cm -2 . However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm -2 . Here, this inverse-collimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm -2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ∼25 mg cm -2 to 100 g cm -2 , exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.

  1. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  2. Quantifying Carbon Flux Estimation Errors

    NASA Astrophysics Data System (ADS)

    Wesloh, D.

    2017-12-01

    Atmospheric Bayesian inversions have been used to estimate surface carbon dioxide (CO2) fluxes from global to sub-continental scales using atmospheric mixing ratio measurements. These inversions use an atmospheric transport model, coupled to a set of fluxes, in order to simulate mixing ratios that can then be compared to the observations. The comparison is then used to update the fluxes to better match the observations in a manner consistent with the uncertainties prescribed for each. However, inversion studies disagree with each other at continental scales, prompting further investigations to examine the causes of these differences. Inter-comparison studies have shown that the errors resulting from atmospheric transport inaccuracies are comparable to those from the errors in the prior fluxes. However, not as much effort has gone into studying the origins of the errors induced by errors in the transport as by errors in the prior distribution. This study uses a mesoscale transport model to evaluate the effects of representation errors in the observations and of incorrect descriptions of the transport. To obtain realizations of these errors, we performed an Observing System Simulation Experiments (OSSEs), with the transport model used for the inversion operating at two resolutions, one typical of a global inversion and the other of a mesoscale, and with various prior flux distributions to. Transport error covariances are inferred from an ensemble of perturbed mesoscale simulations while flux error covariances are computed using prescribed distributions and magnitudes. We examine how these errors can be diagnosed in the inversion process using aircraft, ground-based, and satellite observations of meteorological variables and CO2.

  3. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  4. Three-dimensional forward modeling and inversion of marine CSEM data in anisotropic conductivity structures

    NASA Astrophysics Data System (ADS)

    Han, B.; Li, Y.

    2016-12-01

    We present a three-dimensional (3D) forward and inverse modeling code for marine controlled-source electromagnetic (CSEM) surveys in anisotropic media. The forward solution is based on a primary/secondary field approach, in which secondary fields are solved using a staggered finite-volume (FV) method and primary fields are solved for 1D isotropic background models analytically. It is shown that it is rather straightforward to extend the isotopic 3D FV algorithm to a triaxial anisotropic one, while additional coefficients are required to account for full tensor conductivity. To solve the linear system resulting from FV discretization of Maxwell' s equations, both iterative Krylov solvers (e.g. BiCGSTAB) and direct solvers (e.g. MUMPS) have been implemented, makes the code flexible for different computing platforms and different problems. For iterative soloutions, the linear system in terms of electromagnetic potentials (A-Phi) is used to precondition the original linear system, transforming the discretized Curl-Curl equations to discretized Laplace-like equations, thus much more favorable numerical properties can be obtained. Numerical experiments suggest that this A-Phi preconditioner can dramatically improve the convergence rate of an iterative solver and high accuracy can be achieved without divergence correction even for low frequencies. To efficiently calculate the sensitivities, i.e. the derivatives of CSEM data with respect to tensor conductivity, the adjoint method is employed. For inverse modeling, triaxial anisotropy is taken into account. Since the number of model parameters to be resolved of triaxial anisotropic medias is twice or thrice that of isotropic medias, the data-space version of the Gauss-Newton (GN) minimization method is preferred due to its lower computational cost compared with the traditional model-space GN method. We demonstrate the effectiveness of the code with synthetic examples.

  5. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  6. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  7. Motion control of musculoskeletal systems with redundancy.

    PubMed

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  8. Incorporating approximation error in surrogate based Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L.; Li, W.; Wu, L.

    2015-12-01

    There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.

  9. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  10. Modeling survival, yield, volume partitioning and their response to thinning for longleaf pine plantations

    Treesearch

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Daniel J. Leduc; Timothy A. Martin; Wendell P. Cropper Jr; Lisa J Samuelson

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is an important tree species of the southeast U.S. Currently there is no comprehensive stand-level growth and yield model for the species. The model system described here estimates site index (SI) if dominant height (Hdom) and stand age are known (inversely, the model can project H

  11. A superstatistical model of metastasis and cancer survival

    NASA Astrophysics Data System (ADS)

    Leon Chen, L.; Beck, Christian

    2008-05-01

    We introduce a superstatistical model for the progression statistics of malignant cancer cells. The metastatic cascade is modeled as a complex nonequilibrium system with several macroscopic pathways and inverse-chi-square distributed parameters of the underlying Poisson processes. The predictions of the model are in excellent agreement with observed survival-time probability distributions of breast cancer patients.

  12. Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China

    NASA Astrophysics Data System (ADS)

    Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang

    2017-09-01

    This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress the non-uniqueness problem of inversion so as to raise its reliability. In this way, a 3D detailed model of underground karst system which is 30 m ahead of tunnel face is finally formed. At the end of the paper, there is a geological sketch of the revealed karst caves, which illustrates the effectiveness of the presented strategy. To sum up, in the comprehensive investigation of underground karst caves, the integrated use of prior information can help to yield more accurate and detailed results.

  13. A hydraulic tomography approach coupling travel time inversion with steady shape analysis based on aquifer analogue study in coarsely clastic fluvial glacial deposit

    NASA Astrophysics Data System (ADS)

    Hu, R.; Brauchler, R.; Herold, M.; Bayer, P.; Sauter, M.

    2009-04-01

    Rarely is it possible to draw a significant conclusion about the geometry and the properties of geological structures of the underground using the information which is typically obtained from boreholes, since soil exploration is only representative of the position where the soil sample is taken from. Conventional aquifer investigation methods like pumping tests can provide hydraulic properties of a larger area; however, they lead to integral information. This information is insufficient to develop groundwater models, especially contaminant transport models, which require information about the spatial distribution of the hydraulic properties of the subsurface. Hydraulic tomography is an innovative method which has the potential to spatially resolve three dimensional structures of natural aquifer bodies. The method employs hydraulic short term tests performed between two or more wells, whereby the pumped intervals (sources) and the observation points (receivers) are separated by double packer systems. In order to optimize the computationally intensive tomographic inversion of transient hydraulic data we have decided to couple two inversion approaches (a) hydraulic travel time inversion and (b) steady shape inversion. (a) Hydraulic travel time inversion is based on the solution of the travel time integral, which describes the relationship between travel time of maximum signal variation of a transient hydraulic signal and the diffusivity between source and receiver. The travel time inversion is computationally extremely effective and robust, however, it is limited to the determination of diffusivity. In order to overcome this shortcoming we use the estimated diffusivity distribution as starting model for the steady shape inversion with the goal to separate the estimated diffusivity distribution into its components, hydraulic conductivity and specific storage. (b) The steady shape inversion utilizes the fact that at steady shape conditions, drawdown varies with time but the hydraulic gradient does not. By this trick, transient data can be analyzed with the computational efficiency of a steady state model, which proceeds hundreds of times faster than transient models. Finally, a specific storage distribution can be calculated from the diffusivity and hydraulic conductivity reconstructions derived from travel time and steady shape inversion. The groundwork of this study is the aquifer-analogue study from BAYER (1999), in which six parallel profiles of a natural sedimentary body with a size of 16m x 10m x 7m were mapped in high resolution with respect to structural and hydraulic parameters. Based on these results and using geostatistical interpolation methods, MAJI (2005) designed a three dimensional hydraulic model with a resolution of 5cm x 5cm x 5cm. This hydraulic model was used to simulate a large number of short term pumping tests in a tomographical array. The high resolution parameter reconstructions gained from the inversion of simulated pumping test data demonstrate that the proposed inversion scheme allows reconstructing the individual architectural elements and their hydraulic properties with a higher resolution compared to conventional hydraulic and geological investigation methods. Bayer P (1999) Aquifer-Analog-Studium in grobklastischen braided river Ablagerungen: Sedimentäre/hydrogeologische Wandkartierung und Kalibrierung von Georadarmessungen, Diplomkartierung am Lehrstuhl für Angewandte Geologie, Universität Tübingen, 25 pp. Maji, R. (2005) Conditional Stochastic Modelling of DNAPL Migration and Dissolution in a High-resolution Aquifer Analog, Ph.D. thesis at the University of Waterloo, 187 pp.

  14. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    NASA Astrophysics Data System (ADS)

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-04-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  15. Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model

    PubMed Central

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-01-01

    A modified Prandtl–Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM. PMID:25654719

  16. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  17. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    NASA Astrophysics Data System (ADS)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the statistics of the limited number of error sources. These OSSEs indicate that the image resolution has to be finer than 4 km to decrease the uncertainty in the 6 h mean emissions by more than 50 %. More complex experiments assess the impact of more realistic error estimates that current inversion methods do not properly account for, in particular, the systematic measurement errors with spatially correlated patterns. These experiments highlight the difficulty to improve current knowledge on CO2 emissions for urban areas like Paris with CO2 observations from satellites, and call for more technological innovations in the remote sensing of vertically integrated columns of CO2 and in the inversion systems that exploit it.

  18. Affordable and personalized lighting using inverse modeling and virtual sensors

    NASA Astrophysics Data System (ADS)

    Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney

    2014-03-01

    Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.

  19. A trade-off between model resolution and variance with selected Rayleigh-wave data

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.

  20. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  1. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  2. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2014-04-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic) with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i) the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii) the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.

  3. On parameterization of the inverse problem for estimating aquifer properties using tracer data

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Murray, C.; Commer, M.; Newcomer, D.; Englert, A.; Steefel, C. I.; Hubbard, S. S.

    2012-06-01

    In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data).

  4. Exactly Embedded Density Functional Theory: A New Paradigm for the First-principles Modeling of Reactions in Complex Systems

    DTIC Science & Technology

    2014-10-14

    applications. By developing both inversion-based and projection -based strategies to enable 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT...constraint that excluded essentially all condensed-phase and reactive chemical applications. By developing both inversion-based and projection -based

  5. Gravimetric control of active volcanic processes

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  6. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve the spatial structure in the inverse model, which leads to better parameter estimates and improved predictions when using the inverse-conditioned realizations of parameter fields.

  7. Improving Conceptual Models Using AEM Data and Probability Distributions

    NASA Astrophysics Data System (ADS)

    Davis, A. C.; Munday, T. J.; Christensen, N. B.

    2012-12-01

    With emphasis being placed on uncertainty in groundwater modelling and prediction, coupled with questions concerning the value of geophysical methods in hydrogeology, it is important to ask meaningful questions of hydrogeophysical data and inversion results. For example, to characterise aquifers using electromagnetic (EM) data, we ask questions such as "Given that the electrical conductivity of aquifer 'A' is less than x, where is that aquifer elsewhere in the survey area?" The answer may be given by examining inversion models, selecting locations and layers that satisfy the condition 'conductivity <= x', and labelling them as aquifer 'A'. One difficulty with this approach is that the inversion model result often be considered to be the only model for the data. In reality it is just one image of the subsurface that, given the method and the regularisation imposed in the inversion, agrees with measured data within a given error bound. We have no idea whether the final model realised by the inversion satisfies the global minimum error, or whether it is simply in a local minimum. There is a distribution of inversion models that satisfy the error tolerance condition: the final model is not the only one, nor is it necessarily the correct one. AEM inversions are often linearised in the calculation of the parameter sensitivity: we rely on the second derivatives in the Taylor expansion, thus the minimum model has all layer parameters distributed about their mean parameter value with well-defined variance. We investigate the validity of the minimum model, and its uncertainty, by examining the full posterior covariance matrix. We ask questions of the minimum model, and answer them in a probabilistically. The simplest question we can pose is "What is the probability that all layer resistivity values are <= a cut-off value?" We can calculate through use of the erf or the erfc functions. The covariance values of the inversion become marginalised in the integration: only the main diagonal is used. Complications arise when we ask more specific questions, such as "What is the probability that the resistivity of layer 2 <= x, given that layer 1 <= y?" The probability then becomes conditional, calculation includes covariance terms, the integration is taken over many dimensions, and the cross-correlation of parameters becomes important. To illustrate, we examine the inversion results of a Tempest AEM survey over the Uley Basin aquifers in the Eyre Peninsula, South Australia. Key aquifers include the unconfined Bridgewater Formation that overlies the Uley and Wanilla Formations, which contain Tertiary clays and Tertiary sandstone. These Formations overlie weathered basement which define the lower bound of the Uley Basin aquifer systems. By correlating the conductivity of the sub-surface Formation types, we pose questions such as: "What is the probability-depth of the Bridgewater Formation in the Uley South Basin?", "What is the thickness of the Uley Formation?" and "What is the most probable depth to basement?" We use these questions to generate improved conceptual hydrogeological models of the Uley Basin in order to develop better estimates of aquifer extent and the available groundwater resource.

  8. Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.

