Sample records for inverse numerical optimization

  1. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  2. Computational Methods for Identification, Optimization and Control of PDE Systems

    DTIC Science & Technology

    2010-04-30

    focused on the development of numerical methods and software specifically for the purpose of solving control, design, and optimization prob- lems where...that provide the foundations of simulation software must play an important role in any research of this type, the demands placed on numerical methods...y sus Aplicaciones , Ciudad de Cor- doba - Argentina, October 2007. 3. Inverse Problems in Deployable Space Structures, Fourth Conference on Inverse

  3. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  4. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  5. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  6. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  7. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  8. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.

  9. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  10. An optimization method for the problems of thermal cloaking of material bodies

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Levin, V. A.

    2016-11-01

    Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.

  11. 2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation

    NASA Astrophysics Data System (ADS)

    Proctor, Camron Lisle

    The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.

  12. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  13. A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves

    NASA Astrophysics Data System (ADS)

    Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.

    2017-12-01

    This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.

  14. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  15. Reconstruction of local perturbations in periodic surfaces

    NASA Astrophysics Data System (ADS)

    Lechleiter, Armin; Zhang, Ruming

    2018-03-01

    This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.

  16. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.

    PubMed

    Rodríguez-Dorado, Rosalia; Landín, Mariana; Altai, Ayça; Russo, Paola; Aquino, Rita P; Del Gaudio, Pasquale

    2018-03-01

    Numerous studies have been focused on hydrophobic compounds encapsulation as oils. In fact, oils can provide numerous health benefits as synergic ingredient combined with other hydrophobic active ingredients. However, stable microparticles for pharmaceutical purposes are difficult to achieve when commonly techniques are used. In this work, sunflower oil was encapsulated in calcium-alginate capsules by prilling technique in co-axial configuration. Core-shell beads were produced by inverse gelation directly at the nozzle using a w/o emulsion containing aqueous calcium chloride solution in sunflower oil pumped through the inner nozzle while an aqueous alginate solution, coming out from the annular nozzle, produced the beads shell. To optimize process parameters artificial intelligence tools were proposed to optimize the numerous prilling process variables. Homogeneous and spherical microcapsules with narrow size distribution and a thin alginate shell were obtained when the parameters as w/o constituents, polymer concentrations, flow rates and frequency of vibration were optimized by two commercial software, FormRules® and INForm®, which implement neurofuzzy logic and Artificial Neural Networks together with genetic algorithms, respectively. This technique constitutes an innovative approach for hydrophobic compounds microencapsulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  18. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  19. Inverse Optimization: A New Perspective on the Black-Litterman Model.

    PubMed

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch

    2012-12-11

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.

  20. Calibrating the Spatiotemporal Root Density Distribution for Macroscopic Water Uptake Models Using Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Li, N.; Yue, X. Y.

    2018-03-01

    Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.

  1. Towards inverse modeling of turbidity currents: The inverse lock-exchange problem

    NASA Astrophysics Data System (ADS)

    Lesshafft, Lutz; Meiburg, Eckart; Kneller, Ben; Marsden, Alison

    2011-04-01

    A new approach is introduced for turbidite modeling, leveraging the potential of computational fluid dynamics methods to simulate the flow processes that led to turbidite formation. The practical use of numerical flow simulation for the purpose of turbidite modeling so far is hindered by the need to specify parameters and initial flow conditions that are a priori unknown. The present study proposes a method to determine optimal simulation parameters via an automated optimization process. An iterative procedure matches deposit predictions from successive flow simulations against available localized reference data, as in practice may be obtained from well logs, and aims at convergence towards the best-fit scenario. The final result is a prediction of the entire deposit thickness and local grain size distribution. The optimization strategy is based on a derivative-free, surrogate-based technique. Direct numerical simulations are performed to compute the flow dynamics. A proof of concept is successfully conducted for the simple test case of a two-dimensional lock-exchange turbidity current. The optimization approach is demonstrated to accurately retrieve the initial conditions used in a reference calculation.

  2. A developed nearly analytic discrete method for forward modeling in the frequency domain

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai

    2018-02-01

    High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.

  3. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  4. Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

    NASA Astrophysics Data System (ADS)

    Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric

    2017-08-01

    The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

  5. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  6. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  7. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  8. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    NASA Astrophysics Data System (ADS)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  9. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Šimůnek, Jirka; Nimmo, John R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.

  10. Inverse Optimization: A New Perspective on the Black-Litterman Model

    PubMed Central

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.

    2014-01-01

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873

  11. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse.

    PubMed

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  13. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  14. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  15. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  16. Transonic airfoil analysis and design in nonuniform flow

    NASA Technical Reports Server (NTRS)

    Chang, J. F.; Lan, C. E.

    1986-01-01

    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.

  17. Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Bo

    2014-06-01

    By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.

  18. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  19. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  20. Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow

    NASA Astrophysics Data System (ADS)

    Aida-zade, K. R.; Ashrafova, E. R.

    2017-12-01

    An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.

  1. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  2. Bilinear Inverse Problems: Theory, Algorithms, and Applications

    NASA Astrophysics Data System (ADS)

    Ling, Shuyang

    We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical guarantees and stability theory are derived and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

  3. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  4. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  5. Multiple crack detection in 3D using a stable XFEM and global optimization

    NASA Astrophysics Data System (ADS)

    Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.

    2018-02-01

    A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.

  6. Adjoint Sensitivity Method to Determine Optimal Set of Stations for Tsunami Source Inversion

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Hossen, M. J.; Cummins, P. R.; Satake, K.

    2017-12-01

    We applied the adjoint sensitivity technique in tsunami science for the first time to determine an optimal set of stations for a tsunami source inversion. The adjoint sensitivity (AS) method has been used in numerical weather prediction to find optimal locations for adaptive observations. We implemented this technique to Green's Function based Time Reverse Imaging (GFTRI), which is recently used in tsunami source inversion in order to reconstruct the initial sea surface displacement, known as tsunami source model. This method has the same source representation as the traditional least square (LSQ) source inversion method where a tsunami source is represented by dividing the source region into a regular grid of "point" sources. For each of these, Green's function (GF) is computed using a basis function for initial sea surface displacement whose amplitude is concentrated near the grid point. We applied the AS method to the 2009 Samoa earthquake tsunami that occurred on 29 September 2009 in the southwest Pacific, near the Tonga trench. Many studies show that this earthquake is a doublet associated with both normal faulting in the outer-rise region and thrust faulting in the subduction interface. To estimate the tsunami source model for this complex event, we initially considered 11 observations consisting of 5 tide gauges and 6 DART bouys. After implementing AS method, we found the optimal set of observations consisting with 8 stations. Inversion with this optimal set provides better result in terms of waveform fitting and source model that shows both sub-events associated with normal and thrust faulting.

  7. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-04-01

    Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

  8. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.

    2002-04-01

    This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.

  9. Inverse transport calculations in optical imaging with subspace optimization algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less

  10. Performance of some numerical Laplace inversion methods on American put option formula

    NASA Astrophysics Data System (ADS)

    Octaviano, I.; Yuniar, A. R.; Anisa, L.; Surjanto, S. D.; Putri, E. R. M.

    2018-03-01

    Numerical inversion approaches of Laplace transform is used to obtain a semianalytic solution. Some of the mathematical inversion methods such as Durbin-Crump, Widder, and Papoulis can be used to calculate American put options through the optimal exercise price in the Laplace space. The comparison of methods on some simple functions is aimed to know the accuracy and parameters which used in the calculation of American put options. The result obtained is the performance of each method regarding accuracy and computational speed. The Durbin-Crump method has an average error relative of 2.006e-004 with computational speed of 0.04871 seconds, the Widder method has an average error relative of 0.0048 with computational speed of 3.100181 seconds, and the Papoulis method has an average error relative of 9.8558e-004 with computational speed of 0.020793 seconds.

  11. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  12. ℓ1-Regularized full-waveform inversion with prior model information based on orthant-wise limited memory quasi-Newton method

    NASA Astrophysics Data System (ADS)

    Dai, Meng-Xue; Chen, Jing-Bo; Cao, Jian

    2017-07-01

    Full-waveform inversion (FWI) is an ill-posed optimization problem which is sensitive to noise and initial model. To alleviate the ill-posedness of the problem, regularization techniques are usually adopted. The ℓ1-norm penalty is a robust regularization method that preserves contrasts and edges. The Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) method extends the widely-used limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method to the ℓ1-regularized optimization problems and inherits the efficiency of L-BFGS. To take advantage of the ℓ1-regularized method and the prior model information obtained from sonic logs and geological information, we implement OWL-QN algorithm in ℓ1-regularized FWI with prior model information in this paper. Numerical experiments show that this method not only improve the inversion results but also has a strong anti-noise ability.

  13. Inverse problem of the vibrational band gap of periodically supported beam

    NASA Astrophysics Data System (ADS)

    Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei

    2017-04-01

    The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.

  14. Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium

    NASA Astrophysics Data System (ADS)

    Chen, Xudong

    2010-07-01

    This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.

  15. An improved grey wolf optimizer algorithm for the inversion of geoelectrical data

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Wang, Shu-Ming; Wang, Peng-Fei; Su, Xiao-Lu; Zhang, Xin-Song; Dong, Zhi-Hui

    2018-05-01

    The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of iterations than the SA.

  16. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods

    PubMed Central

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-01-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452

  17. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.

    PubMed

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-05-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.

  18. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  19. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  20. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  1. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  2. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  3. Inverse estimation of the elastic and anelastic properties of the porous frame of anisotropic open-cell foams.

    PubMed

    Cuenca, Jacques; Göransson, Peter

    2012-08-01

    This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke's law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.

  4. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    NASA Astrophysics Data System (ADS)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  5. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  6. Acoustic and elastic waveform inversion best practices

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.

  7. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann

    2011-11-01

    Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

  8. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  9. Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of themore » SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  10. Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lu, Zhong-Rong

    2017-05-01

    This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.

  11. Novel Scalable 3-D MT Inverse Solver

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.

    2016-12-01

    We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.

  12. Significance of the model considering mixed grain-size for inverse analysis of turbidites

    NASA Astrophysics Data System (ADS)

    Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.

    2016-12-01

    A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The uniform grain-size model often reaches to local optimum condition that is significantly different from true solution. In conclusion, we propose a method of optimization based on the model considering mixed grain-size particles, and show its application to examples of turbidites in the Kiyosumi Formation, Boso Peninsula, Japan.

  13. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  14. Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Son, J.; Medina-Cetina, Z.

    2017-12-01

    We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.

  15. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  16. Application of an Evolution Strategy in Planetary Ephemeris Optimization

    NASA Astrophysics Data System (ADS)

    Mai, E.

    2016-12-01

    Classical planetary ephemeris construction comprises three major steps, which are performed iteratively: simultaneous numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of thousands of observations (reduction step), and optimization of various selected model parameters (adjustment step). This traditional approach is challenged by ongoing refinements in force modeling, e.g. inclusion of much more significant minor bodies, an ever-growing number of planetary observations, e.g. vast amount of spacecraft tracking data, etc. To master the high computational burden and in order to circumvent the need for inversion of huge normal equation matrices, we propose an alternative ephemeris construction method. The main idea is to solve the overall optimization problem by a straightforward direct evaluation of the whole set of mathematical formulas involved, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and numerical difficulties. We replace the usual gradient search by a stochastic search, namely an evolution strategy, the latter of which is also perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach enables multi-criteria optimization and time-varying optima. This issue will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of the physical state (orbit, size, shape, rotation, gravity,…) of celestial bodies (planets, satellites, asteroids, or comets), and if one seeks near real-time solutions. Here we outline the general idea and discuss first results. As an example, we present a simultaneous optimization of high-correlated asteroidal ring model parameters (total mass and heliocentric radius), based on simulations.

  17. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  18. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Simonetto, Andrea; Dall'Anese, Emiliano

    2017-07-26

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  19. An Efficient Radial Basis Function Mesh Deformation Scheme within an Adjoint-Based Aerodynamic Optimization Framework

    NASA Astrophysics Data System (ADS)

    Poirier, Vincent

    Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.

  20. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    NASA Astrophysics Data System (ADS)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  1. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  2. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.

    PubMed

    Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P

    2010-11-01

    The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. A stochastic framework for spot-scanning particle therapy.

    PubMed

    Robini, Marc; Yuemin Zhu; Wanyu Liu; Magnin, Isabelle

    2016-08-01

    In spot-scanning particle therapy, inverse treatment planning is usually limited to finding the optimal beam fluences given the beam trajectories and energies. We address the much more challenging problem of jointly optimizing the beam fluences, trajectories and energies. For this purpose, we design a simulated annealing algorithm with an exploration mechanism that balances the conflicting demands of a small mixing time at high temperatures and a reasonable acceptance rate at low temperatures. Numerical experiments substantiate the relevance of our approach and open new horizons to spot-scanning particle therapy.

  4. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  5. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  6. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  7. Numerical convergence and validation of the DIMP inverse particle transport model

    DOE PAGES

    Nelson, Noel; Azmy, Yousry

    2017-09-01

    The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less

  8. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  9. Full wave two-dimensional modeling of scattering and inverse scattering for layered rough surfaces with buried objects

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Hao

    Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.

  10. Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system

    NASA Astrophysics Data System (ADS)

    Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2018-02-01

    In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.

  11. Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model

    NASA Astrophysics Data System (ADS)

    Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr

    2017-10-01

    Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.

  12. a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.

    2017-12-01

    We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.

  13. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS

    NASA Astrophysics Data System (ADS)

    Rana, Sachin; Ertekin, Turgay; King, Gregory R.

    2018-05-01

    Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.

  14. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing

    2017-05-01

    We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the data are contaminated by noise, the objective function values of the Direct and Interp are oscillating at the beginning of the inversion, whereas that of the Search decreases consistently.

  15. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.

  16. Genetic algorithms and their use in Geophysical Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less

  17. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  18. Deterministic walks with inverse-square power-law scaling are an emergent property of predators that use chemotaxis to locate randomly distributed prey

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2008-07-01

    The results of numerical simulations indicate that deterministic walks with inverse-square power-law scaling are a robust emergent property of predators that use chemotaxis to locate randomly and sparsely distributed stationary prey items. It is suggested that chemotactic destructive foraging accounts for the apparent Lévy flight movement patterns of Oxyrrhis marina microzooplankton in still water containing prey items. This challenges the view that these organisms are executing an innate optimal Lévy flight searching strategy. Crucial for the emergence of inverse-square power-law scaling is the tendency of chemotaxis to occasionally cause predators to miss the nearest prey item, an occurrence which would not arise if prey were located through the employment of a reliable cognitive map or if prey location were visually cued and perfect.

  19. Minimal residual method provides optimal regularization parameter for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  20. Minimal residual method provides optimal regularization parameter for diffuse optical tomography.

    PubMed

    Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K

    2012-10-01

    The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.

  1. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  2. Recent progress in inverse methods in France

    NASA Technical Reports Server (NTRS)

    Bry, Pierre-Francois; Jacquotte, Olivier-Pierre; Lepape, Marie-Claire

    1991-01-01

    Given the current level of jet engine performance, improvement of the various turbomachinery components requires the use of advanced methods in aerodynamics, heat transfer, and aeromechanics. In particular, successful blade design can only be achieved via numerical design methods which make it possible to reach optimized solutions in a much shorter time than ever before. Two design methods which are currently being used throughout the French turbomachinery industry to obtain optimized blade geometries are presented. Examples are presented for compressor and turbine applications. The status of these methods as far as improvement and extension to new fields of applications is also reported.

  3. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  4. Modeling the 16 September 2015 Chile tsunami source with the inversion of deep-ocean tsunami records by means of the r - solution method

    NASA Astrophysics Data System (ADS)

    Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem

    2017-04-01

    The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model. The function recovered by the method proposed can find practical applications both as an initial condition for various optimization approaches and for computer calculation of the tsunami wave propagation.

  5. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  6. Eigenvectors phase correction in inverse modal problem

    NASA Astrophysics Data System (ADS)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  7. Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach.

    PubMed

    Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing

    2015-07-01

    In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

  8. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  9. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  10. Domain decomposition method for the Baltic Sea based on theory of adjoint equation and inverse problem.

    NASA Astrophysics Data System (ADS)

    Lezina, Natalya; Agoshkov, Valery

    2017-04-01

    Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).

  11. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the procedure of data inversion by combining inverted artificial neural networks of adequately chosen topology and learning routines for short access times with the concept of genetic algorithms enabling to achieve a multi-dimensional global optimum subject to a properly constructed and problem-oriented target function, ensemble selection rules, etc. Finally the paper discusses how the power of realistic simulation of the structures of the interior of a cometary nucleus can be improved by applying Benoit Mandelbrot's concept of fractal structures. It is shown how the fractal volumetric modelling of the nucleus of a comet can be accomplished by finite 3D elements of flexibility (serving topography and morphology as well) such as of tetrahedron shape with specific scaling factors of self similarity and a Maxwellian type of distribution function. By applying the widely accepted fBm-concept of fractal Brownian motion basically each of the corresponding Hurst exponents 0 (rough) < H < 1 (smooth) can be derived for the multi-fractal depth (and terrain) profiles of the equivalent dielectric constant per tomographic angular orbital segment of intersection by transmissive radar ray paths with the nucleus of the comet. Cooperative efforts and work are in progress to achieve numerical results of depth profiles for the nucleus of comet 67P/Churyumov-Gerasimenko.

  12. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  13. A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Attele, Rohan; Koshak, William

    2011-01-01

    A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.

  14. Optimal design of multichannel equalizers for the structural similarity index.

    PubMed

    Chai, Li; Sheng, Yuxia

    2014-12-01

    The optimization of multichannel equalizers is studied for the structural similarity (SSIM) criteria. The closed-form formula is provided for the optimal equalizer when the mean of the source is zero. The formula shows that the equalizer with maximal SSIM index is equal to the one with minimal mean square error (MSE) multiplied by a positive real number, which is shown to be equal to the inverse of the achieved SSIM index. The relation of the maximal SSIM index to the minimal MSE is also established for given blurring filters and fixed length equalizers. An algorithm is also presented to compute the suboptimal equalizer for the general sources. Various numerical examples are given to demonstrate the effectiveness of the results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonetto, Andrea; Dall'Anese, Emiliano

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  16. Hybrid modeling of spatial continuity for application to numerical inverse problems

    USGS Publications Warehouse

    Friedel, Michael J.; Iwashita, Fabio

    2013-01-01

    A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.

  17. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  18. Topology-optimized metasurfaces: impact of initial geometric layout.

    PubMed

    Yang, Jianji; Fan, Jonathan A

    2017-08-15

    Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.

  19. Use of Ensemble Numerical Weather Prediction Data for Inversely Determining Atmospheric Refractivity in Surface Ducting Conditions

    NASA Astrophysics Data System (ADS)

    Greenway, D. P.; Hackett, E.

    2017-12-01

    Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.

