Sample records for inverse problem due

  1. Analysis of space telescope data collection system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.

  2. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  3. A preprocessing strategy for helioseismic inversions

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, J.; Thompson, M. J.

    1993-05-01

    Helioseismic inversion in general involves considerable computational expense, due to the large number of modes that is typically considered. This is true in particular of the widely used optimally localized averages (OLA) inversion methods, which require the inversion of one or more matrices whose order is the number of modes in the set. However, the number of practically independent pieces of information that a large helioseismic mode set contains is very much less than the number of modes, suggesting that the set might first be reduced before the expensive inversion is performed. We demonstrate with a model problem that by first performing a singular value decomposition the original problem may be transformed into a much smaller one, reducing considerably the cost of the OLA inversion and with no significant loss of information.

  4. Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method

    PubMed Central

    Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter

    2017-01-01

    An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated. PMID:28098851

  5. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  6. Black hole algorithm for determining model parameter in self-potential data

    NASA Astrophysics Data System (ADS)

    Sungkono; Warnana, Dwa Desa

    2018-01-01

    Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.

  7. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  8. Effect of conductor geometry on source localization: Implications for epilepsy studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlitt, H.; Heller, L.; Best, E.

    1994-07-01

    We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we mustmore » first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head.« less

  9. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology, Finland), Masahiro Yamamoto (University of Tokyo, Japan), Gunther Uhlmann (University of Washington) and Jun Zou (Chinese University of Hong Kong). IPIA is a recently formed organization that intends to promote the field of inverse problem at all levels. See http://www.inverse-problems.net/. IPIA awarded the first Calderón prize at the opening of the conference to Matti Lassas (see first article in the Proceedings). There was also a general meeting of IPIA during the workshop. This was probably the largest conference ever on IP with 350 registered participants. The program consisted of 18 invited speakers and the Calderón Prize Lecture given by Matti Lassas. Another integral part of the program was the more than 60 mini-symposia that covered a broad spectrum of the theory and applications of inverse problems, focusing on recent developments in medical imaging, seismic exploration, remote sensing, industrial applications, numerical and regularization methods in inverse problems. Another important related topic was image processing in particular the advances which have allowed for significant enhancement of widely used imaging techniques. For more details on the program see the web page: http://www.pims.math.ca/science/2007/07aip. These proceedings reflect the broad spectrum of topics covered in AIP 2007. The conference and these proceedings would not have happened without the contributions of many people. I thank all my fellow organizers, the invited speakers, the speakers and organizers of mini-symposia for making this an exciting and vibrant event. I also thank PIMS, NSF and MITACS for their generous financial support. I take this opportunity to thank the PIMS staff, particularly Ken Leung, for making the local arrangements. Also thanks are due to Stephen McDowall for his help in preparing the schedule of the conference and Xiaosheng Li for the help in preparing these proceedings. I also would like to thank the contributors of this volume and the referees. Finally, many thanks are due to Graham Douglas and Elaine Longden-Chapman for suggesting publication in Journal of Physics: Conference Series.

  10. Variable-permittivity linear inverse problem for the H(sub z)-polarized case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Chew, W. C.

    1993-01-01

    The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.

  11. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  12. Inverse dynamics of a 3 degree of freedom spatial flexible manipulator

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Serna, M.

    1989-01-01

    A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.

  13. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  14. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  15. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  16. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  17. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  18. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  19. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  20. Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui

    2017-09-01

    We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.

  1. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu

    2015-10-07

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrastedmore » to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.« less

  2. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  3. The inverse problems of wing panel manufacture processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  4. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.

  5. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  6. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  7. Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments

    NASA Astrophysics Data System (ADS)

    Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud

    2018-07-01

    This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

  8. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  9. Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps

    NASA Astrophysics Data System (ADS)

    Carrillo Lopez, J.; Gallardo, L. A.

    2016-12-01

    Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.

  10. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  11. Genetic algorithms and their use in Geophysical Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less

  12. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  13. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    NASA Astrophysics Data System (ADS)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-07-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  14. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  15. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  16. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.

  17. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    PubMed

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  18. Modeling the 16 September 2015 Chile tsunami source with the inversion of deep-ocean tsunami records by means of the r - solution method

    NASA Astrophysics Data System (ADS)

    Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem

    2017-04-01

    The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model. The function recovered by the method proposed can find practical applications both as an initial condition for various optimization approaches and for computer calculation of the tsunami wave propagation.

  19. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  20. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  1. A DEVELOPMENTAL STUDY OF THE RELATIONSHIP BETWEEN REACTION-TIME AND PROBLEM-SOLVING EFFICIENCY. FINAL REPORT.

    ERIC Educational Resources Information Center

    FRIEDMAN, STANLEY R.

    MANY STUDIES HAVE INDICATED THE PRESENCE OF A SLUMP OR INVERSION IN THE PROBLEM-SOLVING EFFICIENCY OF CHILDREN AT THE FOURTH GRADE LEVEL. IT HAS BEEN SUGGESTED THAT THIS MAY BE DUE TO THE INTERFERING EFFECT OF THE FORMATION OF COMPLEX HYPOTHESES BY THE CHILDREN. SINCE A TENDENCY TO RESPOND RAPIDLY WOULD PRESUMABLY INHIBIT THE FORMATION OF COMPLEX…

  2. Intrinsic nonlinearity and method of disturbed observations in inverse problems of celestial mechanics

    NASA Astrophysics Data System (ADS)

    Avdyushev, Victor A.

    2017-12-01

    Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the method of disturbed observations, we conclude that it practically should be still entirely acceptable to adequately describe the orbital uncertainty since, from a geometrical point of view, the efficiency of the method directly depends only on the nonflatness of the estimation subspace and it gets higher as the nonflatness decreases.

  3. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.

  4. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  5. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  6. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  7. Adults' understanding of inversion concepts: how does performance on addition and subtraction inversion problems compare to performance on multiplication and division inversion problems?

    PubMed

    Robinson, Katherine M; Ninowski, Jerilyn E

    2003-12-01

    Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.

  8. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  9. Regularized minimum I-divergence methods for the inverse blackbody radiation problem

    NASA Astrophysics Data System (ADS)

    Choi, Kerkil; Lanterman, Aaron D.; Shin, Jaemin

    2006-08-01

    This paper proposes iterative methods for estimating the area temperature distribution of a blackbody from its total radiated power spectrum measurements. This is called the inverse blackbody radiation problem. This problem is inherently ill-posed due to the characteristics of the kernel in the underlying integral equation given by Planck's law. The functions involved in the problem are all non-negative. Csiszár's I-divergence is an information-theoretic discrepancy measure between two non-negative functions. We derive iterative methods for minimizing Csiszár's I-divergence between the measured power spectrum and the power spectrum arising from the estimate according to the integral equation. Due to the ill-posedness of the problem, unconstrained algorithms often produce poor estimates, especially when the measurements are corrupted by noise. To alleviate this difficulty, we apply regularization methods to our algorithms. Penalties based on Shannon's entropy, the L1-norm and Good's roughness are chosen to suppress the undesirable artefacts. When a penalty is applied, the pertinent optimization that needs to be performed at each iteration is no longer trivial. In particular, Good's roughness causes couplings between estimate components. To handle this issue, we adapt Green's one-step-late method. This choice is based on the important fact that our minimum I-divergence algorithms can be interpreted as asymptotic forms of certain expectation-maximization algorithms. The effectiveness of our methods is illustrated via various numerical experiments.

  10. We introduce an algorithm for the simultaneous reconstruction of faults and slip fields. We prove that the minimum of a related regularized functional converges to the unique solution of the fault inverse problem. We consider a Bayesian approach. We use a parallel multi-core platform and we discuss techniques to save on computational time.

    NASA Astrophysics Data System (ADS)

    Volkov, D.

    2017-12-01

    We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.

  11. Automatic alignment for three-dimensional tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Tristan; Maretzke, Simon; Joost Batenburg, K.

    2018-02-01

    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset.

  12. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  13. ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.

    PubMed

    Bodily, Paul M; Fujimoto, M Stanley; Snell, Quinn; Ventura, Dan; Clement, Mark J

    2016-01-01

    The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. http://bioresearch.byu.edu/scaffoldscaffolder. paulmbodily@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. METEOROLOGICAL FACTORS RESPONSIBLE FOR HIGH CO (CARBON MONOXIDE) LEVELS IN ALASKAN CITIES

    EPA Science Inventory

    High winter carbon monoxide levels in Anchorage, as in Fairbanks, are due to intense nocturnal (ground-based) inversions persisting through the periods of maximum emissions and at times throughout the day. The problem is exacerbated by the large amounts of carbon monoxide emitted...

  15. An interval model updating strategy using interval response surface models

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-En; Zhang, Qiu-Hu; Ren, Wei-Xin

    2015-08-01

    Stochastic model updating provides an effective way of handling uncertainties existing in real-world structures. In general, probabilistic theories, fuzzy mathematics or interval analyses are involved in the solution of inverse problems. However in practice, probability distributions or membership functions of structural parameters are often unavailable due to insufficient information of a structure. At this moment an interval model updating procedure shows its superiority in the aspect of problem simplification since only the upper and lower bounds of parameters and responses are sought. To this end, this study develops a new concept of interval response surface models for the purpose of efficiently implementing the interval model updating procedure. The frequent interval overestimation due to the use of interval arithmetic can be maximally avoided leading to accurate estimation of parameter intervals. Meanwhile, the establishment of an interval inverse problem is highly simplified, accompanied by a saving of computational costs. By this means a relatively simple and cost-efficient interval updating process can be achieved. Lastly, the feasibility and reliability of the developed method have been verified against a numerical mass-spring system and also against a set of experimentally tested steel plates.

  16. Children's Understanding of the Arithmetic Concepts of Inversion and Associativity

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; Ninowski, Jerilyn E.; Gray, Melissa L.

    2006-01-01

    Previous studies have shown that even preschoolers can solve inversion problems of the form a + b - b by using the knowledge that addition and subtraction are inverse operations. In this study, a new type of inversion problem of the form d x e [divided by] e was also examined. Grade 6 and 8 students solved inversion problems of both types as well…

  17. Quo vadis: Hydrologic inverse analyses using high-performance computing and a D-Wave quantum annealer

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2017-12-01

    Classical microprocessors have had a dramatic impact on hydrology for decades, due largely to the exponential growth in computing power predicted by Moore's law. However, this growth is not expected to continue indefinitely and has already begun to slow. Quantum computing is an emerging alternative to classical microprocessors. Here, we demonstrated cutting edge inverse model analyses utilizing some of the best available resources in both worlds: high-performance classical computing and a D-Wave quantum annealer. The classical high-performance computing resources are utilized to build an advanced numerical model that assimilates data from O(10^5) observations, including water levels, drawdowns, and contaminant concentrations. The developed model accurately reproduces the hydrologic conditions at a Los Alamos National Laboratory contamination site, and can be leveraged to inform decision-making about site remediation. We demonstrate the use of a D-Wave 2X quantum annealer to solve hydrologic inverse problems. This work can be seen as an early step in quantum-computational hydrology. We compare and contrast our results with an early inverse approach in classical-computational hydrology that is comparable to the approach we use with quantum annealing. Our results show that quantum annealing can be useful for identifying regions of high and low permeability within an aquifer. While the problems we consider are small-scale compared to the problems that can be solved with modern classical computers, they are large compared to the problems that could be solved with early classical CPUs. Further, the binary nature of the high/low permeability problem makes it well-suited to quantum annealing, but challenging for classical computers.

  18. Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.

    2017-09-01

    Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint inversion improves the previous inversions methods making it a powerful tool applicable to different research areas.

  19. Comparative evolution of the inverse problems (Introduction to an interdisciplinary study of the inverse problems)

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.

  20. Inverse problems, non-roundness and flat pieces of the effective burning velocity from an inviscid quadratic Hamilton-Jacobi model

    NASA Astrophysics Data System (ADS)

    Jing, Wenjia; Tran, Hung V.; Yu, Yifeng

    2017-05-01

    The main goal of this paper is to understand finer properties of the effective burning velocity from a combustion model introduced by Majda and Souganidis (1994 Nonlinearity 7 1-30). Motivated by results in Bangert (1994 Calculus Variations PDE 2 49-63) and applications in turbulent combustion, we show that when the dimension is two and the flow of the ambient fluid is either weak or very strong, the level set of the effective burning velocity has flat pieces. Due to the lack of an applicable Hopf-type rigidity result, we need to identify the exact location of at least one flat piece. Implications on the effective flame front and other related inverse type problems are also discussed.

  1. Mathematical Problems in Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  2. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

    PubMed

    Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L

    2015-09-01

    Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be obtained. The authors found that, by selectively exciting parts of the volume, the authors could increase the reconstruction quality even further while reducing the amount of measurements. Additionally, the inverse solution of this activation method degrades slower for increasing volumes. Finally, the methodology was applied to noisy EPR measurements: using the reduced EPR setup's symmetry and the partial activation method, an increase in reconstruction quality of ≈ 80% can be seen with a speedup of the measurements with 10%. Applying the aforementioned requirements to the EPR setup and stabilizing the EPR measurements showed a tremendous increase in noise robustness, thereby making EPR a valuable method for quantitative imaging of multidimensional MNP distributions.

  3. TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations

    NASA Astrophysics Data System (ADS)

    Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio

    2009-12-01

    We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.

  4. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masahiro

    2003-06-01

    This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.

  5. Electron calibration of a high energy cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Silverberg, R. F.; Crannell, C. J.; Gearhart, R. A.; Hagen, F. A.; Jones, W. V.; Kurz, R. J.; Ormes, J. F.; Price, R. D.

    1972-01-01

    The spectrum of cosmic ray electrons above 10 GeV was studied extensively. The spectrum is predicted to steepen at an energy which is related to the lifetime of electrons in the interstellar medium against losses due to inverse Compton collisions with photons and to synchrotron radiation in galactic magnetic fields. The experimental results diverge widely; the lack of agreement between the various measurements is due to a variety of experimental problems.

  6. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  7. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  8. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  9. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    DTIC Science & Technology

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for

  10. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  11. Minimizing EIT image artefacts from mesh variability in finite element models.

    PubMed

    Adler, Andy; Lionheart, William R B

    2011-07-01

    Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.

  12. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  13. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).

  14. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  15. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  16. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  17. A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Cui, C.; Wang, Y.

    2017-12-01

    Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.

  18. Ensemble-based data assimilation and optimal sensor placement for scalar source reconstruction

    NASA Astrophysics Data System (ADS)

    Mons, Vincent; Wang, Qi; Zaki, Tamer

    2017-11-01

    Reconstructing the characteristics of a scalar source from limited remote measurements in a turbulent flow is a problem of great interest for environmental monitoring, and is challenging due to several aspects. Firstly, the numerical estimation of the scalar dispersion in a turbulent flow requires significant computational resources. Secondly, in actual practice, only a limited number of observations are available, which generally makes the corresponding inverse problem ill-posed. Ensemble-based variational data assimilation techniques are adopted to solve the problem of scalar source localization in a turbulent channel flow at Reτ = 180 . This approach combines the components of variational data assimilation and ensemble Kalman filtering, and inherits the robustness from the former and the ease of implementation from the latter. An ensemble-based methodology for optimal sensor placement is also proposed in order to improve the condition of the inverse problem, which enhances the performances of the data assimilation scheme. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542) and by the National Science Foundation (Grant 1461870).

  19. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  20. Joint Model and Parameter Dimension Reduction for Bayesian Inversion Applied to an Ice Sheet Flow Problem

    NASA Astrophysics Data System (ADS)

    Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.

    2016-12-01

    Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.

  1. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  2. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  3. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  4. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  5. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  6. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  7. An inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Caudill, Lester F., Jr.

    1994-01-01

    This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

  8. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleinikov, A. I., E-mail: a.i.oleinikov@mail.ru; Bormotin, K. S., E-mail: cvmi@knastu.ru

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendousmore » challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.« less

  10. On decoupling of volatility smile and term structure in inverse option pricing

    NASA Astrophysics Data System (ADS)

    Egger, Herbert; Hein, Torsten; Hofmann, Bernd

    2006-08-01

    Correct pricing of options and other financial derivatives is of great importance to financial markets and one of the key subjects of mathematical finance. Usually, parameters specifying the underlying stochastic model are not directly observable, but have to be determined indirectly from observable quantities. The identification of local volatility surfaces from market data of European vanilla options is one very important example of this type. As with many other parameter identification problems, the reconstruction of local volatility surfaces is ill-posed, and reasonable results can only be achieved via regularization methods. Moreover, due to the sparsity of data, the local volatility is not uniquely determined, but depends strongly on the kind of regularization norm used and a good a priori guess for the parameter. By assuming a multiplicative structure for the local volatility, which is motivated by the specific data situation, the inverse problem can be decomposed into two separate sub-problems. This removes part of the non-uniqueness and allows us to establish convergence and convergence rates under weak assumptions. Additionally, a numerical solution of the two sub-problems is much cheaper than that of the overall identification problem. The theoretical results are illustrated by numerical tests.

  11. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  12. Joint Inversion of Gravity and Gravity Tensor Data Using the Structural Index as Weighting Function Rate Decay

    NASA Astrophysics Data System (ADS)

    Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.

    2011-12-01

    Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.