    PubMed

    Pfordresher, Peter Q; Mantell, James T

    2014-05-01

    Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  10. Orthogonality catastrophe and fractional exclusion statistics

    NASA Astrophysics Data System (ADS)

    Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.

    2018-02-01

    We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  11. Orthogonality catastrophe and fractional exclusion statistics.

    PubMed

    Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R

    2018-02-01

    We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  12. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  13. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    PubMed

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  15. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  16. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.

    PubMed

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

  17. Rapid finite-fault inversions in Southern California using Cybershake Green's functions

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Polet, J.

    2017-12-01

    We have developed a system for rapid finite fault inversion for intermediate and large Southern California earthquakes using local, regional and teleseismic seismic waveforms as well as geodetic data. For modeling the local seismic data, we use 3D Green's functions from the Cybershake project, which were made available to us courtesy of the Southern California Earthquake Center (SCEC). The use of 3D Green's functions allows us to extend the inversion to higher frequency waveform data and smaller magnitude earthquakes, in addition to achieving improved solutions in general. The ultimate aim of this work is to develop the ability to provide high quality finite fault models within a few hours after any damaging earthquake in Southern California, so that they may be used as input to various post-earthquake assessment tools such as ShakeMap, as well as by the scientific community and other interested parties. Additionally, a systematic determination of finite fault models has value as a resource for scientific studies on detailed earthquake processes, such as rupture dynamics and scaling relations. We are using an established least-squares finite fault inversion method that has been applied extensively both on large as well as smaller regional earthquakes, in conjunction with the 3D Green's functions, where available, as well as 1D Green's functions for areas for which the Cybershake library has not yet been developed. We are carrying out validation and calibration of this system using significant earthquakes that have occurred in the region over the last two decades, spanning a range of locations and magnitudes (5.4 and higher).

  18. Implement Method for Automated Testing of Markov Chain Convergence into INVERSE for ORNL12-RS-108J: Advanced Multi-Dimensional Forward and Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bledsoe, Keith C.

    2015-04-01

    The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less

  19. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  20. Bowl Inversion and Electronic Switching of Buckybowls on Gold.

    PubMed

    Fujii, Shintaro; Ziatdinov, Maxim; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kiguchi, Manabu

    2016-09-21

    Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp(2)-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.

  1. Quality assessment of reservoirs by means of outcrop data and "discrete fracture network" models: The case history of Rosario de La Frontera (NW Argentina) geothermal system

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Bigi, S.; Corrado, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2015-04-01

    We report the results of a systematic study carried out on the fracture systems exposed in the Sierra de La Candelaria anticline, in the central Andean retrowedge of northwestern Argentina. The aim was to elaborate a kinematic model of the anticline and to assess the dimensional and spatial properties of the fracture network characterizing the Cretaceous sandstone reservoir of the geothermal system of Rosario de La Frontera. Special regard was devoted to explore how tectonics may affect fluid circulation at depth and control fluids' natural upwelling at surface. With this aim we performed a Discrete Fracture Network model in order to evaluate the potential of the reservoir of the studied geothermal system. The results show that the Sierra de La Candelaria regional anticline developed according to a kinematic model of transpressional inversion compatible with the latest Andean regional WNW-ESE shortening, acting on a pre-orogenic N-S normal fault. A push-up geometry developed during positive inversion controlling the development of two minor anticlines: Termas and Balboa, separated by further NNW-SSE oblique-slip fault in the northern sector of the regional anticline. Brittle deformation recorded at the outcrop scale is robustly consistent with the extensional and transpressional events recognized at regional scale. In terms of fluid circulation, the NNW-SSE and NE-SW fault planes, associated to the late stage of the positive inversion, are considered the main structures controlling the migration paths of hot fluids from the reservoir to the surface. The results of the fracture modeling performed show that fractures related to the same deformation stage, are characterized by the highest values of secondary permeability. Moreover, the DFN models performed in the reservoir volume indicates that fracture network enhances its permeability: its secondary permeability is of about 49 mD and its fractured portion represents the 0.03% of the total volume.

  2. A Weak Constraint 4D-Var Assimilation System for the Navy Coastal Model Using the Representer Method

    DTIC Science & Technology

    2013-01-01

    the help of the Parametric Fortrai compiler (PFC), Erwig et al. 2007 . Some general circulation models of the complexity of NCOM have seen 1 similar...the Mir general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO consortium assimilation experiments ( Stammer et al. 2002...using the« inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007 ) with horizontal resolutions of 10 and 30km. The CCS is a large

  3. Dynamic data integration and stochastic inversion of a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Y.; Irsa, J.; Huang, H.; Wang, L.

    2013-12-01

    Much work has been done in developing and applying inverse methods to aquifer modeling. The scope of this paper is to investigate the applicability of a new direct method for large inversion problems and to incorporate uncertainty measures in the inversion outcomes (Wang et al., 2013). The problem considered is a two-dimensional inverse model (50×50 grid) of steady-state flow for a heterogeneous ground truth model (500×500 grid) with two hydrofacies. From the ground truth model, decreasing number of wells (12, 6, 3) were sampled for facies types, based on which experimental indicator histograms and directional variograms were computed. These parameters and models were used by Sequential Indicator Simulation to generate 100 realizations of hydrofacies patterns in a 100×100 (geostatistical) grid, which were conditioned to the facies measurements at wells. These realizations were smoothed with Simulated Annealing, coarsened to the 50×50 inverse grid, before they were conditioned with the direct method to the dynamic data, i.e., observed heads and groundwater fluxes at the same sampled wells. A set of realizations of estimated hydraulic conductivities (Ks), flow fields, and boundary conditions were created, which centered on the 'true' solutions from solving the ground truth model. Both hydrofacies conductivities were computed with an estimation accuracy of ×10% (12 wells), ×20% (6 wells), ×35% (3 wells) of the true values. For boundary condition estimation, the accuracy was within × 15% (12 wells), 30% (6 wells), and 50% (3 wells) of the true values. The inversion system of equations was solved with LSQR (Paige et al, 1982), for which coordinate transform and matrix scaling preprocessor were used to improve the condition number (CN) of the coefficient matrix. However, when the inverse grid was refined to 100×100, Gaussian Noise Perturbation was used to limit the growth of the CN before the matrix solve. To scale the inverse problem up (i.e., without smoothing and coarsening and therefore reducing the associated estimation uncertainty), a parallel LSQR solver was written and verified. For the 50×50 grid, the parallel solver sped up the serial solution time by 14X using 4 CPUs (research on parallel performance and scaling is ongoing). A sensitivity analysis was conducted to examine the relation between the observed data and the inversion outcomes, where measurement errors of increasing magnitudes (i.e., ×1, 2, 5, 10% of the total head variation and up to ×2% of the total flux variation) were imposed on the observed data. Inversion results were stable but the accuracy of Ks and boundary estimation degraded with increasing errors, as expected. In particular, quality of the observed heads is critical to hydraulic head recovery, while quality of the observed fluxes plays a dominant role in K estimation. References: Wang, D., Y. Zhang, J. Irsa, H. Huang, and L. Wang (2013), Data integration and stochastic inversion of a confined aquifer with high performance computing, Advances in Water Resources, in preparation. Paige, C. C., and M. A. Saunders (1982), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Transactions on Mathematical Software, 8(1), 43-71.

  4. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com; Wang, Jie, E-mail: wangjie@iun.edu

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  5. Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model

    NASA Astrophysics Data System (ADS)

    Rainone, Corrado; Ferrari, Ulisse; Paoluzzi, Matteo; Leuzzi, Luca

    2015-12-01

    The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p -body quenched disordered interaction, with p >2 , termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature. In specific regions of the phase diagram coexistence of low-density and high-density paramagnets can occur, as well as the coexistence of spin-glass and paramagnetic phases. The exact static solution for the glassy phase is known to be obtained by the one-step replica symmetry breaking ansatz. Different scenarios arise for both the dynamic and the thermodynamic transitions. These include: (i) the usual random first-order transition (Kauzmann-like) for mean-field glasses preceded by a dynamic transition, (ii) a thermodynamic first-order transition with phase coexistence and latent heat, and (iii) a regime of apparent inversion of static transition line and dynamic transition lines, the latter defined as a nonzero complexity line. The latter inversion, though, turns out to be preceded by a dynamical arrest line at higher temperature. Crossover between different regimes is analyzed by solving mode-coupling-theory equations near the boundaries of paramagnetic solutions and the relationship with the underlying statics is discussed.

  6. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  7. Radiative-conductive inverse problem for lumped parameter systems

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2008-11-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  8. Control of a high beta maneuvering reentry vehicle using dynamic inversion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Alfred Chapman

    2005-05-01

    The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to performmore » the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.« less

  9. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  10. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  11. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data

    NASA Astrophysics Data System (ADS)

    Attias, Eric; Weitemeyer, Karen; Hölz, Sebastian; Naif, Samer; Minshull, Tim A.; Best, Angus I.; Haroon, Amir; Jegen-Kulcsar, Marion; Berndt, Christian

    2018-06-01

    We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.

  12. The adaptive parallel UKF inversion method for the shape of space objects based on the ground-based photometric data

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Liu, Hao

    2018-04-01

    The space object in highly elliptical orbit is always presented as an image point on the ground-based imaging equipment so that it is difficult to resolve and identify the shape and attitude directly. In this paper a novel algorithm is presented for the estimation of spacecraft shape. The apparent magnitude model suitable for the inversion of object information such as shape and attitude is established based on the analysis of photometric characteristics. A parallel adaptive shape inversion algorithm based on UKF was designed after the achievement of dynamic equation of the nonlinear, Gaussian system involved with the influence of various dragging forces. The result of a simulation study demonstrate the viability and robustness of the new filter and its fast convergence rate. It realizes the inversion of combination shape with high accuracy, especially for the bus of cube and cylinder. Even though with sparse photometric data, it still can maintain a higher success rate of inversion.

  13. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  14. INVERSE MODEL ESTIMATION AND EVALUATION OF SEASONAL NH 3 EMISSIONS

    EPA Science Inventory

    The presentation topic is inverse modeling for estimate and evaluation of emissions. The case study presented is the need for seasonal estimates of NH3 emissions for air quality modeling. The inverse modeling application approach is first described, and then the NH

  15. Sky-radiance gradient measurements at narrow bands in the visible.

    PubMed

    Winter, E M; Metcalf, T W; Stotts, L B

    1995-07-01

    Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.

  16. Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Petrov, Petr V.; Newman, Gregory A.

    2014-09-01

    3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.

  17. Inversion of ocean-bottom seismometer (OBS) waveforms for oceanic crust structure: a synthetic study

    NASA Astrophysics Data System (ADS)

    Li, Xueyan; Wang, Yanbin; Chen, Yongshun John

    2016-08-01

    The waveform inversion method is applied—using synthetic ocean-bottom seismometer (OBS) data—to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribution of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complexity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situations; further studies are required to investigate this issue.

  18. Airway and tissue loading in postinterrupter response of the respiratory system - an identification algorithm construction.

    PubMed

    Jablonski, Ireneusz; Mroczka, Janusz

    2010-01-01

    The paper offers an enhancement of the classical interrupter technique algorithm dedicated to respiratory mechanics measurements. Idea consists in exploitation of information contained in postocclusional transient states during indirect measurement of parameter characteristics by model identification. It needs the adequacy of an inverse analogue to general behavior of the real system and a reliable algorithm of parameter estimation. The second one was a subject of reported works, which finally showed the potential of the approach to separation of airway and tissue response in a case of short-term excitation by interrupter valve operation. Investigations were conducted in a regime of forward-inverse computer experiment.

  19. On determining important aspects of mathematical models: Application to problems in physics and chemistry

    NASA Technical Reports Server (NTRS)

    Rabitz, Herschel

    1987-01-01

    The use of parametric and functional gradient sensitivity analysis techniques is considered for models described by partial differential equations. By interchanging appropriate dependent and independent variables, questions of inverse sensitivity may be addressed to gain insight into the inversion of observational data for parameter and function identification in mathematical models. It may be argued that the presence of a subset of dominantly strong coupled dependent variables will result in the overall system sensitivity behavior collapsing into a simple set of scaling and self similarity relations amongst elements of the entire matrix of sensitivity coefficients. These general tools are generic in nature, but herein their application to problems arising in selected areas of physics and chemistry is presented.

  20. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  1. Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.

    PubMed

    Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor

    2017-12-01

    In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.

  2. Acoustic measurement of bubble size in an inkjet printhead.

    PubMed

    Jeurissen, Roger; van der Bos, Arjan; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; de Jong, Jos; Versluis, Michel; Lohse, Detlef

    2009-11-01

    The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.

  3. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  4. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.

    PubMed

    Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes

    2013-11-01

    Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.

