Sample records for inverse problem solution

  1. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  2. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  3. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  4. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  5. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  6. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  7. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  8. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  9. New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment.

    PubMed

    Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S

    2014-09-01

    Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.

  10. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  11. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  12. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    NASA Astrophysics Data System (ADS)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  13. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  14. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  15. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  16. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  17. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  18. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  19. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  20. On stability of the solutions of inverse problem for determining the right-hand side of a degenerate parabolic equation with two independent variables

    NASA Astrophysics Data System (ADS)

    Kamynin, V. L.; Bukharova, T. I.

    2017-01-01

    We prove the estimates of stability with respect to perturbations of input data for the solutions of inverse problems for degenerate parabolic equations with unbounded coefficients. An important feature of these estimates is that the constants in these estimates are written out explicitly by the input data of the problem.

  1. Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models

    DOE PAGES

    Butler, Troy; Graham, L.; Estep, D.; ...

    2015-02-03

    The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less

  2. A practical method to assess model sensitivity and parameter uncertainty in C cycle models

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2015-04-01

    The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.

  3. Model Order Reduction for the fast solution of 3D Stokes problems and its application in geophysical inversion

    NASA Astrophysics Data System (ADS)

    Ortega Gelabert, Olga; Zlotnik, Sergio; Afonso, Juan Carlos; Díez, Pedro

    2017-04-01

    The determination of the present-day physical state of the thermal and compositional structure of the Earth's lithosphere and sub-lithospheric mantle is one of the main goals in modern lithospheric research. All this data is essential to build Earth's evolution models and to reproduce many geophysical observables (e.g. elevation, gravity anomalies, travel time data, heat flow, etc) together with understanding the relationship between them. Determining the lithospheric state involves the solution of high-resolution inverse problems and, consequently, the solution of many direct models is required. The main objective of this work is to contribute to the existing inversion techniques in terms of improving the estimation of the elevation (topography) by including a dynamic component arising from sub-lithospheric mantle flow. In order to do so, we implement an efficient Reduced Order Method (ROM) built upon classic Finite Elements. ROM allows to reduce significantly the computational cost of solving a family of problems, for example all the direct models that are required in the solution of the inverse problem. The strategy of the method consists in creating a (reduced) basis of solutions, so that when a new problem has to be solved, its solution is sought within the basis instead of attempting to solve the problem itself. In order to check the Reduced Basis approach, we implemented the method in a 3D domain reproducing a portion of Earth that covers up to 400 km depth. Within the domain the Stokes equation is solved with realistic viscosities and densities. The different realizations (the family of problems) is created by varying viscosities and densities in a similar way as it would happen in an inversion problem. The Reduced Basis method is shown to be an extremely efficiently solver for the Stokes equation in this context.

  4. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  5. Determination of thermophysical characteristics of solid materials by electrical modelling of the solutions to the inverse problems in nonsteady heat conduction

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Krivoshei, F. A.

    1985-01-01

    The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.

  6. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  7. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Köpke, Corinna; Irving, James; Elsheikh, Ahmed H.

    2018-06-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are commonly employed. This gives rise to model error, which has the potential to significantly bias posterior statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems. Our approach is geared towards the common case where this error cannot be (i) effectively characterized through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of computed model-error realizations. To this end, we focus on identification and removal of the model-error component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their inversion. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic characterization of uncertainty.

  8. Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Erdem, Arzu

    2008-08-01

    The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.

  9. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  10. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  11. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm

    PubMed Central

    Hesford, Andrew J.; Chew, Weng C.

    2010-01-01

    The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438

  12. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    NASA Astrophysics Data System (ADS)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  13. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  14. Parana Basin Structure from Multi-Objective Inversion of Surface Wave and Receiver Function by Competent Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    An, M.; Assumpcao, M.

    2003-12-01

    The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.

  15. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.

    2018-01-01

    In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.

  16. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    NASA Astrophysics Data System (ADS)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.

  17. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  18. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  19. Comparison of iterative inverse coarse-graining methods

    NASA Astrophysics Data System (ADS)

    Rosenberger, David; Hanke, Martin; van der Vegt, Nico F. A.