  13. PREFACE: The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro

    2005-01-01

    The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in atmospheric sciences and oceanography. Last but not least is our gratitude. As editors we would like to express our sincere thanks to all the plenary and invited speakers, the members of the International Scientific Committee and the Advisory Board for the success of the conference, which has given rise to this present volume of selected papers. We would also like to thank Mr Wang Yanbo, Miss Wan Xiqiong and the graduate students at Fudan University for their effective work to make this conference a success. The conference was financially supported by the NFS of China, the Mathematical Center of Ministry of Education of China, E-Institutes of Shanghai Municipal Education Commission (No E03004) and Fudan University, Grant 15340027 from the Japan Society for the Promotion of Science, and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.

  14. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  15. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  16. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  17. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  18. Regolith thermal property inversion in the LUNAR-A heat-flow experiment

    NASA Astrophysics Data System (ADS)

    Hagermann, A.; Tanaka, S.; Yoshida, S.; Fujimura, A.; Mizutani, H.

    2001-11-01

    In 2003, two penetrators of the LUNAR--A mission of ISAS will investigate the internal structure of the Moon by conducting seismic and heat--flow experiments. Heat-flow is the product of thermal gradient tial T / tial z, and thermal conductivity λ of the lunar regolith. For measuring the thermal conductivity (or dissusivity), each penetrator will carry five thermal property sensors, consisting of small disc heaters. The thermal response Ts(t) of the heater itself to the constant known power supply of approx. 50 mW serves as the data for the subsequent data interpretation. Horai et al. (1991) found a forward analytical solution to the problem of determining the thermal inertia λ ρ c of the regolith for constant thermal properties and a simplyfied geometry. In the inversion, the problem of deriving the unknown thermal properties of a medium from known heat sources and temperatures is an Identification Heat Conduction Problem (IDHCP), an ill--posed inverse problem. Assuming that thermal conductivity λ and heat capacity ρ c are linear functions of temperature (which is reasonable in most cases), one can apply a Kirchhoff transformation to linearize the heat conduction equation, which minimizes computing time. Then the error functional, i.e. the difference between the measured temperature response of the heater and the predicted temperature response, can be minimized, thus solving for thermal dissusivity κ = λ / (ρ c), wich will complete the set of parameters needed for a detailed description of thermal properties of the lunar regolith. Results of model calculations will be presented, in which synthetic data and calibration data are used to invert the unknown thermal diffusivity of the unknown medium by means of a modified Newton Method. Due to the ill-posedness of the problem, the number of parameters to be solved for should be limited. As the model calculations reveal, a homogeneous regolith allows for a fast and accurate inversion.

  19. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

    PubMed

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-04-07

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small ℓ₂ norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ₁/ℓ₂ mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ₁/ℓ₂ norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.

  20. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

    PubMed Central

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-01-01

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell’s equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions than have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called Minimum Norm Estimates (MNE), promote source estimates with a small ℓ2 norm. Here, we consider a more general class of priors based on mixed-norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as Mixed-Norm Estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furhermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data. PMID:22421459

  1. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.

  2. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  3. New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment.

    PubMed

    Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S

    2014-09-01

    Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.

  4. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.

    2007-01-01

    The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.

  5. Children's Understanding of the Inverse Relation between Multiplication and Division

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; Dube, Adam K.

    2009-01-01

    Children's understanding of the inversion concept in multiplication and division problems (i.e., that on problems of the form "d multiplied by e/e" no calculations are required) was investigated. Children in Grades 6, 7, and 8 completed an inversion problem-solving task, an assessment of procedures task, and a factual knowledge task of simple…

  6. A Volunteer Computing Project for Solving Geoacoustic Inversion Problems

    NASA Astrophysics Data System (ADS)

    Zaikin, Oleg; Petrov, Pavel; Posypkin, Mikhail; Bulavintsev, Vadim; Kurochkin, Ilya

    2017-12-01

    A volunteer computing project aimed at solving computationally hard inverse problems in underwater acoustics is described. This project was used to study the possibilities of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. The computational capabilities provided by the project allowed us to investigate the accuracy of the inversion for different mesh sizes of the sound speed profile discretization grid. This problem suits well for volunteer computing because it can be easily decomposed into independent simpler subproblems.

  7. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  8. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.

  9. Implement Method for Automated Testing of Markov Chain Convergence into INVERSE for ORNL12-RS-108J: Advanced Multi-Dimensional Forward and Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bledsoe, Keith C.

    2015-04-01

    The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less

  10. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    NASA Astrophysics Data System (ADS)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  11. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  12. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  13. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  14. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  15. A fixed energy fixed angle inverse scattering in interior transmission problem

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Hui

    2017-06-01

    We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.

  16. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    NASA Astrophysics Data System (ADS)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  17. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  18. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    NASA Astrophysics Data System (ADS)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  19. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  20. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet

  1. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  2. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.

    2001-01-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.

  3. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  4. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  5. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  6. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  7. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  8. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Frnakenstein: multiple target inverse RNA folding.

    PubMed

    Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun

    2012-10-09

    RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.

  10. Frnakenstein: multiple target inverse RNA folding

    PubMed Central

    2012-01-01

    Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260

  11. First Calderón Prize

    NASA Astrophysics Data System (ADS)

    Rundell, William; Somersalo, Erkki

    2008-07-01

    The Inverse Problems International Association (IPIA) awarded the first Calderón Prize to Matti Lassas for his outstanding contributions to the field of inverse problems, especially in geometric inverse problems. The Calderón Prize is given to a researcher under the age of 40 who has made distinguished contributions to the field of inverse problems broadly defined. The first Calderón Prize Committee consisted of Professors Adrian Nachman, Lassi Päivärinta, William Rundell (chair), and Michael Vogelius. William Rundell For the Calderón Prize Committee Prize ceremony The ceremony awarding the Calderón Prize. Matti Lassas is on the left. He and William Rundell are on the right. Photos by P Stefanov. Brief Biography of Matti Lassas Matti Lassas was born in 1969 in Helsinki, Finland, and studied at the University of Helsinki. He finished his Master's studies in 1992 in three years and earned his PhD in 1996. His PhD thesis, written under the supervision of Professor Erkki Somersalo was entitled `Non-selfadjoint inverse spectral problems and their applications to random bodies'. Already in his thesis, Matti demonstrated a remarkable command of different fields of mathematics, bringing together the spectral theory of operators, geometry of Riemannian surfaces, Maxwell's equations and stochastic analysis. He has continued to develop all of these branches in the framework of inverse problems, the most remarkable results perhaps being in the field of differential geometry and inverse problems. Matti has always been a very generous researcher, sharing his ideas with his numerous collaborators. He has authored over sixty scientific articles, among which a monograph on inverse boundary spectral problems with Alexander Kachalov and Yaroslav Kurylev and over forty articles in peer reviewed journals of the highest standards. To get an idea of the wide range of Matti's interests, it is enough to say that he also has three US patents on medical imaging applications. Matti is currently professor of mathematics at Helsinki University of Technology, where he has created his own line of research with young talented researchers around him. He is a central person in the Centre of Excellence in Inverse Problems Research of the Academy of Finland. Previously, Matti Lassas has won several awards in his home country, including the prestigious Vaisala price of the Finnish Academy of Science and Letters in 2004. He is a highly esteemed colleague, teacher and friend, and the Great Diving Beetle of the Finnish Inverse Problems Society (http://venda.uku.fi/research/FIPS/), an honorary title for a person who has no fear of the deep. Erkki Somersalo

  12. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  13. Real-time characterization of partially observed epidemics using surrogate models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Ray, Jaideep; Lefantzi, Sophia

    We present a statistical method, predicated on the use of surrogate models, for the 'real-time' characterization of partially observed epidemics. Observations consist of counts of symptomatic patients, diagnosed with the disease, that may be available in the early epoch of an ongoing outbreak. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information on the dynamics of the etiologic agent in the affected population e.g., the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and epidemiologicalmore » parameters are estimated as distributions using a Markov chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. In some cases, the inverse problem can be computationally expensive, primarily due to the epidemic simulator used inside the inversion algorithm. We present a method, based on replacing the epidemiological model with computationally inexpensive surrogates, that can reduce the computational time to minutes, without a significant loss of accuracy. The surrogates are created by projecting the output of an epidemiological model on a set of polynomial chaos bases; thereafter, computations involving the surrogate model reduce to evaluations of a polynomial. We find that the epidemic characterizations obtained with the surrogate models is very close to that obtained with the original model. We also find that the number of projections required to construct a surrogate model is O(10)-O(10{sup 2}) less than the number of samples required by the MCMC to construct a stationary posterior distribution; thus, depending upon the epidemiological models in question, it may be possible to omit the offline creation and caching of surrogate models, prior to their use in an inverse problem. The technique is demonstrated on synthetic data as well as observations from the 1918 influenza pandemic collected at Camp Custer, Michigan.« less

  14. PREFACE: Inverse Problems in Applied Sciences—towards breakthrough

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Iso, Yuusuke; Nakamura, Gen; Yamamoto, Masahiro

    2007-06-01

    These are the proceedings of the international conference `Inverse Problems in Applied Sciences—towards breakthrough' which was held at Hokkaido University, Sapporo, Japan on 3-7 July 2006 (http://coe.math.sci.hokudai.ac.jp/sympo/inverse/). There were 88 presentations and more than 100 participants, and we are proud to say that the conference was very successful. Nowadays, many new activities on inverse problems are flourishing at many centers of research around the world, and the conference has successfully gathered a world-wide variety of researchers. We believe that this volume contains not only main papers, but also conveys the general status of current research into inverse problems. This conference was the third biennial international conference on inverse problems, the core of which is the Pan-Pacific Asian area. The purpose of this series of conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries, and to lead the organization of activities concerning inverse problems centered in East Asia. The first conference was held at City University of Hong Kong in January 2002 and the second was held at Fudan University in June 2004. Following the preceding two successes, the third conference was organized in order to extend the scope of activities and build useful bridges to the next conference in Seoul in 2008. Therefore this third biennial conference was intended not only to establish collaboration and links between researchers in Asia and leading researchers worldwide in inverse problems but also to nurture interdisciplinary collaboration in theoretical fields such as mathematics, applied fields and evolving aspects of inverse problems. For these purposes, we organized tutorial lectures, serial lectures and a panel discussion as well as conference research presentations. This volume contains three lecture notes from the tutorial and serial lectures, and 22 papers. Especially at this flourishing time, it is necessary to carefully analyse the current status of inverse problems for further development. Thus we have opened with the panel discussion entitled `Future of Inverse Problems' with panelists: Professors J Cheng, H W Engl, V Isakov, R Kress, J-K Seo, G Uhlmann and the commentator: Elaine Longden-Chapman from IOP Publishing. The aims of the panel discussion were to examine the current research status from various viewpoints, to discuss how we can overcome any difficulties and how we can promote young researchers and open new possibilities for inverse problems such as industrial linkages. As one output, the panel discussion has triggered the organization of the Inverse Problems International Association (IPIA) which has led to its first international congress in the summer of 2007. Another remarkable outcome of the conference is, of course, the present volume: this is the very high quality online proceedings volume of Journal of Physics: Conference Series. Readers can see in these proceedings very well written tutorial lecture notes, and very high quality original research and review papers all of which show what was achieved by the time the conference was held. The electronic publication of the proceedings is a new way of publicizing the achievement of the conference. It has the advantage of wide circulation and cost reduction. We believe this is a most efficient method for our needs and purposes. We would like to take this opportunity to acknowledge all the people who helped to organize the conference. Guest Editors Jin Cheng, Fudan University, Shanghai, China Yuusuke Iso, Kyoto University, Kyoto, Japan Gen Nakamura, Hokkaido University, Sapporo, Japan Masahiro Yamamoto, University of Tokyo, Tokyo, Japan

  15. Solvability of the electrocardiology inverse problem for a moving dipole.

    PubMed

    Tolkachev, V; Bershadsky, B; Nemirko, A

    1993-01-01

    New formulations of the direct and inverse problems for the moving dipole are offered. It has been suggested to limit the study by a small area on the chest surface. This lowers the role of the medium inhomogeneity. When formulating the direct problem, irregular components are considered. The algorithm of simultaneous determination of the dipole and regular noise parameters has been described and analytically investigated. It is shown that temporal overdetermination of the equations offers a single solution of the inverse problem for the four leads.

  16. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  17. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  18. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  19. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  20. MAP Estimators for Piecewise Continuous Inversion

    DTIC Science & Technology

    2016-08-08

    MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP

  1. Time-domain full waveform inversion using instantaneous phase information with damping

    NASA Astrophysics Data System (ADS)

    Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun

    2018-06-01

    In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.

  2. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  3. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  4. Review of the inverse scattering problem at fixed energy in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  5. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang

    Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).

  6. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to themore » full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.« less

  7. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  8. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  9. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  10. Iterative algorithms for a non-linear inverse problem in atmospheric lidar

    NASA Astrophysics Data System (ADS)

    Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto

    2017-08-01

    We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.

  11. The incomplete inverse and its applications to the linear least squares problem

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.

    1977-01-01

    A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.

  12. Analytic semigroups: Applications to inverse problems for flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rebnord, D. A.

    1990-01-01

    Convergence and stability results for least squares inverse problems involving systems described by analytic semigroups are presented. The practical importance of these results is demonstrated by application to several examples from problems of estimation of material parameters in flexible structures using accelerometer data.

  13. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  14. Behavioral pattern identification for structural health monitoring in complex systems

    NASA Astrophysics Data System (ADS)

    Gupta, Shalabh

    Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special-purpose fatigue test apparatus, equipped with multiple sensing devices (e.g., ultrasonics and optical microscope) for damage analysis, has been used to experimentally validate the STSA method for early detection of anomalous behavior. The sensor information is integrated with a software module consisting of the STSA algorithm for real-time monitoring of fatigue damage. Experiments have been conducted under different loading conditions on specimens constructed from the ductile aluminium alloy 7075 - T6. The dissertation has also investigated the application of the STSA method for early detection of anomalies in other engineering disciplines. Two primary applications include combustion instability in a generic thermal pulse combustor model and whirling phenomenon in a typical misaligned shaft.

  15. A direct method for nonlinear ill-posed problems

    NASA Astrophysics Data System (ADS)

    Lakhal, A.

    2018-02-01

    We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.

  16. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  17. Gravity inversion of a fault by Particle swarm optimization (PSO).

    PubMed

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  18. The Inverse Problem in Jet Acoustics

    NASA Technical Reports Server (NTRS)

    Wooddruff, S. L.; Hussaini, M. Y.

    2001-01-01

    The inverse problem for jet acoustics, or the determination of noise sources from far-field pressure information, is proposed as a tool for understanding the generation of noise by turbulence and for the improved prediction of jet noise. An idealized version of the problem is investigated first to establish the extent to which information about the noise sources may be determined from far-field pressure data and to determine how a well-posed inverse problem may be set up. Then a version of the industry-standard MGB code is used to predict a jet noise source spectrum from experimental noise data.

  19. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  20. Bayesian Inference in Satellite Gravity Inversion

    NASA Technical Reports Server (NTRS)

    Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Kim, Hyung Rae; Torony, B.; Mayer-Guerr, T.

    2005-01-01

    To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 kilometer altitude over the South part of the Pannonian basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.

  1. Application of L1-norm regularization to epicardial potential reconstruction based on gradient projection.

    PubMed

    Wang, Liansheng; Qin, Jing; Wong, Tien Tsin; Heng, Pheng Ann

    2011-10-07

    The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.

  2. EDITORIAL: Inverse Problems in Engineering

    NASA Astrophysics Data System (ADS)

    West, Robert M.; Lesnic, Daniel

    2007-01-01

    Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.

  3. Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states

    NASA Astrophysics Data System (ADS)

    Fedele, Micaela; Vernia, Cecilia

    2017-10-01

    In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.

  4. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  5. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  6. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some iterative method. A powerful tool for proving convergence rates of Tikhonov type but also other regularization methods in Banach spaces are assumptions of the type of variational inequalities that combine conditions on solution smoothness (i.e., source conditions in the Hilbert space case) and nonlinearity of the forward operator. In Parameter choice in Banach space regularization under variational inequalities, Bernd Hofmann and Peter Mathé provide results with general error measures and especially study the question of regularization parameter choice. Daijun Jiang, Hui Feng, and Jun Zou consider an application of Banach space ideas in the context of an application problem in their paper Convergence rates of Tikhonov regularizations for parameter identifiation in a parabolic-elliptic system, namely the identification of a distributed diffusion coefficient in a coupled elliptic-parabolic system. In particular, they show convergence rates of Lp-H1 (variational) regularization for the application under consideration via the use and verification of certain source and nonlinearity conditions. In computational practice, the Lp norm with p close to one is often used as a substitute for the actually sparsity promoting L1 norm. In Norm sensitivity of sparsity regularization with respect to p, Kamil S Kazimierski, Peter Maass and Robin Strehlow consider the question of how sensitive the Tikhonov regularized solution is with respect to p. They do so by computing the derivative via the implicit function theorem, particularly at the crucial value, p=1. Another iterative regularization method in Banach space is considered by Qinian Jin and Linda Stals in Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Using a variational formulation and under some smoothness and convexity assumption on the preimage space, they extend the convergence analysis of the well-known iterative Tikhonov method for linear problems in Hilbert space to a more general Banach space framework. Systems of linear or nonlinear operators can be efficiently treated by cyclic iterations, thus several variants of gradient and Newton-type Kaczmarz methods have already been studied in the Hilbert space setting. Antonio Leitão and M Marques Alves in their paper On Landweber---Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces carry out an extension to Banach spaces for the fundamental Landweber version. The impact of perturbations in the evaluation of the forward operator and its derivative on the convergence behaviour of regularization methods is a practically and highly relevant issue. It is treated in the paper Convergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators by Shuai Lu and Jens Flemming for variational regularization of nonlinear problems in Banach spaces. In The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting, Thomas Schuster, Andreas Rieder and Frank Schöpfer extend the concept of approximate inverse to the practically and highly relevant situation of finitely many measurements and a general smooth and convex Banach space as preimage space. They devise two approaches for computing the reconstruction kernels required in the method and provide convergence and regularization results. Frank Werner and Thorsten Hohage in Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data prove convergence rates results for variational regularization with general convex regularization term and the Kullback-Leibler distance as data fidelity term by combining a new result on Poisson distributed data with a deterministic rates analysis. Finally, we would like to thank the Inverse Problems team, especially Joanna Evangelides and Chris Wileman, for their extraordinary smooth and productive cooperation, as well as Alfred K Louis for his kind support of our initiative.