  5. A Comparison between Model Base Hardconstrain, Bandlimited, and Sparse-Spike Seismic Inversion: New Insights for CBM Reservoir Modelling on Muara Enim Formation, South Sumatra

    NASA Astrophysics Data System (ADS)

    Mohamad Noor, Faris; Adipta, Agra

    2018-03-01

    Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.

  6. A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Cui, C.; Wang, Y.

    2017-12-01

    Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.

  7. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  8. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ying -Qi; Segall, Paul; Bradley, Andrew

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less

  9. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    NASA Astrophysics Data System (ADS)

    Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle

    2017-10-01

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ˜10-11.4m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.

  10. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    DOE PAGES

    Wong, Ying -Qi; Segall, Paul; Bradley, Andrew; ...

    2017-10-04

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less

  11. Constraining the magmatic system at Mount St. Helens (2004–2008) using Bayesian inversion with physics-based models including gas escape and crystallization

    USGS Publications Warehouse

    Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle R.

    2017-01-01

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5wt%) total volatiles and that the magma permeability scale is well constrained at ~10-11.4 m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.

  12. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    NASA Astrophysics Data System (ADS)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.

  13. Optimizing spatial and temporal constraints for cropland canopy water content retrieval through coupled radiative transfer model inversion

    NASA Astrophysics Data System (ADS)

    Boren, E. J.; Boschetti, L.; Johnson, D.

    2017-12-01

    Water plays a critical role in all plant physiological processes, including transpiration, photosynthesis, nutrient transportation, and maintenance of proper plant cell functions. Deficits in water content cause drought-induced stress conditions, such as constrained plant growth and cellular metabolism, while overabundance of water cause anoxic conditions which limit plant physiological processes and promote disease. Vegetation water content maps can provide agricultural producers key knowledge for improving production capacity and resiliency in agricultural systems while facilitating the ability to pinpoint, monitor, and resolve water scarcity issues. Radiative transfer model (RTM) inversion has been successfully applied to remotely sensed data to retrieve biophysical and canopy parameter estimates, including water content. The successful launch of the Landsat 8 Operational Land Imager (OLI) in 2012, Sentinel 2A Multispectral Instrument (MSI) in 2015, followed by Sentinel 2B in 2017, the systematic acquisition schedule and free data distribution policy provide the opportunity for water content estimation at a spatial and temporal scale that can meet the demands of potential operational users: combined, these polar-orbiting systems provide 10 m to 30 m multi-spectral global coverage up to every 3 days. The goal of the present research is to prototype the generation of a cropland canopy water content product, obtained from the newly developed Landsat 8 and Sentinel 2 atmospherically corrected HLS product, through the inversion of the leaf and canopy model PROSAIL5B. We assess the impact of a novel spatial and temporal stratification, where some parameters of the model are constrained by crop type and phenological phase, based on ancillary biophysical data, collected from various crop species grown in a controlled setting and under different water stress conditions. Canopy-level data, collected coincidently with satellite overpasses during four summer field campaigns in northern Idaho (2014 to 2017), are used to validate the results of the model inversion.

  14. U.S. emissions of HFC-134a derived for 2008-2012 from an extensive flask-air sampling network

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Montzka, Stephen A.; Miller, John B.; Andrews, Aryln E.; Lehman, Scott J.; Miller, Benjamin R.; Thoning, Kirk; Sweeney, Colm; Chen, Huilin; Godwin, David S.; Masarie, Kenneth; Bruhwiler, Lori; Fischer, Marc L.; Biraud, Sebastien C.; Torn, Margaret S.; Mountain, Marikate; Nehrkorn, Thomas; Eluszkiewicz, Janusz; Miller, Scot; Draxler, Roland R.; Stein, Ariel F.; Hall, Bradley D.; Elkins, James W.; Tans, Pieter P.

    2015-01-01

    national and regional emissions of HFC-134a are derived for 2008-2012 based on atmospheric observations from ground and aircraft sites across the U.S. and a newly developed regional inverse model. Synthetic data experiments were first conducted to optimize the model assimilation design and to assess model-data mismatch errors and prior flux error covariances computed using a maximum likelihood estimation technique. The synthetic data experiments also tested the sensitivity of derived national and regional emissions to a range of assumed prior emissions, with the goal of designing a system that was minimally reliant on the prior. We then explored the influence of additional sources of error in inversions with actual observations, such as those associated with background mole fractions and transport uncertainties. Estimated emissions of HFC-134a range from 52 to 61 Gg yr-1 for the contiguous U.S. during 2008-2012 for inversions using air transport from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the 12 km resolution meteorogical data from North American Mesoscale Forecast System (NAM12) and all tested combinations of prior emissions and background mole fractions. Estimated emissions for 2008-2010 were 20% lower when specifying alternative transport from Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Research and Forecasting (WRF) meteorology. Our estimates (for HYSPLIT-NAM12) are consistent with annual emissions reported by U.S. Environmental Protection Agency for the full study interval. The results suggest a 10-20% drop in U.S. national HFC-134a emission in 2009 coincident with a reduction in transportation-related fossil fuel CO2 emissions, perhaps related to the economic recession. All inversions show seasonal variation in national HFC-134a emissions in all years, with summer emissions greater than winter emissions by 20-50%.

  15. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  16. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  17. Variational methods to estimate terrestrial ecosystem model parameters

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian

    2016-04-01

    Carbon is at the basis of the chemistry of life. Its ubiquity in the Earth system is the result of complex recycling processes. Present in the atmosphere in the form of carbon dioxide it is adsorbed by marine and terrestrial ecosystems and stored within living biomass and decaying organic matter. Then soil chemistry and a non negligible amount of time transform the dead matter into fossil fuels. Throughout this cycle, carbon dioxide is released in the atmosphere through respiration and combustion of fossils fuels. Model-data fusion techniques allow us to combine our understanding of these complex processes with an ever-growing amount of observational data to help improving models and predictions. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Over the last decade several studies have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF, 4DVAR) to estimate model parameters and initial carbon stocks for DALEC and to quantify the uncertainty in the predictions. Despite its simplicity, DALEC represents the basic processes at the heart of more sophisticated models of the carbon cycle. Using adjoint based methods we study inverse problems for DALEC with various data streams (8 days MODIS LAI, monthly MODIS LAI, NEE). The framework of constraint optimization allows us to incorporate ecological common sense into the variational framework. We use resolution matrices to study the nature of the inverse problems and to obtain data importance and information content for the different type of data. We study how varying the time step affect the solutions, and we show how "spin up" naturally improves the conditioning of the inverse problems.

  18. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  19. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  20. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maximenko, Yulia; /Moscow, MIPT; Segatskov, Dmitri A.

    2011-03-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problemmore » to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.« less

  1. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208

  2. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  3. Structures of Mid-Polish Trough in the light of regional magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Stefaniuk, M.; Pokorski, J.; Wojdyla, M.; Klitynski, W.

    2009-04-01

    Introduction The magnetotelluric survey at three long regional profiles crossing the Mid-Polish Trough in north-western part of Poland was made during 2005-2008 period. Two of the profiles pass across the Pomeranian section of the Trough and the third one cuts its Kujawy section. The task of the survey was to recognize the geological structure of the contact zone of Precambrian East European Craton and Paleozoic Platform of Western Europe. The profiles crossed major geological structures of central and north-western Poland, including the Variscan Externides and Varscian Foredeep, the Transeuropean Suture Zone and the marginal zone of the East European Craton. The main objectives of the project included evaluation of resistivity distribution and identification of structures of sub-Zechstein sedimentary and metamorphic complexes.The screening of seismic energy by high reflective Zechstein evaporates is the main problem in identifying the sub-Zechstein complexes in the Polish Lowlands area. Since evaporates do not screen the electromagnetic waves, the magnetotelluric method can be advantageously applied. The sub-Zechstein complexes and structures are commonly considered as hydrocarbon prospective. A lot of gas deposits have been discovered in Rotliegend sediments in central and Western Europe. A number offshore and onshore oil fields were found in Cambrian sandstones in the Baltic Sea area. Techniques and methodology of surveys Magnetotelluric measurements were taken with the use of MT-1 system of Electromagnetic Instruments Incorporation (EMI), Richmond, California, USA and System 2000.net based on V8 receiver of Phoenix Geophysics Ltd., Ottawa, Canada. An average spacing of sounding sites was about 4 km. The components of natural electromagnetic field were recorded over a broad range of frequencies, ranging from 0.0003 Hz to 575 Hz (MT-1) and 0,0003 HZ to 10 000,0 HZ (System 2000.net). This frequency band allowed information on the geology from a depth range of a few dozen meters to approximately 100 km to be obtained. A remote reference site was located at a distance of over 100 km of the study area. Data processing and interpretation Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with the use of robust procedures. The components of the impedance tensor enabled calculation of field curves for two orientations of the measurement system and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) enabled the tipper parameter, T, to be calculated. Geophysical interpretation of MT sounding data along profiles was based on 1D inversion and 2D inversion. The upper part of the geological section is built of relatively flat layers; hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging data. Some well-documented seismic horizons were taken as constraints in 1D inversion. The first step in 2D MT inversion was the calculation of inverse model with stabilized parameters of the upper part of geological section over the top of Zechstein complex. The starting model was obtained with the use of available geological cross-sections interpreted based on borehole and reflection seismic data. Results of inversion for the lower part of the section with constrained its upper part made some misfits between calculated and post-processed magnetotelluric curves. The second step in geophysical interpretation was 2D inversion with no constraints, which was finished when the misfit was small. Results of the first step of 2D inversion were applied as a starting model. Depending on inversion parameters, final resistivity distribution model along profiles was obtained. Geological interpretation was made based on resistivity cross-sections and borehole and reflection seismic data. Of great interest is varied resistivity of the formation resting below the Zechstein evaporate complex. As a result of data interpretation geophysical and geological sections were constructed. Conclusions As a result of magnetotelluric data interpretation, a tectonic model along measurement profiles with fault zones was constructed and lithology differentiation of sub-Zechstein complex was determined. Deep magnetotelluric cross-sections with interpretation of sub-Zechstein structures across the Polish Lowlands help to understand geodynamic processes in the area. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by Ministry of Environment trough National Fund for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Interpretation was carried out using software by EMI, and Geosystem WingLinkTM.

  4. Recursive flexible multibody system dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1992-01-01

    This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.

  5. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  6. Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors

    NASA Astrophysics Data System (ADS)

    Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.

    2007-12-01

    Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.

  7. Is chemical heating a major cause of the mesosphere inversion layer?

    NASA Technical Reports Server (NTRS)

    Meriwether, John W.; Mlynczak, Martin G.

    1995-01-01

    A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.

  8. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, S.

    1999-03-01

    In this paper, a prestack inversion method using a genetic algorithm (GA) is presented, and issues relating to the implementation of prestack GA inversion in practice are discussed. GA is a Monte-Carlo type inversion, using a natural analogy to the biological evolution process. When GA is cast into a Bayesian framework, a priori information of the model parameters and the physics of the forward problem are used to compute synthetic data. These synthetic data can then be matched with observations to obtain approximate estimates of the marginal a posteriori probability density (PPD) functions in the model space. Plots of thesemore » PPD functions allow an interpreter to choose models which best describe the specific geologic setting and lead to an accurate prediction of seismic lithology. Poststack inversion and prestack GA inversion were applied to a Woodbine gas sand data set from East Texas. A comparison of prestack inversion with poststack inversion demonstrates that prestack inversion shows detailed stratigraphic features of the subsurface which are not visible on the poststack inversion.« less

  9. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  10. Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations

    NASA Technical Reports Server (NTRS)

    Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-01-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  11. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D. S.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-11-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  12. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-07-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  13. Simulating groundwater flow and runoff for the Oro Moraine aquifer system. Part II. Automated calibration and mass balance calculations

    NASA Astrophysics Data System (ADS)

    Beckers, J.; Frind, E. O.

    2001-03-01

    A steady-state groundwater model of the Oro Moraine aquifer system in Central Ontario, Canada, is developed. The model is used to identify the role of baseflow in the water balance of the Minesing Swamp, a 70 km 2 wetland of international significance. Lithologic descriptions are used to develop a hydrostratigraphic conceptual model of the aquifer system. The numerical model uses long-term averages to represent temporal variations of the flow regime and includes a mechanism to redistribute recharge in response to near-surface geologic heterogeneity. The model is calibrated to water level and streamflow measurements through inverse modeling. Observed baseflow and runoff quantities validate the water mass balance of the numerical model and provide information on the fraction of the water surplus that contributes to groundwater flow. The inverse algorithm is used to compare alternative model zonation scenarios, illustrating the power of non-linear regression in calibrating complex aquifer systems. The adjoint method is used to identify sensitive recharge areas for groundwater discharge to the Minesing Swamp. Model results suggest that nearby urban development will have a significant impact on baseflow to the swamp. Although the direct baseflow contribution makes up only a small fraction of the total inflow to the swamp, it provides an important steady influx of water over relatively large portions of the wetland. Urban development will also impact baseflow to the headwaters of local streams. The model provides valuable insight into crucial characteristics of the aquifer system although definite conclusions regarding details of its water budget are difficult to draw given current data limitations. The model therefore also serves to guide future data collection and studies of sub-areas within the basin.