  20. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  1. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  2. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Simonetto, Andrea

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are establishedmore » to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.« less

  4. Coarse-graining errors and numerical optimization using a relative entropy framework

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2011-03-01

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, Srel, that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.

  5. Implementation of a numerical holding furnace model in foundry and construction of a reduced model

    NASA Astrophysics Data System (ADS)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2016-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.

  6. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  7. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  8. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  9. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  10. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    PubMed

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  11. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  12. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  13. Influence of cost functions and optimization methods on solving the inverse problem in spatially resolved diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakotomanga, Prisca; Soussen, Charles; Blondel, Walter C. P. M.

    2017-03-01

    Diffuse reflectance spectroscopy (DRS) has been acknowledged as a valuable optical biopsy tool for in vivo characterizing pathological modifications in epithelial tissues such as cancer. In spatially resolved DRS, accurate and robust estimation of the optical parameters (OP) of biological tissues is a major challenge due to the complexity of the physical models. Solving this inverse problem requires to consider 3 components: the forward model, the cost function, and the optimization algorithm. This paper presents a comparative numerical study of the performances in estimating OP depending on the choice made for each of the latter components. Mono- and bi-layer tissue models are considered. Monowavelength (scalar) absorption and scattering coefficients are estimated. As a forward model, diffusion approximation analytical solutions with and without noise are implemented. Several cost functions are evaluated possibly including normalized data terms. Two local optimization methods, Levenberg-Marquardt and TrustRegion-Reflective, are considered. Because they may be sensitive to the initial setting, a global optimization approach is proposed to improve the estimation accuracy. This algorithm is based on repeated calls to the above-mentioned local methods, with initial parameters randomly sampled. Two global optimization methods, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are also implemented. Estimation performances are evaluated in terms of relative errors between the ground truth and the estimated values for each set of unknown OP. The combination between the number of variables to be estimated, the nature of the forward model, the cost function to be minimized and the optimization method are discussed.

  14. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    NASA Astrophysics Data System (ADS)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  15. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-09-06

    Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut

    2017-04-01

    Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization

  17. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  18. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUAROmore » Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less

  19. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  20. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  1. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  2. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  3. Study on validation method for femur finite element model under multiple loading conditions

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  4. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  5. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    NASA Astrophysics Data System (ADS)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  6. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  7. Ensemble-based data assimilation and optimal sensor placement for scalar source reconstruction

    NASA Astrophysics Data System (ADS)

    Mons, Vincent; Wang, Qi; Zaki, Tamer

    2017-11-01

    Reconstructing the characteristics of a scalar source from limited remote measurements in a turbulent flow is a problem of great interest for environmental monitoring, and is challenging due to several aspects. Firstly, the numerical estimation of the scalar dispersion in a turbulent flow requires significant computational resources. Secondly, in actual practice, only a limited number of observations are available, which generally makes the corresponding inverse problem ill-posed. Ensemble-based variational data assimilation techniques are adopted to solve the problem of scalar source localization in a turbulent channel flow at Reτ = 180 . This approach combines the components of variational data assimilation and ensemble Kalman filtering, and inherits the robustness from the former and the ease of implementation from the latter. An ensemble-based methodology for optimal sensor placement is also proposed in order to improve the condition of the inverse problem, which enhances the performances of the data assimilation scheme. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542) and by the National Science Foundation (Grant 1461870).

  8. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study on how perturbations in the equivalent area distribution affect the ground signature shape and how new target area distributions for low-boom signatures can be constructed using superposition of equivalent area distributions derived from the Seebass-George-Darden (SGD) theory.

  9. Lebedev acceleration and comparison of different photometric models in the inversion of lightcurves for asteroids

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao

    2018-04-01

    In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.

  10. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  11. A Fortran 77 computer code for damped least-squares inversion of Slingram electromagnetic anomalies over thin tabular conductors

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Sarı, Coşkun

    2004-07-01

    A FORTRAN 77 computer code is presented that permits the inversion of Slingram electromagnetic anomalies to an optimal conductor model. Damped least-squares inversion algorithm is used to estimate the anomalous body parameters, e.g. depth, dip and surface projection point of the target. Iteration progress is controlled by maximum relative error value and iteration continued until a tolerance value was satisfied, while the modification of Marquardt's parameter is controlled by sum of the squared errors value. In order to form the Jacobian matrix, the partial derivatives of theoretical anomaly expression with respect to the parameters being optimised are calculated by numerical differentiation by using first-order forward finite differences. A theoretical and two field anomalies are inserted to test the accuracy and applicability of the present inversion program. Inversion of the field data indicated that depth and the surface projection point parameters of the conductor are estimated correctly, however, considerable discrepancies appeared on the estimated dip angles. It is therefore concluded that the most important factor resulting in the misfit between observed and calculated data is due to the fact that the theory used for computing Slingram anomalies is valid for only thin conductors and this assumption might have caused incorrect dip estimates in the case of wide conductors.

  12. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    PubMed

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-08

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.

  13. Coarse-graining errors and numerical optimization using a relative entropy framework.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2011-03-07

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, S(rel), that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework. © 2011 American Institute of Physics.

  14. Optimism in prolonged grief and depression following loss: A three-wave longitudinal study.

    PubMed

    Boelen, Paul A

    2015-06-30

    There is considerable evidence that optimism, the predisposition to have generalized favorable expectancies for the future, is associated with numerous desirable outcomes. Few studies have examined the association of optimism with emotional distress following the death of a loved one. Doing so is important, because optimism may be an important target for interventions for post-loss psychopathology. In the current study, we examined the degree to which optimism, assessed in the first year post-loss (Time 1, T1), was associated with symptom levels of prolonged grief and depression six months (Time 2, T2) and fifteen months (Time 3, T3) later, controlling for baseline symptoms and also taking into account positive automatic cognitions at T1. Findings showed that higher optimism at T1 was associated with lower concurrent prolonged grief and depression severity. Higher optimism at T1 was also inversely related with depression symptom severity at T2 and T3, but not prolonged grief severity at T2 and T3. Implications of these findings are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Parana Basin Structure from Multi-Objective Inversion of Surface Wave and Receiver Function by Competent Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    An, M.; Assumpcao, M.

    2003-12-01

    The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.

  16. Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong

    2016-09-01

    In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.

  17. Experimental evaluation of model predictive control and inverse dynamics control for spacecraft proximity and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello

    2018-03-01

    An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.

  18. A new frequency domain analytical solution of a cascade of diffusive channels for flood routing

    NASA Astrophysics Data System (ADS)

    Cimorelli, Luigi; Cozzolino, Luca; Della Morte, Renata; Pianese, Domenico; Singh, Vijay P.

    2015-04-01

    Simplified flood propagation models are often employed in practical applications for hydraulic and hydrologic analyses. In this paper, we present a new numerical method for the solution of the Linear Parabolic Approximation (LPA) of the De Saint Venant equations (DSVEs), accounting for the space variation of model parameters and the imposition of appropriate downstream boundary conditions. The new model is based on the analytical solution of a cascade of linear diffusive channels in the Laplace Transform domain. The time domain solutions are obtained using a Fourier series approximation of the Laplace Inversion formula. The new Inverse Laplace Transform Diffusive Flood Routing model (ILTDFR) can be used as a building block for the construction of real-time flood forecasting models or in optimization models, because it is unconditionally stable and allows fast and fairly precise computation.

  19. An inverse dynamics approach to trajectory optimization for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.

  20. Expected treatment dose construction and adaptive inverse planning optimization: Implementation for offline head and neck cancer adaptive radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Di; Liang Jian

    Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect tomore » the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions: Adaptive treatment modification can be implemented including the expected treatment dose in the adaptive inverse planning optimization. The retrospective evaluation results demonstrate that utilizing the weekly adaptive inverse planning optimization, the dose distribution of h and n cancer treatment can be largely improved.« less

  1. 3D nonrigid registration via optimal mass transport on the GPU.

    PubMed

    Ur Rehman, Tauseef; Haber, Eldad; Pryor, Gallagher; Melonakos, John; Tannenbaum, Allen

    2009-12-01

    In this paper, we present a new computationally efficient numerical scheme for the minimizing flow approach for optimal mass transport (OMT) with applications to non-rigid 3D image registration. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. Our implementation also employs multigrid, and parallel methodologies on a consumer graphics processing unit (GPU) for fast computation. Although computing the optimal map has been shown to be computationally expensive in the past, we show that our approach is orders of magnitude faster then previous work and is capable of finding transport maps with optimality measures (mean curl) previously unattainable by other works (which directly influences the accuracy of registration). We give results where the algorithm was used to compute non-rigid registrations of 3D synthetic data as well as intra-patient pre-operative and post-operative 3D brain MRI datasets.

  2. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  3. The quasi-optimality criterion in the linear functional strategy

    NASA Astrophysics Data System (ADS)

    Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey

    2018-07-01

    The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.

  4. Gravity inversion of a fault by Particle swarm optimization (PSO).

    PubMed

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  5. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  6. Optimal structure and parameter learning of Ising models

    DOE PAGES

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant; ...

    2018-03-16

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  7. Optimal structure and parameter learning of Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant

    Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less

  8. Meshes optimized for discrete exterior calculus (DEC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousley, Sarah C.; Deakin, Michael; Knupp, Patrick

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximationmore » of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.« less

  9. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  10. Inverse free steering law for small satellite attitude control and power tracking with VSCMGs

    NASA Astrophysics Data System (ADS)

    Malik, M. S. I.; Asghar, Sajjad

    2014-01-01

    Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.

  11. Feasibility of inverse problem solution for determination of city emission function from night sky radiance measurements

    NASA Astrophysics Data System (ADS)

    Petržala, Jaromír

    2018-07-01

    The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov's regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov's regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.

  12. Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.

    1991-01-01

    The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

  13. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  14. Investigation of the line arrangement of 2D resistivity surveys for 3D inversion*

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Nakazato, Hiroomi; Takeuchi, Mutsuo; Sugimoto, Yoshihiro; Kim, Hee Joon; Yoshisako, Hiroshi; Konno, Michiaki; Shoda, Daisuke

    2018-03-01

    We have conducted numerical and field experiments to investigate the applicability of electrode configurations and line layouts commonly used for two-dimensional (2D) resistivity surveys to 3D inversion. We examined three kinds of electrode configurations and two types of line arrangements, for 16 resistivity models of a conductive body in a homogeneous half-space. The results of the numerical experiment revealed that the parallel-line arrangement was effective in identifying the approximate location of the conductive body. The orthogonal-line arrangement was optimal for identifying a target body near the line intersection. As a result, we propose that parallel lines are useful to highlight areas of particular interest where further detailed work with an intersecting line could be carried out. In the field experiment, 2D resistivity data were measured on a loam layer with a backfilled pit. The reconstructed resistivity image derived from parallel-line data showed a low-resistivity portion near the backfilled pit. When an orthogonal line was added to the parallel lines, the newly estimated location of the backfilled pit coincided well with the actual location. In a further field application, we collected several 2D resistivity datasets in the Nojima Fault area in Awaji Island. The 3D inversion of these datasets provided a resistivity distribution corresponding to the geological structure. In particular, the Nojima Fault was imaged as the western boundary of a low-resistivity belt, from only two orthogonal lines.

  15. Viscoelastic material inversion using Sierra-SD and ROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  16. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  17. Optimization of the Inverse Algorithm for Estimating the Optical Properties of Biological Materials Using Spatially-resolved Diffuse Reflectance Technique

    USDA-ARS?s Scientific Manuscript database

    Determination of the optical properties from intact biological materials based on diffusion approximation theory is a complicated inverse problem, and it requires proper implementation of inverse algorithm, instrumentation, and experiment. This work was aimed at optimizing the procedure of estimatin...

  18. Research on inverse methods and optimization in Italy

    NASA Technical Reports Server (NTRS)

    Larocca, Francesco

    1991-01-01

    The research activities in Italy on inverse design and optimization are reviewed. The review is focused on aerodynamic aspects in turbomachinery and wing section design. Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated by the Politecnico di Torino and turbomachinery industry (FIAT AVIO).

  19. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    NASA Astrophysics Data System (ADS)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  20. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  1. A Monte Carlo simulation based inverse propagation method for stochastic model updating

    NASA Astrophysics Data System (ADS)

    Bao, Nuo; Wang, Chunjie

    2015-08-01

    This paper presents an efficient stochastic model updating method based on statistical theory. Significant parameters have been selected implementing the F-test evaluation and design of experiments, and then the incomplete fourth-order polynomial response surface model (RSM) has been developed. Exploiting of the RSM combined with Monte Carlo simulation (MCS), reduces the calculation amount and the rapid random sampling becomes possible. The inverse uncertainty propagation is given by the equally weighted sum of mean and covariance matrix objective functions. The mean and covariance of parameters are estimated synchronously by minimizing the weighted objective function through hybrid of particle-swarm and Nelder-Mead simplex optimization method, thus the better correlation between simulation and test is achieved. Numerical examples of a three degree-of-freedom mass-spring system under different conditions and GARTEUR assembly structure validated the feasibility and effectiveness of the proposed method.

  2. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  3. Repeated applications of a transdermal patch: analytical solution and optimal control of the delivery rate.

    PubMed

    Simon, L

    2007-10-01

    The integral transform technique was implemented to solve a mathematical model developed for percutaneous drug absorption. The model included repeated application and removal of a patch from the skin. Fick's second law of diffusion was used to study the transport of a medicinal agent through the vehicle and subsequent penetration into the stratum corneum. Eigenmodes and eigenvalues were computed and introduced into an inversion formula to estimate the delivery rate and the amount of drug in the vehicle and the skin. A dynamic programming algorithm calculated the optimal doses necessary to achieve a desired transdermal flux. The analytical method predicted profiles that were in close agreement with published numerical solutions and provided an automated strategy to perform therapeutic drug monitoring and control.

  4. Fractional-order TV-L2 model for image denoising

    NASA Astrophysics Data System (ADS)

    Chen, Dali; Sun, Shenshen; Zhang, Congrong; Chen, YangQuan; Xue, Dingyu

    2013-10-01

    This paper proposes a new fractional order total variation (TV) denoising method, which provides a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, regularization parameter selection and blocky effect. Two fractional order TV-L2 models are constructed for image denoising. The majorization-minimization (MM) algorithm is used to decompose these two complex fractional TV optimization problems into a set of linear optimization problems which can be solved by the conjugate gradient algorithm. The final adaptive numerical procedure is given. Finally, we report experimental results which show that the proposed methodology avoids the blocky effect and achieves state-of-the-art performance. In addition, two medical image processing experiments are presented to demonstrate the validity of the proposed methodology.

  5. The determination of gravity anomalies from geoid heights using the inverse Stokes' formula, Fourier transforms, and least squares collocation

    NASA Technical Reports Server (NTRS)

    Rummel, R.; Sjoeberg, L.; Rapp, R. H.

    1978-01-01

    A numerical method for the determination of gravity anomalies from geoid heights is described using the inverse Stokes formula. This discrete form of the inverse Stokes formula applies a numerical integration over the azimuth and an integration over a cubic interpolatory spline function which approximates the step function obtained from the numerical integration. The main disadvantage of the procedure is the lack of a reliable error measure. The method was applied on geoid heights derived from GEOS-3 altimeter measurements in the calibration area of the GEOS-3 satellite.

  6. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  7. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems with Application to Porous Medium Flow

    NASA Astrophysics Data System (ADS)

    Petra, N.; Alexanderian, A.; Stadler, G.; Ghattas, O.

    2015-12-01

    We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer a parameter field (e.g., the log permeability field in a porous medium flow model problem) from synthetic observations at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. Due to the infinite-dimensional character of the parameter field, we seek an optimization method that solves the OED problem at a cost (measured in the number of forward PDE solves) that is independent of both the parameter and the sensor dimension. To facilitate this goal, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define the OED objective function. We use randomized trace estimation to compute the trace of this covariance operator. The resulting OED problem includes as constraints the system of PDEs characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using sparsifying penalty functions, and solve the resulting penalized bilevel optimization problem via an interior-point quasi-Newton method, where gradient information is computed via adjoints. We elaborate our OED method for the problem of determining the optimal sensor configuration to best infer the log permeability field in a porous medium flow problem. Numerical results show that the number of PDE solves required for the evaluation of the OED objective function and its gradient is essentially independent of both the parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance properties.

  8. Control and System Theory, Optimization, Inverse and Ill-Posed Problems

    DTIC Science & Technology

    1988-09-14

    Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The

  9. Optimization design of the tuning method for FBG spectroscopy based on the numerical analysis of all-fiber Raman temperature lidar

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin

    2018-01-01

    All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.

  10. Regularity Aspects in Inverse Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten

    2008-09-01

    Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.

  11. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less

  13. Judicious distribution of laser emitters to shape the desired far-field patterns

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, Constantinos A.; Kovanis, Vassilios

    2017-06-01

    The far-field pattern of a simple one-dimensional laser array of emitters radiating into free space is considered. In the course of investigating the inverse problem for their near fields leading to a target beam form, surprisingly, we found that the result is successful when the matrix of the corresponding linear system is not well scaled. The essence of our numerical observations is captured by an elegant inequality defining the functional range of the optical distance between two neighboring emitters. Our finding can restrict substantially the parametric space of integrated photonic systems and simplify significantly the subsequent optimizations.

  14. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological safety of coastal and shelf zones and complex use of shelf resources: Collection of scientific works. Issue 26, Volume 2. - National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sebastopol, 2012. Pages 352-360. (In russian)

  15. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2017-01-07

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6  ±  15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.

  16. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2017-01-01

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6  ±  15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.

  17. A New Approach to Integrate GPU-based Monte Carlo Simulation into Inverse Treatment Plan Optimization for Proton Therapy

    PubMed Central

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2016-01-01

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456

  18. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    PubMed

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Characterizing the inverses of block tridiagonal, block Toeplitz matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boffi, Nicholas M.; Hill, Judith C.; Reuter, Matthew G.

    2014-12-04

    We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix M bius transformations, we first present an O(1) representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv)more » decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.« less

  20. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  1. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.

  2. A general rough-surface inversion algorithm: Theory and application to SAR data

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  3. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Kun-Peng; Tan, Han-Dong

    2017-12-01

    Tensor controlled-source audio-frequency magnetotellurics (CSAMT) can yield information about electric and magnetic fields owing to its multi-transmitter configuration compared with the common scalar CSAMT. The most current theories, numerical simulations, and inversion of tensor CSAMT are based on far-field measurements and the assumption that underground media have isotropic resistivity. We adopt a three-dimensional (3D) staggered-grid finite difference numerical simulation method to analyze the resistivity in axial anisotropic and isotropic media. We further adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method to perform 3D tensor CSAMT axial anisotropic inversion. The inversion results suggest that when the underground structure is anisotropic, the isotropic inversion will introduce errors to the interpretation.

  4. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    NASA Astrophysics Data System (ADS)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.