    2016-10-01

    Deriving potentials for coarse-grained Molecular Dynamics (MD) simulations is frequently done by solving an inverse problem. Methods like Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC) have been widely used to solve this problem. The solution obtained by application of these methods guarantees a match in the radial distribution function (RDF) between the underlying fine-grained system and the derived coarse-grained system. However, these methods often fail in reproducing thermodynamic properties. To overcome this deficiency, additional thermodynamic constraints such as pressure or Kirkwood-Buff integrals (KBI) may be added to these methods. In this communication we test the ability of these methods to converge to a known solution of the inverse problem. With this goal in mind we have studied a binary mixture of two simple Lennard-Jones (LJ) fluids, in which no actual coarse-graining is performed. We further discuss whether full convergence is actually needed to achieve thermodynamic representability.

  20. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  1. Inverse dynamics of a 3 degree of freedom spatial flexible manipulator

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Serna, M.

    1989-01-01

    A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.

  2. PREFACE: The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro

    2005-01-01

    The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in atmospheric sciences and oceanography. Last but not least is our gratitude. As editors we would like to express our sincere thanks to all the plenary and invited speakers, the members of the International Scientific Committee and the Advisory Board for the success of the conference, which has given rise to this present volume of selected papers. We would also like to thank Mr Wang Yanbo, Miss Wan Xiqiong and the graduate students at Fudan University for their effective work to make this conference a success. The conference was financially supported by the NFS of China, the Mathematical Center of Ministry of Education of China, E-Institutes of Shanghai Municipal Education Commission (No E03004) and Fudan University, Grant 15340027 from the Japan Society for the Promotion of Science, and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.

  3. Inverse problems with nonnegative and sparse solutions: algorithms and application to the phase retrieval problem

    NASA Astrophysics Data System (ADS)

    Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong

    2018-05-01

    In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.

  4. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  5. A fixed energy fixed angle inverse scattering in interior transmission problem

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Hui

    2017-06-01

    We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.

  6. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  7. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  8. Hybrid Weighted Minimum Norm Method A new method based LORETA to solve EEG inverse problem.

    PubMed

    Song, C; Zhuang, T; Wu, Q

    2005-01-01

    This Paper brings forward a new method to solve EEG inverse problem. Based on following physiological characteristic of neural electrical activity source: first, the neighboring neurons are prone to active synchronously; second, the distribution of source space is sparse; third, the active intensity of the sources are high centralized, we take these prior knowledge as prerequisite condition to develop the inverse solution of EEG, and not assume other characteristic of inverse solution to realize the most commonly 3D EEG reconstruction map. The proposed algorithm takes advantage of LORETA's low resolution method which emphasizes particularly on 'localization' and FOCUSS's high resolution method which emphasizes particularly on 'separability'. The method is still under the frame of the weighted minimum norm method. The keystone is to construct a weighted matrix which takes reference from the existing smoothness operator, competition mechanism and study algorithm. The basic processing is to obtain an initial solution's estimation firstly, then construct a new estimation using the initial solution's information, repeat this process until the solutions under last two estimate processing is keeping unchanged.

  9. Numerical solution of inverse scattering for near-field optics.

    PubMed

    Bao, Gang; Li, Peijun

    2007-06-01

    A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.

  10. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  11. Review of the inverse scattering problem at fixed energy in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  12. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    NASA Astrophysics Data System (ADS)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.

  13. Black hole algorithm for determining model parameter in self-potential data

    NASA Astrophysics Data System (ADS)

    Sungkono; Warnana, Dwa Desa

    2018-01-01

    Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.

  14. The incomplete inverse and its applications to the linear least squares problem

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.

    1977-01-01

    A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.

  15. A Solution Framework for Environmental Characterization Problems

    EPA Science Inventory

    This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...

  16. Solvability of the electrocardiology inverse problem for a moving dipole.

    PubMed

    Tolkachev, V; Bershadsky, B; Nemirko, A

    1993-01-01

    New formulations of the direct and inverse problems for the moving dipole are offered. It has been suggested to limit the study by a small area on the chest surface. This lowers the role of the medium inhomogeneity. When formulating the direct problem, irregular components are considered. The algorithm of simultaneous determination of the dipole and regular noise parameters has been described and analytically investigated. It is shown that temporal overdetermination of the equations offers a single solution of the inverse problem for the four leads.

  17. Inverse analysis and regularisation in conditional source-term estimation modelling

    NASA Astrophysics Data System (ADS)

    Labahn, Jeffrey W.; Devaud, Cecile B.; Sipkens, Timothy A.; Daun, Kyle J.