  14. Constrained inversion as a hypothesis testing tool, what can we learn about the lithosphere?

    NASA Astrophysics Data System (ADS)

    Moorkamp, Max; Stewart, Fishwick; Jones, Alan G.

    2017-04-01

    Inversion of geophysical data constrained by a reference model is typically used to guide the inversion of low resolution data towards a geologically plausible solution. For example, a migrated seismic section can provide the location of lithological boundaries for potential field inversions. Here we consider the inversion of long-period magnetotelluric data constrained by models generated through surface wave inversion. In this case, we do not consider the surface wave model inherently better in any sense and want to guide the magnetotelluric inversion towards this model, but we want to test the hypothesis that both datasets can be explained by models with similar structure. If the hypothesis test is successful, i.e. we can fit the observations with a conductivity model with structural similarity to the seismic model, we have found an alternative explanation compared to the individual inversion and can use the differences to learn about the resolution of the magnetotelluric data and can improve our interpretation. Conversely, if the test refutes our hypothesis of coincident structure, we have found features in the models that are sensed fundamentally different by both methods which is potentially instructive on the nature of the anomalies. We use a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons together with a tomographic model for the region to illustrate and test this approach. Here, various conductive structures have been identified that bridge the Moho. Furthermore, the thickness of the lithosphere inferred from the different methods differs. In both cases the question is in how far this is a result of the ill-posed nature of inversion and in how far these differences can be reconciled. Thus this dataset is an ideal test case for our hypothesis testing approach. Finally, we will demonstrate how we can use the results of the constrained inversion to extract conductivity-velocity relationships in the region and gain further insight into the composition and thermal structure of the lithosphere.

  15. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  16. Surprises from quenches in long-range-interacting systems: temperature inversion and cooling

    NASA Astrophysics Data System (ADS)

    Gupta, Shamik; Casetti, Lapo

    2016-10-01

    What happens when one of the parameters governing the dynamics of a long-range interacting system of particles in thermal equilibrium is abruptly changed (quenched) to a different value? While a short-range system, under the same conditions, will relax in time to a new thermal equilibrium with a uniform temperature across the system, a long-range system shows a fast relaxation to a non-equilibrium quasistationary state (QSS). The lifetime of such an off-equilibrium state diverges with the system size, and the temperature is non-uniform across the system. Quite surprisingly, the density profile in the QSS obtained after the quench is anticorrelated with the temperature profile in space, thus exhibiting the phenomenon of temperature inversion: denser regions are colder than sparser ones. We illustrate with extensive molecular dynamics simulations the ubiquity of this scenario in a prototypical long-range interacting system subject to a variety of quenching protocols, and in a model that mimics an experimental setup of atoms interacting with light in an optical cavity. We further demonstrate how a procedure of iterative quenching combined with filtering out the high-energy particles in the system may be employed to cool the system. Temperature inversion is observed in nature in some astrophysical settings; our results imply that such a phenomenon should be observable, and could even be exploitable to advantage, also in controlled laboratory experiments.

  17. SISYPHUS: A high performance seismic inversion factory

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).

  18. Inverse modeling of fossil fuel CO2 emissions at urban scale using OCO-2 retrievals of total column CO2

    NASA Astrophysics Data System (ADS)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.

    2016-12-01

    Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.

  19. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  20. Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.

    1984-01-01

    A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.

  1. Acceleration constraints in modeling and control of nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Bajodah, Abdulrahman H.

    2003-10-01

    Acceleration constraints are used to enhance modeling techniques for dynamical systems. In particular, Kane's equations of motion subjected to bilateral constraints, unilateral constraints, and servo-constraints are modified by utilizing acceleration constraints for the purpose of simplifying the equations and increasing their applicability. The tangential properties of Kane's method provide relationships between the holonomic and the nonholonomic partial velocities, and hence allow one to describe nonholonomic generalized active and inertia forces in terms of their holonomic counterparts, i.e., those which correspond to the system without constraints. Therefore, based on the modeling process objectives, the holonomic and the nonholonomic vector entities in Kane's approach are used interchangeably to model holonomic and nonholonomic systems. When the holonomic partial velocities are used to model nonholonomic systems, the resulting models are full-order (also called nonminimal or unreduced) and separated in accelerations. As a consequence, they are readily integrable and can be used for generic system analysis. Other related topics are constraint forces, numerical stability of the nonminimal equations of motion, and numerical constraint stabilization. Two types of unilateral constraints considered are impulsive and friction constraints. Impulsive constraints are modeled by means of a continuous-in-velocities and impulse-momentum approaches. In controlled motion, the acceleration form of constraints is utilized with the Moore-Penrose generalized inverse of the corresponding constraint matrix to solve for the inverse dynamics of servo-constraints, and for the redundancy resolution of overactuated manipulators. If control variables are involved in the algebraic constraint equations, then these tools are used to modify the controlled equations of motion in order to facilitate control system design. An illustrative example of spacecraft stabilization is presented.

  2. Small-scale electrical resistivity tomography of wet fractured rocks.

    PubMed

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  3. Modeling Drinking Behavior Progression in Youth: a Non-identified Probability Discrete Event System Using Cross-sectional Data

    PubMed Central

    Hu, Xingdi; Chen, Xinguang; Cook, Robert L.; Chen, Ding-Geng; Okafor, Chukwuemeka

    2016-01-01

    Background The probabilistic discrete event systems (PDES) method provides a promising approach to study dynamics of underage drinking using cross-sectional data. However, the utility of this approach is often limited because the constructed PDES model is often non-identifiable. The purpose of the current study is to attempt a new method to solve the model. Methods A PDES-based model of alcohol use behavior was developed with four progression stages (never-drinkers [ND], light/moderate-drinker [LMD], heavy-drinker [HD], and ex-drinker [XD]) linked with 13 possible transition paths. We tested the proposed model with data for participants aged 12–21 from the 2012 National Survey on Drug Use and Health (NSDUH). The Moore-Penrose (M-P) generalized inverse matrix method was applied to solve the proposed model. Results Annual transitional probabilities by age groups for the 13 drinking progression pathways were successfully estimated with the M-P generalized inverse matrix approach. Result from our analysis indicates an inverse “J” shape curve characterizing pattern of experimental use of alcohol from adolescence to young adulthood. We also observed a dramatic increase for the initiation of LMD and HD after age 18 and a sharp decline in quitting light and heavy drinking. Conclusion Our findings are consistent with the developmental perspective regarding the dynamics of underage drinking, demonstrating the utility of the M-P method in obtaining a unique solution for the partially-observed PDES drinking behavior model. The M-P approach we tested in this study will facilitate the use of the PDES approach to examine many health behaviors with the widely available cross-sectional data. PMID:26511344

  4. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  5. A practical method to assess model sensitivity and parameter uncertainty in C cycle models

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2015-04-01

    The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.

  6. Frequency Domain Full-Waveform Inversion in Imaging Thrust Related Features

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; Zelt, C. A.

    2010-12-01

    Seismic acquisition in rough terrain such as mountain belts suffers from problems related to near-surface conditions such as statics, inconsistent energy penetration, rapid decay of signal, and imperfect receiver coupling. Moreover in the presence of weakly compacted soil, strong ground roll may obscure the reflection arrivals at near offsets further diminishing the scope of estimating a reliable near surface image though conventional processing. Traveltime and waveform inversion not only overcome the simplistic assumptions inherent in conventional processing such as hyperbolic moveout and convolution model, but also use parts of the seismic coda, such as the direct arrival and refractions, that are discarded in the latter. Traveltime and waveform inversion are model-based methods that honour the physics of wave propagation. Given the right set of preconditioned data and starting model, waveform inversion in particular has been realized as a powerful tool for velocity model building. This paper examines two case studies on waveform inversion using real data from the Naga Thrust Belt in the Northeast India. Waveform inversion in this paper is performed in the frequency domain and is multiscale in nature i.e., the inversion progressively ascends from the lower to the higher end of the frequency spectra increasing the wavenumber content of the recovered model. Since the real data are band limited, the success of waveform inversion depends on how well the starting model can account for the missing low wavenumbers. In this paper it is observed that the required starting model can be prepared using the regularized inversion of direct and reflected arrival times.

  7. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  8. Two-dimensional inverse and three-dimensional forward modeling of MT (magnetotelluric) data to evaluate the mineral potential of the Amphitheater Mountains, Alaska, USA

    USGS Publications Warehouse

    Pellerin, Louise; Schmidt, Jeanine M.; Hoversten, G. Michael

    2003-01-01

    As part of an integrated geological and geophysical study to assess the mineral potential in the Amphitheater Mountains of south-central Alaska, USA, two magnetotelluric (MT) profiles were acquired during the summer of 2002. The two parallel MT lines, along with helicopter electromagnetic (HEM) and magnetic data acquired by the State of Alaska Division of Geological and Geophysical Surveys and new detailed U.S. Geological Survey gravity data, are being used to investigate a feeder system to a Late Triassic flood basalt, the Nikolai Greenstone. The platinum-group-element-bearing, layered, and mafic-ultramafic sills of the Fish Lake and Tangle complexes and the geophysical responses suggest the presence of a substantial root of ultramafic material below the Amphitheater synform and several conductive, dense, magnetic, and possibly sulfide-bearing lenses within the surrounding Tangle Formation. The Amphitheater synform was defined by a prominent magnetic anomaly and the repetition of geologic units. Data from the HEM survey were used to assess and correct static shifts in the MT data. A striking conductivity anomaly was observable in the MT apparent resistivity data at sites on each line. Two-dimensional (2-D) inversion was used to model the geometry of the synform structure, electrical properties related to possible mineralization in the top few kilometers, and a feeder root to the magmatic system substantiated with potential field and geological models. The synform plunges to the west with the highly conductive zone ranging from depths of roughly 1.5 to 3.5 km where sampled. Two sensitivity analyses were performed to aid in assessment decisions. First, 2-D models were evaluated from several algorithms, including the rapid-relaxation inversion, the conjugate-gradient method, and Occam?s inversion with the use of different combinations of the apparent resistivity and phase for the transverse electric and magnetic modes. Second, a three-dimensional forward model, developed from the 2-D MT models and other geophysical and geological information, was constructed to further understand the response that could not be fit with the 2-D models.

  9. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis vectors (100) contained enough a priori information to constrain the inversion. Increasing the amount of data or number of selected basis images did not translate into significant improvement in imaging results. For synthetic #2, the RMSE and error in total mass were lowest for the POD inversion. However, the peak concentration was significantly overestimated by the POD approach. Regardless, the POD-based inversion was the only technique that could capture the bimodality of the plume in the reconstructed image, thus providing critical information that could be used to reconceptualize the transport problem. We also found that, in the case of synthetic #2, increasing the number of resistivity measurements and the number of selected basis vectors allowed for significant improvements in the reconstructed images.

  10. DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donovan, Francis T.; Charbonneau, David; Knutson, Heather A.

    2010-02-20

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +- 0.021%, 0.230% +- 0.024%, 0.199% +- 0.054%, and 0.359% +- 0.060% at 3.6 {mu}m, 4.5 {mu}m, 5.8 {mu}m, and 8.0 {mu}m, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T{sub eff} = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. Themore » observed planet-to-star flux ratios in all four IRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet.« less

  11. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    USGS Publications Warehouse

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  12. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  13. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling.

    PubMed

    Peirlinck, Mathias; De Beule, Matthieu; Segers, Patrick; Rebelo, Nuno

    2018-05-28

    Patient-specific biomechanical modeling of the cardiovascular system is complicated by the presence of a physiological pressure load given that the imaged tissue is in a pre-stressed and -strained state. Neglect of this prestressed state into solid tissue mechanics models leads to erroneous metrics (e.g. wall deformation, peak stress, wall shear stress) which in their turn are used for device design choices, risk assessment (e.g. procedure, rupture) and surgery planning. It is thus of utmost importance to incorporate this deformed and loaded tissue state into the computational models, which implies solving an inverse problem (calculating an undeformed geometry given the load and the deformed geometry). Methodologies to solve this inverse problem can be categorized into iterative and direct methodologies, both having their inherent advantages and disadvantages. Direct methodologies are typically based on the inverse elastostatics (IE) approach and offer a computationally efficient single shot methodology to compute the in vivo stress state. However, cumbersome and problem-specific derivations of the formulations and non-trivial access to the finite element analysis (FEA) code, especially for commercial products, refrain a broad implementation of these methodologies. For that reason, we developed a novel, modular IE approach and implemented this methodology in a commercial FEA solver with minor user subroutine interventions. The accuracy of this methodology was demonstrated in an arterial tube and porcine biventricular myocardium model. The computational power and efficiency of the methodology was shown by computing the in vivo stress and strain state, and the corresponding unloaded geometry, for two models containing multiple interacting incompressible, anisotropic (fiber-embedded) and hyperelastic material behaviors: a patient-specific abdominal aortic aneurysm and a full 4-chamber heart model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Constraining biosphere CO2 flux at regional scale with WRF-CO2 4DVar assimilation system

    NASA Astrophysics Data System (ADS)

    Zheng, T.