  7. Total variation-based neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Barnard, Richard C.; Bilheux, Hassina; Toops, Todd; Nafziger, Eric; Finney, Charles; Splitter, Derek; Archibald, Rick

    2018-05-01

    We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers. We present the effectiveness of the algorithm in the significantly low-angular sampling case using synthetic test problems as well as data obtained from a high flux neutron source. The algorithm removes artifacts and can even roughly capture small features when an extremely low number of angles are used.

  8. Computational structures for robotic computations

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chang, P. R.

    1987-01-01

    The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed.

  9. A Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment

    PubMed Central

    Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S

    2012-01-01

    Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems. PMID:22254301

  10. Kernel temporal enhancement approach for LORETA source reconstruction using EEG data.

    PubMed

    Torres-Valencia, Cristian A; Santamaria, M Claudia Joana; Alvarez, Mauricio A

    2016-08-01

    Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.

  11. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  12. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  13. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    PubMed

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  14. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  15. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  16. Time-reversal and Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  17. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  18. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    NASA Astrophysics Data System (ADS)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  19. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.

  20. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  1. The Bretherton Problem for a Vesicle

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric

    2016-11-01

    The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.

  2. Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models

    DOE PAGES

    Butler, Troy; Graham, L.; Estep, D.; ...

    2015-02-03

    The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less

  3. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    NASA Astrophysics Data System (ADS)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  4. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  5. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems with Application to Porous Medium Flow

    NASA Astrophysics Data System (ADS)

    Petra, N.; Alexanderian, A.; Stadler, G.; Ghattas, O.

    2015-12-01

    We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer a parameter field (e.g., the log permeability field in a porous medium flow model problem) from synthetic observations at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. Due to the infinite-dimensional character of the parameter field, we seek an optimization method that solves the OED problem at a cost (measured in the number of forward PDE solves) that is independent of both the parameter and the sensor dimension. To facilitate this goal, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define the OED objective function. We use randomized trace estimation to compute the trace of this covariance operator. The resulting OED problem includes as constraints the system of PDEs characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using sparsifying penalty functions, and solve the resulting penalized bilevel optimization problem via an interior-point quasi-Newton method, where gradient information is computed via adjoints. We elaborate our OED method for the problem of determining the optimal sensor configuration to best infer the log permeability field in a porous medium flow problem. Numerical results show that the number of PDE solves required for the evaluation of the OED objective function and its gradient is essentially independent of both the parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance properties.

  6. Semisupervised kernel marginal Fisher analysis for face recognition.

    PubMed

    Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun

    2013-01-01

    Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.

  7. Eddy Current Testing and Sizing of Deep Cracks in a Thick Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Endo, H.; Uchimoto, T.

    2004-02-26

    Due to the skin effect of eddy current testing, target of ECT restricts to thin structure such as steam generator tubes with 1.27mm thickness. Detecting and sizing of a deep crack in a thick structure remains a problem. In this paper, an ECT probe is presented to solve this problem with the help of numerical analysis. The parameters such as frequency, coil size etc. are discussed. The inverse problem of crack sizing is solved by applying a fast simulator of ECT based on an edge based finite element method and steepest descent method, and reconstructed results of 5, 10 andmore » 15mm depth cracks from experimental signals are shown.« less

  8. The importance of coherence in inverse problems in optics

    NASA Astrophysics Data System (ADS)

    Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.

    1981-12-01

    Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.

  9. Comparison of iterative inverse coarse-graining methods

    NASA Astrophysics Data System (ADS)

    Rosenberger, David; Hanke, Martin; van der Vegt, Nico F. A.

    2016-10-01

    Deriving potentials for coarse-grained Molecular Dynamics (MD) simulations is frequently done by solving an inverse problem. Methods like Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC) have been widely used to solve this problem. The solution obtained by application of these methods guarantees a match in the radial distribution function (RDF) between the underlying fine-grained system and the derived coarse-grained system. However, these methods often fail in reproducing thermodynamic properties. To overcome this deficiency, additional thermodynamic constraints such as pressure or Kirkwood-Buff integrals (KBI) may be added to these methods. In this communication we test the ability of these methods to converge to a known solution of the inverse problem. With this goal in mind we have studied a binary mixture of two simple Lennard-Jones (LJ) fluids, in which no actual coarse-graining is performed. We further discuss whether full convergence is actually needed to achieve thermodynamic representability.

  10. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  11. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  12. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  13. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  14. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  15. The inverse Wiener polarity index problem for chemical trees.

    PubMed

    Du, Zhibin; Ali, Akbar

    2018-01-01

    The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.

  16. Assimilating data into open ocean tidal models

    NASA Astrophysics Data System (ADS)

    Kivman, Gennady A.

    The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.

  17. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  18. Using the sensors of shaft position for simulation of misalignments of shafting supports of turbounits

    NASA Astrophysics Data System (ADS)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.

    2017-09-01

    Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.

  19. Active and Passive Hydrologic Tomographic Surveys:A Revolution in Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Yeh, T. J.

    2013-12-01

    Mathematical forward or inverse problems of flow through geological media always have unique solutions if necessary conditions are givens. Unique mathematical solutions to forward or inverse modeling of field problems are however always uncertain (an infinite number of possibilities) due to many reasons. They include non-representativeness of the governing equations, inaccurate necessary conditions, multi-scale heterogeneity, scale discrepancies between observation and model, noise and others. Conditional stochastic approaches, which derives the unbiased solution and quantifies the solution uncertainty, are therefore most appropriate for forward and inverse modeling of hydrological processes. Conditioning using non-redundant data sets reduces uncertainty. In this presentation, we explain non-redundant data sets in cross-hole aquifer tests, and demonstrate that active hydraulic tomographic survey (using man-made excitations) is a cost-effective approach to collect the same type but non-redundant data sets for reducing uncertainty in the inverse modeling. We subsequently show that including flux measurements (a piece of non-redundant data set) collected in the same well setup as in hydraulic tomography improves the estimated hydraulic conductivity field. We finally conclude with examples and propositions regarding how to collect and analyze data intelligently by exploiting natural recurrent events (river stage fluctuations, earthquakes, lightning, etc.) as energy sources for basin-scale passive tomographic surveys. The development of information fusion technologies that integrate traditional point measurements and active/passive hydrogeophysical tomographic surveys, as well as advances in sensor, computing, and information technologies may ultimately advance our capability of characterizing groundwater basins to achieve resolution far beyond the feat of current science and technology.

  20. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  1. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  2. A function space framework for structural total variation regularization with applications in inverse problems

    NASA Astrophysics Data System (ADS)

    Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas

    2018-06-01

    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.

  3. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  4. Parana Basin Structure from Multi-Objective Inversion of Surface Wave and Receiver Function by Competent Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    An, M.; Assumpcao, M.

    2003-12-01

    The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.

  5. An ambiguity of information content and error in an ill-posed satellite inversion

    NASA Astrophysics Data System (ADS)

    Koner, Prabhat

    According to Rodgers (2000, stochastic approach), the averaging kernel (AK) is the representational matrix to understand the information content in a scholastic inversion. On the other hand, in deterministic approach this is referred to as model resolution matrix (MRM, Menke 1989). The analysis of AK/MRM can only give some understanding of how much regularization is imposed on the inverse problem. The trace of the AK/MRM matrix, which is the so-called degree of freedom from signal (DFS; stochastic) or degree of freedom in retrieval (DFR; deterministic). There are no physical/mathematical explanations in the literature: why the trace of the matrix is a valid form to calculate this quantity? We will present an ambiguity between information and error using a real life problem of SST retrieval from GOES13. The stochastic information content calculation is based on the linear assumption. The validity of such mathematics in satellite inversion will be questioned because it is based on the nonlinear radiative transfer and ill-conditioned inverse problems. References: Menke, W., 1989: Geophysical data analysis: discrete inverse theory. San Diego academic press. Rodgers, C.D., 2000: Inverse methods for atmospheric soundings: theory and practice. Singapore :World Scientific.

  6. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  7. IPDO-2007: Inverse Problems, Design and Optimization Symposium

    DTIC Science & Technology

    2007-08-01

    Kanevce, G. H., Kanevce, Lj. P., and Mitrevski , V. B.), International Symposium on Inverse Problems, Design and Optimization (IPDO-2007), (eds...107 Gligor Kanevce Ljubica Kanevce Vangelce Mitrevski George Dulikravich 108 Gligor Kanevce Ljubica Kanevce Igor Andreevski George Dulikravich

  8. Lattice enumeration for inverse molecular design using the signature descriptor.

    PubMed

    Martin, Shawn

    2012-07-23

    We describe an inverse quantitative structure-activity relationship (QSAR) framework developed for the design of molecular structures with desired properties. This framework uses chemical fragments encoded with a molecular descriptor known as a signature. It solves a system of linear constrained Diophantine equations to reorganize the fragments into novel molecular structures. The method has been previously applied to problems in drug and materials design but has inherent computational limitations due to the necessity of solving the Diophantine constraints. We propose a new approach to overcome these limitations using the Fincke-Pohst algorithm for lattice enumeration. We benchmark the new approach against previous results on LFA-1/ICAM-1 inhibitory peptides, linear homopolymers, and hydrofluoroether foam blowing agents. Software implementing the new approach is available at www.cs.otago.ac.nz/homepages/smartin.

  9. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  10. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  11. Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Sigloch, Karin

    2016-11-01

    Seismic source inversion, a central task in seismology, is concerned with the estimation of earthquake source parameters and their uncertainties. Estimating uncertainties is particularly challenging because source inversion is a non-linear problem. In a companion paper, Stähler and Sigloch (2014) developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements, a problem we address here. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D = 1 - CC of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. By identifying and quantifying this likelihood function, we make D and thus waveform cross-correlation measurements usable for fully probabilistic sampling strategies, in source inversion and related applications such as seismic tomography.

  12. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE PAGES

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    2017-10-29

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  13. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  14. Final Report: Resolving and Discriminating Overlapping Anomalies from Multiple Objects in Cluttered Environments

    DTIC Science & Technology

    2015-12-15

    UXO community . NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Irma Shamatava 0.50 0.50 1 Resolving and Discriminating...Distinguishing an object of interest from innocuous items is the main problem that the UXO community is facing currently. This inverse problem...innocuous items is the main problem that the UXO community is facing currently. This inverse problem demands fast and accurate representation of

  15. A multi-frequency iterative imaging method for discontinuous inverse medium problem

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Feng, Lixin

    2018-06-01

    The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.

  16. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  17. The inverse problem of sensing the mass and force induced by an adsorbate on a beam nanomechanical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Zhang, Yin

    2016-06-08

    The mass sensing superiority of a micro/nanomechanical resonator sensor over conventional mass spectrometry has been, or at least, is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors such as position and axial force can also cause the shifts of resonant frequencies. The in-situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as smallmore » as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of mechanical resonator sensor on two things: reducing extra experimental equipments and achieving better mass sensing by considering more factors.« less

  18. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  19. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    NASA Astrophysics Data System (ADS)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  20. Novel Infrared Dynamics of Cold Atoms on Hot Graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Kotov, Valeri; Clougherty, Dennis

    The low-energy dynamics of cold atoms interacting with macroscopic graphene membranes exhibits severe infrared divergences when treated perturbatively. These infrared problems are even more pronounced at finite temperature due to the (infinitely) many flexural phonons excited in graphene. We have devised a technique to take account (resummation) of such processes in the spirit of the well-known exact solution of the independent boson model. Remarkably, there is also similarity to the infrared problems and their treatment (via the Bloch-Nordsieck scheme) in finite temperature ``hot'' quantum electrodynamics and chromodynamics due to the long-range, unscreened nature of gauge interactions. The method takes into account correctly the strong damping provided by the many emitted phonons at finite temperature. In our case, the inverse membrane size plays the role of an effective low-energy scale, and, unlike the above mentioned field theories, there remains an unusual, highly nontrivial dependence on that scale due to the 2D nature of the problem. We present detailed results for the sticking (atomic damping rate) rate of cold atomic hydrogen as a function of the membrane temperature and size. We find that the rate is very strongly dependent on both quantities.

  1. Viscoelastic material inversion using Sierra-SD and ROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  2. An optimization method for the problems of thermal cloaking of material bodies

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Levin, V. A.

    2016-11-01

    Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.

  3. Image restoration, uncertainty, and information.

    PubMed

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy.

  4. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  5. Reconstruction of local perturbations in periodic surfaces

    NASA Astrophysics Data System (ADS)

    Lechleiter, Armin; Zhang, Ruming

    2018-03-01

    This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.

  6. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  7. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  8. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.

  9. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is influenced by the strength of measurement errors and it is not significantly diminished or increased by adding noisy reciprocal information.

  10. An approach to quantum-computational hydrologic inverse analysis

    DOE PAGES

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  11. An approach to quantum-computational hydrologic inverse analysis.

    PubMed

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  12. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  13. An approach to quantum-computational hydrologic inverse analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  14. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  15. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  16. Directly data processing algorithm for multi-wavelength pyrometer (MWP).

    PubMed

    Xing, Jian; Peng, Bo; Ma, Zhao; Guo, Xin; Dai, Li; Gu, Weihong; Song, Wenlong

    2017-11-27

    Data processing of multi-wavelength pyrometer (MWP) is a difficult problem because unknown emissivity. So far some solutions developed generally assumed particular mathematical relations for emissivity versus wavelength or emissivity versus temperature. Due to the deviation between the hypothesis and actual situation, the inversion results can be seriously affected. So directly data processing algorithm of MWP that does not need to assume the spectral emissivity model in advance is main aim of the study. Two new data processing algorithms of MWP, Gradient Projection (GP) algorithm and Internal Penalty Function (IPF) algorithm, each of which does not require to fix emissivity model in advance, are proposed. The novelty core idea is that data processing problem of MWP is transformed into constraint optimization problem, then it can be solved by GP or IPF algorithms. By comparison of simulation results for some typical spectral emissivity models, it is found that IPF algorithm is superior to GP algorithm in terms of accuracy and efficiency. Rocket nozzle temperature experiment results show that true temperature inversion results from IPF algorithm agree well with the theoretical design temperature as well. So the proposed combination IPF algorithm with MWP is expected to be a directly data processing algorithm to clear up the unknown emissivity obstacle for MWP.

  17. Accessing the uncertainties of seismic velocity and anisotropy structure of Northern Great Plains using a transdimensional Bayesian approach

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2017-12-01

    Seismic imaging utilizing complementary seismic data provides unique insight on the formation, evolution and current structure of continental lithosphere. While numerous efforts have improved the resolution of seismic structure, the quantification of uncertainties remains challenging due to the non-linearity and the non-uniqueness of geophysical inverse problem. In this project, we use a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate seismic observables including Rayleigh and Love wave dispersion, Ps and Sp receiver function to invert for shear velocity (Vs), compressional velocity (Vp), density, and radial anisotropy of the lithospheric structure. The Bayesian nature and the transdimensionality of this approach allow the quantification of the model parameter uncertainties while keeping the models parsimonious. Both synthetic test and inversion of actual data for Ps and Sp receiver functions are performed. We quantify the information gained in different inversions by calculating the Kullback-Leibler divergence. Furthermore, we explore the ability of Rayleigh and Love wave dispersion data to constrain radial anisotropy. We show that when multiple types of model parameters (Vsv, Vsh, and Vp) are inverted simultaneously, the constraints on radial anisotropy are limited by relatively large data uncertainties and trade-off strongly with Vp. We then perform joint inversion of the surface wave dispersion (SWD) and Ps, Sp receiver functions, and show that the constraints on both isotropic Vs and radial anisotropy are significantly improved. To achieve faster convergence of the rjMcMC, we propose a progressive inclusion scheme, and invert SWD measurements and receiver functions from about 400 USArray stations in the Northern Great Plains. We start by only using SWD data due to its fast convergence rate. We then use the average of the ensemble as a starting model for the joint inversion, which is able to resolve distinct seismic signatures of geological structures including the trans-Hudson orogen, Wyoming craton and Yellowstone hotspot. Various analyses are done to access the uncertainties of the seismic velocities and Moho depths. We also address the importance of careful data processing of receiver functions by illustrating artifacts due to unmodelled sediment reverberations.

  18. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  19. a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.

    2017-12-01

    We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.

  20. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  1. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Köpke, Corinna; Irving, James; Elsheikh, Ahmed H.