  5. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Huang, Guojun; Wei, Changben; Chen, Shiyuan; Yang, Guowei

    2014-12-01

    We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring.

  6. Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation

    NASA Technical Reports Server (NTRS)

    Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R

    2006-01-01

    The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.

  7. Numerical Aspects of Cone Beam Contour Reconstruction

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2017-12-01

    We describe a method for directly calculating the contours of a function from cone beam data. The algorithm is based on a new inversion formula for the gradient of a function presented in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005). The Radon transform of the gradient is found by using a Grangeat type of formula, reducing the inversion problem to the inversion of the Radon transform. In that way the influence of the scanning curve, vital for all exact inversion formulas for complete data, is avoided Numerical results are presented for the circular scanning geometry which neither fulfills the Tuy-Kirillov condition nor the much weaker condition given by the author in Louis (Inverse Probl 32(11):115005, 2016. http://stacks.iop.org/0266-5611/32/i=11/a=115005).

  8. Inverse optimal design of input-to-state stabilisation for affine nonlinear systems with input delays

    NASA Astrophysics Data System (ADS)

    Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo

    2018-03-01

    We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.

  9. Optimal Energy Extraction From a Hot Water Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Golabi, Kamal; Scherer, Charles R.; Tsang, Chin Fu; Mozumder, Sashi

    1981-01-01

    An analytical decision model is presented for determining optimal energy extraction rates from hot water geothermal reservoirs when cooled brine is reinjected into the hot water aquifer. This applied economic management model computes the optimal fluid pumping rate and reinjection temperature and the project (reservoir) life consistent with maximum present worth of the net revenues from sales of energy for space heating. The real value of product energy is assumed to increase with time, as is the cost of energy used in pumping the aquifer. The economic model is implemented by using a hydrothermal model that relates hydraulic pumping rate to the quality (temperature) of remaining heat energy in the aquifer. The results of a numerical application to space heating show that profit-maximizing extraction rate increases with interest (discount) rate and decreases as the rate of rise of real energy value increases. The economic life of the reservoir generally varies inversely with extraction rate. Results were shown to be sensitive to permeability, initial equilibrium temperature, well cost, and well life.

  10. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  11. Angular rate optimal design for the rotary strapdown inertial navigation system.

    PubMed

    Yu, Fei; Sun, Qian

    2014-04-22

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.

  12. Trajectory optimization for the National aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    While continuing the application of the inverse dynamics approach in obtaining the optimal numerical solutions, the research during the past six months has been focused on the formulation and derivation of closed-form solutions for constrained hypersonic flight trajectories. Since it was found in the research of the first year that a dominant portion of the optimal ascent trajectory of the aerospace plane is constrained by dynamic pressure and heating constraints, the application of the analytical solutions significantly enhances the efficiency in trajectory optimization, provides a better insight to understanding of the trajectory and conceivably has great potential in guidance of the vehicle. Work of this period has been reported in four technical papers. Two of the papers were presented in the AIAA Guidance, Navigation, and Control Conference (Hilton Head, SC, August, 1992) and Fourth International Aerospace Planes Conference (Orlando, FL, December, 1992). The other two papers have been accepted for publication by Journal of Guidance, Control, and Dynamics, and will appear in 1993. This report briefly summarizes the work done in the past six months and work currently underway.

  13. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  14. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  15. Noise models for low counting rate coherent diffraction imaging.

    PubMed

    Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John

    2012-11-05

    Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.

  16. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  17. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    PubMed

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  18. Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation.

    PubMed

    Jin, Long; Zhang, Yunong

    2015-07-01

    In this brief, a discrete-time Zhang neural network (DTZNN) model is first proposed, developed, and investigated for online time-varying nonlinear optimization (OTVNO). Then, Newton iteration is shown to be derived from the proposed DTZNN model. In addition, to eliminate the explicit matrix-inversion operation, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is introduced, which can effectively approximate the inverse of Hessian matrix. A DTZNN-BFGS model is thus proposed and investigated for OTVNO, which is the combination of the DTZNN model and the quasi-Newton BFGS method. In addition, theoretical analyses show that, with step-size h=1 and/or with zero initial error, the maximal residual error of the DTZNN model has an O(τ(2)) pattern, whereas the maximal residual error of the Newton iteration has an O(τ) pattern, with τ denoting the sampling gap. Besides, when h ≠ 1 and h ∈ (0,2) , the maximal steady-state residual error of the DTZNN model has an O(τ(2)) pattern. Finally, an illustrative numerical experiment and an application example to manipulator motion generation are provided and analyzed to substantiate the efficacy of the proposed DTZNN and DTZNN-BFGS models for OTVNO.

  19. IPDO-2007: Inverse Problems, Design and Optimization Symposium

    DTIC Science & Technology

    2007-08-01

    Kanevce, G. H., Kanevce, Lj. P., and Mitrevski , V. B.), International Symposium on Inverse Problems, Design and Optimization (IPDO-2007), (eds...107 Gligor Kanevce Ljubica Kanevce Vangelce Mitrevski George Dulikravich 108 Gligor Kanevce Ljubica Kanevce Igor Andreevski George Dulikravich

  20. Time-domain full waveform inversion using instantaneous phase information with damping

    NASA Astrophysics Data System (ADS)

    Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun

    2018-06-01

    In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.

  1. Identification of subsurface structures using electromagnetic data and shape priors

    NASA Astrophysics Data System (ADS)

    Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  2. Inverse procedure for simultaneous evaluation of viscosity and density of Newtonian liquids from dispersion curves of Love waves

    NASA Astrophysics Data System (ADS)

    Kiełczyński, P.; Szalewski, M.; Balcerzak, A.

    2014-07-01

    Simultaneous determination of the viscosity and density of liquids is of great importance in the monitoring of technological processes in the chemical, petroleum, and pharmaceutical industry, as well as in geophysics. In this paper, the authors present the application of Love waves for simultaneous inverse determination of the viscosity and density of liquids. The inversion procedure is based on measurements of the dispersion curves of phase velocity and attenuation of ultrasonic Love waves. The direct problem of the Love wave propagation in a layered waveguide covered by a viscous liquid was formulated and solved. Love waves propagate in an elastic layered waveguide covered on its surface with a viscous (Newtonian) liquid. The inverse problem is formulated as an optimization problem with appropriately constructed objective function that depends on the material properties of an elastic waveguide of the Love wave, material parameters of a liquid (i.e., viscosity and density), and the experimental data. The results of numerical calculations show that Love waves can be efficiently applied to determine simultaneously the physical properties of liquids (i.e., viscosity and density). Sensors based on this method can be very attractive for industrial applications to monitor on-line the parameters (density and viscosity) of process liquid during the course of technological processes, e.g., in polymer industry.

  3. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport.

    PubMed

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L; Kikinis, Ron; Tannenbaum, Allen

    2008-09-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A . Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets.

  4. Multimodal Registration of White Matter Brain Data via Optimal Mass Transport

    PubMed Central

    Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M.; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L.; Kikinis, Ron; Tannenbaum, Allen

    2017-01-01

    The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets. PMID:28626844

  5. Real data assimilation for optimization of frictional parameters and prediction of afterslip in the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method

    NASA Astrophysics Data System (ADS)

    Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro

    2015-10-01

    Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.

  6. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy.

    PubMed

    Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2010-12-01

    The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.

  7. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy

    PubMed Central

    Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2011-01-01

    Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479

  8. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  9. The isolation limits of stochastic vibration

    NASA Technical Reports Server (NTRS)

    Knopse, C. R.; Allaire, P. E.

    1993-01-01

    The vibration isolation problem is formulated as a 1D kinematic problem. The geometry of the stochastic wall trajectories arising from the stroke constraint is defined in terms of their significant extrema. An optimal control solution for the minimum acceleration return path determines a lower bound on platform mean square acceleration. This bound is expressed in terms of the probability density function on the significant maxima and the conditional fourth moment of the first passage time inverse. The first of these is found analytically while the second is found using a Monte Carlo simulation. The rms acceleration lower bound as a function of available space is then determined through numerical quadrature.

  10. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.

  11. Analog design optimization methodology for ultralow-power circuits using intuitive inversion-level and saturation-level parameters

    NASA Astrophysics Data System (ADS)

    Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki

    2014-01-01

    A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.

  12. Simulation of a class of hazardous situations in the ICS «INM RAS - Baltic Sea»

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Agoshkov, Valery; Aseev, Nikita; Parmuzin, Eugene; Sheloput, Tateana; Shutyaev, Victor

    2017-04-01

    Development of Informational Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in mathematical modeling, theory of adjoint equations and optimal control, inverse problems, numerical methods theory, numerical algebra, scientific computing and processing of satellite data. In this work the results on the ICS development for PC-ICS "INM RAS - Baltic Sea" are presented. We discuss practical problems studied by ICS. The System includes numerical model of the Baltic Sea thermodynamics, the new oil spill model describing the propagation of a slick at the Sea surface (Agoshkov, Aseev et al., 2014) and the optimal ship route calculating block (Agoshkov, Zayachkovsky et al., 2014). The ICS is based on the INMOM numerical model of the Baltic Sea thermodynamics (Zalesny et al., 2013). It is possible to calculate main hydrodynamic parameters (temperature, salinity, velocities, sea level) using user-friendly interface of the ICS. The System includes data assimilation procedures (Agoshkov, 2003, Parmuzin, Agoshkov, 2012) and one can use the block of variational assimilation of the sea surface temperature in order to obtain main hydrodynamic parameters. Main possibilities of the ICS and several numerical experiments are presented in the work. By the problem of risk control is meant a problem of determination of optimal resources quantity which are necessary for decreasing the risk to some acceptable value. Mass of oil slick is chosen as a function of control. For the realization of the random variable the quadratic "functional of cost" is introduced. It comprises cleaning costs and deviation of damage of oil pollution from its acceptable value. The problem of minimization of this functional is solved based on the methods of optimal control and the theory of adjoint equations. The solution of this problem is explicitly found. The study was supported by the Russian Foundation for Basic Research (project 16-31-00510) and by the Russian Science Foundation (project №14-11-00609). V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Modelling 28 (2013), No. 1, 85-100. V.I. Agoshkov, A.O. Zayachkovskiy, R. Aps, P. Kujala, and J. Rytkönen. Risk theory based solution to the problem of optimal vessel route // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 69-78. Agoshkov, V., Aseev, N., Aps, R., Kujala, P., Rytkönen, J., Zalesny, V. The problem of control of oil pollution risk in the Baltic Sea // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 93-105. E. I. Parmuzin and V. I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling 27 (2012), No. 1, 69-94. Olof Liungman and Johan Mattsson. Scientic Documentation of Seatrack Web; physical processes, algorithms and references, 2011.

  13. Optimum electrode configuration selection for electrical resistance change based damage detection in composites using an effective independence measure

    NASA Astrophysics Data System (ADS)

    Escalona, Luis; Díaz-Montiel, Paulina; Venkataraman, Satchi

    2016-04-01

    Laminated carbon fiber reinforced polymer (CFRP) composite materials are increasingly used in aerospace structures due to their superior mechanical properties and reduced weight. Assessing the health and integrity of these structures requires non-destructive evaluation (NDE) techniques to detect and measure interlaminar delamination and intralaminar matrix cracking damage. The electrical resistance change (ERC) based NDE technique uses the inherent changes in conductive properties of the composite to characterize internal damage. Several works that have explored the ERC technique have been limited to thin cross-ply laminates with simple linear or circular electrode arrangements. This paper investigates a method of optimum selection of electrode configurations for delamination detection in thick cross-ply laminates using ERC. Inverse identification of damage requires numerical optimization of the measured response with a model predicted response. Here, the electrical voltage field in the CFRP composite laminate is calculated using finite element analysis (FEA) models for different specified delamination size and locations, and location of ground and current electrodes. Reducing the number of sensor locations and measurements is needed to reduce hardware requirements, and computational effort needed for inverse identification. This paper explores the use of effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations of selecting a pair of electrodes among the n electrodes. To enable use of EI to ERC required, it is proposed in this research a singular value decomposition SVD to obtain a spectral representation of the resistance measurements in the laminate. The effectiveness of EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set of resistance measurements and the reduced set of measurements. The investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERC based damage detection.

  14. Teaching Children How to Include the Inversion Principle in Their Reasoning about Quantitative Relations

    ERIC Educational Resources Information Center

    Nunes, Terezinha; Bryant, Peter; Evans, Deborah; Bell, Daniel; Barros, Rossana

    2012-01-01

    The basis of this intervention study is a distinction between numerical calculus and relational calculus. The former refers to numerical calculations and the latter to the analysis of the quantitative relations in mathematical problems. The inverse relation between addition and subtraction is relevant to both kinds of calculus, but so far research…

  15. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  16. Lq -Lp optimization for multigrid fluorescence tomography of small animals using simplified spherical harmonics

    NASA Astrophysics Data System (ADS)

    Edjlali, Ehsan; Bérubé-Lauzière, Yves

    2018-01-01

    We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.

  17. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  18. Gradient-based Optimization for Poroelastic and Viscoelastic MR Elastography

    PubMed Central

    Tan, Likun; McGarry, Matthew D.J.; Van Houten, Elijah E.W.; Ji, Ming; Solamen, Ligin; Weaver, John B.

    2017-01-01

    We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized ‘adjoint method’ based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation. PMID:27608454

  19. Salvus: A flexible open-source package for waveform modelling and inversion from laboratory to global scales

    NASA Astrophysics Data System (ADS)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.

    2016-12-01

    Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Based on a high order finite (spectral) element discretization, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.

  20. Salvus: A flexible high-performance and open-source package for waveform modelling and inversion from laboratory to global scales

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Boehm, Christian; van Driel, Martin; Krischer, Lion; May, Dave; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Currently based on an abstract implementation of high order finite (spectral) elements, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. viscoelastic, coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ template mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.

  1. Comparison of Optimal Design Methods in Inverse Problems

    PubMed Central

    Banks, H. T.; Holm, Kathleen; Kappel, Franz

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762

  2. Optimized emission in nanorod arrays through quasi-aperiodic inverse design.

    PubMed

    Anderson, P Duke; Povinelli, Michelle L

    2015-06-01

    We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.

  3. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less

  4. Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg-Marquardt methods.

    PubMed

    Toushmalani, Reza

    2013-01-01

    The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.

  5. Multicomponent pre-stack seismic waveform inversion in transversely isotropic media using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Padhi, Amit; Mallick, Subhashis

    2014-03-01

    Inversion of band- and offset-limited single component (P wave) seismic data does not provide robust estimates of subsurface elastic parameters and density. Multicomponent seismic data can, in principle, circumvent this limitation but adds to the complexity of the inversion algorithm because it requires simultaneous optimization of multiple objective functions, one for each data component. In seismology, these multiple objectives are typically handled by constructing a single objective given as a weighted sum of the objectives of individual data components and sometimes with additional regularization terms reflecting their interdependence; which is then followed by a single objective optimization. Multi-objective problems, inclusive of the multicomponent seismic inversion are however non-linear. They have non-unique solutions, known as the Pareto-optimal solutions. Therefore, casting such problems as a single objective optimization provides one out of the entire set of the Pareto-optimal solutions, which in turn, may be biased by the choice of the weights. To handle multiple objectives, it is thus appropriate to treat the objective as a vector and simultaneously optimize each of its components so that the entire Pareto-optimal set of solutions could be estimated. This paper proposes such a novel multi-objective methodology using a non-dominated sorting genetic algorithm for waveform inversion of multicomponent seismic data. The applicability of the method is demonstrated using synthetic data generated from multilayer models based on a real well log. We document that the proposed method can reliably extract subsurface elastic parameters and density from multicomponent seismic data both when the subsurface is considered isotropic and transversely isotropic with a vertical symmetry axis. We also compute approximate uncertainty values in the derived parameters. Although we restrict our inversion applications to horizontally stratified models, we outline a practical procedure of extending the method to approximately include local dips for each source-receiver offset pair. Finally, the applicability of the proposed method is not just limited to seismic inversion but it could be used to invert different data types not only requiring multiple objectives but also multiple physics to describe them.

  6. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp.

    NASA Astrophysics Data System (ADS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-05-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.

  7. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    NASA Astrophysics Data System (ADS)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  8. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  9. IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric

    2015-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.

  10. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  11. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence.

    PubMed

    Carl, Michael; Bydder, Graeme M; Du, Jiang

    2016-08-01

    The long repetition time and inversion time with inversion recovery preparation ultrashort echo time (UTE) often causes prohibitively long scan times. We present an optimized method for long T2 signal suppression in which several k-space spokes are acquired after each inversion preparation. Using Bloch equations the sequence parameters such as TI and flip angle were optimized to suppress the long T2 water and fat signals and to maximize short T2 contrast. Volunteer imaging was performed on a healthy male volunteer. Inversion recovery preparation was performed using a Silver-Hoult adiabatic inversion pulse together with a three-dimensional (3D) UTE (3D Cones) acquisition. The theoretical signal curves generally agreed with the experimentally measured region of interest curves. The multispoke inversion recovery method showed good muscle and fatty bone marrow suppression, and highlighted short T2 signals such as these from the femoral and tibial cortex. Inversion recovery 3D UTE imaging with multiple spoke acquisitions can be used to effectively suppress long T2 signals and highlight short T2 signals within clinical scan times. Theoretical modeling can be used to determine sequence parameters to optimize long T2 signal suppression and maximize short T2 signals. Experimental results on a volunteer confirmed the theoretical predictions. Magn Reson Med 76:577-582, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Inverse Analysis to Formability Design in a Deep Drawing Process

    NASA Astrophysics Data System (ADS)

    Buranathiti, Thaweepat; Cao, Jian

    Deep drawing process is an important process adding values to flat sheet metals in many industries. An important concern in the design of a deep drawing process generally is formability. This paper aims to present the connection between formability and inverse analysis (IA), which is a systematical means for determining an optimal blank configuration for a deep drawing process. In this paper, IA is presented and explored by using a commercial finite element software package. A number of numerical studies on the effect of blank configurations to the quality of a part produced by a deep drawing process were conducted and analyzed. The quality of the drawing processes is numerically analyzed by using an explicit incremental nonlinear finite element code. The minimum distance between elemental principal strains and the strain-based forming limit curve (FLC) is defined as tearing margin to be the key performance index (KPI) implying the quality of the part. The initial blank configuration has shown that it plays a highly important role in the quality of the product via the deep drawing process. In addition, it is observed that if a blank configuration is not greatly deviated from the one obtained from IA, the blank can still result a good product. The strain history around the bottom fillet of the part is also observed. The paper concludes that IA is an important part of the design methodology for deep drawing processes.

  13. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  14. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  15. A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352

    2015-09-01

    In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less

  16. Using the ARTMO toolbox for automated retrieval of biophysical parameters through radiative transfer model inversion: Optimizing LUT-based inversion

    NASA Astrophysics Data System (ADS)

    Verrelst, J.; Rivera, J. P.; Leonenko, G.; Alonso, L.; Moreno, J.