    2017-12-01

    The WRF-CO2 4DVar assimilation system is updated to include (1) operators for tower based observations (2) chemistry initial and boundary condition in the state vector (3) mechanism for aggregation from simulation model grid to state vector space. The update system is first tested with synthetic data to ensure its accuracy. The system is then used to test regional scale CO2 inversion at MCI (Midcontinental intensive) sites where CO2 mole fraction data were collected at multiple high towers during 2007-2008. The model domain is set to center on Iowa and include 8 towers within its boundary, and it is of 12x12km horizontal grid spacing. First, the relative impacts of the initial and boundary condition are assessed by the system's adjoint model. This is done with 24, 48, 72 hour time span. Second, we assessed the impacts of the transport error, including the misrepresentation of the boundary layer and cumulus activities. Third, we evaluated the different aggregation approach from the native model grid to the control variables (including scaling factors for flux, initial and boundary conditions). Four, we assessed the inversion performance using CO2 observation with different time-interval, and from different tower levels. We also examined the appropriate treatment of the background and observation error covariance in relation with these varying observation data sets.

  15. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Al Janaideh, Mohammad; Aljanaideh, Omar

    2018-05-01

    Apart from the output-input hysteresis loops, the magnetostrictive actuators also exhibit asymmetry and saturation, particularly under moderate to large magnitude inputs and at relatively higher frequencies. Such nonlinear input-output characteristics could be effectively characterized by a rate-dependent Prandtl-Ishlinskii model in conjunction with a function of deadband operators. In this study, an inverse model is formulated to seek real-time compensation of rate-dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The inverse model is formulated with the inverse of the rate-dependent Prandtl-Ishlinskii model, satisfying the threshold dilation condition, with the inverse of the deadband function. The inverse model was subsequently applied to the hysteresis model as a feedforward compensator. The proposed compensator is applied as a feedforward compensator to the actuator hardware to study its potential for rate-dependent and asymmetric hysteresis loops. The experimental results are obtained under harmonic and complex harmonic inputs further revealed that the inverse compensator can substantially suppress the hysteresis and output asymmetry nonlinearities in the entire frequency range considered in the study.

  16. The application of inverse Broyden's algorithm for modeling of crack growth in iron crystals.

    PubMed

    Telichev, Igor; Vinogradov, Oleg

    2011-07-01

    In the present paper we demonstrate the use of inverse Broyden's algorithm (IBA) in the simulation of fracture in single iron crystals. The iron crystal structure is treated as a truss system, while the forces between the atoms situated at the nodes are defined by modified Morse inter-atomic potentials. The evolution of lattice structure is interpreted as a sequence of equilibrium states corresponding to the history of applied load/deformation, where each equilibrium state is found using an iterative procedure based on IBA. The results presented demonstrate the success of applying the IBA technique for modeling the mechanisms of elastic, plastic and fracture behavior of single iron crystals.

  17. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    NASA Astrophysics Data System (ADS)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  18. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  19. Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng

    2018-05-01

    This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.

  20. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  1. Improvement of Forest Height Retrieval By Integration of Dual-Baseline PolInSAR Data And External DEM Data

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Wang, C.; Zhu, J.; Fu, H.; Wang, C.

    2015-06-01

    In recent years, a lot of studies have shown that polarimetric synthetic aperture radar interferometry (PolInSAR) is a powerful technique for forest height mapping and monitoring. However, few researches address the problem of terrain slope effect, which will be one of the major limitations for forest height inversion in mountain forest area. In this paper, we present a novel forest height retrieval algorithm by integration of dual-baseline PolInSAR data and external DEM data. For the first time, we successfully expand the S-RVoG (Sloped-Random Volume over Ground) model for forest parameters inversion into the case of dual-baseline PolInSAR configuration. In this case, the proposed method not only corrects terrain slope variation effect efficiently, but also involves more observations to improve the accuracy of parameters inversion. In order to demonstrate the performance of the inversion algorithm, a set of quad-pol images acquired at the P-band in interferometric repeat-pass mode by the German Aerospace Center (DLR) with the Experimental SAR (E-SAR) system, in the frame of the BioSAR2008 campaign, has been used for the retrieval of forest height over Krycklan boreal forest in northern Sweden. At the same time, a high accuracy external DEM in the experimental area has been collected for computing terrain slope information, which subsequently is used as an inputting parameter in the S-RVoG model. Finally, in-situ ground truth heights in stand-level have been collected to validate the inversion result. The preliminary results show that the proposed inversion algorithm promises to provide much more accurate estimation of forest height than traditional dualbaseline inversion algorithms.

  2. The Prediction-Focused Approach: An opportunity for hydrogeophysical data integration and interpretation

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef

    2017-04-01

    Hydrogeophysics is an interdisciplinary field of sciences aiming at a better understanding of subsurface hydrological processes. If geophysical surveys have been successfully used to qualitatively characterize the subsurface, two important challenges remain for a better quantification of hydrological processes: (1) the inversion of geophysical data and (2) their integration in hydrological subsurface models. The classical inversion approach using regularization suffers from spatially and temporally varying resolution and yields geologically unrealistic solutions without uncertainty quantification, making their utilization for hydrogeological calibration less consistent. More advanced techniques such as coupled inversion allow for a direct use of geophysical data for conditioning groundwater and solute transport model calibration. However, the technique is difficult to apply in complex cases and remains computationally demanding to estimate uncertainty. In a recent study, we investigate a prediction-focused approach (PFA) to directly estimate subsurface physical properties from geophysical data, circumventing the need for classic inversions. In PFA, we seek a direct relationship between the data and the subsurface variables we want to predict (the forecast). This relationship is obtained through a prior set of subsurface models for which both data and forecast are computed. A direct relationship can often be derived through dimension reduction techniques. PFA offers a framework for both hydrogeophysical "inversion" and hydrogeophysical data integration. For hydrogeophysical "inversion", the considered forecast variable is the subsurface variable, such as the salinity. An ensemble of possible solutions is generated, allowing uncertainty quantification. For hydrogeophysical data integration, the forecast variable becomes the prediction we want to make with our subsurface models, such as the concentration of contaminant in a drinking water production well. Geophysical and hydrological data are combined to derive a direct relationship between data and forecast. We illustrate the process for the design of an aquifer thermal energy storage (ATES) system. An ATES system can theoretically recover in winter the heat stored in the aquifer during summer. In practice, the energy efficiency is often lower than expected due to spatial heterogeneity of hydraulic properties combined to a non-favorable hydrogeological gradient. A proper design of ATES systems should consider the uncertainty of the prediction related to those parameters. With a global sensitivity analysis, we identify sensitive parameters for heat storage prediction and validate the use of a short term heat tracing experiment monitored with geophysics to generate informative data. First, we illustrate how PFA can be used to successfully derive the distribution of temperature in the aquifer from ERT during the heat tracing experiment. Then, we successfully integrate the geophysical data to predict medium-term heat storage in the aquifer using PFA. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data in a relatively limited time budget.

  3. Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System

    ERIC Educational Resources Information Center

    Schmidt, Karsten

    2008-01-01

    In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…

  4. Joint Inversion of Vp, Vs, and Resistivity at SAFOD

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Zhang, H.; Thurber, C. H.; Bedrosian, P. A.

    2010-12-01

    Seismic and resistivity models at SAFOD have been derived from separate inversions that show significant spatial similarity between the main model features. Previous work [Zhang et al., 2009] used cluster analysis to make lithologic inferences from trends in the seismic and resistivity models. We have taken this one step further by developing a joint inversion scheme that uses the cross-gradient penalty function to achieve structurally similar Vp, Vs, and resistivity images that adequately fit the seismic and magnetotelluric MT data without forcing model similarity where none exists. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD [Zhang and Thurber, 2003] and the MT inversion code Occam2DMT [Constable et al., 1987; deGroot-Hedlin and Constable, 1990]. We are exploring the utility of the cross-gradients penalty function in improving models of fault-zone structure at SAFOD on the San Andreas Fault in the Parkfield, California area. Two different sets of end-member starting models are being tested. One set is the separately inverted Vp, Vs, and resistivity models. The other set consists of simple, geologically based block models developed from borehole information at the SAFOD drill site and a simplified version of features seen in geophysical models at Parkfield. For both starting models, our preliminary results indicate that the inversion produces a converging solution with resistivity, seismic, and cross-gradient misfits decreasing over successive iterations. We also compare the jointly inverted Vp, Vs, and resistivity models to borehole information from SAFOD to provide a "ground truth" comparison.

  5. Level-set techniques for facies identification in reservoir modeling

    NASA Astrophysics Data System (ADS)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  6. Classical Yang-Baxter equations and quantum integrable systems

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-06-01

    Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.

  7. Quasiperiodic instability and chaos in the bad-cavity laser with modulated inversion: Numerical analysis of a Toda oscillator system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, T.

    The exact equivalence between a bad-cavity laser with modulated inversion and a nonlinear oscillator in a Toda potential driven by an external modulation is presented. The dynamical properties of the laser system are investigated in detail by analyzing a Toda oscillator system. The temporal characteristics of the bad-cavity laser under strong modulation are analyzed extensively by numerically investigating the simpler Toda system as a function of two control parameters: the dc component of the population inversion and the modulation amplitude. The system exhibits two kinds of optical chaos: One is the quasiperiodic chaos in the region of the intermediate modulationmore » amplitude and the other is the intermittent kicked chaos in the region of strong modulation and large dc component of the pumping. The former is well described by a one-dimensional discrete map with a singular invariant probability measure. There are two types of onset of the chaos: quasiperiodic instability (continuous path to chaos) and catastrophic crisis (discontinuous path). The period-doubling cascade of bifurcation is also observed. The simple discrete model of the Toda system is presented to obtain analytically the one-dimensional map function and to understand the effect of the asymmetric potential curvature on yielding chaos.« less

  8. Balancing aggregation and smoothing errors in inverse models

    DOE PAGES

    Turner, A. J.; Jacob, D. J.

    2015-06-30

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less

  9. Balancing aggregation and smoothing errors in inverse models

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.

    2015-01-01

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.

  10. Balancing aggregation and smoothing errors in inverse models

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.

    2015-06-01

    Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function of state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.

  11. Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Velez, Maria Laura; Euillades, Pablo; Caselli, Alberto; Blanco, Mauro; Díaz, Jose Martínez

    2011-04-01

    The Copahue volcano is one of the most active volcanoes in Argentina with eruptions having been reported as recently as 1992, 1995 and 2000. A deformation analysis using the Differential Synthetic Aperture Radar technique (DInSAR) was performed on Copahue-Caviahue Volcanic Complex (CCVC) from Envisat radar images between 2002 and 2007. A deformation rate of approximately 2 cm/yr was calculated, located mostly on the north-eastern flank of Copahue volcano, and assumed to be constant during the period of the interferograms. The geometry of the source responsible for the deformation was evaluated from an inversion of the mean velocity deformation measurements using two different models based on pressure sources embedded in an elastic homogeneous half-space. A genetic algorithm was applied as an optimization tool to find the best fit source. Results from inverse modelling indicate that a source located beneath the volcano edifice at a mean depth of 4 km is producing a volume change of approximately 0.0015 km/yr. This source was analysed considering the available studies of the area, and a conceptual model of the volcanic-hydrothermal system was designed. The source of deformation is related to a depressurisation of the system that results from the release of magmatic fluids across the boundary between the brittle and plastic domains. These leakages are considered to be responsible for the weak phreatic eruptions recently registered at the Copahue volcano.

  12. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  13. Computational modelling of cellular level metabolism

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Heino, J.; Somersalo, E.

    2008-07-01

    The steady and stationary state inverse problems consist of estimating the reaction and transport fluxes, blood concentrations and possibly the rates of change of some of the concentrations based on data which are often scarce noisy and sampled over a population. The Bayesian framework provides a natural setting for the solution of this inverse problem, because a priori knowledge about the system itself and the unknown reaction fluxes and transport rates can compensate for the insufficiency of measured data, provided that the computational costs do not become prohibitive. This article identifies the computational challenges which have to be met when analyzing the steady and stationary states of multicompartment model for cellular metabolism and suggest stable and efficient ways to handle the computations. The outline of a computational tool based on the Bayesian paradigm for the simulation and analysis of complex cellular metabolic systems is also presented.