    2018-06-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are commonly employed. This gives rise to model error, which has the potential to significantly bias posterior statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems. Our approach is geared towards the common case where this error cannot be (i) effectively characterized through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of computed model-error realizations. To this end, we focus on identification and removal of the model-error component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their inversion. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic characterization of uncertainty.

  2. Control and System Theory, Optimization, Inverse and Ill-Posed Problems

    DTIC Science & Technology

    1988-09-14

    Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The

  3. Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; Baker, David; Sarmiento, Jorge; Ciais, Philippe; Bousquet, Philippe

    2002-10-01

    Inversion methods are often used to estimate surface CO2 fluxes from atmospheric CO2 concentration measurements, given an atmospheric transport model to relate the two. The published estimates disagree strongly on the location of the main sources and sinks, however. Are these differences due to the different time spans considered, or are they artifacts of the method and data used? Here we assess the uncertainty in such estimates due to the choice of time discretization of the measurements and fluxes, the spatial resolution of the fluxes, and the transport model. A suite of 27 Bayesian least squares inversions has been run, given by varying the number of flux regions solved for (7, 12, and 17), the time discretization (annual/annual, annual/monthly, and monthly/monthly for the fluxes/data), and the transport model (TM2, TM3, and GCTM), while holding all other inversion details constant. The estimated fluxes from this ensemble of inversions for the land + ocean sum are stable over large zonal bands, but the spread in the results increases when considering the longitudinal flux distribution inside these bands. On average for 1990-1994 the inversions place a large CO2 uptake north of 30°N (3.2 ± 0.3 GtC yr-1), mostly over the land regions, with more in Eurasia than North America. The ocean fluxes are generally smaller than given by [1999], especially south of 15°S and in the global total, where they are less than half as large. A small uptake is found for the tropical land regions, suggesting that growth more than compensates for deforestation there. The results for the different transport models are consistent with their known mixing properties; the longitudinal pattern of their land biosphere rectifier, in particular, strongly influences the regional partitioning of the flux in the north. While differences between the transport models contribute significantly to the spread of the results, an equivalent or even larger spread is due to the time discretization method used: Solving for annual mean fluxes with monthly mean measurements tended to give spurious land/ocean flux partition in the north. We suggest then that this time discretization method be avoided. Overall, the uncertainty quoted for the estimated fluxes should include not only the random error calculated by the inversion equations but also all the systematic errors in the problem, such as those addressed in this study.

  4. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  5. Deconvolution using a neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  6. Genetics Home Reference: Koolen-de Vries syndrome

    MedlinePlus

    ... of Koolen-de Vries syndrome , has undergone an inversion . An inversion involves two breaks in a chromosome; the resulting ... lineage have no health problems related to the inversion. However, genetic material can be lost or duplicated ...

  7. Three-dimensional inversion of multisource array electromagnetic data

    NASA Astrophysics Data System (ADS)

    Tartaras, Efthimios

    Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.

  8. A novel design for a hybrid space manipulator

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO

    1991-01-01

    Described are the structural design, kinematics, and characteristics of a robot manipulator for space applications and use as an articulate and powerful space shuttle manipulator. Hybrid manipulators are parallel-serial connection robots that give rise to a multitude of highly precise robot manipulators. These manipulators are modular and can be extended by additional modules over large distances. Every module has a hemispherical work space and collective modules give rise to highly dexterous symmetrical work space. Some basic designs and kinematic structures of these robot manipulators are discussed, the associated direct and inverse kinematics formulations are presented, and solutions to the inverse kinematic problem are obtained explicitly and elaborated upon. These robot manipulators are shown to have a strength-to-weight ratio that is many times larger than the value that is currently available with industrial or research manipulators. This is due to the fact that these hybrid manipulators are stress-compensated and have an ultralight weight, yet, they are extremely stiff due to the fact that force distribution in their structure is mostly axial. Actuation is prismatic and can be provided by ball screws for maximum precision.

  9. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    NASA Astrophysics Data System (ADS)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  10. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Geng, Xianguo

    2017-12-01

    The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.

  11. Individual differences in children's understanding of inversion and arithmetical skill.

    PubMed

    Gilmore, Camilla K; Bryant, Peter

    2006-06-01

    Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.

  12. On stability of the solutions of inverse problem for determining the right-hand side of a degenerate parabolic equation with two independent variables

    NASA Astrophysics Data System (ADS)

    Kamynin, V. L.; Bukharova, T. I.

    2017-01-01

    We prove the estimates of stability with respect to perturbations of input data for the solutions of inverse problems for degenerate parabolic equations with unbounded coefficients. An important feature of these estimates is that the constants in these estimates are written out explicitly by the input data of the problem.

  13. FOREWORD: Imaging from coupled physics Imaging from coupled physics

    NASA Astrophysics Data System (ADS)

    Arridge, S. R.; Scherzer, O.

    2012-08-01

    Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all new imaging techniques, the discovery of physical principles which can be exploited to yield information about internal physical parameters has led, hand in hand, to the development of new mathematical methods for solving the corresponding inverse problems. In many cases, the coupled physics imaging problems are expected to be much better posed than conventional tomographical imaging problems. However, still, at the current state of research, there exist a variety of open mathematical questions regarding uniqueness, existence and stability. In this special section we have invited contributions from many of the leading researchers in the mathematics, physics and engineering of these techniques to survey and to elaborate on these novel methodologies, and to present recent research directions. Historically, one of the best studied strongly ill-posed problems in the mathematical literature is the Calderón problem occuring in conductivity imaging, and one of the first examples of ICP is the use of magnetic resonance imaging (MRI) to detect internal current distributions. This topic, known as current density imaging (CDI) or magnetic resonance elecrical impedance tomography (MREIT), and its related technique of magnetic resonance electrical property tomography (MREPT), is reviewed by Wildak and Scherzer [1], and also by Seo et al [3], where experimental studies are documented. Mathematically, several of the ICP problems can be analyzed in terms of the 'p-Laplacian' which raises interesting research questions of non-linear partial differential equations. One approach for analyzing and for the solution of the CDI problem, using characteristics of the 1-Laplacian, is discussed by Tamasan and Veras [4]. Moreover, Moradifam et al [5] present a novel iterative algorithm based on Bregman splitting for solving the CDI problem. Probably the most active research areas in ICP are related to acoustic detection, because most of these techniques rely on the photoacoustic effect wherein absorption of an ultrashort pulse of light, having propagated by multiple scattering some distance into a diffusing medium, generates a source of acoustic waves that are propagated with hyperbolic stability to a surface detector. A complementary problem is that of 'acousto-optics' which uses focussed acoustic waves as the primary field to induce perturbations in optical or electrical properties, which are thus spatially localized. Similar physical principles apply to implement ultrasound modulated electrical impedance tomography (UMEIT). These topics are included in the review of Wildak and Scherzer [1], and Kuchment and Steinhauer [2] offer a general analysis of their structure in terms of pseudo-differential operators. 'Acousto-electrical' imaging is analyzed as a particular case by Ammari et al [6]. In the paper by Tarvainen et al [7], the photo-acoustic problem is studied with respect to different models of the light propagation step. In the paper by Monard and Bal [8], a more general problem for the reconstruction of an anisotropic diffusion parameter from power density measurements is considered; here, issues of uniqueness with respect to the number of measurements is of great importance. A distinctive, and highly important, example of ICP is that of elastography, in which the primary field is low-frequency ultrasound giving rise to mechanical displacement that reveals information on the local elasticity tensor. As in all the methods discussed in this section, this contrast mechanism is measured internally, with a secondary technique, which in this case can be either MRI or ultrasound. McLaughlin et al [9] give a comprehensive analysis of this problem. Our intention for this special section was to provide both an overview and a snapshot of current work in this exciting area. The increasing interest, and the involvement of cross-disciplinary groups of scientists, will continue to lead to the rapid expansion and important new results in this novel area of imaging science. References [1] Widlak T and Scherzer O 2012 Inverse Problems 28 084008 [2] Kuchment P and Steinhauer D 2012 Inverse Problems 28 084007 [3] Seo J K, Kim D-H, Lee J, Kwon O I, Sajib S Z K and Woo E J 2012 Inverse Problems 28 084002 [4] Tamasan A and Veras J 2012 Inverse Problems 28 084006 [5] Moradifam A, Nachman A and Timonov A 2012 Inverse Problems 28 084003 [6] Ammari H, Garnier J and Jing W 2012 Inverse Problems 28 084005 [7] Tarvainen T, Cox B T, Kaipio J P and Arridge S R 2012 Inverse Problems 28 084009 [8] Monard F and Bal G 2012 Inverse Problems 28 084001 [9] McLaughlin J, Oberai A and Yoon J R 2012 Inverse Problems 28 084004

  14. THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)

    EPA Science Inventory

    This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...

  15. ON THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM. (R825689C037)

    EPA Science Inventory

    Abstract

    The geostatistical approach to the inverse problem is discussed with emphasis on the importance of structural analysis. Although the geostatistical approach is occasionally misconstrued as mere cokriging, in fact it consists of two steps: estimation of statist...

  16. On a local solvability and stability of the inverse transmission eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Bondarenko, Natalia; Buterin, Sergey

    2017-11-01

    We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.

  17. Finite-size anomalies of the Drude weight: Role of symmetries and ensembles

    NASA Astrophysics Data System (ADS)

    Sánchez, R. J.; Varma, V. K.

    2017-12-01

    We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N

  18. Basis set expansion for inverse problems in plasma diagnostic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Ruiz, C. L.

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M.more » Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.« less

  19. Basis set expansion for inverse problems in plasma diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  20. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    NASA Astrophysics Data System (ADS)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  1. A study of selected radiation and propagation problems related to antennas and probes in magneto-ionic media

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research consisted of computations toward the solution of the problem of the current distribution on a cylindrical antenna in a magnetoplasma. The case of an antenna parallel to the applied magnetic field was investigated. A systematic method of asymptotic expansion was found which simplifies the solution in the general case by giving the field of a dipole even at relatively short range. Some useful properties of the dispersion surfaces in a lossy medium have also been found. A laboratory experiment was directed toward evaluating nonlinear effects, such as those due to power level, bias voltage and electron heating. The problem of reflection and transmission of waves in an electron heated plasma was treated theoretically. The profile inversion problem has been pursued. Some results are very encouraging, however, the general question of stability of the solution remains unsolved.

  2. Evaluation of concrete cover by surface wave technique: Identification procedure

    NASA Astrophysics Data System (ADS)

    Piwakowski, Bogdan; Kaczmarek, Mariusz; Safinowski, Paweł

    2012-05-01

    Concrete cover degradation is induced by aggressive agents in ambiance, such as moisture, chemicals or temperature variations. Due to degradation usually a thin (a few millimeters thick) surface layer has porosity slightly higher than the deeper sound material. The non destructive evaluation of concrete cover is vital to monitor the integrity of concrete structures and prevent their irreversible damage. In this paper the methodology applied by the classical technique used for ground structure recovery called Multichanel Analysis of Surface Waves is discussed as the NDT tool in civil engineering domain to characterize the concrete cover. In order to obtain the velocity as a function of sample depth the dispersion of surface waves is used as an input for solving inverse problem. The paper describes the inversion procedure and provides the practical example of use of developed system.

  3. A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.

    2018-03-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

  4. NLSE: Parameter-Based Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  5. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  6. Refraction traveltime tomography based on damped wave equation for irregular topographic model

    NASA Astrophysics Data System (ADS)

    Park, Yunhui; Pyun, Sukjoon

    2018-03-01

    Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity, which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must consider the irregular topography, as the land seismic data are generally obtained in irregular topography. This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse problem, and used the nonlinear conjugate gradient method to solve the inverse problem. As the damped wavefields were used, there were no issues associated with artificial reflections caused by unstructured meshes. In addition, the shadow zone problem could be circumvented because this method is based on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed method was both robust to an initial velocity model and efficient compared to full wavefield inversions. Through synthetic and field data examples, our method was shown to successfully reconstruct shallow velocity structures. To verify our method, static corrections were roughly applied to the field data using the estimated near-surface velocity. By comparing common shot gathers and stack sections with and without static corrections, we confirmed that the proposed tomography algorithm can be used to correct the statics of land seismic data.

  7. Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantification using Set Inversion Via Interval Analysis

    NASA Astrophysics Data System (ADS)

    Kernicky, Timothy; Whelan, Matthew; Al-Shaer, Ehab

    2018-06-01

    A methodology is developed for the estimation of internal axial force and boundary restraints within in-service, prismatic axial force members of structural systems using interval arithmetic and contractor programming. The determination of the internal axial force and end restraints in tie rods and cables using vibration-based methods has been a long standing problem in the area of structural health monitoring and performance assessment. However, for structural members with low slenderness where the dynamics are significantly affected by the boundary conditions, few existing approaches allow for simultaneous identification of internal axial force and end restraints and none permit for quantifying the uncertainties in the parameter estimates due to measurement uncertainties. This paper proposes a new technique for approaching this challenging inverse problem that leverages the Set Inversion Via Interval Analysis algorithm to solve for the unknown axial forces and end restraints using natural frequency measurements. The framework developed offers the ability to completely enclose the feasible solutions to the parameter identification problem, given specified measurement uncertainties for the natural frequencies. This ability to propagate measurement uncertainty into the parameter space is critical towards quantifying the confidence in the individual parameter estimates to inform decision-making within structural health diagnosis and prognostication applications. The methodology is first verified with simulated data for a case with unknown rotational end restraints and then extended to a case with unknown translational and rotational end restraints. A laboratory experiment is then presented to demonstrate the application of the methodology to an axially loaded rod with progressively increased end restraint at one end.

  8. Solving inversion problems with neural networks

    NASA Technical Reports Server (NTRS)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  9. Approximation of the ruin probability using the scaled Laplace transform inversion

    PubMed Central

    Mnatsakanov, Robert M.; Sarkisian, Khachatur; Hakobyan, Artak

    2015-01-01

    The problem of recovering the ruin probability in the classical risk model based on the scaled Laplace transform inversion is studied. It is shown how to overcome the problem of evaluating the ruin probability at large values of an initial surplus process. Comparisons of proposed approximations with the ones based on the Laplace transform inversions using a fixed Talbot algorithm as well as on the ones using the Trefethen–Weideman–Schmelzer and maximum entropy methods are presented via a simulation study. PMID:26752796

  10. GRACE RL03-v2 monthly time series of solutions from CNES/GRGS

    NASA Astrophysics Data System (ADS)

    Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard

    2015-04-01

    Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.

  11. Hemolytic anemia caused by aortic flap and inversion of felt strip after ascending aorta replacement.

    PubMed

    Sakaguchi, Masayuki; Takano, Tamaki

    2016-08-02

    Hemolysis related to a kinked prosthetic graft or inner felt strip is a very rare complication after aortic surgery. We describe herein a case of hemolytic anemia that developed due to aortic flap of the dissection and inversion of an inner felt strip that was applied at the proximal anastomosis of a replaced ascending aorta 10 years previously. A 74-year-old woman presented with consistent hemolytic anemia 10 years after replacement of the ascending aorta to treat Stanford type A acute aortic dissection. The cause of hemolysis was attributed to mechanical injury of red blood cells at a site of stenosis caused by aortic flap of the dissection and inversion of the felt strip used for the proximal anastomosis. Repeated resection of the strip and graft replacement of the ascending aorta resolved this problem. We considered that blood flow disrupted by a jet of blood at the site of the proximal inner felt strip was the cause of severe hemolysis, we describe rare hemolytic anemia at the site of aortic flap and inverted felt strip after replacement of the ascending aorta.

  12. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun

    2013-12-01

    Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.

  13. Inverse problems and coherence

    NASA Astrophysics Data System (ADS)

    Baltes, H. P.; Ferwerda, H. A.

    1981-03-01

    A summary of current inverse problems of statistical optics is presented together with a short guide to the pertinent review-type literature. The retrieval of structural information from the far-zone degree of coherence and the average intensity distribution of radiation scattered by a superposition of random and periodic scatterers is discussed.

  14. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  15. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  16. SIAM conference on inverse problems: Geophysical applications. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devotedmore » to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.« less

  17. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  18. Inverse problem of the vibrational band gap of periodically supported beam

    NASA Astrophysics Data System (ADS)

    Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei

    2017-04-01

    The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.

  19. Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.

    NASA Astrophysics Data System (ADS)

    Xia, Jake Jiqing

    The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  20. Large-scale inverse model analyses employing fast randomized data reduction

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  1. Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach

    NASA Technical Reports Server (NTRS)

    Seidman, T. I.; Munteanu, M. J.

    1979-01-01

    The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.

  2. Layer Stripping Solutions of Inverse Seismic Problems.

    DTIC Science & Technology

    1985-03-21

    problems--more so than has generally been recognized. The subject of this thesis is the theoretical development of the . layer-stripping methodology , and...medium varies sharply at each interface, which would be expected to cause difficulties for the algorithm, since it was designed for a smoothy varying... methodology was applied in a novel way. The inverse problem considered in this chapter was that of reconstructing a layered medium from measurement of its

  3. Bayesian inversion of refraction seismic traveltime data

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test for a synthetic data set from a known model is also presented.

  4. Hydromagnetic conditions near the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1995-01-01

    The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.