    2012-04-01

    Radiative transfer (RT) modeling plays a key role for earth observation (EO) because it is needed to design EO instruments and to develop and test inversion algorithms. The inversion of a RT model is considered as a successful approach for the retrieval of biophysical parameters because of being physically-based and generally applicable. However, to the broader community this approach is considered as laborious because of its many processing steps and expert knowledge is required to realize precise model parameterization. We have recently developed a radiative transfer toolbox ARTMO (Automated Radiative Transfer Models Operator) with the purpose of providing in a graphical user interface (GUI) essential models and tools required for terrestrial EO applications such as model inversion. In short, the toolbox allows the user: i) to choose between various plant leaf and canopy RT models (e.g. models from the PROSPECT and SAIL family, FLIGHT), ii) to choose between spectral band settings of various air- and space-borne sensors or defining own sensor settings, iii) to simulate a massive amount of spectra based on a look up table (LUT) approach and storing it in a relational database, iv) to plot spectra of multiple models and compare them with measured spectra, and finally, v) to run model inversion against optical imagery given several cost options and accuracy estimates. In this work ARTMO was used to tackle some well-known problems related to model inversion. According to Hadamard conditions, mathematical models of physical phenomena are mathematically invertible if the solution of the inverse problem to be solved exists, is unique and depends continuously on data. This assumption is not always met because of the large number of unknowns and different strategies have been proposed to overcome this problem. Several of these strategies have been implemented in ARTMO and were here analyzed to optimize the inversion performance. Data came from the SPARC-2003 dataset, which was acquired on the agricultural test site Barrax, Spain. LUTs were created using the 4SAIL and FLIGHT models and were inverted against CHRIS data in order to retrieve maps of chlorophyll content (chl) and leaf area index (LAI). The following inversion steps have been optimized: 1. Cost function. The performances of about 50 different cost functions (i.e. minimum distance functions) were compared. Remarkably, in none of the studied cases the widely used root mean square error (RMSE) led to most accurate results. Depending on the retrieved parameter, more successful functions were: 'Sharma and Mittal', 'Shannońs entropy', 'Hellinger distance', 'Pearsońs chi-square'. 2. Gaussian noise. Earth observation data typically encompass a certain degree of noise due to errors related to radiometric and geometric processing. In all cases, adding 5% Gaussian noise to the simulated spectra led to more accurate retrievals as compared to without noise. 3. Average of multiple best solutions. Because multiple parameter combinations may lead to the same spectra, a way to overcome this problem is not searching for the top best match but for a percentage of best matches. Optimized retrievals were encountered when including an average of 7% (Chl) to 10% (LAI) top best matches. 4. Integration of estimates. The option is provided to integrate estimates of biochemical contents at the canopy level (e.g., total chlorophyll: Chl × LAI, or water: Cw × LAI), which can lead to increased robustness and accuracy. 5. Class-based inversion. This option is probably ARTMÓs most powerful feature as it allows model parameterization depending on the imagés land cover classes (e.g. different soil or vegetation types). Class-based inversion can lead to considerably improved accuracies compared to one generic class. Results suggest that 4SAIL and FLIGHT performed alike for Chl but not for LAI. While both models rely on the leaf model PROSPECT for Chl retrieval, their different nature (e.g. numerical vs. ray tracing) may cause that retrieval of structural parameters such as LAI differ. Finally, it should be noted that the whole analysis can be intuitively performed by the toolbox. ARTMO is freely available to the EO community for further development. Expressions of interest are welcome and should be directed to the corresponding author.

  17. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  18. The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyeok; Tahk, Min-Jea

    2018-04-01

    The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.

  19. Optimal inverse functions created via population-based optimization.

    PubMed

    Jennings, Alan L; Ordóñez, Raúl

    2014-06-01

    Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.

  20. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  1. Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System

    PubMed Central

    Yu, Fei; Sun, Qian

    2014-01-01

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115

  2. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  3. Mineral inversion for element capture spectroscopy logging based on optimization theory

    NASA Astrophysics Data System (ADS)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  4. Optimism, coping and long-term recovery from coronary artery surgery in women.

    PubMed

    King, K B; Rowe, M A; Kimble, L P; Zerwic, J J

    1998-02-01

    Optimism, coping strategies, and psychological and functional outcomes were measured in 55 women undergoing coronary artery surgery. Data were collected in-hospital and at 1, 6, and 12 months after surgery. Optimism was related to positive moods and life satisfaction, and inversely related to negative moods. Few relationships were found between optimism and functional ability. Cognitive coping strategies accounted for a mediating effect between optimism and negative mood. Optimists were more likely to accept their situation, and less likely to use escapism. In turn, these coping strategies were inversely related to negative mood and mediated the relationship between optimism and this outcome. Optimism was not related to problem-focused coping strategies; this, these coping strategies cannot explain the relationship between optimism and outcomes.

  5. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    NASA Astrophysics Data System (ADS)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  6. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  7. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  8. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  9. Robustness of optimal random searches in fragmented environments

    NASA Astrophysics Data System (ADS)

    Wosniack, M. E.; Santos, M. C.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.

    2015-05-01

    The random search problem is a challenging and interdisciplinary topic of research in statistical physics. Realistic searches usually take place in nonuniform heterogeneous distributions of targets, e.g., patchy environments and fragmented habitats in ecological systems. Here we present a comprehensive numerical study of search efficiency in arbitrarily fragmented landscapes with unlimited visits to targets that can only be found within patches. We assume a random walker selecting uniformly distributed turning angles and step lengths from an inverse power-law tailed distribution with exponent μ . Our main finding is that for a large class of fragmented environments the optimal strategy corresponds approximately to the same value μopt≈2 . Moreover, this exponent is indistinguishable from the well-known exact optimal value μopt=2 for the low-density limit of homogeneously distributed revisitable targets. Surprisingly, the best search strategies do not depend (or depend only weakly) on the specific details of the fragmentation. Finally, we discuss the mechanisms behind this observed robustness and comment on the relevance of our results to both the random search theory in general, as well as specifically to the foraging problem in the biological context.

  10. Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation

    EPA Science Inventory

    Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...

  11. Determination of Cole-Cole parameters using only the real part of electrical impedivity measurements.

    PubMed

    Miranda, David A; Rivera, S A López

    2008-05-01

    An algorithm is presented to determine the Cole-Cole parameters of electrical impedivity using only measurements of its real part. The algorithm is based on two multi-fold direct inversion methods for the Cole-Cole and Debye equations, respectively, and a genetic algorithm for the optimization of the mean square error between experimental and calculated data. The algorithm has been developed to obtain the Cole-Cole parameters from experimental data, which were used to screen cervical intra-epithelial neoplasia. The proposed algorithm was compared with different numerical integrations of the Kramers-Kronig relation and the result shows that this algorithm is the best. A high immunity to noise was obtained.

  12. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging.

    PubMed

    Cai, Chuangjian; Deng, Kexin; Ma, Cheng; Luo, Jianwen

    2018-06-15

    An end-to-end deep neural network, ResU-net, is developed for quantitative photoacoustic imaging. A residual learning framework is used to facilitate optimization and to gain better accuracy from considerably increased network depth. The contracting and expanding paths enable ResU-net to extract comprehensive context information from multispectral initial pressure images and, subsequently, to infer a quantitative image of chromophore concentration or oxygen saturation (sO 2 ). According to our numerical experiments, the estimations of sO 2 and indocyanine green concentration are accurate and robust against variations in both optical property and object geometry. An extremely short reconstruction time of 22 ms is achieved.

  13. Statistical Interior Tomography

    PubMed Central

    Xu, Qiong; Wang, Ge; Sieren, Jered; Hoffman, Eric A.

    2011-01-01

    This paper presents a statistical interior tomography (SIT) approach making use of compressed sensing (CS) theory. With the projection data modeled by the Poisson distribution, an objective function with a total variation (TV) regularization term is formulated in the maximization of a posteriori (MAP) framework to solve the interior problem. An alternating minimization method is used to optimize the objective function with an initial image from the direct inversion of the truncated Hilbert transform. The proposed SIT approach is extensively evaluated with both numerical and real datasets. The results demonstrate that SIT is robust with respect to data noise and down-sampling, and has better resolution and less bias than its deterministic counterpart in the case of low count data. PMID:21233044

  14. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  15. Semi-analytic valuation of stock loans with finite maturity

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoping; Putri, Endah R. M.

    2015-10-01

    In this paper we study stock loans of finite maturity with different dividend distributions semi-analytically using the analytical approximation method in Zhu (2006). Stock loan partial differential equations (PDEs) are established under Black-Scholes framework. Laplace transform method is used to solve the PDEs. Optimal exit price and stock loan value are obtained in Laplace space. Values in the original time space are recovered by numerical Laplace inversion. To demonstrate the efficiency and accuracy of our semi-analytic method several examples are presented, the results are compared with those calculated using existing methods. We also present a calculation of fair service fee charged by the lender for different loan parameters.

  16. Inverse Thermal Analysis of Ti-6Al-4V Friction Stir Welds Using Numerical-Analytical Basis Functions with Pseudo-Advection

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2018-04-01

    Inverse thermal analysis of Ti-6Al-4V friction stir welds is presented that demonstrates application of a methodology using numerical-analytical basis functions and temperature-field constraint conditions. This analysis provides parametric representation of friction-stir-weld temperature histories that can be adopted as input data to computational procedures for prediction of solid-state phase transformations and mechanical response. These parameterized temperature histories can be used for inverse thermal analysis of friction stir welds having process conditions similar those considered here. Case studies are presented for inverse thermal analysis of friction stir welds that use three-dimensional constraint conditions on calculated temperature fields, which are associated with experimentally measured transformation boundaries and weld-stir-zone cross sections.

  17. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  18. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  19. Parametric optimization in virtual prototyping environment of the control device for a robotic system used in thin layers deposition

    NASA Astrophysics Data System (ADS)

    Enescu (Balaş, M. L.; Alexandru, C.

    2016-08-01

    The paper deals with the optimal design of the control system for a 6-DOF robot used in thin layers deposition. The optimization is based on parametric technique, by modelling the design objective as a numerical function, and then establishing the optimal values of the design variables so that to minimize the objective function. The robotic system is a mechatronic product, which integrates the mechanical device and the controlled operating device.The mechanical device of the robot was designed in the CAD (Computer Aided Design) software CATIA, the 3D-model being then transferred to the MBS (Multi-Body Systems) environment ADAMS/View. The control system was developed in the concurrent engineering concept, through the integration with the MBS mechanical model, by using the DFC (Design for Control) software solution EASY5. The necessary angular motions in the six joints of the robot, in order to obtain the imposed trajectory of the end-effector, have been established by performing the inverse kinematic analysis. The positioning error in each joint of the robot is used as design objective, the optimization goal being to minimize the root mean square during simulation, which is a measure of the magnitude of the positioning error varying quantity.

  20. Computational analysis for biodegradation of exogenously depolymerizable polymer

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  1. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  2. Tests of the Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard; Attele, Rohan

    2011-01-01

    Satellite lightning imagers such as the NASA Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS) and the future GOES-R Geostationary Lightning Mapper (GLM) are designed to detect total lightning (ground flashes + cloud flashes). However, there is a desire to discriminate ground flashes from cloud flashes from the vantage point of space since this would enhance the overall information content of the satellite lightning data and likely improve its operational and scientific applications (e.g., in severe weather warning, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters (one of which is the ground flash fraction), a scalar function was minimized by a numerical method. In order to improve this optimization, a Grobner basis solution was introduced to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. In this study, we test the efficacy of the Grobner basis initialization using actual lightning imager measurements and ground flash truth derived from the national lightning network.

  3. FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon

    NASA Astrophysics Data System (ADS)

    Frei, S.; Gilfedder, B. S.

    2015-08-01

    A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.

  4. Deformation data modeling through numerical models: an efficient method for tracking magma transport

    NASA Astrophysics Data System (ADS)

    Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.

    2017-12-01

    Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.

  5. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    PubMed

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an applied rate of ramp loading is G 0,max aniso =15.38kPa. Derived mechanical model parameters constitute a basis for complex skin interaction simulation. Copyright © 2017. Published by Elsevier Ltd.

  6. Inverse analysis of turbidites by machine learning

    NASA Astrophysics Data System (ADS)

    Naruse, H.; Nakao, K.

    2017-12-01

    This study aims to propose a method to estimate paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine-learning technique. In this method, numerical simulation was repeated under various initial conditions, which produces a data set of characteristic features of turbidites. Then, this data set of turbidites is used for supervised training of a deep-learning neural network (NN). Quantities of characteristic features of turbidites in the training data set are given to input nodes of NN, and output nodes are expected to provide the estimates of initial condition of the turbidity current. The optimization of weight coefficients of NN is then conducted to reduce root-mean-square of the difference between the true conditions and the output values of NN. The empirical relationship with numerical results and the initial conditions is explored in this method, and the discovered relationship is used for inversion of turbidity currents. This machine learning can potentially produce NN that estimates paleo-hydraulic conditions from data of ancient turbidites. We produced a preliminary implementation of this methodology. A forward model based on 1D shallow-water equations with a correction of density-stratification effect was employed. This model calculates a behavior of a surge-like turbidity current transporting mixed-size sediment, and outputs spatial distribution of volume per unit area of each grain-size class on the uniform slope. Grain-size distribution was discretized 3 classes. Numerical simulation was repeated 1000 times, and thus 1000 beds of turbidites were used as the training data for NN that has 21000 input nodes and 5 output nodes with two hidden-layers. After the machine learning finished, independent simulations were conducted 200 times in order to evaluate the performance of NN. As a result of this test, the initial conditions of validation data were successfully reconstructed by NN. The estimated values show very small deviation from the true parameters. Comparing to previous inverse modeling of turbidity currents, our methodology is superior especially in the efficiency of computation. Also, our methodology has advantage in extensibility and applicability to various sediment transport processes such as pyroclastic flows or debris flows.

  7. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    NASA Astrophysics Data System (ADS)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  8. Solving constrained inverse problems for waveform tomography with Salvus

    NASA Astrophysics Data System (ADS)

    Boehm, C.; Afanasiev, M.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.

    2016-12-01

    Finding a good balance between flexibility and performance is often difficult within domain-specific software projects. To achieve this balance, we introduce Salvus: an open-source high-order finite element package built upon PETSc and Eigen, that focuses on large-scale full-waveform modeling and inversion. One of the key features of Salvus is its modular design, based on C++ mixins, that separates the physical equations from the numerical discretization and the mathematical optimization. In this presentation we focus on solving inverse problems with Salvus and discuss (i) dealing with inexact derivatives resulting, e.g., from lossy wavefield compression, (ii) imposing additional constraints on the model parameters, e.g., from effective medium theory, and (iii) integration with a workflow management tool. We present a feasible-point trust-region method for PDE-constrained inverse problems that can handle inexactly computed derivatives. The level of accuracy in the approximate derivatives is controlled by localized error estimates to ensure global convergence of the method. Additional constraints on the model parameters are typically cheap to compute without the need for further simulations. Hence, including them in the trust-region subproblem introduces only a small computational overhead, but ensures feasibility of the model in every iteration. We show examples with homogenization constraints derived from effective medium theory (i.e. all fine-scale updates must upscale to a physically meaningful long-wavelength model). Salvus has a built-in workflow management framework to automate the inversion with interfaces to user-defined misfit functionals and data structures. This significantly reduces the amount of manual user interaction and enhances reproducibility which we demonstrate for several applications from the laboratory to global scale.

  9. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  10. A New Approach to the Numerical Evaluation of the Inverse Radon Transform with Discrete, Noisy Data.

    DTIC Science & Technology

    1980-07-01

    spline form. The resulting analytic expression for the inner integral in the inverse transform is then readily evaluated, and the outer (periodic...integral is replaced by a sum. The work involved to obtain the inverse transform appears to be within the capability of existing computing equipment for

  11. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  12. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  13. Adjoint-based Simultaneous Estimation Method of Fault Slip and Asthenosphere Viscosity Using Large-Scale Finite Element Simulation of Viscoelastic Deformation

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hashimoto, C.; Hori, M.

    2016-12-01

    Estimation of the coseismic/postseismic slip using postseismic deformation observation data is an important topic in the field of geodetic inversion. Estimation methods for this purpose are expected to be improved by introducing numerical simulation tools (e.g. finite element (FE) method) of viscoelastic deformation, in which the computation model is of high fidelity to the available high-resolution crustal data. The authors have proposed a large-scale simulation method using such FE high-fidelity models (HFM), assuming use of a large-scale computation environment such as the K computer in Japan (Ichimura et al. 2016). On the other hand, the values of viscosity in the heterogeneous viscoelastic structure in the high-fidelity model are not trivial. In this study, we developed an adjoint-based optimization method incorporating HFM, in which fault slip and asthenosphere viscosity are simultaneously estimated. We carried out numerical experiments using synthetic crustal deformation data. We constructed an HFM in the domain of 2048x1536x850 km, which includes the Tohoku region in northeast Japan based on Ichimura et al. (2013). We used the model geometry data set of JTOPO30 (2003), Koketsu et al. (2008) and CAMP standard model (Hashimoto et al. 2004). The geometry of crustal structures in HFM is in 1km resolution, resulting in 36 billion degrees-of-freedom. Synthetic crustal deformation data due to prescribed coseismic slip and after slips in the location of GEONET, GPS/A observation points, and S-net are used. The target inverse analysis is formulated as minimization of L2 norm of the difference between the FE simulation results and the observation data with respect to viscosity and fault slip, combining the quasi-Newton algorithm with the adjoint method. Use of this combination decreases the necessary number of forward analyses in the optimization calculation. As a result, we are now able to finish the estimation using 2560 computer nodes of the K computer for less than 17 hours. Thus, the target inverse analysis is completed in a realistic time because of the combination of the fast solver and the adjoint method. In the future, we would like to apply the method to the actual data.

  14. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.

    2017-04-01

    Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.

  15. Numerical Representation of Wintertime Near-Surface Inversions in the Arctic with a 2.5-km Version of the Global Environmental Multiscale (GEM) Model

    NASA Astrophysics Data System (ADS)

    Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.

    2017-12-01

    Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.