  14. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  15. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  16. Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

    USGS Publications Warehouse

    Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.

    2015-01-01

    The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.

  17. Two Dimensional Finite Element Based Magnetotelluric Inversion using Singular Value Decomposition Method on Transverse Electric Mode

    NASA Astrophysics Data System (ADS)

    Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy

    2018-04-01

    In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.

  18. Ellipsoidal head model for fetal magnetoencephalography: forward and inverse solutions

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David; Nehorai, Arye; Preissl, Hubert

    2005-05-01

    Fetal magnetoencephalography (fMEG) is a non-invasive technique where measurements of the magnetic field outside the maternal abdomen are used to infer the source location and signals of the fetus' neural activity. There are a number of aspects related to fMEG modelling that must be addressed, such as the conductor volume, fetal position and orientation, gestation period, etc. We propose a solution to the forward problem of fMEG based on an ellipsoidal head geometry. This model has the advantage of highlighting special characteristics of the field that are inherent to the anisotropy of the human head, such as the spread and orientation of the field in relationship with the localization and position of the fetal head. Our forward solution is presented in the form of a kernel matrix that facilitates the solution of the inverse problem through decoupling of the dipole localization parameters from the source signals. Then, we use this model and the maximum likelihood technique to solve the inverse problem assuming the availability of measurements from multiple trials. The applicability and performance of our methods are illustrated through numerical examples based on a real 151-channel SQUID fMEG measurement system (SARA). SARA is an MEG system especially designed for fetal assessment and is currently used for heart and brain studies. Finally, since our model requires knowledge of the best-fitting ellipsoid's centre location and semiaxes lengths, we propose a method for estimating these parameters through a least-squares fit on anatomical information obtained from three-dimensional ultrasound images.

  19. Embedding Term Similarity and Inverse Document Frequency into a Logical Model of Information Retrieval.

    ERIC Educational Resources Information Center

    Losada, David E.; Barreiro, Alvaro

    2003-01-01

    Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…

  20. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  1. INVERSE MODELING TO ESTIMATE NH3 EMISSION SEASONALLY AND THE SENSITIVITY TO UNCERTAINTY REPRESENTATIONS

    EPA Science Inventory

    Inverse modeling has been used extensively on the global scale to produce top-down estimates of emissions for chemicals such as CO and CH4. Regional scale air quality studies could also benefit from inverse modeling as a tool to evaluate current emission inventories; however, ...

  2. Application of 2-D travel-time inversion of seismic refraction data to the mid-continent rift beneath Lake Superior

    USGS Publications Warehouse

    Lutter, William J.; Tréhu, Anne M.; Nowack, Robert L.

    1993-01-01

    The inversion technique of Nowack and Lutter (1988a) and Lutter et al. (1990) has been applied to first arrival seismic refraction data collected along Line A of the 1986 Lake Superior GLIMPCE experiment, permitting comparison of the inversion image with an independently derived forward model (Trehu et al., 1991; Shay and Trehu, in press). For this study, the inversion method was expanded to allow variable grid spacing for the bicubic spline parameterization of velocity. The variable grid spacing improved model delineation and data fit by permitting model parameters to be clustered at features of interest. Over 800 first-arrival travel-times were fit with a final RMS error of 0.045 s. The inversion model images a low velocity central graben and smaller flanking half-grabens of the Midcontinent Rift, and higher velocity regions (+0.5 to +0.75 km/s) associated with the Isle Royale and Keweenaw faults, which bound the central graben. Although the forward modeling interpretation gives finer details associated with the near surface expression of the two faults because of the inclusion of secondary reflections and refractions that were not included in the inversion, the inversion model reproduces the primary features of the forward model.

  3. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  4. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    NASA Technical Reports Server (NTRS)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  5. Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-06-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  6. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  7. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  8. Solitons of shallow-water models from energy-dependent spectral problems

    NASA Astrophysics Data System (ADS)

    Haberlin, Jack; Lyons, Tony

    2018-01-01

    The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.

  9. Computational methods for estimation of parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Murphy, K. A.

    1983-01-01

    Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.

  10. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Progress toward improving regional atmospheric inversions using airborne measurements: Results from ACT-America

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Baier, B.; Baker, D.; Barkley, Z.; Bell, E.; Bowman, K. W.; Browell, E. V.; Campbell, J.; Chen, H. W.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Fan, T. F.; Feng, S.; Fried, A.; Gaudet, B. J.; Jacobson, A. R.; Keller, K.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; McGregor, D.; Michalak, A.; Obland, M. D.; O'Dell, C.; Pal, S.; Parazoo, N.; Pauly, R.; Randazzo, N. A.; Samaddar, A.; Schuh, A. E.; Sweeney, C.; Wesloh, D.; Williams, C. A.; Zhang, F.; Zhou, Y.

    2017-12-01

    The Atmospheric Carbon and Transport (ACT) - America mission aims to improve our understanding of transport and fluxes of greenhouse gases (GHGs) via airborne campaigns spanning a range of mid-latitude weather conditions, and thus to improve the accuracy and precision of regional inverse flux estimates of GHGs. ACT-America has conducted three field campaigns with two aircraft across three regions of the eastern United States during summer 2016, winter 2017 and fall 2017. Simulations of atmospheric GHGs have been conducted for a subset of these campaigns. We present progress from these campaigns. Mid-summer observations suggest a net biological source of CO2 to the atmosphere in the Gulf Coast states. These results contradict those terrestrial biosphere models that show net uptake of CO2 in this region in summer. Methane observations downwind of major sources in the MidAtlantic suggest that these sources are represented fairly well by existing emissions inventories. Flux estimation in other regions is underway. Spatially-coherent differences in GHGs extend throughout the depth of the troposphere are observed at frontal boundaries in summer and winter. These spatial structures are captured in global and mesoscale simulations, though the simulated GHG mole fractions are sometimes biased with respect to observations, suggesting potential biases in synoptic transport. Mesoscale simulations overestimate spatial differences in ABL CO2 mole fractions in fair weather conditions as compared to observations and the CarbonTracker global inverse modeling system. ABL depths are simulated fairly well by both mesoscale and global modeling systems, suggesting that either weather-scale flux amplitudes are overestimated by CarbonTracker, or the mesoscale model lacks parameterized transport above the ABL. Measurements of OCS, 14CO2, and CO are being used to attribute CO2 variability to biogenic and anthropogenic processes and to expand the evaluation of GHG simulation systems. Cross-evaluation of OCO-2 and airborne lidar XCO2 observations against in situ measurements is defining the regional precision and accuracy of these observations. These findings are moving us toward improved regional GHG inverse flux estimates via better understanding of prior fluxes, atmospheric transport, and satellite CO2 observations.

  12. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  13. Appraisal of geodynamic inversion results: a data mining approach

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.

  14. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  15. Joint inversion of apparent resistivity and seismic surface and body wave data

    NASA Astrophysics Data System (ADS)

    Garofalo, Flora; Sauvin, Guillaume; Valentina Socco, Laura; Lecomte, Isabelle

    2013-04-01

    A novel inversion algorithm has been implemented to jointly invert apparent resistivity curves from vertical electric soundings, surface wave dispersion curves, and P-wave travel times. The algorithm works in the case of laterally varying layered sites. Surface wave dispersion curves and P-wave travel times can be extracted from the same seismic dataset and apparent resistivity curves can be obtained from continuous vertical electric sounding acquisition. The inversion scheme is based on a series of local 1D layered models whose unknown parameters are thickness h, S-wave velocity Vs, P-wave velocity Vp, and Resistivity R of each layer. 1D models are linked to surface-wave dispersion curves and apparent resistivity curves through classical 1D forward modelling, while a 2D model is created by interpolating the 1D models and is linked to refracted P-wave hodograms. A priori information can be included in the inversion and a spatial regularization is introduced as a set of constraints between model parameters of adjacent models and layers. Both a priori information and regularization are weighted by covariance matrixes. We show the comparison of individual inversions and joint inversion for a synthetic dataset that presents smooth lateral variations. Performing individual inversions, the poor sensitivity to some model parameters leads to estimation errors up to 62.5 %, whereas for joint inversion the cooperation of different techniques reduces most of the model estimation errors below 5% with few exceptions up to 39 %, with an overall improvement. Even though the final model retrieved by joint inversion is internally consistent and more reliable, the analysis of the results evidences unacceptable values of Vp/Vs ratio for some layers, thus providing negative Poisson's ratio values. To further improve the inversion performances, an additional constraint is added imposing Poisson's ratio in the range 0-0.5. The final results are globally improved by the introduction of this constraint further reducing the maximum error to 30 %. The same test was performed on field data acquired in a landslide-prone area close by the town of Hvittingfoss, Norway. Seismic data were recorded on two 160-m long profiles in roll-along mode using a 5-kg sledgehammer as source and 24 4.5-Hz vertical geophones with 4-m separation. First-arrival travel times were picked at every shot locations and surface wave dispersion curves extracted at 8 locations for each profile. 2D resistivity measurements were carried out on the same profiles using Gradient and Dipole-Dipole arrays with 2-m electrode spacing. The apparent resistivity curves were extracted at the same location as for the dispersion curves. The data were subsequently jointly inverted and the resulting model compared to individual inversions. Although models from both, individual and joint inversions are consistent, the estimation error is smaller for joint inversion, and more especially for first-arrival travel times. The joint inversion exploits different sensitivities of the methods to model parameters and therefore mitigates solution nonuniqueness and the effects of intrinsic limitations of the different techniques. Moreover, it produces an internally consistent multi-parametric final model that can be profitably interpreted to provide a better understanding of subsurface properties.

  16. Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe

    2017-09-01

    Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value < 0.01) between Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.

  17. Bayesian inversion of refraction seismic traveltime data

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test for a synthetic data set from a known model is also presented.

  18. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is estimated by comparing satellite observations with column abundance simulated with surface fluxes optimized by surface inversion. The bias-corrected GOSAT and OCO-2 data are then used in the inversion together with ground-based observations. Application of the bias correction to satellite data reduces the difference between the flux estimates based on ground-based and satellite observations.

  19. Quantum dynamics of a two-state system induced by a chirped zero-area pulse

    NASA Astrophysics Data System (ADS)

    Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2016-02-01

    It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.

  20. Statistical methods for incomplete data: Some results on model misspecification.

    PubMed

    McIsaac, Michael; Cook, R J

    2017-02-01

    Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.

  1. Parallelization of a spatial random field characterization process using the Method of Anchored Distributions and the HTCondor high throughput computing system

    NASA Astrophysics Data System (ADS)

    Osorio-Murillo, C. A.; Over, M. W.; Frystacky, H.; Ames, D. P.; Rubin, Y.

    2013-12-01

    A new software application called MAD# has been coupled with the HTCondor high throughput computing system to aid scientists and educators with the characterization of spatial random fields and enable understanding the spatial distribution of parameters used in hydrogeologic and related modeling. MAD# is an open source desktop software application used to characterize spatial random fields using direct and indirect information through Bayesian inverse modeling technique called the Method of Anchored Distributions (MAD). MAD relates indirect information with a target spatial random field via a forward simulation model. MAD# executes inverse process running the forward model multiple times to transfer information from indirect information to the target variable. MAD# uses two parallelization profiles according to computational resources available: one computer with multiple cores and multiple computers - multiple cores through HTCondor. HTCondor is a system that manages a cluster of desktop computers for submits serial or parallel jobs using scheduling policies, resources monitoring, job queuing mechanism. This poster will show how MAD# reduces the time execution of the characterization of random fields using these two parallel approaches in different case studies. A test of the approach was conducted using 1D problem with 400 cells to characterize saturated conductivity, residual water content, and shape parameters of the Mualem-van Genuchten model in four materials via the HYDRUS model. The number of simulations evaluated in the inversion was 10 million. Using the one computer approach (eight cores) were evaluated 100,000 simulations in 12 hours (10 million - 1200 hours approximately). In the evaluation on HTCondor, 32 desktop computers (132 cores) were used, with a processing time of 60 hours non-continuous in five days. HTCondor reduced the processing time for uncertainty characterization by a factor of 20 (1200 hours reduced to 60 hours.)

  2. A Monte Carlo approach to the inverse problem of diffuse pollution risk in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Lane, S. N.; Heathwaite, A. L.; Reaney, S.