  5. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  6. The Relationship Between Non-Symbolic Multiplication and Division in Childhood

    PubMed Central

    McCrink, Koleen; Shafto, Patrick; Barth, Hilary

    2016-01-01

    Children without formal education in addition and subtraction are able to perform multi-step operations over an approximate number of objects. Further, their performance improves when solving approximate (but not exact) addition and subtraction problems that allow for inversion as a shortcut (e.g., a + b − b = a). The current study examines children’s ability to perform multi-step operations, and the potential for an inversion benefit, for the operations of approximate, non-symbolic multiplication and division. Children were trained to compute a multiplication and division scaling factor (*2 or /2, *4 or /4), and then tested on problems that combined two of these factors in a way that either allowed for an inversion shortcut (e.g., 8 * 4 / 4) or did not (e.g., 8 * 4 / 2). Children’s performance was significantly better than chance for all scaling factors during training, and they successfully computed the outcomes of the multi-step testing problems. They did not exhibit a performance benefit for problems with the a * b / b structure, suggesting they did not draw upon inversion reasoning as a logical shortcut to help them solve the multi-step test problems. PMID:26880261

  7. Data-driven layer-stripping strategy in 3-D joint refraction and reflection travel-time tomography with TOMO3D

    NASA Astrophysics Data System (ADS)

    Meléndez, Adrià; Korenaga, Jun; Sallarès, Valentí; Miniussi, Alain; Ranero, César

    2015-04-01

    We present a new 3-D travel-time tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the propagation velocity distribution and the geometry of reflecting boundaries in the subsurface. The combination of refracted and reflected data provides a denser coverage of the study area. Moreover, because refractions only depend on the velocity parameters, they contribute to the mitigation of the negative effect of the ambiguity between layer thickness and propagation velocity that is intrinsic to the reflections that define these boundaries. This code is based on its renowned 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The forward travel-time calculations are conducted using a hybrid ray-tracing technique combining the graph or shortest path method and the bending method. The LSQR algorithm is used to perform the iterative inversion of travel-time residuals to update the initial velocity and depth models. In order to cope with the increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes by far most of the run time (~90%), has been parallelised with a combination of MP and MPI standards. This parallelisation distributes the ray-tracing and travel-time calculations among the available computational resources, allowing the user to set the number of nodes, processors and cores to be used. The code's performance was evaluated with a complex synthetic case simulating a subduction zone. The objective is to retrieve the velocity distribution of both upper and lower plates and the geometry of the interplate and Moho boundaries. Our tomography method is designed to deal with a single reflector per inversion, and we show that a data-driven layer-stripping strategy allows to successfully recover several reflectors in successive inversions. This strategy consists in building the final velocity model layer by layer, sequentially extending it down with each inversion of a new, deeper reflector. One advantage of layer stripping is that it allows us to introduce and keep strong velocity contrasts associated to geological discontinuities that would otherwise be smoothened. Another advantage is that it poses simpler inverse problems at each step, facilitating the minimisation of travel-time residuals and ensuring a good control on each partial model before adding new data corresponding to deeper layers. Finally, we discuss the parallel performance of the code in this particular synthetic case.

  8. Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.

    2001-12-01

    Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.

  9. Adapting Better Interpolation Methods to Model Amphibious MT Data Along the Cascadian Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.

    2016-12-01

    Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new forward model during each iteration of the inversion.

  10. Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Erdem, Arzu

    2008-08-01

    The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.

  11. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  12. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  13. Inverse problems with nonnegative and sparse solutions: algorithms and application to the phase retrieval problem

    NASA Astrophysics Data System (ADS)

    Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong

    2018-05-01

    In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.

  14. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.

    2018-01-01

    In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.

  15. Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.

    PubMed

    Han, Lei; Zhang, Yu; Zhang, Tong

    2016-08-01

    The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.

  16. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  17. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  18. An inverse finance problem for estimation of the volatility

    NASA Astrophysics Data System (ADS)

    Neisy, A.; Salmani, K.

    2013-01-01

    Black-Scholes model, as a base model for pricing in derivatives markets has some deficiencies, such as ignoring market jumps, and considering market volatility as a constant factor. In this article, we introduce a pricing model for European-Options under jump-diffusion underlying asset. Then, using some appropriate numerical methods we try to solve this model with integral term, and terms including derivative. Finally, considering volatility as an unknown parameter, we try to estimate it by using our proposed model. For the purpose of estimating volatility, in this article, we utilize inverse problem, in which inverse problem model is first defined, and then volatility is estimated using minimization function with Tikhonov regularization.

  19. Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.

    ERIC Educational Resources Information Center

    Bohn, C. L.; Flynn, R. W.

    1978-01-01

    Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)

  20. Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods

    NASA Astrophysics Data System (ADS)

    Thurin, J.; Brossier, R.; Métivier, L.

    2017-12-01

    Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012

  1. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  2. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  3. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  4. Analysis of the Hessian for Inverse Scattering Problems. Part 1: Inverse Shape Scattering of Acoustic Waves

    DTIC Science & Technology

    2011-06-01

    in giving us of a copy of his habilitation thesis, without which this article would not have been possible. We also thank Prof. Karsten Eppler for...John Wiley & Sons, 1983. [19] Andreas Kirsch. Generalized boundary value- and control problems for the Helmholtz equation. Habilitation thesis, 1984

  5. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  6. Solving ill-posed inverse problems using iterative deep neural networks

    NASA Astrophysics Data System (ADS)

    Adler, Jonas; Öktem, Ozan

    2017-12-01

    We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).

  7. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  8. Trimming and procrastination as inversion techniques

    NASA Astrophysics Data System (ADS)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  9. A general approach to regularizing inverse problems with regional data using Slepian wavelets

    NASA Astrophysics Data System (ADS)

    Michel, Volker; Simons, Frederik J.

    2017-12-01

    Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.

  10. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  11. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  12. Restart Operator Meta-heuristics for a Problem-Oriented Evolutionary Strategies Algorithm in Inverse Mathematical MISO Modelling Problem Solving

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.

    2017-02-01

    This study is focused on solving an inverse mathematical modelling problem for dynamical systems based on observation data and control inputs. The mathematical model is being searched in the form of a linear differential equation, which determines the system with multiple inputs and a single output, and a vector of the initial point coordinates. The described problem is complex and multimodal and for this reason the proposed evolutionary-based optimization technique, which is oriented on a dynamical system identification problem, was applied. To improve its performance an algorithm restart operator was implemented.

  13. An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations

    PubMed Central

    Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.

    2016-01-01

    We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360

  14. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  15. Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation

    NASA Astrophysics Data System (ADS)

    Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat

    2018-05-01

    This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.

  16. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  17. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.

  18. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  19. Appraisal of geodynamic inversion results: a data mining approach

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.

  20. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography

    PubMed Central

    Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-01-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291

  1. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  2. Query-based learning for aerospace applications.

    PubMed

    Saad, E W; Choi, J J; Vian, J L; Wunsch, D C Ii

    2003-01-01

    Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem.

  3. A practical method to assess model sensitivity and parameter uncertainty in C cycle models

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2015-04-01

    The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.

  4. Inverse optimal self-tuning PID control design for an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Rout, Raja; Subudhi, Bidyadhar

    2017-01-01

    This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.

  5. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    NASA Astrophysics Data System (ADS)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  6. A comparative study of minimum norm inverse methods for MEG imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, R.M.; Mosher, J.C.; Phillips, J.W.

    1996-07-01

    The majority of MEG imaging techniques currently in use fall into the general class of (weighted) minimum norm methods. The minimization of a norm is used as the basis for choosing one from a generally infinite set of solutions that provide an equally good fit to the data. This ambiguity in the solution arises from the inherent non- uniqueness of the continuous inverse problem and is compounded by the imbalance between the relatively small number of measurements and the large number of source voxels. Here we present a unified view of the minimum norm methods and describe how we canmore » use Tikhonov regularization to avoid instabilities in the solutions due to noise. We then compare the performance of regularized versions of three well known linear minimum norm methods with the non-linear iteratively reweighted minimum norm method and a Bayesian approach.« less

  7. A coupled thermo-mechanical pseudo inverse approach for preform design in forging

    NASA Astrophysics Data System (ADS)

    Thomas, Anoop Ebey; Abbes, Boussad; Li, Yu Ming; Abbes, Fazilay; Guo, Ying-Qiao; Duval, Jean-Louis

    2017-10-01

    Hot forging is a process used to form difficult to form materials as well as to achieve complex geometries. This is possible due to the reduction of yield stress at high temperatures and a subsequent increase in formability. Numerical methods have been used to predict the material yield and the stress/strain states of the final product. Pseudo Inverse Approach (PIA) developed in the context of cold forming provides a quick estimate of the stress and strain fields in the final product for a given initial shape. In this paper, PIA is extended to include the thermal effects on the forging process. A Johnson-Cook thermo-viscoplastic material law is considered and a staggered scheme is employed for the coupling between the mechanical and thermal problems. The results are compared with available commercial codes to show the efficiency and the limitations of PIA.

  8. Application of a Numerical Inverse Laplace Integration Method to Surface Loading on a Viscoelastic Compressible Earth Model

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Klemann, Volker; Okuno, Jun'ichi

    2009-09-01

    Normal mode approaches for calculating viscoelastic responses of self-gravitating and compressible spherical earth models have an intrinsic problem of determining the roots of the secular equation and the associated residues in the Laplace domain. To bypass this problem, a method based on numerical inverse Laplace integration was developed by T anaka et al. (2006, 2007) for computations of viscoelastic deformation caused by an internal dislocation. The advantage of this approach is that the root-finding problem is avoided without imposing additional constraints on the governing equations and earth models. In this study, we apply the same algorithm to computations of viscoelastic responses to a surface load and show that the results obtained by this approach agree well with those obtained by a time-domain approach that does not need determinations of the normal modes in the Laplace domain. Using the elastic earth model PREM and a convex viscosity profile, we calculate viscoelastic load Love numbers ( h, l, k) for compressible and incompressible models. Comparisons between the results show that effects due to compressibility are consistent with results obtained by previous studies and that the rate differences between the two models total 10-40%. This will serve as an independent method to confirm results obtained by time-domain approaches and will usefully increase the reliability when modeling postglacial rebound.

  9. The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.

    PubMed

    Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre

    2016-10-01

    Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.

  10. Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin

    2016-02-01

    Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.

  11. Model Order Reduction for the fast solution of 3D Stokes problems and its application in geophysical inversion

    NASA Astrophysics Data System (ADS)

    Ortega Gelabert, Olga; Zlotnik, Sergio; Afonso, Juan Carlos; Díez, Pedro

    2017-04-01

    The determination of the present-day physical state of the thermal and compositional structure of the Earth's lithosphere and sub-lithospheric mantle is one of the main goals in modern lithospheric research. All this data is essential to build Earth's evolution models and to reproduce many geophysical observables (e.g. elevation, gravity anomalies, travel time data, heat flow, etc) together with understanding the relationship between them. Determining the lithospheric state involves the solution of high-resolution inverse problems and, consequently, the solution of many direct models is required. The main objective of this work is to contribute to the existing inversion techniques in terms of improving the estimation of the elevation (topography) by including a dynamic component arising from sub-lithospheric mantle flow. In order to do so, we implement an efficient Reduced Order Method (ROM) built upon classic Finite Elements. ROM allows to reduce significantly the computational cost of solving a family of problems, for example all the direct models that are required in the solution of the inverse problem. The strategy of the method consists in creating a (reduced) basis of solutions, so that when a new problem has to be solved, its solution is sought within the basis instead of attempting to solve the problem itself. In order to check the Reduced Basis approach, we implemented the method in a 3D domain reproducing a portion of Earth that covers up to 400 km depth. Within the domain the Stokes equation is solved with realistic viscosities and densities. The different realizations (the family of problems) is created by varying viscosities and densities in a similar way as it would happen in an inversion problem. The Reduced Basis method is shown to be an extremely efficiently solver for the Stokes equation in this context.

  12. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  13. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

  14. Solving the Inverse-Square Problem with Complex Variables

    ERIC Educational Resources Information Center

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  15. Backus-Gilbert inversion of travel time data

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1972-01-01

    Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.

  16. Determination of thermophysical characteristics of solid materials by electrical modelling of the solutions to the inverse problems in nonsteady heat conduction

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Krivoshei, F. A.

    1985-01-01

    The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.

  17. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  18. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  19. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  20. Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods

    NASA Astrophysics Data System (ADS)

    Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.

    2011-12-01

    Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion of random effects. However, in the biased case, only Method 3 correctly estimates all the unknown parameters, and both Methods 1 and 2 provide wrong values for the biased parameters. The synthetic case study demonstrates that if the covariance matrix for PCA analysis is inconsistent with true models, the PCA methods with geometric or MCMC sampling will provide incorrect estimates.

  1. Stochastic joint inversion of geoelectrical cross-well data for salt tracer test monitoring to image the hydraulic conductivity field of heterogenous aquifers

    NASA Astrophysics Data System (ADS)

    Revil, A.; Jardani, A.; Dupont, J.

    2012-12-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution associated with a low density of available piezometers. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity. We use a stochastic joint inversion of Direct Current (DC) resistivity and Self-Potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field of an heterogeneous aquifer. The pilot point parameterization is used to avoid over-parameterization of the inverse problem. Bounds on the model parameters are used to promote a consistent Markov chain Monte Carlo sampling of the hydrogeological parameters of the model. To evaluate the effectiveness of the inversion process, we compare several scenarios where the geophysical data are coupled or not to the hydrogeological data to map the hydraulic conductivity. We first test the effectiveness of the inversion of each type of data alone, and then we combine the methods two by two. We finally combine all the information together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. The results of the inversion reveal that the self-potential data improve the estimate of hydraulic conductivity especially when the self-potential data are combined to the salt concentration measurement in the second well or to the time-lapse electrical resistivity data. Various tests are also performed to quantify the uncertainty in the inversion when for instance the semi-variogram is not known and its parameters should be inverted as well.

  2. Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Yin, Xingyao; Li, Kun; Zong, Zhaoyun

    2016-10-01

    AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.

  3. The 2-D magnetotelluric inverse problem solved with optimization

    NASA Astrophysics Data System (ADS)

    van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven

    2011-02-01

    The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.

  4. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio

    2018-04-01

    We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.

  5. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.

  6. EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.

    PubMed

    Hadinia, M; Jafari, R; Soleimani, M

    2016-06-01

    This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.

  7. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  8. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  9. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  10. EDITORIAL: Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications

    NASA Astrophysics Data System (ADS)

    Dorn, O.; Lesselier, D.