  16. (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements

    DTIC Science & Technology

    2016-02-02

    Earths ”, MS&T15-Materials Science and Technology 2015 Conference, Columbus, Ohio, October 4-8, 2015. 3. Dulikrvich, G.S., Reddy, S., Orlande, H.R.B...Schwartz, J.and Koch, C.C., “Multi-Objective Design and Optimization of Hard Magnetic Alloys Free of Rare Earths ”, MS&T15-Materials Science and Technology...AFRL-AFOSR-VA-TR-2016-0091 (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements George

  17. An adjoint-based simultaneous estimation method of the asthenosphere's viscosity and afterslip using a fast and scalable finite-element adjoint solver

    NASA Astrophysics Data System (ADS)

    Agata, Ryoichiro; Ichimura, Tsuyoshi; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo

    2018-04-01

    The simultaneous estimation of the asthenosphere's viscosity and coseismic slip/afterslip is expected to improve largely the consistency of the estimation results to observation data of crustal deformation collected in widely spread observation points, compared to estimations of slips only. Such an estimate can be formulated as a non-linear inverse problem of material properties of viscosity and input force that is equivalent to fault slips based on large-scale finite-element (FE) modeling of crustal deformation, in which the degree of freedom is in the order of 109. We formulated and developed a computationally efficient adjoint-based estimation method for this inverse problem, together with a fast and scalable FE solver for the associated forward and adjoint problems. In a numerical experiment that imitates the 2011 Tohoku-Oki earthquake, the advantage of the proposed method is confirmed by comparing the estimated results with those obtained using simplified estimation methods. The computational cost required for the optimization shows that the proposed method enabled the targeted estimation to be completed with moderate amount of computational resources.

  18. Application of random seismic inversion method based on tectonic model in thin sand body research

    NASA Astrophysics Data System (ADS)

    Dianju, W.; Jianghai, L.; Qingkai, F.

    2017-12-01

    The oil and gas exploitation at Songliao Basin, Northeast China have already progressed to the period with high water production. The previous detailed reservoir description that based on seismic image, sediment core, borehole logging has great limitations in small scale structural interpretation and thin sand body characterization. Thus, precise guidance for petroleum exploration is badly in need of a more advanced method. To do so, we derived the method of random seismic inversion constrained by tectonic model.It can effectively improve the depicting ability of thin sand bodies, combining numerical simulation techniques, which can credibly reducing the blindness of reservoir analysis from the whole to the local and from the macroscopic to the microscopic. At the same time, this can reduce the limitations of the study under the constraints of different geological conditions of the reservoir, accomplish probably the exact estimation for the effective reservoir. Based on the research, this paper has optimized the regional effective reservoir evaluation and the productive location adjustment of applicability, combined with the practical exploration and development in Aonan oil field.

  19. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  20. Numerical Procedures for Inlet/Diffuser/Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.

    1998-01-01

    Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein.

  1. Estimation of interfacial heat transfer coefficient in inverse heat conduction problems based on artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Li, Huiping; Li, Zhichao

    2018-04-01

    The interfacial heat transfer coefficient (IHTC) is one of the most important thermal physical parameters which have significant effects on the calculation accuracy of physical fields in the numerical simulation. In this study, the artificial fish swarm algorithm (AFSA) was used to evaluate the IHTC between the heated sample and the quenchant in a one-dimensional heat conduction problem. AFSA is a global optimization method. In order to speed up the convergence speed, a hybrid method which is the combination of AFSA and normal distribution method (ZAFSA) was presented. The IHTC evaluated by ZAFSA were compared with those attained by AFSA and the advanced-retreat method and golden section method. The results show that the reasonable IHTC is obtained by using ZAFSA, the convergence of hybrid method is well. The algorithm based on ZAFSA can not only accelerate the convergence speed, but also reduce the numerical oscillation in the evaluation of IHTC.

  2. An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hormuth, David A.; Yankeelov, Thomas E.

    2018-06-01

    We present an efficient numerical method to quantify the spatial variation of glioma growth based on subject-specific medical images using a mechanically-coupled tumor model. The method is illustrated in a murine model of glioma in which we consider the tumor as a growing elastic mass that continuously deforms the surrounding healthy-appearing brain tissue. As an inverse parameter identification problem, we quantify the volumetric growth of glioma and the growth component of deformation by fitting the model predicted cell density to the cell density estimated using the diffusion-weighted magnetic resonance imaging data. Numerically, we developed an adjoint-based approach to solve the optimization problem. Results on a set of experimentally measured, in vivo rat glioma data indicate good agreement between the fitted and measured tumor area and suggest a wide variation of in-plane glioma growth with the growth-induced Jacobian ranging from 1.0 to 6.0.

  3. PREFACE: The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro

    2005-01-01

    The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in atmospheric sciences and oceanography. Last but not least is our gratitude. As editors we would like to express our sincere thanks to all the plenary and invited speakers, the members of the International Scientific Committee and the Advisory Board for the success of the conference, which has given rise to this present volume of selected papers. We would also like to thank Mr Wang Yanbo, Miss Wan Xiqiong and the graduate students at Fudan University for their effective work to make this conference a success. The conference was financially supported by the NFS of China, the Mathematical Center of Ministry of Education of China, E-Institutes of Shanghai Municipal Education Commission (No E03004) and Fudan University, Grant 15340027 from the Japan Society for the Promotion of Science, and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.

  4. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.

  5. High performance GPU processing for inversion using uniform grid searches

    NASA Astrophysics Data System (ADS)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.

  6. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  7. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  8. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    NASA Astrophysics Data System (ADS)

    Schröder, Markus; Brown, Alex

    2009-10-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  9. Inverse-optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

    PubMed Central

    Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.

    2012-01-01

    Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717

  10. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  11. Mini-batch optimized full waveform inversion with geological constrained gradient filtering

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai

    2018-05-01

    High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.

  12. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  13. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  14. Minimization of required model runs in the Random Mixing approach to inverse groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Hoerning, Sebastian; Bardossy, Andras; du Plessis, Jaco

    2017-04-01

    Most geostatistical inverse groundwater flow and transport modelling approaches utilize a numerical solver to minimize the discrepancy between observed and simulated hydraulic heads and/or hydraulic concentration values. The optimization procedure often requires many model runs, which for complex models lead to long run times. Random Mixing is a promising new geostatistical technique for inverse modelling. The method is an extension of the gradual deformation approach. It works by finding a field which preserves the covariance structure and maintains observed hydraulic conductivities. This field is perturbed by mixing it with new fields that fulfill the homogeneous conditions. This mixing is expressed as an optimization problem which aims to minimize the difference between the observed and simulated hydraulic heads and/or concentration values. To preserve the spatial structure, the mixing weights must lie on the unit hyper-sphere. We present a modification to the Random Mixing algorithm which significantly reduces the number of model runs required. The approach involves taking n equally spaced points on the unit circle as weights for mixing conditional random fields. Each of these mixtures provides a solution to the forward model at the conditioning locations. For each of the locations the solutions are then interpolated around the circle to provide solutions for additional mixing weights at very low computational cost. The interpolated solutions are used to search for a mixture which maximally reduces the objective function. This is in contrast to other approaches which evaluate the objective function for the n mixtures and then interpolate the obtained values. Keeping the mixture on the unit circle makes it easy to generate equidistant sampling points in the space; however, this means that only two fields are mixed at a time. Once the optimal mixture for two fields has been found, they are combined to form the input to the next iteration of the algorithm. This process is repeated until a threshold in the objective function is met or insufficient changes are produced in successive iterations.

  15. Probing numerical Laplace inversion methods for two and three-site molecular exchange between interconnected pore structures.

    PubMed

    Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H

    2018-01-01

    Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  17. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning.

    PubMed

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-03-21

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  18. Reconstruction of the temperature field for inverse ultrasound hyperthermia calculations at a muscle/bone interface.

    PubMed

    Liauh, Chihng-Tsung; Shih, Tzu-Ching; Huang, Huang-Wen; Lin, Win-Li

    2004-02-01

    An inverse algorithm with Tikhonov regularization of order zero has been used to estimate the intensity ratios of the reflected longitudinal wave to the incident longitudinal wave and that of the refracted shear wave to the total transmitted wave into bone in calculating the absorbed power field and then to reconstruct the temperature distribution in muscle and bone regions based on a limited number of temperature measurements during simulated ultrasound hyperthermia. The effects of the number of temperature sensors are investigated, as is the amount of noise superimposed on the temperature measurements, and the effects of the optimal sensor location on the performance of the inverse algorithm. Results show that noisy input data degrades the performance of this inverse algorithm, especially when the number of temperature sensors is small. Results are also presented demonstrating an improvement in the accuracy of the temperature estimates by employing an optimal value of the regularization parameter. Based on the analysis of singular-value decomposition, the optimal sensor position in a case utilizing only one temperature sensor can be determined to make the inverse algorithm converge to the true solution.

  19. Scaling and entropy in p-median facility location along a line

    NASA Astrophysics Data System (ADS)

    Gastner, Michael T.

    2011-09-01

    The p-median problem is a common model for optimal facility location. The task is to place p facilities (e.g., warehouses or schools) in a heterogeneously populated space such that the average distance from a person's home to the nearest facility is minimized. Here we study the special case where the population lives along a line (e.g., a road or a river). If facilities are optimally placed, the length of the line segment served by a facility is inversely proportional to the square root of the population density. This scaling law is derived analytically and confirmed for concrete numerical examples of three US interstate highways and the Mississippi River. If facility locations are permitted to deviate from the optimum, the number of possible solutions increases dramatically. Using Monte Carlo simulations, we compute how scaling is affected by an increase in the average distance to the nearest facility. We find that the scaling exponents change and are most sensitive near the optimum facility distribution.

  20. Method and Apparatus for Performance Optimization Through Physical Perturbation of Task Elements

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III (Inventor); Pope, Alan T. (Inventor); Palsson, Olafur S. (Inventor); Turner, Marsha J. (Inventor)

    2016-01-01

    The invention is an apparatus and method of biofeedback training for attaining a physiological state optimally consistent with the successful performance of a task, wherein the probability of successfully completing the task is made is inversely proportional to a physiological difference value, computed as the absolute value of the difference between at least one physiological signal optimally consistent with the successful performance of the task and at least one corresponding measured physiological signal of a trainee performing the task. The probability of successfully completing the task is made inversely proportional to the physiological difference value by making one or more measurable physical attributes of the environment in which the task is performed, and upon which completion of the task depends, vary in inverse proportion to the physiological difference value.

  1. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  2. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    PubMed

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  3. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Tao; Li Ying; Song Zhi

    We show that a perfect quantum-state transmission can be realized through a spin chain possessing the commensurate structure of an energy spectrum, which is matched with the corresponding parity. As an exposition of the mirror inversion symmetry discovered by Albanese et al. (e-print quant-ph/0405029), the parity matched commensurability of the energy spectra helps us to present preengineered spin systems for quantum information transmission. Based on these theoretical analyses, we propose a protocol of near-perfect quantum-state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external parabolic magnetic field. The numerical results show that the initial Gaussianmore » wave packet in this system with optimal field distribution can be reshaped near perfectly over a longer distance.« less

  5. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  6. Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam

    NASA Astrophysics Data System (ADS)

    Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan

    2018-06-01

    Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.

  7. A variational regularization of Abel transform for GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon

    2018-04-01

    In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.

  8. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  9. New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment.

    PubMed

    Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S

    2014-09-01

    Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.

  10. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13

  11. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  12. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  13. Numerical recovery of certain discontinuous electrical conductivities

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1991-01-01

    The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.

  14. Remarks on a financial inverse problem by means of Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Cuomo, Salvatore; Di Somma, Vittorio; Sica, Federica

    2017-10-01

    Estimating the price of a barrier option is a typical inverse problem. In this paper we present a numerical and statistical framework for a market with risk-free interest rate and a risk asset, described by a Geometric Brownian Motion (GBM). After approximating the risk asset with a numerical method, we find the final option price by following an approach based on sequential Monte Carlo methods. All theoretical results are applied to the case of an option whose underlying is a real stock.

  15. Computation of transonic viscous-inviscid interacting flow

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.

    1983-01-01

    Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829

  16. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  17. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  18. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  19. Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications

    DTIC Science & Technology

    2005-04-01

    coefficient sets describing inverse transforms and matched forward/ inverse transform pairs that consistently outperform wavelets for image compression and reconstruction applications under conditions subject to quantization error.

  20. Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.

    PubMed

    Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y

    1999-04-20

    A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].

  1. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.

  2. Real-time inverse planning for Gamma Knife radiosurgery.

    PubMed

    Wu, Q Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W; Einstein, Douglas B; Mathayomchan, Boonyanit; Kinsella, Timothy J

    2003-11-01

    The challenges of real-time Gamma Knife inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality.

  3. Two-Port Representation of a Linear Transmission Line in the Time Domain.

    DTIC Science & Technology

    1980-01-01

    which is a rational function. To use the Prony procedure it is necessary to inverse transform the admittance functions. For the transmission line, most...impulse is a constant, the inverse transform of Y0(s) contains an impulse of value ._ Therefore, if we were to numerically inverse transform Yo(s), we...would remove this im- pulse and inverse transform Y-(S) Y (S) 1’LR+C~ (23) The prony procedure would then be applied to the result. Of course, an impulse

  4. Retrieval of ice crystals' mass from ice water content and particle distribution measurements: a numerical optimization approach

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in order to evaluate the behavior of the iterative algorithm, the influence of data noise on the quality of the results, and to set up a regularization strategy. Therefore, 3D synthetic crystals have been generated and numerically processed to recreate the noise caused by 2D projections of randomly oriented 3D crystals and by the discretization of the PSD into size classes of predefined width. Subsequently, the method is applied to the experimental datasets and the comparison between the retrieved TWC (this methodology) and the measured ones (IKP-2 data) will enable the evaluation of the consistency and accuracy of the mass solution retrieved by the numerical optimization approach as well as preliminary assessment of the influence of temperature and dynamical parameters on crystals' masses.

  5. Suppression of work fluctuations by optimal control: An approach based on Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2014-11-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, aspects of work fluctuations will be an important factor in designing nanoscale heat engines. In this work, an optimal control approach directly exploiting Jarzynski's equality is proposed to effectively suppress the fluctuations in the work statistics, for systems (initially at thermal equilibrium) subject to a work protocol but isolated from a bath during the protocol. The control strategy is to minimize the deviations of individual values of e-β W from their ensemble average given by e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. It is further shown that even when the system Hamiltonian is not fully known, it is still possible to suppress work fluctuations through a feedback loop, by refining the control target function on the fly through Jarzynski's equality itself. Numerical experiments are based on linear and nonlinear parametric oscillators. Optimal control results for linear parametric oscillators are also benchmarked with early results based on shortcuts to adiabaticity.

  6. Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS

    NASA Astrophysics Data System (ADS)

    Hait, Diptarka; Head-Gordon, Martin

    2018-05-01

    Double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.

  7. On numerical reconstructions of lithographic masks in DUV scatterometry

    NASA Astrophysics Data System (ADS)

    Henn, M.-A.; Model, R.; Bär, M.; Wurm, M.; Bodermann, B.; Rathsfeld, A.; Gross, H.

    2009-06-01

    The solution of the inverse problem in scatterometry employing deep ultraviolet light (DUV) is discussed, i.e. we consider the determination of periodic surface structures from light diffraction patterns. With decreasing dimensions of the structures on photo lithography masks and wafers, increasing demands on the required metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to periodic line structures in order to determine the sidewall angles, heights, and critical dimensions (CD), i.e., the top and bottom widths. The latter quantities are typically in the range of tens of nanometers. All these angles, heights, and CDs are the fundamental figures in order to evaluate the quality of the manufacturing process. To measure those quantities a DUV scatterometer is used, which typically operates at a wavelength of 193 nm. The diffraction of light by periodic 2D structures can be simulated using the finite element method for the Helmholtz equation. The corresponding inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Fixing the class of gratings and the set of measurements, this inverse problem reduces to a finite dimensional nonlinear operator equation. Reformulating the problem as an optimization problem, a vast number of numerical schemes can be applied. Our tool is a sequential quadratic programing (SQP) variant of the Gauss-Newton iteration. In a first step, in which we use a simulated data set, we investigate how accurate the geometrical parameters of an EUV mask can be reconstructed, using light in the DUV range. We then determine the expected uncertainties of geometric parameters by reconstructing from simulated input data perturbed by noise representing the estimated uncertainties of input data. In the last step, we use the measurement data obtained from the new DUV scatterometer at PTB to determine the geometrical parameters of a typical EUV mask with our reconstruction algorithm. The results are compared to the outcome of investigations with two alternative methods namely EUV scatterometry and SEM measurements.

  8. Comparison of optimal design methods in inverse problems

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  9. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  10. The 2-D magnetotelluric inverse problem solved with optimization

    NASA Astrophysics Data System (ADS)

    van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven

    2011-02-01

    The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.

  11. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhang; He, Wenjie; Duan, Chenlong

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation betweenmore » the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.« less

  12. Clinical knowledge-based inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-11-01

    Clinical IMRT treatment plans are currently made using dose-based optimization algorithms, which do not consider the nonlinear dose-volume effects for tumours and normal structures. The choice of structure specific importance factors represents an additional degree of freedom of the system and makes rigorous optimization intractable. The purpose of this work is to circumvent the two problems by developing a biologically more sensible yet clinically practical inverse planning framework. To implement this, the dose-volume status of a structure was characterized by using the effective volume in the voxel domain. A new objective function was constructed with the incorporation of the volumetric information of the system so that the figure of merit of a given IMRT plan depends not only on the dose deviation from the desired distribution but also the dose-volume status of the involved organs. The conventional importance factor of an organ was written into a product of two components: (i) a generic importance that parametrizes the relative importance of the organs in the ideal situation when the goals for all the organs are met; (ii) a dose-dependent factor that quantifies our level of clinical/dosimetric satisfaction for a given plan. The generic importance can be determined a priori, and in most circumstances, does not need adjustment, whereas the second one, which is responsible for the intractable behaviour of the trade-off seen in conventional inverse planning, was determined automatically. An inverse planning module based on the proposed formalism was implemented and applied to a prostate case and a head-neck case. A comparison with the conventional inverse planning technique indicated that, for the same target dose coverage, the critical structure sparing was substantially improved for both cases. The incorporation of clinical knowledge allows us to obtain better IMRT plans and makes it possible to auto-select the importance factors, greatly facilitating the inverse planning process. The new formalism proposed also reveals the relationship between different inverse planning schemes and gives important insight into the problem of therapeutic plan optimization. In particular, we show that the EUD-based optimization is a special case of the general inverse planning formalism described in this paper.

  13. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  14. Cooperative inversion of magnetotelluric and seismic data sets

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Santos, F.

    2012-04-01

    Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal

  15. Reconstruction of Atmospheric Tracer Releases with Optimal Resolution Features: Concentration Data Assimilation

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali

    2015-04-01

    The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.

  16. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  17. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms.

    PubMed

    Babier, Aaron; Boutilier, Justin J; Sharpe, Michael B; McNiven, Andrea L; Chan, Timothy C Y

    2018-05-10

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate 'inverse plans' that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to automatically generate a new plan given a predicted or updated target DVH, respectively.

  18. Inverse modeling with RZWQM2 to predict water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models such as RZWQM2 are complex and have numerous parameters that are unknown and difficult to estimate. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals...

  19. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet

  20. Convergence acceleration in scattering series and seismic waveform inversion using nonlinear Shanks transformation

    NASA Astrophysics Data System (ADS)

    Eftekhar, Roya; Hu, Hao; Zheng, Yingcai

    2018-06-01

    Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.