    2012-04-01

    The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. As an alternative to the, often complex, reductionist models we outline a - data-driven - approach based on 'inverse modelling'. We invert SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity, and use a Bayesian approach to determine the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. First, we apply the model to a set of eleven UK catchments to show that: 1) some land use generates a consistently high or low risk of diffuse nitrate (N) and Phosphate (P) pollution; but 2) the risks associated with different land uses vary both between catchments and between P and N delivery; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. These results suggest that on a case by case basis, inverse modelling may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. However, a key uncertainty in this approach is the extent to which it can recover the 'true' risks associated with a land cover given error in both the input parameters and equifinality in model outcomes. We test this using a set of synthetic scenarios in which the true risks can be pre-assigned then compared with those recovered from the inverse model. We use these scenarios to identify the number of simulations and observations required to optimize recovery of the true weights, then explore the conditions under which the inverse model becomes equifinal (hampering recovery of the true weights) We find that this is strongly dependent on the covariance in land covers between subcatchments, introducing the possibility that instream sampling could be designed or subsampled to maximize identifiability of the risks associated with a given land cover.

  3. A Hydrological Tomography Collocated with Time-varying Gravimetry for Hydrogeology -An Example in Yun-Lin Alluvial Plain and Ming-Ju Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Cheng, C. C.; Hwang, C.

    2016-12-01

    A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.

  4. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    PubMed

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  5. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.

  6. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    NASA Astrophysics Data System (ADS)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical modelling are being performed. Scaled analogue models of the Somma-Vesuvius are being built accordingly with the actual geometrical asymmetry of the volcano, varying just few parameters connected to the uncertainty of the depth and thickness of a buried decoupling layer. Experiments are being monitored by an optical stereo image system, useful to build a 3D time-lapsed models used to retrieve the model deformations. Simultaneously, a time-dependent 3D Finite Element model is being carried out in a fluid-dynamic context by fixing the same parameters of the proposed analogue model. Finally, a comparative analysis is being made between the model deformations and the DInSAR measurements derived from satellite data in order to estimate the uncertain parameters (i.e., thickness and viscosity of ductile layer). Preliminary results of the analogue models fit with the hypothesis of a spreading deformation active at the Somma-Vesuvius.

  7. Earthquake source parameters from GPS-measured static displacements with potential for real-time application

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas B.; Valentine, Andrew P.; Woodhouse, John H.

    2013-01-01

    We describe a method for determining an optimal centroid-moment tensor solution of an earthquake from a set of static displacements measured using a network of Global Positioning System receivers. Using static displacements observed after the 4 April 2010, MW 7.2 El Mayor-Cucapah, Mexico, earthquake, we perform an iterative inversion to obtain the source mechanism and location, which minimize the least-squares difference between data and synthetics. The efficiency of our algorithm for forward modeling static displacements in a layered elastic medium allows the inversion to be performed in real-time on a single processor without the need for precomputed libraries of excitation kernels; we present simulated real-time results for the El Mayor-Cucapah earthquake. The only a priori information that our inversion scheme needs is a crustal model and approximate source location, so the method proposed here may represent an improvement on existing early warning approaches that rely on foreknowledge of fault locations and geometries.

  8. Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers.

    PubMed

    Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; Yue, Di; Zhou, Hexin; Jin, Xiaofeng; Galitski, Victor M; Yakovenko, Victor M; Xia, Jing

    2017-03-01

    Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.

  9. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  10. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  11. Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite

    DTIC Science & Technology

    2016-09-01

    aerial platform for subsequent visual sensor integration. 14. SUBJECT TERMS autonomous system, quadrotors, direct method, inverse ...CONTROLLER ARCHITECTURE .....................................................43 B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN ......................45 1...control station GPS Global-Positioning System IDVD inverse dynamics in the virtual domain ILP integer linear program INS inertial-navigation system

  12. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  13. SEASONAL NH 3 EMISSIONS FOR THE CONTINENTAL UNITED STATES: INVERSE MODEL ESTIMATION AND EVALUATION

    EPA Science Inventory

    An inverse modeling study has been conducted here to evaluate a prior estimate of seasonal ammonia (NH3) emissions. The prior estimates were based on a previous inverse modeling study and two other bottom-up inventory studies. The results suggest that the prior estim...

  14. Automated dynamic analytical model improvement for damped structures

    NASA Technical Reports Server (NTRS)

    Fuh, J. S.; Berman, A.

    1985-01-01

    A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix.

  15. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    PubMed

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. An optimization method for the problems of thermal cloaking of material bodies

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Levin, V. A.

    2016-11-01

    Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.

  17. Movement Characteristics Analysis and Dynamic Simulation of Collaborative Measuring Robot

    NASA Astrophysics Data System (ADS)

    guoqing, MA; li, LIU; zhenglin, YU; guohua, CAO; yanbin, ZHENG

    2017-03-01

    Human-machine collaboration is becoming increasingly more necessary, and so collaborative robot applications are also in high demand. We selected a UR10 robot as our research subject for this study. First, we applied D-H coordinate transformation of the robot to establish a link system, and we then used inverse transformation to solve the robot’s inverse kinematics and find all the joints. Use Lagrange method to analysis UR robot dynamics; use ADAMS multibody dynamics simulation software to dynamic simulation; verifying the correctness of the derived kinetic models.

  18. On a comparison of two schemes in sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Grishina, Anastasiia A.; Penenko, Alexey V.

    2017-11-01

    This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.

  19. Reconfigurable Flight Control Using Nonlinear Dynamic Inversion with a Special Accelerometer Implementation

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Ostroff, Aaron J.

    2000-01-01

    This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.

  20. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE PAGES

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; ...

    2015-07-28

    Methane (CH 4) is the primary component of natural gas and has a larger global warming potential than CO 2. Some recent top-down studies based on observations showed CH 4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH 4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use themore » FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH 4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R 2 = 0.5). The emission estimates for CH 4 in the posterior, 46.3 ± 9.2 Mg CH 4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH 4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH 4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH 4/h in the SoCAB.« less

  1. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Köpke, Corinna; Irving, James; Elsheikh, Ahmed H.

    2018-06-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are commonly employed. This gives rise to model error, which has the potential to significantly bias posterior statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems. Our approach is geared towards the common case where this error cannot be (i) effectively characterized through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of computed model-error realizations. To this end, we focus on identification and removal of the model-error component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their inversion. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic characterization of uncertainty.

  2. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    NASA Astrophysics Data System (ADS)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C. R.

    2010-12-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model parameterizations.

  3. Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing

    NASA Astrophysics Data System (ADS)

    Sun, R.; Moorthi, S.; Xiao, H.; Mechoso, C.-R.

    2010-08-01

    The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model parameterizations.

  4. Ground-penetrating radar research in Belgium: from developments to applications

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Van Meirvenne, Marc; Craeye, Christophe

    2014-05-01

    Ground-penetrating radar research in Belgium spans a series of developments and applications, including mainly ultra wideband radar antenna design and optimization, non-destructive testing for the characterization of the electrical properties of soils and materials, and high-resolution subsurface imaging in agricultural engineering, archeology and transport infrastructures (e.g., road inspection and pipe detection). Security applications have also been the topic of active research for several years (i.e., landmine detection) and developments in forestry have recently been initiated (i.e., for root zone and tree trunk imaging and characterization). In particular, longstanding research has been devoted to the intrinsic modeling of antenna-medium systems for full-wave inversion, thereby providing an effective way for retrieving the electrical properties of soils and materials. Full-wave modeling is a prerequisite for benefiting from the full information contained in the radar data and is necessary to provide robust and accurate estimates of the properties of interest. Nevertheless, this has remained a major challenge in geophysics and electromagnetics for many years, mainly due to the complex interactions between the antennas and the media as well as to the significant computing resources that are usually required. Efforts have also been dedicated to the development of specific inversion strategies to cope with the complexity of the inverse problems usually dealt with as well as ill-posedness issues that arise from a lack of information in the radar data. To circumvent this last limitation, antenna arrays have been developed and modeled in order to provide additional information. Moreover, data fusion ways have been investigated, by mainly combining GPR data with electromagnetic induction complementary information in joint interpretation analyses and inversion procedures. Finally, inversions have been regularized by combining electromagnetics models together with soil hydrodynamic models in mechanistic data assimilation frameworks, assuming process knowledge as information as well. Acknowledgement: GPR research in Belgium benefits from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  5. The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Baker, David F.; Chevallier, Frédéric; Patra, Prabir K.; Liu, Junjie; Miller, John B.

    2018-05-01

    We estimate the uncertainty of CO2 flux estimates in atmospheric inversions stemming from differences between different global transport models. Using a set of observing system simulation experiments (OSSEs), we estimate this uncertainty as represented by the spread between five different state-of-the-art global transport models (ACTM, LMDZ, GEOS-Chem, PCTM and TM5), for both traditional in situ CO2 inversions and inversions of XCO2 estimates from the Orbiting Carbon Observatory 2 (OCO-2). We find that, in the absence of relative biases between in situ CO2 and OCO-2 XCO2, OCO-2 estimates of terrestrial flux for TRANSCOM-scale land regions can be more robust to transport model differences than corresponding in situ CO2 inversions. This is due to a combination of the increased spatial coverage of OCO-2 samples and the total column nature of OCO-2 estimates. We separate the two effects by constructing hypothetical in situ networks with the coverage of OCO-2 but with only near-surface samples. We also find that the transport-driven uncertainty in fluxes is comparable between well-sampled northern temperate regions and poorly sampled tropical regions. Furthermore, we find that spatiotemporal differences in sampling, such as between OCO-2 land and ocean soundings, coupled with imperfect transport, can produce differences in flux estimates that are larger than flux uncertainties due to transport model differences. This highlights the need for sampling with as complete a spatial and temporal coverage as possible (e.g., using both land and ocean retrievals together for OCO-2) to minimize the impact of selective sampling. Finally, our annual and monthly estimates of transport-driven uncertainties can be used to evaluate the robustness of conclusions drawn from real OCO-2 and in situ CO2 inversions.

  6. A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.; Lamara, S.

    2016-02-01

    We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.

  7. A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.

    2009-12-01

    We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in other more local high-resolution tomographic studies, but covers the whole range of the European Plate. We also obtain three-dimensional mantle density structure by inversion of GRACE Bouguer anomalies locally adjusting density and the scaling relation between seismic wave speeds and density. We validate the new comprehensive model through comparison of recorded seismograms with numerical simulations based on SPECFEM3D. This work is a contribution towards the definition of a reference earth model for Europe. To this extent, in order to improve model dissemination and comparison, we propose the adoption of a common exchange format for tomographic earth models based on JSON, a lightweight data-interchange format supported by most high-level programming languages. We provide tools for manipulating and visualising models, described in this standard format, in Google Earth and GEON IDV.

  8. A matched-peak inversion approach for ocean acoustic travel-time tomography

    PubMed

    Skarsoulis

    2000-03-01

    A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.

  9. Trans-dimensional joint inversion of seabed scattering and reflection data.

    PubMed

    Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2013-03-01

    This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.

  10. Towards seismic waveform inversion of long-offset Ocean-Bottom Seismic data for deep crustal imaging offshore Western Australia

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.

    2016-12-01

    Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.

  11. Understanding the physics of the Yellowstone magmatic system with geodynamic inverse modelling

    NASA Astrophysics Data System (ADS)

    Reuber, Georg; Kaus, Boris

    2017-04-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Thus, it is important to understand the geodynamic processes that drive this very complex system on a larger scale ranging from the mantle plume up to the shallow magma chamber in the upper crust. Recent geophysical results suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper and partially molten chamber above the Moho [1]. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is puzzling. Therefore, we employ lithospheric-scale 2D and 3D geodynamic models to test the influence of different model parameters, such as the geometry of the magma chamber, the melt fraction, the rheological flow law, the densities and the thermal structure on their influence on the dynamics of the lithosphere. The melt content and the rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. We present derivations in the stress field around the Yellowstone plume, diking areas and different melt accumulations. Our model predictions can be tested with available geophysical data (uplift rates, melt fractions, stress states, seismicity). By framing it in an inverse modelling approach we can constrain which parameters (melt fractions, viscosities, geometries) are consistent with the data and which are not. [1] Huang, Hsin-Hua, et al. "The Yellowstone magmatic system from the mantle plume to the upper crust." Science 348.6236 (2015): 773-776.

  12. Inverse-collimated proton radiography for imaging thin materials

    DOE PAGES

    Freeman, Matthew S.; Allison, Jason; Andrews, Malcolm; ...