    2014-05-01

    Conditional Source-term Estimation (CSE) obtains the conditional species mass fractions by inverting a Fredholm integral equation of the first kind. In the present work, a Bayesian framework is used to compare two different regularisation methods: zeroth-order temporal Tikhonov regulatisation and first-order spatial Tikhonov regularisation. The objectives of the current study are: (i) to elucidate the ill-posedness of the inverse problem; (ii) to understand the origin of the perturbations in the data and quantify their magnitude; (iii) to quantify the uncertainty in the solution using different priors; and (iv) to determine the regularisation method best suited to this problem. A singular value decomposition shows that the current inverse problem is ill-posed. Perturbations to the data may be caused by the use of a discrete mixture fraction grid for calculating the mixture fraction PDF. The magnitude of the perturbations is estimated using a box filter and the uncertainty in the solution is determined based on the width of the credible intervals. The width of the credible intervals is significantly reduced with the inclusion of a smoothing prior and the recovered solution is in better agreement with the exact solution. The credible intervals for temporal and spatial smoothing are shown to be similar. Credible intervals for temporal smoothing depend on the solution from the previous time step and a smooth solution is not guaranteed. For spatial smoothing, the credible intervals are not dependent upon a previous solution and better predict characteristics for higher mixture fraction values. These characteristics make spatial smoothing a promising alternative method for recovering a solution from the CSE inversion process.

  18. Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization

    NASA Astrophysics Data System (ADS)

    Yamagishi, Masao; Yamada, Isao

    2017-04-01

    Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.

  19. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  20. Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.

    2017-10-01

    This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution

  1. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    PubMed

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  2. Computational structures for robotic computations

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chang, P. R.

    1987-01-01

    The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed.

  3. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.

  4. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  5. A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus

    NASA Astrophysics Data System (ADS)

    Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei

    2005-01-01

    Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.

  6. Numerical Inverse Scattering for the Toda Lattice

    NASA Astrophysics Data System (ADS)

    Bilman, Deniz; Trogdon, Thomas

    2017-06-01

    We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.

  7. Space structures insulating material's thermophysical and radiation properties estimation

    NASA Astrophysics Data System (ADS)

    Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.

    2007-11-01

    In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.

  8. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  9. Astrophysical masers - Inverse methods, precision, resolution and uniqueness

    NASA Astrophysics Data System (ADS)

    Lerche, I.

    1986-07-01

    The paper provides exact analytic solutions to the two-level, steady-state, maser problem in parametric form, with the emergent intensities expressed in terms of the incident intensities and with the maser length also given in terms of an integral over the intensities. It is shown that some assumption must be made on the emergent intensity on the nonobservable side of the astrophysical maser in order to obtain any inversion of the equations. The incident intensities can then be expressed in terms of the emergent, observable, flux. It is also shown that the inversion is nonunique unless a homogeneous linear integral equation has only a null solution. Constraints imposed by knowledge of the physical length of the maser are felt in a nonlinear manner by the parametric variable and do not appear to provide any substantive additional information to reduce the degree of nonuniqueness of the inverse solutions. It is concluded that the questions of precision, resolution and uniqueness for solutions to astrophysical maser problems will remain more of an emotional art than a logical science for some time to come.

  10. Modeling the 16 September 2015 Chile tsunami source with the inversion of deep-ocean tsunami records by means of the r - solution method

    NASA Astrophysics Data System (ADS)

    Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem

    2017-04-01

    The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model. The function recovered by the method proposed can find practical applications both as an initial condition for various optimization approaches and for computer calculation of the tsunami wave propagation.

  11. Gravity inversion of a fault by Particle swarm optimization (PSO).

    PubMed

    Toushmalani, Reza

    2013-01-01

    Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.

  12. Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Alazzawi, Sabina; Lechner, Gandalf

    2017-09-01

    We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.

  13. Three-dimensional inversion of multisource array electromagnetic data

    NASA Astrophysics Data System (ADS)

    Tartaras, Efthimios

    Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.

  14. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  15. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  16. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  17. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  18. Real-Time Wing-Vortex and Pressure Distribution Estimation on Wings Via Displacements and Strains in Unsteady and Transitional Flight Conditions

    DTIC Science & Technology

    2016-09-07

    approach in co simulation with fluid-dynamics solvers is used. An original variational formulation is developed for the inverse problem of...by the inverse solution meshing. The same approach is used to map the structural and fluid interface kinematics and loads during the fluid structure...co-simulation. The inverse analysis is verified by reconstructing the deformed solution obtained with a corresponding direct formulation, based on

  19. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  1. A note on convergence of solutions of total variation regularized linear inverse problems

    NASA Astrophysics Data System (ADS)

    Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar

    2018-05-01

    In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.