  1. Inversion of Zeeman polarization for solar magnetic field diagnostics

    NASA Astrophysics Data System (ADS)

    Derouich, M.

    2017-05-01

    The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation. To test the performance of the new numerical code, we employed "hare and hound" approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D1 line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe Iλ 6302.5 Å observed at IRSOL in Locarno.

  2. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.

    PubMed

    Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I

    2017-01-01

    This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.

  3. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  4. An efficient approach for inverse kinematics and redundancy resolution scheme of hyper-redundant manipulators

    NASA Astrophysics Data System (ADS)

    Chembuly, V. V. M. J. Satish; Voruganti, Hari Kumar

    2018-04-01

    Hyper redundant manipulators have a large number of degrees of freedom (DOF) than the required to perform a given task. Additional DOF of manipulators provide the flexibility to work in highly cluttered environment and in constrained workspaces. Inverse kinematics (IK) of hyper-redundant manipulators is complicated due to large number of DOF and these manipulators have multiple IK solutions. The redundancy gives a choice of selecting best solution out of multiple solutions based on certain criteria such as obstacle avoidance, singularity avoidance, joint limit avoidance and joint torque minimization. This paper focuses on IK solution and redundancy resolution of hyper-redundant manipulator using classical optimization approach. Joint positions are computed by optimizing various criteria for a serial hyper redundant manipulators while traversing different paths in the workspace. Several cases are addressed using this scheme to obtain the inverse kinematic solution while optimizing the criteria like obstacle avoidance, joint limit avoidance.

  5. A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Park, Taehoon; Park, Won-Kwang

    2015-09-01

    Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.

  6. Optimization of equivalent uniform dose using the L-curve criterion.

    PubMed

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  7. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  8. A method to incorporate leakage and head scatter corrections into a tomotherapy inverse treatment planning algorithm

    NASA Astrophysics Data System (ADS)

    Holmes, Timothy W.

    2001-01-01

    A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.

  9. The inverse problem: Ocean tides derived from earth tide observations

    NASA Technical Reports Server (NTRS)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  10. Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method

    NASA Astrophysics Data System (ADS)

    Schanz, Martin; Ye, Wenjing; Xiao, Jinyou

    2016-04-01

    Transient problems can often be solved with transformation methods, where the inverse transformation is usually performed numerically. Here, the discrete Fourier transform in combination with the exponential window method is compared with the convolution quadrature method formulated as inverse transformation. Both are inverse Laplace transforms, which are formally identical but use different complex frequencies. A numerical study is performed, first with simple convolution integrals and, second, with a boundary element method (BEM) for elastodynamics. Essentially, when combined with the BEM, the discrete Fourier transform needs less frequency calculations, but finer mesh compared to the convolution quadrature method to obtain the same level of accuracy. If further fast methods like the fast multipole method are used to accelerate the boundary element method the convolution quadrature method is better, because the iterative solver needs much less iterations to converge. This is caused by the larger real part of the complex frequencies necessary for the calculation, which improves the conditions of system matrix.

  11. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  12. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  13. Computational method for estimating boundary of abdominal subcutaneous fat for absolute electrical impedance tomography.

    PubMed

    Yamaguchi, Tohru F; Okamoto, Yoshiwo

    2018-01-01

    Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity. [numerical tests for water-haze aerosol model

    NASA Technical Reports Server (NTRS)

    Smith, C. B.

    1982-01-01

    The Fymat analytic inversion method for retrieving a particle-area distribution function from anomalous diffraction multispectral extinction data and total area is generalized to the case of a variable complex refractive index m(lambda) near unity depending on spectral wavelength lambda. Inversion tests are presented for a water-haze aerosol model. An upper-phase shift limit of 5 pi/2 retrieved an accurate peak area distribution profile. Analytical corrections using both the total number and area improved the inversion.

  15. Electromagnetic Scattering Analysis of Large Size Asteroids/Comets for Reflection/Transmission Tomography (RTT)

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar

    2011-01-01

    A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.

  16. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Bell, R. E.; Bitter, M.

    2014-11-15

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy andmore » tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  17. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES

    Pablant, N. A.; Bell, R. E.; Bitter, M.; ...

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  18. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Taeyoung; Shin, Changsoo

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less

  19. Calibrating a Soil-Vegetation-Atmosphere system with a genetical algorithm

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Jacques, D.; Mallants, D.

    2009-04-01

    Accuracy of model prediction is well known for being very sensitive to the quality of the calibration of the model. It is also known that quantifying soil hydraulic parameters in a Soil-Vegetation-Atmosphere (SVA) system is a highly non-linear parameter estimation problem, and that robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the north of Belgium (Campine region). Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step. The water table level, which is varying between 95 and 170 cm, has been recorded with a frequency of 0.5 hours. Based on the profile description, four soil layers have been distinguished in the podzol and used for the numerical simulation with the hydrus1D model (Simunek and al., 2005). For the inversion procedure the MYGA program (Yedder, 2002), which is an elitism GA, was used. Optimization was based on the water content measurements realized at the depths of 10, 20, 40, 50, 60, 70, 90, 110, and 120 cm to estimate parameters describing the unsaturated hydraulic soil properties of the different soil layers. Comparison between the modeled and measured water contents shows a good similarity during the simulated year. Impacts of short and intensive events (rainfall) on the water content of the soil are also well reproduced. Errors on predictions are on average equal to 5%, which is considered as a good result. A. Ben Haj Yedder. Numerical optimization and optimal control : (molecular chemistry applications). PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002. Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 3.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, CA, 270 pp., 2005.

  20. Inverse Regional Modeling with Adjoint-Free Technique

    NASA Astrophysics Data System (ADS)

    Yaremchuk, M.; Martin, P.; Panteleev, G.; Beattie, C.

    2016-02-01

    The ongoing parallelization trend in computer technologies facilitates the use ensemble methods in geophysical data assimilation. Of particular interest are ensemble techniques which do not require the development of tangent linear numerical models and their adjoints for optimization. These ``adjoint-free'' methods minimize the cost function within the sequence of subspaces spanned by a carefully chosen sets perturbations of the control variables. In this presentation, an adjoint-free variational technique (a4dVar) is demonstrated in an application estimating initial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM), and the surface wave model (WAM). With the NCOM, performance of both adjoint and adjoint-free 4dVar data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Numerical experiments have shown that a4dVar is capable of providing forecast skill similar to that of conventional 4dVar at comparable computational expense while being less susceptible to excitation of ageostrophic modes that are not supported by observations. Adjoint-free technique constrained by the WAM model is tested in a series of data assimilation experiments with synthetic observations in the southern Chukchi Sea. The types of considered observations are directional spectra estimated from point measurements by stationary buoys, significant wave height (SWH) observations by coastal high-frequency radars and along-track SWH observations by satellite altimeters. The a4dVar forecast skill is shown to be 30-40% better than the skill of the sequential assimilaiton method based on optimal interpolation which is currently used in operations. Prospects of further development of the a4dVar methods in regional applications are discussed.

  1. Assimilation of Remotely Sensed Evaporative Fraction for Improved Agricultural Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.

    2017-12-01

    Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.

  2. Improvement of electrical resistivity tomography for leachate injection monitoring.

    PubMed

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Improvement of electrical resistivity tomography for leachate injection monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d

    2010-03-15

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less

  4. Practices to enable the geophysical research spectrum: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.

  5. Hydrologic Process Regularization for Improved Geoelectrical Monitoring of a Lab-Scale Saline Tracer Experiment

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.

    2016-12-01

    Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time-steps, POD outperformed CTL in terms of mass recovery accuracy rates. POD is computationally superior requiring only 2.5 mins to complete each inversion compared to 3 hours for CTL to do the same.

  6. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    NASA Astrophysics Data System (ADS)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  7. Near constant-time optimal piecewise LDR to HDR inverse tone mapping

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Su, Guan-Ming; Yin, Peng

    2015-02-01

    In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.

  8. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  9. An inverse radiation model for optical determination of temperature and species concentration: Development and validation

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Modest, Michael F.; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements of temperature and gas concentration.

  10. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    NASA Astrophysics Data System (ADS)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  11. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    NASA Astrophysics Data System (ADS)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-07-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  12. Inverse estimation of parameters for an estuarine eutrophication model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less

  13. Phase-locked bifrequency Raman lasing in a double-Λ system

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Shahriar, M. S.

    2018-05-01

    We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.

  14. On the adequacy of identified Cole Cole models

    NASA Astrophysics Data System (ADS)

    Xiang, Jianping; Cheng, Daizhan; Schlindwein, F. S.; Jones, N. B.

    2003-06-01

    The Cole-Cole model has been widely used to interpret electrical geophysical data. Normally an iterative computer program is used to invert the frequency domain complex impedance data and simple error estimation is obtained from the squared difference of the measured (field) and calculated values over the full frequency range. Recently a new direct inversion algorithm was proposed for the 'optimal' estimation of the Cole-Cole parameters, which differs from existing inversion algorithms in that the estimated parameters are direct solutions of a set of equations without the need for an initial guess for initialisation. This paper first briefly investigates the advantages and disadvantages of the new algorithm compared to the standard Levenberg-Marquardt "ridge regression" algorithm. Then, and more importantly, we address the adequacy of the models resulting from both the "ridge regression" and the new algorithm, using two different statistical tests and we give objective statistical criteria for acceptance or rejection of the estimated models. The first is the standard χ2 technique. The second is a parameter-accuracy based test that uses a joint multi-normal distribution. Numerical results that illustrate the performance of both testing methods are given. The main goals of this paper are (i) to provide the source code for the new ''direct inversion'' algorithm in Matlab and (ii) to introduce and demonstrate two methods to determine the reliability of a set of data before data processing, i.e., to consider the adequacy of the resulting Cole-Cole model.

  15. Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.

    NASA Astrophysics Data System (ADS)

    Xia, Jake Jiqing

    The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  16. Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation

    NASA Astrophysics Data System (ADS)

    Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.

    2012-12-01

    Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below the water table, as well as an estimate of the minimum DNAPL saturation changes necessary for an observable response from ERT.

  17. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation.

    PubMed

    Aguilar, I; Misztal, I; Legarra, A; Tsuruta, S

    2011-12-01

    Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries. © 2011 Blackwell Verlag GmbH.

  18. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is influenced by the strength of measurement errors and it is not significantly diminished or increased by adding noisy reciprocal information.

  19. Classifying the Sizes of Explosive Eruptions using Tephra Deposits: The Advantages of a Numerical Inversion Approach

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L.; White, J.

    2015-12-01

    Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.

  20. A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Zuo, B.; Hu, X.; Li, H.

    2011-12-01

    A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.

  1. Multi-modal and targeted imaging improves automated mid-brain segmentation

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; D'Haese, Pierre F.; Pallavaram, Srivatsan; Newton, Allen T.; Claassen, Daniel O.; Dawant, Benoit M.; Landman, Bennett A.

    2017-02-01

    The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7T are used, but it is not feasible to scan clinical patients in those scanners. Targeted imaging sequences at 3T such as F-GATIR, and other optimized inversion recovery sequences, have been presented which enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7T can be used to accurately segment these structures at 3T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice coefficient over 0.88 and a mean surface distance less than 1.0mm was achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a Dice over 0.75 and a mean surface distance less than 1.2mm was achieved using a combination of T1 and FGATIR imaging sequences. In the substantia nigra and sub-thalamic nucleus a Dice coefficient of over 0.6 and a mean surface distance of less than 1.0mm was achieved using the optimized inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together produced significantly improved segmentation results than any individual modality (p<0.05 wilcox sign-rank test).

  2. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  3. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.

    PubMed

    Zaitsev, M; Steinhoff, S; Shah, N J

    2003-06-01

    A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.

  4. Optimization of CO2 Surface Flux using GOSAT Total Column CO2: First Results for 2009-2010

    NASA Astrophysics Data System (ADS)

    Basu, S.; Houweling, S.

    2011-12-01

    Constraining surface flux estimates of CO2 using satellite measurements has been one of the long-standing goals of the atmospheric inverse modeling community. We present the first results of inverting GOSAT total column CO2 measurements for obtaining global monthly CO2 flux maps over one year (June 2009 to May 2010). We use the SRON RemoTeC retrieval of CO2 for our inversions. The SRON retrieval has been shown to have no bias when compared to TCCON total column measurements, and latitudinal gradients of the retrieved CO2 are consistent with gradients deduced from the surface flask network [Butz et al, 2011]. This makes this retrieval an ideal candidate for atmospheric inversions, which are highly sensitive to spurious gradients. Our inversion system is analogous to the CarbonTracker (CT) data assimilation system; it is initialized with the prior CO2 fluxes of CT, and uses the same atmospheric transport model, i.e., TM5. The two major differences are (a) we add GOSAT CO2 data to the inversion in addition to flask data, and (b) we use a 4DVAR optimization system instead of a Kalman filter. We compare inversions using (a) only GOSAT total column CO2 measurements, (b) only surface flask CO2 measurements, and (c) the joint data set of GOSAT and surface flask measurements. We validate GOSAT-only inversions against the NOAA surface flask network and joint inversions against CONTRAIL and other aircraft campaigns. We see that inverted fluxes from a GOSAT-only inversion are consistent with fluxes from a stations-only inversion, reaffirming the low biases in SRON retrievals. From the joint inversion, we estimate the amount of added constraints upon adding GOSAT total column measurements to existing surface layer measurements.

  5. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    PubMed

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  6. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  7. Fast-kick-off monotonically convergent algorithm for searching optimal control fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel

    2011-09-15

    This Rapid Communication presents a fast-kick-off search algorithm for quickly finding optimal control fields in the state-to-state transition probability control problems, especially those with poorly chosen initial control fields. The algorithm is based on a recently formulated monotonically convergent scheme [T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010)]. Specifically, the local temporal refinement of the control field at each iteration is weighted by a fractional inverse power of the instantaneous overlap of the backward-propagating wave function, associated with the target state and the control field from the previous iteration, and the forward-propagating wave function, associated with themore » initial state and the concurrently refining control field. Extensive numerical simulations for controls of vibrational transitions and ultrafast electron tunneling show that the new algorithm not only greatly improves the search efficiency but also is able to attain good monotonic convergence quality when further frequency constraints are required. The algorithm is particularly effective when the corresponding control dynamics involves a large number of energy levels or ultrashort control pulses.« less

  8. Estimate the effective connectivity in multi-coupled neural mass model using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile

    2017-03-01

    Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.

  9. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  10. Fast myopic 2D-SIM super resolution microscopy with joint modulation pattern estimation

    NASA Astrophysics Data System (ADS)

    Orieux, François; Loriette, Vincent; Olivo-Marin, Jean-Christophe; Sepulveda, Eduardo; Fragola, Alexandra

    2017-12-01

    Super-resolution in structured illumination microscopy (SIM) is obtained through de-aliasing of modulated raw images, in which high frequencies are measured indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images are often too slow for dynamic studies. Moreover, as experimental conditions change with time, modulation parameters must be estimated within the images. This paper tackles the problem of image reconstruction for fast super resolution in SIM, where the number of available raw images is reduced to four instead of nine or fifteen. Within an optimization framework, the solution is inferred via a joint myopic criterion for image and modulation (or acquisition) parameters, leading to what is frequently called a myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the nonlinear criterion, numerically calculated by means of a block coordinate optimization algorithm. The effectiveness of the proposed method is demonstrated for simulated and experimental examples. The results show precise estimation of the modulation parameters jointly with the reconstruction of the super resolution image. The method also shows its effectiveness for thick biological samples.

  11. Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms.

    PubMed

    Ghobadi, Kimia; Ghaffari, Hamid R; Aleman, Dionne M; Jaffray, David A; Ruschin, Mark

    2012-06-01

    The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife(®) Perfexion™ (PFX) for intracranial targets. The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to +0.03) and +0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V(100)) between forward and inverse plans was 0.2% (range: -2.4% to +2.0%). After plan renormalization for equivalent coverage (i.e., V(100)), the mean difference in dose to 1 mm(3) of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to +2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to +91 min) when normalized to a calibration dose rate of 3.5 Gy/min. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity. © 2012 American Association of Physicists in Medicine.

  12. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology, Finland), Masahiro Yamamoto (University of Tokyo, Japan), Gunther Uhlmann (University of Washington) and Jun Zou (Chinese University of Hong Kong). IPIA is a recently formed organization that intends to promote the field of inverse problem at all levels. See http://www.inverse-problems.net/. IPIA awarded the first Calderón prize at the opening of the conference to Matti Lassas (see first article in the Proceedings). There was also a general meeting of IPIA during the workshop. This was probably the largest conference ever on IP with 350 registered participants. The program consisted of 18 invited speakers and the Calderón Prize Lecture given by Matti Lassas. Another integral part of the program was the more than 60 mini-symposia that covered a broad spectrum of the theory and applications of inverse problems, focusing on recent developments in medical imaging, seismic exploration, remote sensing, industrial applications, numerical and regularization methods in inverse problems. Another important related topic was image processing in particular the advances which have allowed for significant enhancement of widely used imaging techniques. For more details on the program see the web page: http://www.pims.math.ca/science/2007/07aip. These proceedings reflect the broad spectrum of topics covered in AIP 2007. The conference and these proceedings would not have happened without the contributions of many people. I thank all my fellow organizers, the invited speakers, the speakers and organizers of mini-symposia for making this an exciting and vibrant event. I also thank PIMS, NSF and MITACS for their generous financial support. I take this opportunity to thank the PIMS staff, particularly Ken Leung, for making the local arrangements. Also thanks are due to Stephen McDowall for his help in preparing the schedule of the conference and Xiaosheng Li for the help in preparing these proceedings. I also would like to thank the contributors of this volume and the referees. Finally, many thanks are due to Graham Douglas and Elaine Longden-Chapman for suggesting publication in Journal of Physics: Conference Series.

  13. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; Hooper, A. J.

    2017-12-01

    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform slip, embedded in a isotropic elastic half-space. However, the software architecture allows the user to easily add any other analytical or numerical forward models to calculate displacements at the surface. GBIS is delivered with a detailed user manual and three synthetic datasets for testing and practical training.

  14. Time-lapse seismic waveform inversion for monitoring near-surface microbubble injection

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Jang, U.; Lumley, D. E.; Mouri, T.; Nakatsukasa, M.; Takanashi, M.