    2017-01-01

    Relativistic, magnetically-focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam, and is inherently well-suited to imaging dense objects, at areal densities >20 g cm -2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm -2. Here, this inversecollimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an arealmore » density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ~25 mg cm -2 to 100 g cm -2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system, as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.« less

  13. Audiomagnetotelluric Data and Two-Dimensional Models from Spring, Snake, and Three Lakes Valleys, Nevada

    USGS Publications Warehouse

    McPhee, Darcy K.; Chuchel, Bruce A.; Pellerin, Louise

    2007-01-01

    Audiomagnetotelluric (AMT) data along thirteen profiles in Spring, Snake, and Three Lakes Valleys, and the corresponding two-dimensional (2-D) inverse models, are presented. The AMT method is a valuable tool for estimating the electrical resistivity of the Earth over depth ranges of a few meters to roughly one kilometer. It is important for revealing subsurface structure and stratigraphy within the Basin and Range province of eastern Nevada that can be used to define the geohydrologic framework of the region. We collected AMT data using the Geometrics StrataGem EH4 system. Profiles were 1.2 to 4.6 km in length with station spacing of 100-400 m. Data were recorded in a coordinate system parallel to and perpendicular to the assumed regional geologic strike direction. We show station locations, sounding curves of apparent resistivity, phase, and coherency, and 2-D models. The 2-D inverse models are computed from the transverse electric (TE), transverse magnetic (TM), and TE+TM mode data using the conjugate gradient, finite-difference method of Rodi and Mackie (2001). Preliminary interpretation of these models defines the structural framework of the basins and the resistivity contrasts between alluvial basin-fill, volcanic units, and carbonate/clastic rocks.

  14. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  15. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  16. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  17. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S-P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.

  18. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  19. Density and energy relaxation in an open one-dimensional system

    NASA Astrophysics Data System (ADS)

    Jose, Prasanth P.; Bagchi, Biman

    2004-05-01

    A new master equation to mimic the dynamics of a collection of interacting random walkers in an open system is proposed and solved numerically. In this model, the random walkers interact through excluded volume interaction (single-file system); and the total number of walkers in the lattice can fluctuate because of exchange with a bath. In addition, the movement of the random walkers is biased by an external perturbation. Two models for the latter are considered: (1) an inverse potential (V∝1/r), where r is the distance between the center of the perturbation and the random walker and (2) an inverse of sixth power potential (V∝1/r6). The calculated density of the walkers and the total energy show interesting dynamics. When the size of the system is comparable to the range of the perturbing field, the energy relaxation is found to be highly nonexponential. In this range, the system can show stretched exponential (e-(t/τs)β) and even logarithmic time dependence of energy relaxation over a limited range of time. Introduction of density exchange in the lattice markedly weakens this nonexponentiality of the relaxation function, irrespective of the nature of perturbation.

  20. Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan

    2017-06-01

    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the east side and of the past Vulcan volcano eruptions of more evolved materials on the west side. The interconnection and spatial distributions of sources correspond to the petrography of the volcanic products described in the literature and to the dynamics of the single and twin eruptions that characterize the caldera. The ability to image the complex geometry of deformation sources in both space and time can improve our ability to monitor active volcanoes, widen our understanding of the dynamics of active volcanic systems and improve the predictions of eruptions.

  1. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.

  2. Strategies to Enhance the Model Update in Regions of Weak Sensitivities for Use in Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Nuber, André; Manukyan, Edgar; Maurer, Hansruedi

    2014-05-01

    Conventional methods of interpreting seismic data rely on filtering and processing limited portions of the recorded wavefield. Typically, either reflections, refractions or surface waves are considered in isolation. Particularly in near-surface engineering and environmental investigations (depths less than, say 100 m), these wave types often overlap in time and are difficult to separate. Full waveform inversion is a technique that seeks to exploit and interpret the full information content of the seismic records without the need for separating events first; it yields models of the subsurface at sub-wavelength resolution. We use a finite element modelling code to solve the 2D elastic isotropic wave equation in the frequency domain. This code is part of a Gauss-Newton inversion scheme which we employ to invert for the P- and S-wave velocities as well as for density in the subsurface. For shallow surface data the use of an elastic forward solver is essential because surface waves often dominate the seismograms. This leads to high sensitivities (partial derivatives contained in the Jacobian matrix of the Gauss-Newton inversion scheme) and thus large model updates close to the surface. Reflections from deeper structures may also include useful information, but the large sensitivities of the surface waves often preclude this information from being fully exploited. We have developed two methods that balance the sensitivity distributions and thus may help resolve the deeper structures. The first method includes equilibrating the columns of the Jacobian matrix prior to every inversion step by multiplying them with individual scaling factors. This is expected to also balance the model updates throughout the entire subsurface model. It can be shown that this procedure is mathematically equivalent to balancing the regularization weights of the individual model parameters. A proper choice of the scaling factors required to balance the Jacobian matrix is critical. We decided to normalise the columns of the Jacobian based on their absolute column sum, but defining an upper threshold for the scaling factors. This avoids particularly small and therefore insignificant sensitivities being over-boosted, which would produce unstable results. The second method proposed includes adjusting the inversion cell size with depth. Multiple cells of the forward modelling grid are merged to form larger inversion cells (typical ratios between forward and inversion cells are in the order of 1:100). The irregular inversion grid is adapted to the expected resolution power of full waveform inversion. Besides stabilizing the inversion, this approach also reduces the number of model parameters to be recovered. Consequently, the computational costs and the memory consumption are reduced significantly. This is particularly critical when Gauss-Newton type inversion schemes are employed. Extensive tests with synthetic data demonstrated that both methods stabilise the inversion and improve the inversion results. The two methods have some redundancy, which can be seen when both are applied simultaneously, that is, when scaling of the Jacobian matrix is applied to an irregular inversion grid. The calculated scaling factors are quite balanced and span a much smaller range than in the case of a regular inversion grid.

  3. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  4. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  5. A framework for testing the use of electric and electromagnetic data to reduce the prediction error of groundwater models

    NASA Astrophysics Data System (ADS)

    Christensen, N. K.; Christensen, S.; Ferre, T. P. A.

    2015-09-01

    Despite geophysics is being used increasingly, it is still unclear how and when the integration of geophysical data improves the construction and predictive capability of groundwater models. Therefore, this paper presents a newly developed HYdrogeophysical TEst-Bench (HYTEB) which is a collection of geological, groundwater and geophysical modeling and inversion software wrapped to make a platform for generation and consideration of multi-modal data for objective hydrologic analysis. It is intentionally flexible to allow for simple or sophisticated treatments of geophysical responses, hydrologic processes, parameterization, and inversion approaches. It can also be used to discover potential errors that can be introduced through petrophysical models and approaches to correlating geophysical and hydrologic parameters. With HYTEB we study alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity. It is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by regularization. For purely hydrologic inversion (HI, only using hydrologic data) we used Tikhonov regularization combined with singular value decomposition. For joint hydrogeophysical inversion (JHI) and sequential hydrogeophysical inversion (SHI) the resistivity estimates from TEM are used together with a petrophysical relationship to formulate the regularization term. In all cases, the regularization stabilizes the inversion, but neither the HI nor the JHI objective function could be minimized uniquely. SHI or JHI with regularization based on the use of TEM data produced estimated hydraulic conductivity fields that bear more resemblance to the reference fields than when using HI with Tikhonov regularization. However, for the studied system the resistivities estimated by SHI or JHI must be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. Much of the lack of value of the geophysical data arises from a mistaken faith in the power of the petrophysical model in combination with geophysical data of low sensitivity, thereby propagating geophysical estimation errors into the hydrologic model parameters. With respect to reducing model prediction error, it depends on the type of prediction whether it has value to include geophysical data in the model calibration. It is found that all calibrated models are good predictors of hydraulic head. When the stress situation is changed from that of the hydrologic calibration data, then all models make biased predictions of head change. All calibrated models turn out to be a very poor predictor of the pumping well's recharge area and groundwater age. The reason for this is that distributed recharge is parameterized as depending on estimated hydraulic conductivity of the upper model layer which tends to be underestimated. Another important insight from the HYTEB analysis is thus that either recharge should be parameterized and estimated in a different way, or other types of data should be added to better constrain the recharge estimates.

  6. Developing a reversible rapid coordinate transformation model for the cylindrical projection

    NASA Astrophysics Data System (ADS)

    Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai

    2016-04-01

    Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.

  7. Lebedev acceleration and comparison of different photometric models in the inversion of lightcurves for asteroids

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao

    2018-04-01

    In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.

  8. An adaptive nonlinear internal-model control for the speed control of homopolar salient-pole BLDC motor

    NASA Astrophysics Data System (ADS)

    CheshmehBeigi, Hassan Moradi

    2018-05-01

    In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.

  9. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    NASA Astrophysics Data System (ADS)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results provided by the approximate Hessian matrix, it is noted that the latter are better than the former for deeper parts of the model. This work was financially supported by the Brain Korea 21 project of Energy System Engineering, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0006155), by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010T100200133).

  10. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.

  11. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  12. Numerical Representation of Wintertime Near-Surface Inversions in the Arctic with a 2.5-km Version of the Global Environmental Multiscale (GEM) Model

    NASA Astrophysics Data System (ADS)

    Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.

    2017-12-01

    Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.

  13. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  14. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.

  15. The Priority Inversion Problem and Real-Time Symbolic Model Checking

    DTIC Science & Technology

    1993-04-23

    real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties

  16. A novel anisotropic inversion approach for magnetotelluric data from subsurfaces with orthogonal geoelectric strike directions

    NASA Astrophysics Data System (ADS)

    Schmoldt, Jan-Philipp; Jones, Alan G.

    2013-12-01

    The key result of this study is the development of a novel inversion approach for cases of orthogonal, or close to orthogonal, geoelectric strike directions at different depth ranges, for example, crustal and mantle depths. Oblique geoelectric strike directions are a well-known issue in commonly employed isotropic 2-D inversion of MT data. Whereas recovery of upper (crustal) structures can, in most cases, be achieved in a straightforward manner, deriving lower (mantle) structures is more challenging with isotropic 2-D inversion in the case of an overlying region (crust) with different geoelectric strike direction. Thus, investigators may resort to computationally expensive and more limited 3-D inversion in order to derive the electric resistivity distribution at mantle depths. In the novel approaches presented in this paper, electric anisotropy is used to image 2-D structures in one depth range, whereas the other region is modelled with an isotropic 1-D or 2-D approach, as a result significantly reducing computational costs of the inversion in comparison with 3-D inversion. The 1- and 2-D versions of the novel approach were tested using a synthetic 3-D subsurface model with orthogonal strike directions at crust and mantle depths and their performance was compared to results of isotropic 2-D inversion. Structures at crustal depths were reasonably well recovered by all inversion approaches, whereas recovery of mantle structures varied significantly between the different approaches. Isotropic 2-D inversion models, despite decomposition of the electric impedance tensor and using a wide range of inversion parameters, exhibited severe artefacts thereby confirming the requirement of either an enhanced or a higher dimensionality inversion approach. With the anisotropic 1-D inversion approach, mantle structures of the synthetic model were recovered reasonably well with anisotropy values parallel to the mantle strike direction (in this study anisotropy was assigned to the mantle region), indicating applicability of the novel approach for basic subsurface cases. For the more complex subsurface cases, however, the anisotropic 1-D inversion approach is likely to yield implausible models of the electric resistivity distribution due to inapplicability of the 1-D approximation. Owing to the higher number of degrees of freedom, the anisotropic 2-D inversion approach can cope with more complex subsurface cases and is the recommended tool for real data sets recorded in regions with orthogonal geoelectric strike directions.

  17. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  18. Phase and amplitude inversion of crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2011-01-01

    Phase and amplitude inversion of crosswell radar data estimates the logarithm of complex slowness for a 2.5D heterogeneous model. The inversion is formulated in the frequency domain using the vector Helmholtz equation. The objective function is minimized using a back-propagation method that is suitable for a 2.5D model and that accounts for the near-, intermediate-, and far-field regions of the antennas. The inversion is tested with crosswell radar data collected in a laboratory tank. The model anomalies are consistent with the known heterogeneity in the tank; the model’s relative dielectric permittivity, which is calculated from the real part of the estimated complex slowness, is consistent with independent laboratory measurements. The methodologies developed for this inversion can be adapted readily to inversions of seismic data (e.g., crosswell seismic and vertical seismic profiling data).

  19. Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses.

    PubMed

    Fuller, Robert William; Wong, Tony E; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent expert assessments. One promising approach to characterizing the deep uncertainty stemming from divergent expert assessments is to combine expert assessments, observations, and simple models by coupling probabilistic inversion and Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inversion to fuse a simple AIS model and diverse expert assessments. We demonstrate the ability of probabilistic inversion to infer joint prior probability distributions of model parameters that are consistent with expert assessments. We then confront these inferred expert priors with instrumental and paleoclimatic observational data in a Bayesian inversion. These additional constraints yield tighter hindcasts and projections. We use this approach to quantify how the deep uncertainty surrounding expert assessments affects the joint probability distributions of model parameters and future projections.

  20. The Earthquake‐Source Inversion Validation (SIV) Project

    USGS Publications Warehouse

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

Top