    2010-07-01

    Inverse problems in electromagnetics have a long history and have stimulated exciting research over many decades. New applications and solution methods are still emerging, providing a rich source of challenging topics for further investigation. The purpose of this special issue is to combine descriptions of several such developments that are expected to have the potential to fundamentally fuel new research, and to provide an overview of novel methods and applications for electromagnetic inverse problems. There have been several special sections published in Inverse Problems over the last decade addressing fully, or partly, electromagnetic inverse problems. Examples are: Electromagnetic imaging and inversion of the Earth's subsurface (Guest Editors: D Lesselier and T Habashy) October 2000 Testing inversion algorithms against experimental data (Guest Editors: K Belkebir and M Saillard) December 2001 Electromagnetic and ultrasonic nondestructive evaluation (Guest Editors: D Lesselier and J Bowler) December 2002 Electromagnetic characterization of buried obstacles (Guest Editors: D Lesselier and W C Chew) December 2004 Testing inversion algorithms against experimental data: inhomogeneous targets (Guest Editors: K Belkebir and M Saillard) December 2005 Testing inversion algorithms against experimental data: 3D targets (Guest Editors: A Litman and L Crocco) February 2009 In a certain sense, the current issue can be understood as a continuation of this series of special sections on electromagnetic inverse problems. On the other hand, its focus is intended to be more general than previous ones. Instead of trying to cover a well-defined, somewhat specialized research topic as completely as possible, this issue aims to show the broad range of techniques and applications that are relevant to electromagnetic imaging nowadays, which may serve as a source of inspiration and encouragement for all those entering this active and rapidly developing research area. Also, the construction of this special issue is likely to have been different from preceding ones. In addition to the invitations sent to specific research groups involved in electromagnetic inverse problems, the Guest Editors also solicited recommendations, from a large number of experts, of potential authors who were thereupon encouraged to contribute. Moreover, an open call for contributions was published on the homepage of Inverse Problems in order to attract as wide a scope of contributions as possible. This special issue's attempt at generality might also define its limitations: by no means could this collection of papers be exhaustive or complete, and as Guest Editors we are well aware that many exciting topics and potential contributions will be missing. This, however, also determines its very special flavor: besides addressing electromagnetic inverse problems in a broad sense, there were only a few restrictions on the contributions considered for this section. One requirement was plausible evidence of either novelty or the emergent nature of the technique or application described, judged mainly by the referees, and in some cases by the Guest Editors. The technical quality of the contributions always remained a stringent condition of acceptance, final adjudication (possibly questionable either way, not always positive) being made in most cases once a thorough revision process had been carried out. Therefore, we hope that the final result presented here constitutes an interesting collection of novel ideas and applications, properly refereed and edited, which will find its own readership and which can stimulate significant new research in the topics represented. Overall, as Guest Editors, we feel quite fortunate to have obtained such a strong response to the call for this issue and to have a really wide-ranging collection of high-quality contributions which, indeed, can be read from the first to the last page with sustained enthusiasm. A large number of applications and techniques is represented, overall via 16 contributions with 45 authors in total. This shows, in our opinion, that electromagnetic imaging and inversion remain amongst the most challenging and active research areas in applied inverse problems today. Below, we give a brief overview of the contributions included in this issue, ordered alphabetically by the surname of the leading author. 1. The complexity of handling potential randomness of the source in an inverse scattering problem is not minor, and the literature is far from being replete in this configuration. The contribution by G Bao, S N Chow, P Li and H Zhou, `Numerical solution of an inverse medium scattering problem with a stochastic source', exemplifies how to hybridize Wiener chaos expansion with a recursive linearization method in order to solve the stochastic problem as a set of decoupled deterministic ones. 2. In cases where the forward problem is expensive to evaluate, database methods might become a reliable method of choice, while enabling one to deliver more information on the inversion itself. The contribution by S Bilicz, M Lambert and Sz Gyimóthy, `Kriging-based generation of optimal databases as forward and inverse surrogate models', describes such a technique which uses kriging for constructing an efficient database with the goal of achieving an equidistant distribution of points in the measurement space. 3. Anisotropy remains a considerable challenge in electromagnetic imaging, which is tackled in the contribution by F Cakoni, D Colton, P Monk and J Sun, `The inverse electromagnetic scattering problem for anisotropic media', via the fact that transmission eigenvalues can be retrieved from a far-field scattering pattern, yielding, in particular, lower and upper bounds of the index of refraction of the unknown (dielectric anisotropic) scatterer. 4. So-called subspace optimization methods (SOM) have attracted a lot of interest recently in many fields. The contribution by X Chen, `Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium', illustrates how to address a realistic situation in which the medium containing the unknown obstacles is not homogeneous, via blending a properly developed SOM with a finite-element approach to the required Green's functions. 5. H Egger, M Hanke, C Schneider, J Schöberl and S Zaglmayr, in their contribution `Adjoint-based sampling methods for electromagnetic scattering', show how to efficiently develop sampling methods without explicit knowledge of the dyadic Green's function once an adjoint problem has been solved at much lower computational cost. This is demonstrated by examples in demanding propagative and diffusive situations. 6. Passive sensor arrays can be employed to image reflectors from ambient noise via proper migration of cross-correlation matrices into their embedding medium. This is investigated, and resolution, in particular, is considered in detail, as a function of the characteristics of the sensor array and those of the noise, in the contribution by J Garnier and G Papanicolaou, `Resolution analysis for imaging with noise'. 7. A direct reconstruction technique based on the conformal mapping theorem is proposed and investigated in depth in the contribution by H Haddar and R Kress, `Conformal mapping and impedance tomography'. This paper expands on previous work, with inclusions in homogeneous media, convergence results, and numerical illustrations. 8. The contribution by T Hohage and S Langer, `Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems', focuses on a spectral preconditioner intended to accelerate regularized Newton methods as employed for the retrieval of a local inhomogeneity in a three-dimensional vector electromagnetic case, while also illustrating the implementation of a Lepskiĭ-type stopping rule outsmarting a traditional discrepancy principle. 9. Geophysical applications are a rich source of practically relevant inverse problems. The contribution by M Li, A Abubakar and T Habashy, `Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion', deals with a model-based inversion technique for electromagnetic imaging which addresses novel challenges such as multi-physics inversion, and incorporation of prior knowledge, such as in hydrocarbon recovery. 10. Non-stationary inverse problems, considered as a special class of Bayesian inverse problems, are framed via an orthogonal decomposition representation in the contribution by A Lipponen, A Seppänen and J P Kaipio, `Reduced order estimation of nonstationary flows with electrical impedance tomography'. The goal is to simultaneously estimate, from electrical impedance tomography data, certain characteristics of the Navier--Stokes fluid flow model together with time-varying concentration distribution. 11. Non-iterative imaging methods of thin, penetrable cracks, based on asymptotic expansion of the scattering amplitude and analysis of the multi-static response matrix, are discussed in the contribution by W-K Park, `On the imaging of thin dielectric inclusions buried within a half-space', completing, for a shallow burial case at multiple frequencies, the direct imaging of small obstacles (here, along their transverse dimension), MUSIC and non-MUSIC type indicator functions being used for that purpose. 12. The contribution by R Potthast, `A study on orthogonality sampling' envisages quick localization and shaping of obstacles from (portions of) far-field scattering patterns collected at one or more time-harmonic frequencies, via the simple calculation (and summation) of scalar products between those patterns and a test function. This is numerically exemplified for Neumann/Dirichlet boundary conditions and homogeneous/heterogeneous embedding media. 13. The contribution by J D Shea, P Kosmas, B D Van Veen and S C Hagness, `Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms', aims at microwave medical imaging, namely the early detection of breast cancer. The use of contrast enhancing agents is discussed in detail and a number of reconstructions in three-dimensional geometry of realistic numerical breast phantoms are presented. 14. The contribution by D A Subbarayappa and V Isakov, `Increasing stability of the continuation for the Maxwell system', discusses enhanced log-type stability results for continuation of solutions of the time-harmonic Maxwell system, adding a fresh chapter to the interesting story of the study of the Cauchy problem for PDE. 15. In their contribution, `Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime', A Tamburrino, S Ventre and G Rubinacci extend the recently developed monotonicity method toward the application of magnetic induction tomography in order to map surface-breaking defects affecting a damaged metal component. 16. The contribution by F Viani, P Rocca, M Benedetti, G Oliveri and A Massa, `Electromagnetic passive localization and tracking of moving targets in a WSN-infrastructured environment', contributes to what could still be seen as a niche problem, yet both useful in terms of applications, e.g., security, and challenging in terms of methodologies and experiments, in particular, in view of the complexity of environments in which this endeavor is to take place and the variability of the wireless sensor networks employed. To conclude, we would like to thank the able and tireless work of Kate Watt and Zoë Crossman, as past and present Publishers of the Journal, on what was definitely a long and exciting journey (sometimes a little discouraging when reports were not arriving, or authors were late, or Guest Editors overwhelmed) that started from a thorough discussion at the `Manchester workshop on electromagnetic inverse problems' held mid-June 2009, between Kate Watt and the Guest Editors. We gratefully acknowledge the fact that W W Symes gave us his full backing to carry out this special issue and that A K Louis completed it successfully. Last, but not least, the staff of Inverse Problems should be thanked, since they work together to make it a premier journal.

  11. A note on convergence of solutions of total variation regularized linear inverse problems

    NASA Astrophysics Data System (ADS)

    Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar

    2018-05-01

    In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.

  12. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  13. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  14. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  15. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  16. Using the ARTMO toolbox for automated retrieval of biophysical parameters through radiative transfer model inversion: Optimizing LUT-based inversion

    NASA Astrophysics Data System (ADS)

    Verrelst, J.; Rivera, J. P.; Leonenko, G.; Alonso, L.; Moreno, J.

    2012-04-01

    Radiative transfer (RT) modeling plays a key role for earth observation (EO) because it is needed to design EO instruments and to develop and test inversion algorithms. The inversion of a RT model is considered as a successful approach for the retrieval of biophysical parameters because of being physically-based and generally applicable. However, to the broader community this approach is considered as laborious because of its many processing steps and expert knowledge is required to realize precise model parameterization. We have recently developed a radiative transfer toolbox ARTMO (Automated Radiative Transfer Models Operator) with the purpose of providing in a graphical user interface (GUI) essential models and tools required for terrestrial EO applications such as model inversion. In short, the toolbox allows the user: i) to choose between various plant leaf and canopy RT models (e.g. models from the PROSPECT and SAIL family, FLIGHT), ii) to choose between spectral band settings of various air- and space-borne sensors or defining own sensor settings, iii) to simulate a massive amount of spectra based on a look up table (LUT) approach and storing it in a relational database, iv) to plot spectra of multiple models and compare them with measured spectra, and finally, v) to run model inversion against optical imagery given several cost options and accuracy estimates. In this work ARTMO was used to tackle some well-known problems related to model inversion. According to Hadamard conditions, mathematical models of physical phenomena are mathematically invertible if the solution of the inverse problem to be solved exists, is unique and depends continuously on data. This assumption is not always met because of the large number of unknowns and different strategies have been proposed to overcome this problem. Several of these strategies have been implemented in ARTMO and were here analyzed to optimize the inversion performance. Data came from the SPARC-2003 dataset, which was acquired on the agricultural test site Barrax, Spain. LUTs were created using the 4SAIL and FLIGHT models and were inverted against CHRIS data in order to retrieve maps of chlorophyll content (chl) and leaf area index (LAI). The following inversion steps have been optimized: 1. Cost function. The performances of about 50 different cost functions (i.e. minimum distance functions) were compared. Remarkably, in none of the studied cases the widely used root mean square error (RMSE) led to most accurate results. Depending on the retrieved parameter, more successful functions were: 'Sharma and Mittal', 'Shannońs entropy', 'Hellinger distance', 'Pearsońs chi-square'. 2. Gaussian noise. Earth observation data typically encompass a certain degree of noise due to errors related to radiometric and geometric processing. In all cases, adding 5% Gaussian noise to the simulated spectra led to more accurate retrievals as compared to without noise. 3. Average of multiple best solutions. Because multiple parameter combinations may lead to the same spectra, a way to overcome this problem is not searching for the top best match but for a percentage of best matches. Optimized retrievals were encountered when including an average of 7% (Chl) to 10% (LAI) top best matches. 4. Integration of estimates. The option is provided to integrate estimates of biochemical contents at the canopy level (e.g., total chlorophyll: Chl × LAI, or water: Cw × LAI), which can lead to increased robustness and accuracy. 5. Class-based inversion. This option is probably ARTMÓs most powerful feature as it allows model parameterization depending on the imagés land cover classes (e.g. different soil or vegetation types). Class-based inversion can lead to considerably improved accuracies compared to one generic class. Results suggest that 4SAIL and FLIGHT performed alike for Chl but not for LAI. While both models rely on the leaf model PROSPECT for Chl retrieval, their different nature (e.g. numerical vs. ray tracing) may cause that retrieval of structural parameters such as LAI differ. Finally, it should be noted that the whole analysis can be intuitively performed by the toolbox. ARTMO is freely available to the EO community for further development. Expressions of interest are welcome and should be directed to the corresponding author.

  17. Optimization of the Inverse Algorithm for Estimating the Optical Properties of Biological Materials Using Spatially-resolved Diffuse Reflectance Technique

    USDA-ARS?s Scientific Manuscript database

    Determination of the optical properties from intact biological materials based on diffusion approximation theory is a complicated inverse problem, and it requires proper implementation of inverse algorithm, instrumentation, and experiment. This work was aimed at optimizing the procedure of estimatin...

  18. Report to the Office of Naval Research for Contract N00014-89-J-1108 (Texas A&M University)

    DTIC Science & Technology

    1989-12-31

    class of undetermined coefficient problems of parabolic and elliptic type , and is easy to implement provided that the boundary conditions are in a ...considerable expertise to our efforts. Richard Fabiano, a student of John Burns, spent 3 years at Brown working with Tom Banks. His speciality is in... 3 ] J. R. Cannon and H. M. Yin, A uniqueness theorem for a class of parabolic inverse problems, J. Inverse Problems, 4, (1988), 411-416.

  19. Numerical recovery of certain discontinuous electrical conductivities

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1991-01-01

    The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.

  20. From inverse problems to learning: a Statistical Mechanics approach

    NASA Astrophysics Data System (ADS)

    Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo

    2018-01-01

    We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.

  1. Surface Wave Mode Conversion due to Lateral Heterogeneity and its Impact on Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Datta, A.; Priestley, K. F.; Chapman, C. H.; Roecker, S. W.

    2016-12-01

    Surface wave tomography based on great circle ray theory has certain limitations which become increasingly significant with increasing frequency. One such limitation is the assumption of different surface wave modes propagating independently from source to receiver, valid only in case of smoothly varying media. In the real Earth, strong lateral gradients can cause significant interconversion among modes, thus potentially wreaking havoc with ray theory based tomographic inversions that make use of multimode information. The issue of mode coupling (with either normal modes or surface wave modes) for accurate modelling and inversion of body wave data has received significant attention in the seismological literature, but its impact on inversion of surface waveforms themselves remains much less understood.We present an empirical study with synthetic data, to investigate this problem with a two-fold approach. In the first part, 2D forward modelling using a new finite difference method that allows modelling a single mode at a time, is used to build a general picture of energy transfer among modes as a function of size, strength and sharpness of lateral heterogeneities. In the second part, we use the example of a multimode waveform inversion technique based on the Cara and Leveque (1987) approach of secondary observables, to invert our synthetic data and assess how mode conversion can affect the process of imaging the Earth. We pay special attention to ensuring that any biases or artefacts in the resulting inversions can be unambiguously attributed to mode conversion effects. This study helps pave the way towards the next generation of (non-numerical) surface wave tomography techniques geared to exploit higher frequencies and mode numbers than are typically used today.

  2. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  3. PUBLISHER'S ANNOUNCEMENT: Important changes for 2008

    NASA Astrophysics Data System (ADS)

    2008-02-01

    As a result of reviewing several aspects of our content, both in print and online, we have made some changes for 2008. These changes are described below. Article numbering Inverse Problems has moved from sequential page numbering to an article numbering system, offering important advantages and flexibility by speeding up the publication process. Articles in different issues or sections can be published online as soon as they are ready, without having to wait for a whole issue or section to be allocated page numbers. The bibliographic citation will change slightly. Articles should be referenced using the six-digit article number in place of a page number, and this number must include any leading zeros. For instance: Surname X and Surname Y 2008 Inverse Problems 24 015001 Articles will continue to be published on the web in advance of the print edition. A new look and feel We have taken the opportunity to refresh the design of Inverse Problems' cover in order to modernise the typography and create a consistent look and feel across IOP Publishing's range of publications. We hope you like the new cover. If you have any questions or comments about any of these changes, please contact us at ip@iop.org Kate Watt Publisher, Inverse Problems

  4. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm

    PubMed Central

    Hesford, Andrew J.; Chew, Weng C.

    2010-01-01

    The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438

  5. Damage identification using inverse methods.

    PubMed

    Friswell, Michael I

    2007-02-15

    This paper gives an overview of the use of inverse methods in damage detection and location, using measured vibration data. Inverse problems require the use of a model and the identification of uncertain parameters of this model. Damage is often local in nature and although the effect of the loss of stiffness may require only a small number of parameters, the lack of knowledge of the location means that a large number of candidate parameters must be included. This paper discusses a number of problems that exist with this approach to health monitoring, including modelling error, environmental effects, damage localization and regularization.

  6. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  7. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  8. Discrete Inverse and State Estimation Problems

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2006-06-01

    The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware

  9. Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.

    PubMed

    Carrière, Olivier; Hermand, Jean-Pierre

    2012-04-01

    Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.

  10. Space structures insulating material's thermophysical and radiation properties estimation

    NASA Astrophysics Data System (ADS)

    Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.

    2007-11-01

    In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.

  11. Analysis of harmonic spline gravity models for Venus and Mars

    NASA Technical Reports Server (NTRS)

    Bowin, Carl

    1986-01-01

    Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.

  12. Inverse problem of HIV cell dynamics using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  13. Optimization of equivalent uniform dose using the L-curve criterion.

    PubMed

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  14. Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.

    PubMed

    Shaheen, Anjuman; Rajpoot, Kashif

    2015-08-01

    Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. EEG-distributed inverse solutions for a spherical head model

    NASA Astrophysics Data System (ADS)

    Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.

    1998-08-01

    The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.

  16. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  17. Inversion methods for interpretation of asteroid lightcurves

    NASA Technical Reports Server (NTRS)

    Kaasalainen, Mikko; Lamberg, L.; Lumme, K.

    1992-01-01

    We have developed methods of inversion that can be used in the determination of the three-dimensional shape or the albedo distribution of the surface of a body from disk-integrated photometry, assuming the shape to be strictly convex. In addition to the theory of inversion methods, we have studied the practical aspects of the inversion problem and applied our methods to lightcurve data of 39 Laetitia and 16 Psyche.

  18. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  19. Full-Physics Inverse Learning Machine for Satellite Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.

    2017-12-01

    The satellite remote sensing retrievals are usually ill-posed inverse problems that are typically solved by finding a state vector that minimizes the residual between simulated data and real measurements. The classical inversion methods are very time-consuming as they require iterative calls to complex radiative-transfer forward models to simulate radiances and Jacobians, and subsequent inversion of relatively large matrices. In this work we present a novel and extremely fast algorithm for solving inverse problems called full-physics inverse learning machine (FP-ILM). The FP-ILM algorithm consists of a training phase in which machine learning techniques are used to derive an inversion operator based on synthetic data generated using a radiative transfer model (which expresses the "full-physics" component) and the smart sampling technique, and an operational phase in which the inversion operator is applied to real measurements. FP-ILM has been successfully applied to the retrieval of the SO2 plume height during volcanic eruptions and to the retrieval of ozone profile shapes from UV/VIS satellite sensors. Furthermore, FP-ILM will be used for the near-real-time processing of the upcoming generation of European Sentinel sensors with their unprecedented spectral and spatial resolution and associated large increases in the amount of data.

  20. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  1. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  2. From analytic inversion to contemporary IMRT optimization: Radiation therapy planning revisited from a mathematical perspective

    PubMed Central

    Censor, Yair; Unkelbach, Jan

    2011-01-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694

  3. Joint inversion of seismic refraction and resistivity data using layered models - applications to hydrogeology

    NASA Astrophysics Data System (ADS)

    Juhojuntti, N. G.; Kamm, J.