    2016-12-01

    Seismic monitoring of the Earth provides valuable information regarding the time-varying changes in subsurface physical properties that are caused by natural or man-made processes. However, the resulting changes in subsurface properties are often small both in terms of magnitude and spatial extent, leading to seismic data differences that are difficult to detect at typical non-repeatable noise levels. In order to better extract information from the time-lapse data, exploiting the full seismic waveform information can be critical, since detected amplitude or traveltime changes may be minimal. We explore methods of waveform inversion that estimate an optimal model of time-varying elastic parameters at the wavelength scale to fit the observed time-lapse seismic data with modelled waveforms based on numerical solutions of the wave equation. We apply acoustic waveform inversion to time-lapse cross-well monitoring surveys of 64-m well intervals, and estimate the velocity changes that occur during the injection of microbubble water into shallow unconsolidated Quaternary sediments in the Kanto basin of Japan at a depth of 25 m below the surface. Microbubble water is comprised of water infused with air bubbles of a diameter less than 0.1mm, and may be useful to improve resistance to ground liquefaction during major earthquakes. Monitoring the space-time distribution and physical properties of microbubble injection is therefore important to understanding the full potential of the technique. Repeated monitoring surveys (>10) reveal transient behaviours in waveforms during microbubble injection. Time-lapse waveform inversion detects changes in P-wave velocity of less than 1 percent, initially as velocity increases and subsequently as velocity decreases. The velocity changes are mainly imaged within a thin (1 m) layer between the injection and the receiver well, inferring the fluid-flow influence of the fluvial sediment depositional environment. The resulting velocity models fit the observed waveforms very well, supporting the validity of the estimated velocity changes. In order to further improve the estimation of velocity changes, we investigate the limitations of acoustic waveform inversion, and apply elastic waveform inversion to the time-lapse data set.

  15. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.

  16. Numerical Inverse Scattering for the Toda Lattice

    NASA Astrophysics Data System (ADS)

    Bilman, Deniz; Trogdon, Thomas

    2017-06-01

    We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.

  17. Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization

    NASA Astrophysics Data System (ADS)

    Yamagishi, Masao; Yamada, Isao

    2017-04-01

    Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.

  18. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  19. Modified dwell time optimization model and its applications in subaperture polishing.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen

    2014-05-20

    The optimization of dwell time is an important procedure in deterministic subaperture polishing. We present a modified optimization model of dwell time by iterative and numerical method, assisted by extended surface forms and tool paths for suppressing the edge effect. Compared with discrete convolution and linear equation models, the proposed model has essential compatibility with arbitrary tool paths, multiple tool influence functions (TIFs) in one optimization, and asymmetric TIFs. The emulational fabrication of a Φ200  mm workpiece by the proposed model yields a smooth, continuous, and non-negative dwell time map with a root-mean-square (RMS) convergence rate of 99.6%, and the optimization costs much less time. By the proposed model, influences of TIF size and path interval to convergence rate and polishing time are optimized, respectively, for typical low and middle spatial-frequency errors. Results show that (1) the TIF size is nonlinear inversely proportional to convergence rate and polishing time. A TIF size of ~1/7 workpiece size is preferred; (2) the polishing time is less sensitive to path interval, but increasing the interval markedly reduces the convergence rate. A path interval of ~1/8-1/10 of the TIF size is deemed to be appropriate. The proposed model is deployed on a JR-1800 and MRF-180 machine. Figuring results of Φ920  mm Zerodur paraboloid and Φ100  mm Zerodur plane by them yield RMS of 0.016λ and 0.013λ (λ=632.8  nm), respectively, and thereby validate the feasibility of proposed dwell time model used for subaperture polishing.

  20. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  1. Reader reaction to "a robust method for estimating optimal treatment regimes" by Zhang et al. (2012).

    PubMed

    Taylor, Jeremy M G; Cheng, Wenting; Foster, Jared C

    2015-03-01

    A recent article (Zhang et al., 2012, Biometrics 168, 1010-1018) compares regression based and inverse probability based methods of estimating an optimal treatment regime and shows for a small number of covariates that inverse probability weighted methods are more robust to model misspecification than regression methods. We demonstrate that using models that fit the data better reduces the concern about non-robustness for the regression methods. We extend the simulation study of Zhang et al. (2012, Biometrics 168, 1010-1018), also considering the situation of a larger number of covariates, and show that incorporating random forests into both regression and inverse probability weighted based methods improves their properties. © 2014, The International Biometric Society.

  2. Applications of Generalized Derivatives to Viscoelasticity.

    DTIC Science & Technology

    1979-11-01

    Integration Used to Evaluate the Inverse Transform 78 B-i Schematic of the Half-Space of Newtonian Fluid Bounded by a "Wetted" Surface 96 C-I The...of the response at discrete frequencies. The inverse transform of the response is evaluated numerically to produce the time history. The major drawback...of this method is the arduous task of calculating the inverse transform for every point in time at which the value of the response is required. The

  3. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208

  4. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.

    PubMed

    Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders

    2013-10-28

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.

  5. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    NASA Astrophysics Data System (ADS)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  6. A three-step Maximum-A-Posterior probability method for InSAR data inversion of coseismic rupture with application to four recent large earthquakes in Asia

    NASA Astrophysics Data System (ADS)

    Sun, J.; Shen, Z.; Burgmann, R.; Liang, F.

    2012-12-01

    We develop a three-step Maximum-A-Posterior probability (MAP) method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic solutions of earthquake rupture. The method originates from the Fully Bayesian Inversion (FBI) and the Mixed linear-nonlinear Bayesian inversion (MBI) methods , shares the same a posterior PDF with them and keeps most of their merits, while overcoming its convergence difficulty when large numbers of low quality data are used and improving the convergence rate greatly using optimization procedures. A highly efficient global optimization algorithm, Adaptive Simulated Annealing (ASA), is used to search for the maximum posterior probability in the first step. The non-slip parameters are determined by the global optimization method, and the slip parameters are inverted for using the least squares method without positivity constraint initially, and then damped to physically reasonable range. This step MAP inversion brings the inversion close to 'true' solution quickly and jumps over local maximum regions in high-dimensional parameter space. The second step inversion approaches the 'true' solution further with positivity constraints subsequently applied on slip parameters using the Monte Carlo Inversion (MCI) technique, with all parameters obtained from step one as the initial solution. Then the slip artifacts are eliminated from slip models in the third step MAP inversion with fault geometry parameters fixed. We first used a designed model with 45 degree dipping angle and oblique slip, and corresponding synthetic InSAR data sets to validate the efficiency and accuracy of method. We then applied the method on four recent large earthquakes in Asia, namely the 2010 Yushu, China earthquake, the 2011 Burma earthquake, the 2011 New Zealand earthquake and the 2008 Qinghai, China earthquake, and compared our results with those results from other groups. Our results show the effectiveness of the method in earthquake studies and a number of advantages of it over other methods. The details will be reported on the meeting.

  7. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  8. Inference of the sparse kinetic Ising model using the decimation method

    NASA Astrophysics Data System (ADS)

    Decelle, Aurélien; Zhang, Pan

    2015-05-01

    In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.

  9. Inverse Statistics and Asset Allocation Efficiency

    NASA Astrophysics Data System (ADS)

    Bolgorian, Meysam

    In this paper using inverse statistics analysis, the effect of investment horizon on the efficiency of portfolio selection is examined. Inverse statistics analysis is a general tool also known as probability distribution of exit time that is used for detecting the distribution of the time in which a stochastic process exits from a zone. This analysis was used in Refs. 1 and 2 for studying the financial returns time series. This distribution provides an optimal investment horizon which determines the most likely horizon for gaining a specific return. Using samples of stocks from Tehran Stock Exchange (TSE) as an emerging market and S&P 500 as a developed market, effect of optimal investment horizon in asset allocation is assessed. It is found that taking into account the optimal investment horizon in TSE leads to more efficiency for large size portfolios while for stocks selected from S&P 500, regardless of portfolio size, this strategy does not only not produce more efficient portfolios, but also longer investment horizons provides more efficiency.

  10. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  11. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  12. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  13. A Face Inversion Effect without a Face

    ERIC Educational Resources Information Center

    Brandman, Talia; Yovel, Galit

    2012-01-01

    Numerous studies have attributed the face inversion effect (FIE) to configural processing of internal facial features in upright but not inverted faces. Recent findings suggest that face mechanisms can be activated by faceless stimuli presented in the context of a body. Here we asked whether faceless stimuli with or without body context may induce…

  14. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  15. Viscoacoustic anisotropic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli

    2017-01-01

    A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.

  16. Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui

    2017-09-01

    We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.

  17. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Spectral optimized asymmetric segmented phase-only correlation filter.

    PubMed

    Leonard, I; Alfalou, A; Brosseau, C

    2012-05-10

    We suggest a new type of optimized composite filter, i.e., the asymmetric segmented phase-only filter (ASPOF), for improving the effectiveness of a VanderLugt correlator (VLC) when used for face identification. Basically, it consists in merging several reference images after application of a specific spectral optimization method. After segmentation of the spectral filter plane to several areas, each area is assigned to a single winner reference according to a new optimized criterion. The point of the paper is to show that this method offers a significant performance improvement on standard composite filters for face identification. We first briefly revisit composite filters [adapted, phase-only, inverse, compromise optimal, segmented, minimum average correlation energy, optimal trade-off maximum average correlation, and amplitude-modulated phase-only (AMPOF)], which are tools of choice for face recognition based on correlation techniques, and compare their performances with those of the ASPOF. We illustrate some of the drawbacks of current filters for several binary and grayscale image identifications. Next, we describe the optimization steps and introduce the ASPOF that can overcome these technical issues to improve the quality and the reliability of the correlation-based decision. We derive performance measures, i.e., PCE values and receiver operating characteristic curves, to confirm consistency of the results. We numerically find that this filter increases the recognition rate and decreases the false alarm rate. The results show that the discrimination of the ASPOF is comparable to that of the AMPOF, but the ASPOF is more robust than the trade-off maximum average correlation height against rotation and various types of noise sources. Our method has several features that make it amenable to experimental implementation using a VLC.

  19. pyGIMLi: An open-source library for modelling and inversion in geophysics

    NASA Astrophysics Data System (ADS)

    Rücker, Carsten; Günther, Thomas; Wagner, Florian M.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.

  20. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  1. An optimal resolved rate law for kindematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution was found to cause large joint rates in some case. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to nonplanar manipulators.

  2. Inexact trajectory planning and inverse problems in the Hamilton–Pontryagin framework

    PubMed Central

    Burnett, Christopher L.; Holm, Darryl D.; Meier, David M.

    2013-01-01

    We study a trajectory-planning problem whose solution path evolves by means of a Lie group action and passes near a designated set of target positions at particular times. This is a higher-order variational problem in optimal control, motivated by potential applications in computational anatomy and quantum control. Reduction by symmetry in such problems naturally summons methods from Lie group theory and Riemannian geometry. A geometrically illuminating form of the Euler–Lagrange equations is obtained from a higher-order Hamilton–Pontryagin variational formulation. In this context, the previously known node equations are recovered with a new interpretation as Legendre–Ostrogradsky momenta possessing certain conservation properties. Three example applications are discussed as well as a numerical integration scheme that follows naturally from the Hamilton–Pontryagin principle and preserves the geometric properties of the continuous-time solution. PMID:24353467

  3. Ambiguity resolution for satellite Doppler positioning systems

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Marini, J. W.

    1977-01-01

    A test for ambiguity resolution was derived which was the most powerful in the sense that it maximized the probability of a correct decision. When systematic error sources were properly included in the least squares reduction process to yield an optimal solution, the test reduced to choosing the solution which provided the smaller valuation of the least squares loss function. When systematic error sources were ignored in the least squares reduction, the most powerful test was a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudo-inverse of a reduced rank square matrix. A formula is presented for computing the power of the most powerful test. A numerical example is included in which the power of the test is computed for a situation which may occur during an actual satellite aided search and rescue mission.

  4. Model-based assist feature insertion for sub-40nm memory device

    NASA Astrophysics Data System (ADS)

    Suh, Sungsoo; Lee, Suk-joo; Choi, Seong-woon; Lee, Sung-Woo; Park, Chan-hoon

    2009-04-01

    Many issues need to be resolved for a production-worthy model based assist feature insertion flow for single and double exposure patterning process to extend low k1 process at 193 nm immersion technology. Model based assist feature insertion is not trivial to implement either for single and double exposure patterning compared to rule based methods. As shown in Fig. 1, pixel based mask inversion technology in itself has difficulties in mask writing and inspection although it presents as one of key technology to extend single exposure for contact layer. Thus far, inversion technology is tried as a cooptimization of target mask to simultaneously generate optimized main and sub-resolution assists features for a desired process window. Alternatively, its technology can also be used to optimize for a target feature after an assist feature types are inserted in order to simplify the mask complexity. Simplification of inversion mask is one of major issue with applying inversion technology to device development even if a smaller mask feature can be fabricated since the mask writing time is also a major factor. As shown in Figure 2, mask writing time may be a limiting factor in determining whether or not an inversion solution is viable. It can be reasoned that increased number of shot counts relates to increase in margin for inversion methodology. On the other hand, there is a limit on how complex a mask can be in order to be production worthy. There is also source and mask co-optimization which influences the final mask patterns and assist feature sizes and positions for a given target. In this study, we will discuss assist feature insertion methods for sub 40-nm technology.

  5. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  6. 3D electromagnetic modelling of a TTI medium and TTI effects in inversion

    NASA Astrophysics Data System (ADS)

    Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien

    2016-04-01

    We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.

  7. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  8. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  9. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  10. Topology optimization under stochastic stiffness

    NASA Astrophysics Data System (ADS)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.

  11. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.

    2018-06-01

    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1<ω <- 1/3. Our calculations are restricted to ansatz: ω = - 1 (the cosmological constant regime) and ω =- 2/3 (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  12. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  13. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun

    2017-12-01

    At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.

  14. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  15. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.

    PubMed

    Pardo-Montero, Juan; Fenwick, John D

    2010-06-01

    The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.

  16. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    NASA Astrophysics Data System (ADS)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  17. Redundant interferometric calibration as a complex optimization problem

    NASA Astrophysics Data System (ADS)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  18. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  19. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  20. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  1. COED Transactions, Vol. IX, No. 2, February 1977. Prism: An Educational Aide to Symbolic Differentiation and Simplification of Algebraic Expressions.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    A computer program for numeric and symbolic manipulation and the methodology underlying its development are presented. Some features of the program are: an option for implied multiplication; computation of higher-order derivatives; differentiation of 26 different trigonometric, hyperbolic, inverse trigonometric, and inverse hyperbolic functions;…

  2. Evidence for composite cost functions in arm movement planning: an inverse optimal control approach.

    PubMed

    Berret, Bastien; Chiovetto, Enrico; Nori, Francesco; Pozzo, Thierry

    2011-10-01

    An important issue in motor control is understanding the basic principles underlying the accomplishment of natural movements. According to optimal control theory, the problem can be stated in these terms: what cost function do we optimize to coordinate the many more degrees of freedom than necessary to fulfill a specific motor goal? This question has not received a final answer yet, since what is optimized partly depends on the requirements of the task. Many cost functions were proposed in the past, and most of them were found to be in agreement with experimental data. Therefore, the actual principles on which the brain relies to achieve a certain motor behavior are still unclear. Existing results might suggest that movements are not the results of the minimization of single but rather of composite cost functions. In order to better clarify this last point, we consider an innovative experimental paradigm characterized by arm reaching with target redundancy. Within this framework, we make use of an inverse optimal control technique to automatically infer the (combination of) optimality criteria that best fit the experimental data. Results show that the subjects exhibited a consistent behavior during each experimental condition, even though the target point was not prescribed in advance. Inverse and direct optimal control together reveal that the average arm trajectories were best replicated when optimizing the combination of two cost functions, nominally a mix between the absolute work of torques and the integrated squared joint acceleration. Our results thus support the cost combination hypothesis and demonstrate that the recorded movements were closely linked to the combination of two complementary functions related to mechanical energy expenditure and joint-level smoothness.

  3. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn; Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn; Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate newmore » cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required. - Highlights: • Higher-order cubature points for degrees 7 to 9 are developed. • The effects of quadrature rule on the mass and stiffness matrices has been conducted. • The cubature points have always positive integration weights. • Freeing from the inversion of a wide bandwidth mass matrix. • The accuracy of the TSEM has been improved in about one order of magnitude.« less

  4. Full Waveform Inversion Using Student's t Distribution: a Numerical Study for Elastic Waveform Inversion and Simultaneous-Source Method

    NASA Astrophysics Data System (ADS)

    Jeong, Woodon; Kang, Minji; Kim, Shinwoong; Min, Dong-Joo; Kim, Won-Ki

    2015-06-01

    Seismic full waveform inversion (FWI) has primarily been based on a least-squares optimization problem for data residuals. However, the least-squares objective function can suffer from its weakness and sensitivity to noise. There have been numerous studies to enhance the robustness of FWI by using robust objective functions, such as l 1-norm-based objective functions. However, the l 1-norm can suffer from a singularity problem when the residual wavefield is very close to zero. Recently, Student's t distribution has been applied to acoustic FWI to give reasonable results for noisy data. Student's t distribution has an overdispersed density function compared with the normal distribution, and is thus useful for data with outliers. In this study, we investigate the feasibility of Student's t distribution for elastic FWI by comparing its basic properties with those of the l 2-norm and l 1-norm objective functions and by applying the three methods to noisy data. Our experiments show that the l 2-norm is sensitive to noise, whereas the l 1-norm and Student's t distribution objective functions give relatively stable and reasonable results for noisy data. When noise patterns are complicated, i.e., due to a combination of missing traces, unexpected outliers, and random noise, FWI based on Student's t distribution gives better results than l 1- and l 2-norm FWI. We also examine the application of simultaneous-source methods to acoustic FWI based on Student's t distribution. Computing the expectation of the coefficients of gradient and crosstalk noise terms and plotting the signal-to-noise ratio with iteration, we were able to confirm that crosstalk noise is suppressed as the iteration progresses, even when simultaneous-source FWI is combined with Student's t distribution. From our experiments, we conclude that FWI based on Student's t distribution can retrieve subsurface material properties with less distortion from noise than l 1- and l 2-norm FWI, and the simultaneous-source method can be adopted to improve the computational efficiency of FWI based on Student's t distribution.

  5. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie

    2016-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.

  6. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.

    2015-05-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.

  7. Time-reversal and Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  8. Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods

    DTIC Science & Technology

    2016-11-16

    determinant of the inverse Fisher information matrix which is proportional to the global error volume. If a practitioner has a suitable...pro- ceeds from the determinant of the inverse Fisher information matrix which is proportional to the global error volume. If a practitioner has a...design of statistical estimators (i.e. sensors) as their respective inverses act as lower bounds to the (co)variances of the subject estimator, a property

  9. CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties

    DTIC Science & Technology

    2017-03-01

    inverse tangent characteristics at varying input voltage (VIN) [Fig. 3], thereby it is suitable for Kernel function implementation. By varying bias...cost function/constraint variables are generated based on inverse transform on CDF. In Fig. 5, F-1(u) for uniformly distributed random number u [0, 1...extracts random samples of x varying with CDF of F(x). In Fig. 6, we present a successive approximation (SA) circuit to evaluate inverse

  10. Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

    NASA Astrophysics Data System (ADS)

    Jiang, Jinpeng; Zhu, Peimin

    2018-05-01

    Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

  11. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis

    NASA Astrophysics Data System (ADS)

    Cao, Pei; Qi, Shuai; Tang, J.