    2010-12-01

    We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly <100 m depth) a model with a few layers and sharp layer boundaries better represents the subsurface than a smooth minimum-structure (grid) model. Due to the strong assumption our model parameterization implies on the subsurface, only a low number of well resolved model parameters has to be estimated, and provided that this assumptions holds our method can also be applied to other environments. We are using a least-squares inversion, with lateral smoothness constraints, allowing lateral variations in the seismic velocity and the resistivity but no vertical variations. One exception is a positive gradient in the seismic velocity in the uppermost layer in order to get diving rays (the refractions in the deeper layers are modeled as head waves). We assume no connection between seismic velocity and resistivity, and these parameters are allowed to vary individually within the layers. The layer boundaries are, however, common for both parameters. During the inversion lateral smoothing can be applied to the layer boundaries as well as to the seismic velocity and the resistivity. The number of layers is specified before the inversion, and typically we use models with three layers. Depending on the type of environment it is possible to apply smoothing either to the depth of the layer boundaries or to the thickness of the layers, although normally the former is used for shallow sedimentary environments. The smoothing parameters can be chosen independently for each layer. For the DC data we use a finite-difference algorithm to perform the forward modeling and to calculate the Jacobian matrix, while for the seismic data the corresponding entities are retrieved via ray-tracing, using components from the RAYINVR package. The modular layout of the code makes it straightforward to include other types of geophysical data, i.e. gravity. The code has been tested using synthetic examples with fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.

  4. Data inversion immune to cycle-skipping using AWI

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Umpleby, A.; Yao, G.; Morgan, J. V.

    2014-12-01

    Over the last decade, 3D Full Waveform Inversion (FWI) has become a standard model-building tool in exploration seismology, especially in oil and gas applications -thanks to the high quality (spatial density of sources and receivers) datasets acquired by the industry. FWI provides superior quantitative images than its travel-time counterparts (travel-time based inversion methods) because it aims to match all the information in the observations instead of a severely restricted subset of them, namely picked arrivals.The downside is that the solution space explored by FWI has a high number of local minima, and since the solution is restricted to local optimization methods (due to the objective function evaluation cost), the success of the inversion is subject to starting within the basin of attraction of the global minimum.Local minima can exist for a wide variety of reasons, and it seems unlikely that a formulation of the problem that can eliminate all of them -by defining the optimization problem in a form that results in a monotonic objective function- exist. However, a significant amount of local minima are created by the definition of data misfit. In its standard formulation FWI compares observed data (field data) with predicted data (generated with a synthetic model) by subtracting one from the other, and the objective function is defined as some norm of this difference. The combination of this criteria and the fact that seismic data is oscillatory produces the well-known phenomenon of cycle-skipping, where model updates try to match nearest cycles from one dataset to the other.In order to avoid cycle-skipping we propose a different comparison between observed and predicted data, based on Wiener filters, which exploits the fact that the "identity" Wiener filter is a spike at zero lag. This gives rise to a new objective function without cycle-skipped related local minima, and therefore suppress the need of accurate starting models or low frequencies in the data. This new technique, called Adaptive Waveform Inversion (AWI) appears always superior to conventional FWI.

  5. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution.

    PubMed

    Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi

    2017-08-01

    Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.

  6. Children's Understanding of Addition and Subtraction Concepts

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; Dube, Adam K.

    2009-01-01

    After the onset of formal schooling, little is known about the development of children's understanding of the arithmetic concepts of inversion and associativity. On problems of the form a+b-b (e.g., 3+26-26), if children understand the inversion concept (i.e., that addition and subtraction are inverse operations), then no calculations are needed…

  7. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  8. 2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation

    NASA Astrophysics Data System (ADS)

    Proctor, Camron Lisle

    The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.

  9. Investigation of inversion polymorphisms in the human genome using principal components analysis.

    PubMed

    Ma, Jianzhong; Amos, Christopher I

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct "populations" of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.

  10. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1990-09-18

    to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the

  11. Globally Convergent Numerical Methods for Coefficient Inverse Problems

    DTIC Science & Technology

    2008-09-23

    backgrounds. Probing radiations are usually thought as electric and acoustic waves for the first two applications and light originated by lasers in...fundamental laws of physics. Electric , acoustic or light scattering properties of both unknown targets and the backgrounds are described by coefficients of...with the back-reflected data here, Army applications are quite feasible. The 2-D inverse problem of the determination of the unknown electric

  12. Recursive recovery of Markov transition probabilities from boundary value data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, Sarah Kathyrn

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less

  13. On parameterization of the inverse problem for estimating aquifer properties using tracer data

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Murray, C.; Commer, M.; Newcomer, D.; Englert, A.; Steefel, C. I.; Hubbard, S. S.

    2012-06-01

    In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data).

  14. Inverse problems biomechanical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  15. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  16. Calibration of Lévy Processes with American Options

    NASA Astrophysics Data System (ADS)

    Achdou, Yves

    We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.

  17. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    NASA Astrophysics Data System (ADS)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.

  18. Inversion layer MOS solar cells

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1986-01-01

    Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

  19. Acoustic and elastic waveform inversion best practices

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.

  20. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  1. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    NASA Astrophysics Data System (ADS)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  2. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  3. The analysis of a rocket tomography measurement of the N2+3914A emission and N2 ionization rates in an auroral arc

    NASA Technical Reports Server (NTRS)

    Mcdade, Ian C.

    1991-01-01

    Techniques were developed for recovering two-dimensional distributions of auroral volume emission rates from rocket photometer measurements made in a tomographic spin scan mode. These tomographic inversion procedures are based upon an algebraic reconstruction technique (ART) and utilize two different iterative relaxation techniques for solving the problems associated with noise in the observational data. One of the inversion algorithms is based upon a least squares method and the other on a maximum probability approach. The performance of the inversion algorithms, and the limitations of the rocket tomography technique, were critically assessed using various factors such as (1) statistical and non-statistical noise in the observational data, (2) rocket penetration of the auroral form, (3) background sources of emission, (4) smearing due to the photometer field of view, and (5) temporal variations in the auroral form. These tests show that the inversion procedures may be successfully applied to rocket observations made in medium intensity aurora with standard rocket photometer instruments. The inversion procedures have been used to recover two-dimensional distributions of auroral emission rates and ionization rates from an existing set of N2+3914A rocket photometer measurements which were made in a tomographic spin scan mode during the ARIES auroral campaign. The two-dimensional distributions of the 3914A volume emission rates recoverd from the inversion of the rocket data compare very well with the distributions that were inferred from ground-based measurements using triangulation-tomography techniques and the N2 ionization rates derived from the rocket tomography results are in very good agreement with the in situ particle measurements that were made during the flight. Three pre-prints describing the tomographic inversion techniques and the tomographic analysis of the ARIES rocket data are included as appendices.

  4. Time-domain induced polarization - an analysis of Cole-Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion

    NASA Astrophysics Data System (ADS)

    Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2017-12-01

    The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.

  5. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity field.

  6. Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; González, J. A.

    2018-04-01

    We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.

  7. Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.

    2017-11-01

    We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.

  8. All about Genetics (For Parents)

    MedlinePlus

    ... problems associated with their condition. Deletions, Translocations, and Inversions Sometimes it's not the number of chromosomes that's ... some places and not enough in others. With inversions (which affect about 1 in every 100 newborns), ...

  9. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  10. On a comparison of two schemes in sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Grishina, Anastasiia A.; Penenko, Alexey V.

    2017-11-01

    This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.

  11. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems

  12. Numerical solution of inverse scattering for near-field optics.

    PubMed

    Bao, Gang; Li, Peijun

    2007-06-01

    A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.

  13. Low frequency full waveform seismic inversion within a tree based Bayesian framework

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe

    2018-01-01

    Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.

  14. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  15. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  16. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  17. Model-based elastography: a survey of approaches to the inverse elasticity problem

    PubMed Central

    Doyley, M M

    2012-01-01

    Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839

  18. Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data

    NASA Astrophysics Data System (ADS)

    Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar

    2017-04-01

    A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions.

  19. Children's Understanding of the Relation between Addition and Subtraction: Inversion, Identity, and Decomposition.

    ERIC Educational Resources Information Center

    Bryant, Peter; Rendu, Alison; Christie, Clare

    1999-01-01

    Examined whether 5- and 6-year-olds understand that addition and subtraction cancel each other and whether this understanding is based on identity or quantity of addend and subtrahend. Found that children used inversion principle. Six- to eight-year-olds also used inversion and decomposition to solve a + b - (B+1) problems. Concluded that…

  20. The Inverse Relation between Multiplication and Division: Concepts, Procedures, and a Cognitive Framework

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; LeFevre, Jo-Anne

    2012-01-01

    Researchers have speculated that children find it more difficult to acquire conceptual understanding of the inverse relation between multiplication and division than that between addition and subtraction. We reviewed research on children and adults' use of shortcut procedures that make use of the inverse relation on two kinds of problems:…

  1. Number Words in Young Children's Conceptual and Procedural Knowledge of Addition, Subtraction and Inversion

    ERIC Educational Resources Information Center

    Canobi, Katherine H.; Bethune, Narelle E.

    2008-01-01

    Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that…

  2. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  3. Model based inversion of ultrasound data in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.

  4. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  5. Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe

    2014-10-01

    Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.

  6. Landslide caracteristics determination using bayesian inversion and seismic recording

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Moretti, L.; Capdeville, Y.; Stutzmann, E.; Bodin, T.; Bouchut, F.

    2014-12-01

    Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics and characteristics. Here we present the study of the 1997 Boxing Day landslide that occurred in Montserrat. We accessed the force applied by the landslide to the ground surface responsible of the seismic waves by inverting the seismic waveform recorded (force-time function). This force was then used as a constraint in a bayesian inversion problem where the forward problem is the force-time function calculation obtained by simulating the landslide with the SHALTOP model (mangeney et al., 2007). With this method, we are able to give an estimate of the rheology (friction coefficient) and the initial shape of the collapsing mass. The volume retrieved is very similar to that obtained by field observations. The friction coefficient determined is also similar to that constrained by former studies or to that predicted by empirical laws (Lucas et al., 2014). Furthermore the method permits to give an estimate of the error made on these parameters.

  7. Radar studies of the atmosphere using spatial and frequency diversity

    NASA Astrophysics Data System (ADS)

    Yu, Tian-You

    This work provides results from a thorough investigation of atmospheric radar imaging including theory, numerical simulations, observational verification, and applications. The theory is generalized to include the existing imaging techniques of coherent radar imaging (CRI) and range imaging (RIM), which are shown to be special cases of three-dimensional imaging (3D Imaging). Mathematically, the problem of atmospheric radar imaging is posed as an inverse problem. In this study, the Fourier, Capon, and maximum entropy (MaxEnt) methods are proposed to solve the inverse problem. After the introduction of the theory, numerical simulations are used to test, validate, and exercise these techniques. Statistical comparisons of the three methods of atmospheric radar imaging are presented for various signal-to-noise ratio (SNR), receiver configuration, and frequency sampling. The MaxEnt method is shown to generally possess the best performance for low SNR. The performance of the Capon method approaches the performance of the MaxEnt method for high SNR. In limited cases, the Capon method actually outperforms the MaxEnt method. The Fourier method generally tends to distort the model structure due to its limited resolution. Experimental justification of CRI and RIM is accomplished using the Middle and Upper (MU) Atmosphere Radar in Japan and the SOUnding SYstem (SOUSY) in Germany, respectively. A special application of CRI to the observation of polar mesosphere summer echoes (PMSE) is used to show direct evidence of wave steepening and possibly explain gravity wave variations associated with PMSE.

  8. Parallel O(log n) algorithms for open- and closed-chain rigid multibody systems based on a new mass matrix factorization technique

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.

  9. Regularity Aspects in Inverse Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten

    2008-09-01

    Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.

  10. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  11. Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.

    2017-04-01

    In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.

  12. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  13. Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.

    PubMed

    Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y

    1999-04-20

    A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].

  14. On the reconstruction of the surface structure of the spotted stars

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.; Sakhibullin, N. A.

    2013-07-01

    We have developed and tested a light-curve inversion technique for photometric mapping of spotted stars. The surface of a spotted star is partitioned into small area elements, over which a search is carried out for the intensity distribution providing the best agreement between the observed and model light curves within a specified uncertainty. We have tested mapping techniques based on the use of both a single light curve and several light curves obtained in different photometric bands. Surface reconstruction artifacts due to the ill-posed nature of the problem have been identified.

  15. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  16. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.

    2014-03-01

    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

  17. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    NASA Astrophysics Data System (ADS)

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  18. Variational approach to direct and inverse problems of atmospheric pollution studies

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition quality// Russian meteorology and hydrology, V. 40, Issue: 6, Pages: 365-373, DOI: 10.3103/S1068373915060023. 4. A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. 5. V.V. Penenko, E.A. Tsvetova, A.V. Penenko Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, 2014, V.67, Issue 12, Pages 2240-2256, DOI:10.1016/j.camwa.2014.04.004 6. V.V. Penenko, E.A. Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220, DOI 10.1134/S199542391303004X

  19. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  20. Sources of unbounded priority inversions in real-time systems and a comparative study of possible solutions

    NASA Technical Reports Server (NTRS)

    Davari, Sadegh; Sha, Lui

    1992-01-01

    In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented.

  1. Attention problems and pathological gaming: resolving the 'chicken and egg' in a prospective analysis.

    PubMed

    Ferguson, Christopher J; Ceranoglu, T Atilla

    2014-03-01

    Pathological gaming (PG) behaviors are behaviors which interfere with other life responsibilities. Continued debate exists regarding whether symptoms of PG behaviors are a unique phenomenon or arise from other mental health problems, including attention problems. Development of attention problems and occurrence of pathological gaming in 144 adolescents were followed during a 1-year prospective analysis. Teens and their parents reported on pathological gaming behaviors, attention problems, and current grade point average, as well as several social variables. Results were analyzed using regression and path analysis. Attention problems tended to precede pathological gaming behaviors, but the inverse was not true. Attention problems but not pathological gaming predicted lower GPA 1 year later. Current results suggest that pathological gaming arises from attention problems, but not the inverse. These results suggest that pathological gaming behaviors are symptomatic of underlying attention related mental health issues, rather than a unique phenomenon.

  2. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2013 was a one-day workshop held in May 2013 which attracted around 60 attendees. Each of the submitted papers has been reviewed by three reviewers. Among the accepted papers, there are seven oral presentations, five posters and one invited poster (On a deconvolution challenge presented by C Vonesch from EPFL, Switzerland). In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following research laboratories CMLA, LMT, LSV, LURPA, SATIE. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop co-chair Laure Blanc-Féraud, I3S laboratory and INRIA Nice Sophia-Antipolis, France Pierre-Yves Joubert, IEF, Paris-Sud University, CNRS, France Technical program committee Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Nabil Anwer, LURPA, ENS Cachan, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Antonin Chambolle, CMAP, Ecole Polytechnique, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Cécile Durieu, SATIE, ENS Cachan, CNRS, France Gérard Favier, I3S Laboratory, University of Nice Sophia-Antipolis, France Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Dominique Lesselier, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Matteo Pastorino, DIBE, University of Genoa, Italy Christian Rey, LMT, ENS Cachan, CNRS, France Simon Setzer, Saarland University, Germany Cedric Vonesch, EPFL, Switzerland Local chair Sophie Abriet, SATIE Laboratory, ENS Cachan, France Béatrice Bacquet, SATIE Laboratory, ENS Cachan, France Lydia Matijevic, LMT Laboratory, ENS Cachan France Invited speakers Jérôme Idier, IRCCyN (UMR CNRS 6597), Ecole Centrale de Nantes, France Massimo Fornasier, Faculty of Mathematics, Technical University of Munich, Germany Matthias Fink, Institut Langevin, ESPCI, Université Paris Diderot, France

  3. Heuristics for the inversion median problem

    PubMed Central

    2010-01-01

    Background The study of genome rearrangements has become a mainstay of phylogenetics and comparative genomics. Fundamental in such a study is the median problem: given three genomes find a fourth that minimizes the sum of the evolutionary distances between itself and the given three. Many exact algorithms and heuristics have been developed for the inversion median problem, of which the best known is MGR. Results We present a unifying framework for median heuristics, which enables us to clarify existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new insight: the best strategies continue to refer to the input data rather than reducing the problem to smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses input data to the end of its computation and leverages our previous work with DCJ medians. Finally, we present the results of extensive experimentation showing that our new heuristic outperforms all others in accuracy and, especially, in running time: the heuristic typically returns solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25'000 genes--in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1'000 genes. Conclusion Finding good rearrangement medians, in particular inversion medians, had long been regarded as the computational bottleneck in whole-genome studies. Our new heuristic for inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by providing near-optimal solutions within seconds to minutes on even the largest genomes. PMID:20122203

  4. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Liu, Boda; Liang, Yan

    2017-04-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.

  5. Recursive inversion of externally defined linear systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1988-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.

  6. The Toda lattice as a forced integrable system

    NASA Technical Reports Server (NTRS)

    Hansen, P. J.; Kaup, D. J.

    1985-01-01

    The analytic properties of the Jost functions for the inverse scattering transform associated with the forced Toda lattice are shown to determine the time evolution of this particular boundary value problem. It is suggested that inverse scattering methods may be used generally to analyze forced integrable systems. Thus an extension of the applicability of the inverse scattering transform is indicated.

  7. Inverse problem of radiofrequency sounding of ionosphere

    NASA Astrophysics Data System (ADS)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  8. Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

    NASA Astrophysics Data System (ADS)

    Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.

    2018-01-01

    We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

  9. Novel Image Quality Control Systems(Add-On). Innovative Computational Methods for Inverse Problems in Optical and SAR Imaging

    DTIC Science & Technology

    2007-02-28

    Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex Medium Response, International Journal of Imaging Systems and...1767-1782, 2006. 31. Z. Mu, R. Plemmons, and P. Santago. Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex...rigorous mathematical and computational research on inverse problems in optical imaging of direct interest to the Army and also the intelligence agencies

  10. Source biases in midlatitude magnetotelluric transfer functions due to Pc3-4 geomagnetic pulsations

    NASA Astrophysics Data System (ADS)

    Murphy, Benjamin S.; Egbert, Gary D.

    2018-01-01

    The magnetotelluric (MT) method for imaging the electrical conductivity structure of the Earth is based on the assumption that source magnetic fields can be considered quasi-uniform, such that the spatial scale of the inducing source is much larger than the intrinsic length scale of the electromagnetic induction process (the skin depth). Here, we show using EarthScope MT data that short spatial scale source magnetic fields from geomagnetic pulsations (Pc's) can violate this fundamental assumption. Over resistive regions of the Earth, the skin depth can be comparable to the short meridional range of Pc3-4 disturbances that are generated by geomagnetic field-line resonances (FLRs). In such cases, Pc's can introduce narrow-band bias in MT transfer function estimates at FLR eigenperiods ( 10-100 s). Although it appears unlikely that these biases will be a significant problem for data inversions, further study is necessary to understand the conditions under which they may distort inverse solutions.[Figure not available: see fulltext.

  11. Inverse Jacobi multiplier as a link between conservative systems and Poisson structures

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Hernández-Bermejo, Benito

    2017-08-01

    Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.

  12. Radiative-conductive inverse problem for lumped parameter systems

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2008-11-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  13. Study of multilayer thermal insulation by inverse problems method

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2009-11-01

    The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.

  14. ℓ1-Regularized full-waveform inversion with prior model information based on orthant-wise limited memory quasi-Newton method

    NASA Astrophysics Data System (ADS)

    Dai, Meng-Xue; Chen, Jing-Bo; Cao, Jian

    2017-07-01

    Full-waveform inversion (FWI) is an ill-posed optimization problem which is sensitive to noise and initial model. To alleviate the ill-posedness of the problem, regularization techniques are usually adopted. The ℓ1-norm penalty is a robust regularization method that preserves contrasts and edges. The Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) method extends the widely-used limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method to the ℓ1-regularized optimization problems and inherits the efficiency of L-BFGS. To take advantage of the ℓ1-regularized method and the prior model information obtained from sonic logs and geological information, we implement OWL-QN algorithm in ℓ1-regularized FWI with prior model information in this paper. Numerical experiments show that this method not only improve the inversion results but also has a strong anti-noise ability.

  15. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  16. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  17. Absolutely and uniformly convergent iterative approach to inverse scattering with an infinite radius of convergence

    DOEpatents

    Kouri, Donald J [Houston, TX; Vijay, Amrendra [Houston, TX; Zhang, Haiyan [Houston, TX; Zhang, Jingfeng [Houston, TX; Hoffman, David K [Ames, IA

    2007-05-01

    A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.

  18. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  19. Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis

    PubMed Central

    Ma, Jianzhong; Amos, Christopher I.

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct “populations” of inversion homozygotes of different orientations and their 1∶1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases. PMID:22808122

  20. The Lanchester square-law model extended to a (2,2) conflict

    NASA Astrophysics Data System (ADS)

    Colegrave, R. K.; Hyde, J. M.

    1993-01-01

    A natural extension of the Lanchester (1,1) square-law model is the (M,N) linear model in which M forces oppose N forces with constant attrition rates. The (2,2) model is treated from both direct and inverse viewpoints. The inverse problem means that the model is to be fitted to a minimum number of observed force levels, i.e. the attrition rates are to be found from the initial force levels together with the levels observed at two subsequent times. An approach based on Hamiltonian dynamics has enabled the authors to derive a procedure for solving the inverse problem, which is readily computerized. Conflicts in which participants unexpectedly rally or weaken must be excluded.

  1. Moving from pixel to object scale when inverting radiative transfer models for quantitative estimation of biophysical variables in vegetation (Invited)

    NASA Astrophysics Data System (ADS)

    Atzberger, C.

    2013-12-01

    The robust and accurate retrieval of vegetation biophysical variables using RTM is seriously hampered by the ill-posedness of the inverse problem. The contribution presents our object-based inversion approach and evaluate it against measured data. The proposed method takes advantage of the fact that nearby pixels are generally more similar than those at a larger distance. For example, within a given vegetation patch, nearby pixels often share similar leaf angular distributions. This leads to spectral co-variations in the n-dimensional spectral features space, which can be used for regularization purposes. Using a set of leaf area index (LAI) measurements (n=26) acquired over alfalfa, sugar beet and garlic crops of the Barrax test site (Spain), it is demonstrated that the proposed regularization using neighbourhood information yields more accurate results compared to the traditional pixel-based inversion. Principle of the ill-posed inverse problem and the proposed solution illustrated in the red-nIR feature space using (PROSAIL). [A] spectral trajectory ('soil trajectory') obtained for one leaf angle (ALA) and one soil brightness (αsoil), when LAI varies between 0 and 10, [B] 'soil trajectories' for 5 soil brightness values and three leaf angles, [C] ill-posed inverse problem: different combinations of ALA × αsoil yield an identical crossing point, [D] object-based RTM inversion; only one 'soil trajectory' fits all nine pixelswithin a gliding (3×3) window. The black dots (plus the rectangle=central pixel) represent the hypothetical position of nine pixels within a 3×3 (gliding) window. Assuming that over short distances (× 1 pixel) variations in soil brightness can be neglected, the proposed object-based inversion searches for one common set of ALA × αsoil so that the resulting 'soil trajectory' best fits the nine measured pixels. Ground measured vs. retrieved LAI values for three crops. Left: proposed object-based approach. Right: pixel-based inversion

  2. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.

  3. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    PubMed

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Forward and inverse kinematics of double universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  5. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  6. Numerical Inverse Scattering for the Toda Lattice

    NASA Astrophysics Data System (ADS)

    Bilman, Deniz; Trogdon, Thomas

    2017-06-01

    We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.

  7. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  8. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  9. Introduction to the 30th volume of Inverse Problems

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2014-01-01

    The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and Bill Symes in their big footsteps, and I consider it a privilege to thank all that have contributed to the success of the journal. In its 30 years of existence, the journal has evolved from a trimestral to monthly print publication, now paralleled by an electronic version that has led to publication speeds unheard of when the journal began. This timely publication is especially important for younger researchers, but equally for experienced ones, who in that respect still feel young. In addition, the scope has changed to focus more precisely on the core of inverse problems, characterized, for example, by data errors, incomplete information and so on. In the beginning, fields where questions were considered to lead to inverse problems were listed in the journal's scope to make it clear that the problems being discussed were inverse problems in character. With the development of the solution methods, we now see that inverse problems are fundamental to almost all areas of research. The journal now hosts a number of additional features. With Insights we provide a platform for authors to introduce themselves and their work group, and present their scientific results in a popular and non-specialist form. Insights are made freely available on the journal website to ensure that they are seen by a wider community, beyond the immediate readership of the journal. Special issues are devoted to fields that have matured in such a way that the readers of our journal can profit from their presentation when the time for writing text books has not yet come. In addition, the different approaches taken by different contributors to a special issue disclose the multiple aspects of that field. With Topical reviews we aim to present the new ideas and areas that are stimulating future research. We are thankful that highly acclaimed authors take the time to present the research at the forefront of their respective fields. It is always very enlightening to read these articles as they introduce challenging research domains in condensed form. The diversity of the different topics is especially impressive. The 25th anniversary of Inverse Problems was celebrated with a service to the community, the publication of an issue of topical reviews selected by board members, which presented the achievements and state-of-the-art of the field. The 30th birthday of the journal is now approaching and we found it appropriate to include in the celebration the scientific community that supports the journal by their submissions. A conference, IPTA 2014: Inverse Problems - From Theory to Application (http://ipta2014.iopconfs.org/home), will be held in the home town of our publisher, IOP Publishing, in Bristol on 26-28 August 2014. The conference brings together top researchers, both from academia and industry, and will look at the scientific future of the field. Presentations by keynote speakers, which summarize what the board considers to be new trends, are complemented by contributions submitted by specialists and younger researchers in several minisymposia. To build a bridge to the future generation of researchers, a scientist at the beginning of their career will be giving a lecture. Let me finish with cordial thanks to all of our authors, referees, the members of the Editorial Board and International Advisory Panel, and the publishing team. I wish all of you a successful and healthy New Year and hope to meet many of you in August in Bristol. References [1] Sabatier P C 2012 Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse (Paris: L'Harmattan)

  10. A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems

    DOE PAGES

    Yadav, Vineet; Michalak, Anna M.; Ray, Jaideep; ...

    2016-10-27

    We study independent verification and quantification of fossil fuel (FF) emissions that constitutes a considerable scientific challenge. By coupling atmospheric observations of CO 2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO 2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlyingmore » processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO 2 measurements over North America. Also, inversions are performed only for the month of January, as predominance of biospheric CO 2 signal relative to FF CO 2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m -2 s -1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.« less

  11. Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization

    NASA Astrophysics Data System (ADS)

    Yamagishi, Masao; Yamada, Isao

    2017-04-01

    Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.

  12. 3D first-arrival traveltime tomography with modified total variation regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbin; Zhang, Jie

    2018-02-01

    Three-dimensional (3D) seismic surveys have become a major tool in the exploration and exploitation of hydrocarbons. 3D seismic first-arrival traveltime tomography is a robust method for near-surface velocity estimation. A common approach for stabilizing the ill-posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a 3D first-arrival traveltime tomography method with modified total variation (MTV) regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total variation problem. We apply the conjugate gradient method and split-Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization. We apply the technique to field data. The stacking section shows significant improvements with static corrections from the MTV traveltime tomography.

  13. Eigenvectors phase correction in inverse modal problem

    NASA Astrophysics Data System (ADS)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  14. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  15. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    NASA Technical Reports Server (NTRS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  16. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.

  17. Low Velocity Airdrop Tests of an X-38 Backup Parachute Design

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.; Machin, Ricardo A.; Wolf, Dean F.; Hillebrandt, F. David

    2007-01-01

    The NASA Johnson Space Center's X-38 program designed a new backup parachute system to recover the 25,000 lb X-38 prototype for the Crew Return Vehicle spacecraft. Due to weight and cost constraints, the main backup parachute design incorporated rapid and low cost fabrication techniques using off-the-shelf materials. Near the vent, the canopy was constructed of continuous ribbons, to provide more damage tolerance. The remainder of the canopy was a constructed with a continuous ringslot design. After cancellation of the X-38 program, the parachute design was resized, built, and drop tested for Natick Soldiers Center's Low Velocity Air Drop (LVAD) program to deliver cargo loads up to 22,000 lbs from altitudes as low as 500 feet above the ground. Drop tests results showed that the 500-foot LVAD parachute deployment conditions cause severe skirt inversion and inflation problems for large parachutes. The bag strip occurred at a high angle of attack, causing skirt inversion before the parachute could inflate. The addition of a short reefing line prevented the skirt inversion. Using a lower porosity in the vent area, than is normally used in large parachutes, improved inflation. The drop testing demonstrated that the parachute design could be refined to meet the requirements for the 500-foot LVAD mission.

  18. Maximum likelihood bolometric tomography for the determination of the uncertainties in the radiation emission on JET TOKAMAK

    NASA Astrophysics Data System (ADS)

    Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors

    2018-05-01

    The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.

  19. Stability of stationary inverse transport equation in diffusion scaling

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Li, Qin; Wang, Li

    2018-02-01

    We consider the inverse problem of reconstructing the optical parameters for the stationary radiative transfer equation (RTE) from velocity-averaged measurement. The RTE often contains multiple scales, characterized by the magnitude of a dimensionless parameter—the Knudsen number ( \

  20. A Solution of the System of Partial Differential Equations Which Describe the Propagation of Acoustic Pulses in Layered Fluid Media,

    DTIC Science & Technology

    transformed problem. Then using several changes of integration variables, the inverse transform is obtained by direct identification without recourse to the complex Laplace transform inversion integral. (Author)

  1. Intelligent inversion method for pre-stack seismic big data based on MapReduce

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua

    2018-01-01

    Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.

  2. Generation and detection of dissipationless spin current in a MgO/Si bilayer

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spintronics is an analogue to electronics where the spin of the electron rather than its charge is functionally controlled for devices. The generation and detection of spin current without ferromagnetic or exotic/scarce materials are two of the biggest challenges for spintronics devices. In this study, we report a solution to the two problems of spin current generation and detection in Si. Using non-local measurement, we experimentally demonstrate the generation of helical dissipationless spin current using the spin-Hall effect. Contrary to the theoretical prediction, we observe the spin-Hall effect in both n-doped and p-doped Si. The helical spin current is attributed to the site-inversion asymmetry of the diamond cubic lattice of Si and structure inversion asymmetry in a MgO/Si bilayer. The spin to charge conversion in Si is insignificant due to weak spin-orbit coupling. For the efficient detection of spin current, we report spin to charge conversion at the MgO (1 nm)/Si (2 µm) (p-doped and n-doped) thin film interface due to Rashba spin-orbit coupling. We detected the spin current at a distance of  >100 µm, which is an order of magnitude larger than the longest spin diffusion length measured using spin injection techniques. The existence of spin current in Si is verified from the coercivity reduction in a Co/Pd multilayer due to spin-orbit torque generated by spin current from Si.

  3. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  4. Recently Developed Formulations of the Inverse Problem in Acoustics and Electromagnetics

    DTIC Science & Technology

    1974-12-01

    solution for scattering by a sphere. The inverse transform of irs?(K) is calculated, this function yielding --y (x). Figure 4.2 is a graph of this...time or decays "sufficiently rapidly", then T+- o. In this case, we may let T -1 in (8.9) and obtain the inverse transform (k = w/c) of (5.6) as the

  5. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  6. Three-dimensional imaging of buried objects in very lossy earth by inversion of VETEM data

    USGS Publications Warehouse

    Cui, T.J.; Aydiner, A.A.; Chew, W.C.; Wright, D.L.; Smith, D.V.

    2003-01-01

    The very early time electromagnetic system (VETEM) is an efficient tool for the detection of buried objects in very lossy earth, which allows a deeper penetration depth compared to the ground-penetrating radar. In this paper, the inversion of VETEM data is investigated using three-dimensional (3-D) inverse scattering techniques, where multiple frequencies are applied in the frequency range from 0-5 MHz. For small and moderately sized problems, the Born approximation and/or the Born iterative method have been used with the aid of the singular value decomposition and/or the conjugate gradient method in solving the linearized integral equations. For large-scale problems, a localized 3-D inversion method based on the Born approximation has been proposed for the inversion of VETEM data over a large measurement domain. Ways to process and to calibrate the experimental VETEM data are discussed to capture the real physics of buried objects. Reconstruction examples using synthesized VETEM data and real-world VETEM data are given to test the validity and efficiency of the proposed approach.

  7. Estimating uncertainties in complex joint inverse problems

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related to the forward and statistical models, I will also address other uncertainties associated with data and uncertainty propagation.

  8. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  9. Singular value decomposition for the truncated Hilbert transform

    NASA Astrophysics Data System (ADS)

    Katsevich, A.

    2010-11-01

    Starting from a breakthrough result by Gelfand and Graev, inversion of the Hilbert transform became a very important tool for image reconstruction in tomography. In particular, their result is useful when the tomographic data are truncated and one deals with an interior problem. As was established recently, the interior problem admits a stable and unique solution when some a priori information about the object being scanned is available. The most common approach to solving the interior problem is based on converting it to the Hilbert transform and performing analytic continuation. Depending on what type of tomographic data are available, one gets different Hilbert inversion problems. In this paper, we consider two such problems and establish singular value decomposition for the operators involved. We also propose algorithms for performing analytic continuation.

  10. 2D Inversion of Transient Electromagnetic Method (TEM)

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most promising regions for groundwater exploration. In addition, there was the development of new geophysical software that can be applied as an important tool for many geological/hydrogeological applications and educational purposes.

  11. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  12. Identification of subsurface structures using electromagnetic data and shape priors

    NASA Astrophysics Data System (ADS)

    Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  13. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE PAGES

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    2017-10-28

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  14. A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352

    2015-09-01

    In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less

  15. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  16. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  17. Obtaining sparse distributions in 2D inverse problems.

    PubMed

    Reci, A; Sederman, A J; Gladden, L F

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L 1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L 1 regularization to a class of inverse problems; relaxation-relaxation, T 1 -T 2 , and diffusion-relaxation, D-T 2 , correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L 1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L 1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L 1 regularization algorithm stably recovers a distribution at a signal to noise ratio<20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise. Copyright © 2017. Published by Elsevier Inc.

  18. Obtaining sparse distributions in 2D inverse problems

    NASA Astrophysics Data System (ADS)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.

  19. Improved real-time dynamics from imaginary frequency lattice simulations

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  20. Hessian Schatten-norm regularization for linear inverse problems.

    PubMed

    Lefkimmiatis, Stamatios; Ward, John Paul; Unser, Michael

    2013-05-01

    We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto lq norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.

Top