    2018-03-01

    The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.

  12. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    NASA Astrophysics Data System (ADS)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  13. CSI-EPT in Presence of RF-Shield for MR-Coils.

    PubMed

    Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano

    2017-07-01

    Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.

  14. Is 3D true non linear traveltime tomography reasonable ?

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Virieux, J.

    2003-04-01

    The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.

  15. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  16. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit function, the adjoint problem is solved. The conservative finite-difference schemes for solving the direct and adjoint problems in the approximation of shallow water are constructed. Results of numerical experiments of the tsunami source reconstruction are presented and discussed. We show that using a combination of three different types of data allows one to increase the stability and efficiency of tsunami source reconstruction. Non-profit organization WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) in collaboration with Informap software development department developed the Integrated Tsunami Research and Information System (ITRIS) to simulate tsunami waves and earthquakes, river course changes, coastal zone floods, and risk estimates for coastal constructions at wave run-ups and earthquakes. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 'Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics') and interdisciplinary project of SB RAS 14 'Inverse Problems and Applications: Theory, Algorithms, Software'.

  17. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.

    PubMed

    Gómez, Pablo; Schützenberger, Anne; Kniesburges, Stefan; Bohr, Christopher; Döllinger, Michael

    2018-06-01

    This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories' fundamental frequency matches the one of the experimental trajectories in [Formula: see text] of the recordings. The relative error of the model trajectory amplitudes is on average [Formula: see text]. The experiments feature a mean subglottal pressure of 10.16 (SD [Formula: see text]) [Formula: see text]; in the model, it was on average 7.61 (SD [Formula: see text]) [Formula: see text]. A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD [Formula: see text]) [Formula: see text] or [Formula: see text]. A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.

  18. Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics

    NASA Astrophysics Data System (ADS)

    Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane

    2014-10-01

    This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...

  19. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.

    PubMed

    Rohani, S Alireza; Ghomashchi, Soroush; Agrawal, Sumit K; Ladak, Hanif M

    2017-03-01

    Finite-element models of the tympanic membrane are sensitive to the Young's modulus of the pars tensa. The aim of this work is to estimate the Young's modulus under a different experimental paradigm than currently used on the human tympanic membrane. These additional values could potentially be used by the auditory biomechanics community for building consensus. The Young's modulus of the human pars tensa was estimated through inverse finite-element modelling of an in-situ pressurization experiment. The experiments were performed on three specimens with a custom-built pressurization unit at a quasi-static pressure of 500 Pa. The shape of each tympanic membrane before and after pressurization was recorded using a Fourier transform profilometer. The samples were also imaged using micro-computed tomography to create sample-specific finite-element models. For each sample, the Young's modulus was then estimated by numerically optimizing its value in the finite-element model so simulated pressurized shapes matched experimental data. The estimated Young's modulus values were 2.2 MPa, 2.4 MPa and 2.0 MPa, and are similar to estimates obtained using in-situ single-point indentation testing. The estimates were obtained under the assumptions that the pars tensa is linearly elastic, uniform, isotropic with a thickness of 110 μm, and the estimates are limited to quasi-static loading. Estimates of pars tensa Young's modulus are sensitive to its thickness and inclusion of the manubrial fold. However, they do not appear to be sensitive to optimization initialization, height measurement error, pars flaccida Young's modulus, and tympanic membrane element type (shell versus solid). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  1. Improved dark blood late gadolinium enhancement (DB-LGE) imaging using an optimized joint inversion preparation and T2 magnetization preparation.

    PubMed

    Basha, Tamer A; Tang, Maxine C; Tsao, Connie; Tschabrunn, Cory M; Anter, Elad; Manning, Warren J; Nezafat, Reza

    2018-01-01

    To develop a dark blood-late gadolinium enhancement (DB-LGE) sequence that improves scar-blood contrast and delineation of scar region. The DB-LGE sequence uses an inversion pulse followed by T 2 magnetization preparation to suppress blood and normal myocardium. Time delays inserted after preparation pulses and T 2 -magnetization-prep duration are used to adjust tissue contrast. Selection of these parameters was optimized using numerical simulations and phantom experiments. We evaluated DB-LGE in 9 swine and 42 patients (56 ± 14 years, 33 male). Improvement in scar-blood contrast and overall image quality was subjectively evaluated by two independent readers (1 = poor, 4 = excellent). The signal ratios among scar, blood, and myocardium were compared. Simulations and phantom studies demonstrated that simultaneous nulling of myocardium and blood can be achieved by selecting appropriate timing parameters. The scar-blood contrast score was significantly higher for DB-LGE (P < 0.001) with no significant difference in overall image quality (P > 0.05). Scar-blood signal ratios for DB-LGE versus LGE were 5.0 ± 2.8 versus 1.5 ± 0.5 (P < 0.001) for patients, and 2.2 ± 0.7 versus 1.0 ± 0.4 (P = 0.0023) for animals. Scar-myocardium signal ratios were 5.7 ± 2.9 versus 6.3 ± 2.6 (P = 0.35) for patients, and 3.7 ± 1.1 versus 4.1 ± 2.0 (P = 0.60) for swine. The DB-LGE sequence simultaneously reduces normal myocardium and blood signal intensity, thereby enhancing scar-blood contrast while preserving scar-myocardium contrast. Magn Reson Med 79:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. An optimal resolved rate law for kinematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.

  3. Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2008-03-01

    This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.

  4. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  5. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.

  6. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  7. Modelling night-time ecosystem respiration by a constrained source optimization method

    Treesearch

    Chun-Tai Lai; Gabriel Katul; John Butnor; David Ellsworth; Ram Oren

    2002-01-01

    One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night-time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse...

  8. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  9. Next-generation acceleration and code optimization for light transport in turbid media using GPUs

    PubMed Central

    Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar

    2010-01-01

    A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498

  10. An inverse approach to constraining strain and vorticity using rigid clast shape preferred orientation data

    NASA Astrophysics Data System (ADS)

    Davis, Joshua R.; Giorgis, Scott

    2014-11-01

    We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.

  11. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  12. Inverse design of multicomponent assemblies

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-03-01

    Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

  13. EDITORIAL: Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications

    NASA Astrophysics Data System (ADS)

    Dorn, O.; Lesselier, D.

    2010-07-01

    Inverse problems in electromagnetics have a long history and have stimulated exciting research over many decades. New applications and solution methods are still emerging, providing a rich source of challenging topics for further investigation. The purpose of this special issue is to combine descriptions of several such developments that are expected to have the potential to fundamentally fuel new research, and to provide an overview of novel methods and applications for electromagnetic inverse problems. There have been several special sections published in Inverse Problems over the last decade addressing fully, or partly, electromagnetic inverse problems. Examples are: Electromagnetic imaging and inversion of the Earth's subsurface (Guest Editors: D Lesselier and T Habashy) October 2000 Testing inversion algorithms against experimental data (Guest Editors: K Belkebir and M Saillard) December 2001 Electromagnetic and ultrasonic nondestructive evaluation (Guest Editors: D Lesselier and J Bowler) December 2002 Electromagnetic characterization of buried obstacles (Guest Editors: D Lesselier and W C Chew) December 2004 Testing inversion algorithms against experimental data: inhomogeneous targets (Guest Editors: K Belkebir and M Saillard) December 2005 Testing inversion algorithms against experimental data: 3D targets (Guest Editors: A Litman and L Crocco) February 2009 In a certain sense, the current issue can be understood as a continuation of this series of special sections on electromagnetic inverse problems. On the other hand, its focus is intended to be more general than previous ones. Instead of trying to cover a well-defined, somewhat specialized research topic as completely as possible, this issue aims to show the broad range of techniques and applications that are relevant to electromagnetic imaging nowadays, which may serve as a source of inspiration and encouragement for all those entering this active and rapidly developing research area. Also, the construction of this special issue is likely to have been different from preceding ones. In addition to the invitations sent to specific research groups involved in electromagnetic inverse problems, the Guest Editors also solicited recommendations, from a large number of experts, of potential authors who were thereupon encouraged to contribute. Moreover, an open call for contributions was published on the homepage of Inverse Problems in order to attract as wide a scope of contributions as possible. This special issue's attempt at generality might also define its limitations: by no means could this collection of papers be exhaustive or complete, and as Guest Editors we are well aware that many exciting topics and potential contributions will be missing. This, however, also determines its very special flavor: besides addressing electromagnetic inverse problems in a broad sense, there were only a few restrictions on the contributions considered for this section. One requirement was plausible evidence of either novelty or the emergent nature of the technique or application described, judged mainly by the referees, and in some cases by the Guest Editors. The technical quality of the contributions always remained a stringent condition of acceptance, final adjudication (possibly questionable either way, not always positive) being made in most cases once a thorough revision process had been carried out. Therefore, we hope that the final result presented here constitutes an interesting collection of novel ideas and applications, properly refereed and edited, which will find its own readership and which can stimulate significant new research in the topics represented. Overall, as Guest Editors, we feel quite fortunate to have obtained such a strong response to the call for this issue and to have a really wide-ranging collection of high-quality contributions which, indeed, can be read from the first to the last page with sustained enthusiasm. A large number of applications and techniques is represented, overall via 16 contributions with 45 authors in total. This shows, in our opinion, that electromagnetic imaging and inversion remain amongst the most challenging and active research areas in applied inverse problems today. Below, we give a brief overview of the contributions included in this issue, ordered alphabetically by the surname of the leading author. 1. The complexity of handling potential randomness of the source in an inverse scattering problem is not minor, and the literature is far from being replete in this configuration. The contribution by G Bao, S N Chow, P Li and H Zhou, `Numerical solution of an inverse medium scattering problem with a stochastic source', exemplifies how to hybridize Wiener chaos expansion with a recursive linearization method in order to solve the stochastic problem as a set of decoupled deterministic ones. 2. In cases where the forward problem is expensive to evaluate, database methods might become a reliable method of choice, while enabling one to deliver more information on the inversion itself. The contribution by S Bilicz, M Lambert and Sz Gyimóthy, `Kriging-based generation of optimal databases as forward and inverse surrogate models', describes such a technique which uses kriging for constructing an efficient database with the goal of achieving an equidistant distribution of points in the measurement space. 3. Anisotropy remains a considerable challenge in electromagnetic imaging, which is tackled in the contribution by F Cakoni, D Colton, P Monk and J Sun, `The inverse electromagnetic scattering problem for anisotropic media', via the fact that transmission eigenvalues can be retrieved from a far-field scattering pattern, yielding, in particular, lower and upper bounds of the index of refraction of the unknown (dielectric anisotropic) scatterer. 4. So-called subspace optimization methods (SOM) have attracted a lot of interest recently in many fields. The contribution by X Chen, `Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium', illustrates how to address a realistic situation in which the medium containing the unknown obstacles is not homogeneous, via blending a properly developed SOM with a finite-element approach to the required Green's functions. 5. H Egger, M Hanke, C Schneider, J Schöberl and S Zaglmayr, in their contribution `Adjoint-based sampling methods for electromagnetic scattering', show how to efficiently develop sampling methods without explicit knowledge of the dyadic Green's function once an adjoint problem has been solved at much lower computational cost. This is demonstrated by examples in demanding propagative and diffusive situations. 6. Passive sensor arrays can be employed to image reflectors from ambient noise via proper migration of cross-correlation matrices into their embedding medium. This is investigated, and resolution, in particular, is considered in detail, as a function of the characteristics of the sensor array and those of the noise, in the contribution by J Garnier and G Papanicolaou, `Resolution analysis for imaging with noise'. 7. A direct reconstruction technique based on the conformal mapping theorem is proposed and investigated in depth in the contribution by H Haddar and R Kress, `Conformal mapping and impedance tomography'. This paper expands on previous work, with inclusions in homogeneous media, convergence results, and numerical illustrations. 8. The contribution by T Hohage and S Langer, `Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems', focuses on a spectral preconditioner intended to accelerate regularized Newton methods as employed for the retrieval of a local inhomogeneity in a three-dimensional vector electromagnetic case, while also illustrating the implementation of a Lepskiĭ-type stopping rule outsmarting a traditional discrepancy principle. 9. Geophysical applications are a rich source of practically relevant inverse problems. The contribution by M Li, A Abubakar and T Habashy, `Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion', deals with a model-based inversion technique for electromagnetic imaging which addresses novel challenges such as multi-physics inversion, and incorporation of prior knowledge, such as in hydrocarbon recovery. 10. Non-stationary inverse problems, considered as a special class of Bayesian inverse problems, are framed via an orthogonal decomposition representation in the contribution by A Lipponen, A Seppänen and J P Kaipio, `Reduced order estimation of nonstationary flows with electrical impedance tomography'. The goal is to simultaneously estimate, from electrical impedance tomography data, certain characteristics of the Navier--Stokes fluid flow model together with time-varying concentration distribution. 11. Non-iterative imaging methods of thin, penetrable cracks, based on asymptotic expansion of the scattering amplitude and analysis of the multi-static response matrix, are discussed in the contribution by W-K Park, `On the imaging of thin dielectric inclusions buried within a half-space', completing, for a shallow burial case at multiple frequencies, the direct imaging of small obstacles (here, along their transverse dimension), MUSIC and non-MUSIC type indicator functions being used for that purpose. 12. The contribution by R Potthast, `A study on orthogonality sampling' envisages quick localization and shaping of obstacles from (portions of) far-field scattering patterns collected at one or more time-harmonic frequencies, via the simple calculation (and summation) of scalar products between those patterns and a test function. This is numerically exemplified for Neumann/Dirichlet boundary conditions and homogeneous/heterogeneous embedding media. 13. The contribution by J D Shea, P Kosmas, B D Van Veen and S C Hagness, `Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms', aims at microwave medical imaging, namely the early detection of breast cancer. The use of contrast enhancing agents is discussed in detail and a number of reconstructions in three-dimensional geometry of realistic numerical breast phantoms are presented. 14. The contribution by D A Subbarayappa and V Isakov, `Increasing stability of the continuation for the Maxwell system', discusses enhanced log-type stability results for continuation of solutions of the time-harmonic Maxwell system, adding a fresh chapter to the interesting story of the study of the Cauchy problem for PDE. 15. In their contribution, `Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime', A Tamburrino, S Ventre and G Rubinacci extend the recently developed monotonicity method toward the application of magnetic induction tomography in order to map surface-breaking defects affecting a damaged metal component. 16. The contribution by F Viani, P Rocca, M Benedetti, G Oliveri and A Massa, `Electromagnetic passive localization and tracking of moving targets in a WSN-infrastructured environment', contributes to what could still be seen as a niche problem, yet both useful in terms of applications, e.g., security, and challenging in terms of methodologies and experiments, in particular, in view of the complexity of environments in which this endeavor is to take place and the variability of the wireless sensor networks employed. To conclude, we would like to thank the able and tireless work of Kate Watt and Zoë Crossman, as past and present Publishers of the Journal, on what was definitely a long and exciting journey (sometimes a little discouraging when reports were not arriving, or authors were late, or Guest Editors overwhelmed) that started from a thorough discussion at the `Manchester workshop on electromagnetic inverse problems' held mid-June 2009, between Kate Watt and the Guest Editors. We gratefully acknowledge the fact that W W Symes gave us his full backing to carry out this special issue and that A K Louis completed it successfully. Last, but not least, the staff of Inverse Problems should be thanked, since they work together to make it a premier journal.

  14. Top-down NOx and SO2 emissions simultaneously estimated from different OMI retrievals and inversion frameworks

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Henze, D. K.; Wang, J.; Xu, X.; Wang, Y.

    2017-12-01

    Quantifying emissions trends of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving understanding of air pollution and the effectiveness of emission control strategies. We estimate long-term (2005-2016) global (2° x 2.5° resolution) and regional (North America and East Asia at 0.5° x 0.667° resolution) NOx emissions using a recently developed hybrid (mass-balance / 4D-Var) method with GEOS-Chem. NASA standard product and DOMINO retrievals of NO2 column are both used to constrain emissions; comparison of these results provides insight into regions where trends are most robust with respect to retrieval uncertainties, and highlights regions where seemingly significant trends are retrieval-specific. To incorporate chemical interactions among species, we extend our hybrid method to assimilate NO2 and SO2 observations and optimize NOx and SO2 emissions simultaneously. Due to chemical interactions, inclusion of SO2 observations leads to 30% grid-scale differences in posterior NOx emissions compared to those constrained only by NO2 observations. When assimilating and optimizing both species in pseudo observation tests, the sum of the normalized mean squared error (compared to the true emissions) of NOx and SO2 posterior emissions are 54-63% smaller than when observing/constraining a single species. NOx and SO2 emissions are also correlated through the amount of fuel combustion. To incorporate this correlation into the inversion, we optimize seven sector-specific emission scaling factors, including industry, energy, residential, aviation, transportation, shipping and agriculture. We compare posterior emissions from inversions optimizing only species' emissions, only sector-based emissions, and both species' and sector-based emissions. In situ measurements of NOx and SO2 are applied to evaluate the performance of these inversions. The impacts of the inversion on PM2.5 and O3 concentrations and premature deaths are also evaluated.

  15. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  16. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  17. Domain-Specific and Domain-General Changes in Children's Development of Number Comparison

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2008-01-01

    The numerical distance effect (inverse relationship between numerical distance and reaction time in relative number comparison tasks) has frequently been used to characterize the mental representation of number. The size of the distance effect decreases over developmental time. However, it is unclear whether this reduction simply reflects…

  18. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1992-01-29

    equations include the Kadomtsev - Petviashvili (K-P), Davey-Stewartson (D-S), 2+1 Toda, and Self-Dual Yang-Mills (SDYM) equations . We have uncovered a... Petviashvili Equation and Associated Constraints, M.J. Ablowitz and Javier Villaroel, Studies in Appl. Math. 85, (1991), 195-213. 12. On the Hamiltonian...nonlinear wave equations of physical significance, multidimensional inverse scattering, numer- ically induced instabilities and chaos, and forced

  19. Iterative computation of generalized inverses, with an application to CMG steering laws

    NASA Technical Reports Server (NTRS)

    Steincamp, J. W.

    1971-01-01

    A cubically convergent iterative method for computing the generalized inverse of an arbitrary M X N matrix A is developed and a FORTRAN subroutine by which the method was implemented for real matrices on a CDC 3200 is given, with a numerical example to illustrate accuracy. Application to a redundant single-gimbal CMG assembly steering law is discussed.

  20. Simultaneous Inversion of UXO Parameters and Background Response

    DTIC Science & Technology

    2012-03-01

    11. SUPPLEMENTARY NO TES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified/Unlimited 12b. DISTRIBUTIO N CODE 13. ABSTRACT (Maximum 200...demonstrated an ability to accurate recover dipole parameters using the simultaneous inversion method. Numerical modeling code for solving Maxwell’s...magnetics 15. NUMBER O F PAGES 160 16. PRICE CODE 17. SECURITY CLASSIFICATIO N OF REPORT Unclassified 18. SECURITY

Top