  2. Solitons of shallow-water models from energy-dependent spectral problems

    NASA Astrophysics Data System (ADS)

    Haberlin, Jack; Lyons, Tony

    2018-01-01

    The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.

  3. Sources of unbounded priority inversions in real-time systems and a comparative study of possible solutions

    NASA Technical Reports Server (NTRS)

    Davari, Sadegh; Sha, Lui

    1992-01-01

    In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented.

  4. We introduce an algorithm for the simultaneous reconstruction of faults and slip fields. We prove that the minimum of a related regularized functional converges to the unique solution of the fault inverse problem. We consider a Bayesian approach. We use a parallel multi-core platform and we discuss techniques to save on computational time.

    NASA Astrophysics Data System (ADS)

    Volkov, D.

    2017-12-01

    We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.

  5. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  6. Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.

    PubMed

    Ebert, M

    1997-12-01

    This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.

  7. Layer Stripping Solutions of Inverse Seismic Problems.

    DTIC Science & Technology

    1985-03-21

    problems--more so than has generally been recognized. The subject of this thesis is the theoretical development of the . layer-stripping methodology , and...medium varies sharply at each interface, which would be expected to cause difficulties for the algorithm, since it was designed for a smoothy varying... methodology was applied in a novel way. The inverse problem considered in this chapter was that of reconstructing a layered medium from measurement of its

  8. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    NASA Astrophysics Data System (ADS)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  9. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  10. Solving the Inverse-Square Problem with Complex Variables

    ERIC Educational Resources Information Center

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  11. Computationally efficient control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne (Inventor)

    2001-01-01

    A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.

  12. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13

  13. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  14. A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    NASA Technical Reports Server (NTRS)

    Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.

    1989-01-01

    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.

  15. A multi-frequency iterative imaging method for discontinuous inverse medium problem

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Feng, Lixin

    2018-06-01

    The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.

  16. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  17. Applications of Bayesian spectrum representation in acoustics

    NASA Astrophysics Data System (ADS)

    Botts, Jonathan M.

    This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v

  18. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  19. The solution of Cauchy's problem for the Toda lattice with limit periodic initial data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanmamedov, A Kh

    Cauchy's problem for Toda lattices with initial data equal to the sum of a periodic and a rapidly decreasing sequence is solved with the use of the inverse scattering method. A method allowing one to find a limit periodic solution of the Toda lattice from a known periodic solution is described. The existence and uniqueness of a limit periodic solution is proved. Bibliography: 17 titles.

  20. FAST TRACK PAPER: Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation

    NASA Astrophysics Data System (ADS)

    Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing

    2004-12-01

    The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.

  1. A fast approach to designing airfoils from given pressure distribution in compressible flows

    NASA Technical Reports Server (NTRS)

    Daripa, Prabir

    1987-01-01

    A new inverse method for aerodynamic design of airfols is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arc length of the as-yet unknown body. This inverse problem is shown to be mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the freestream Mach number, and the upstream flow direction. The existence of a solution to a given pressure distribution is discussed. The method is easy to implement and extremely efficient. A series of results for which comparisons are made with the known airfoils is presented.

  2. Nonlinear Problems in Fluid Dynamics and Inverse Scattering

    DTIC Science & Technology

    1993-05-31

    nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear

  3. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  4. Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.

    2017-11-01

    We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.

  5. A Solution of the System of Partial Differential Equations Which Describe the Propagation of Acoustic Pulses in Layered Fluid Media,

    DTIC Science & Technology

    transformed problem. Then using several changes of integration variables, the inverse transform is obtained by direct identification without recourse to the complex Laplace transform inversion integral. (Author)

  6. Kinematic equations for control of the redundant eight-degree-of-freedom advanced research manipulator 2

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.

  7. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  8. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  9. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fei; Department of Mathematics, University of California, Berkeley; Morzfeld, Matthias, E-mail: mmo@math.lbl.gov

    2015-02-01

    Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior.

  10. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

    PubMed

    Coene, A; Crevecoeur, G; Leliaert, J; Dupré, L

    2015-09-01

    Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of larger volumes can be obtained. The authors found that, by selectively exciting parts of the volume, the authors could increase the reconstruction quality even further while reducing the amount of measurements. Additionally, the inverse solution of this activation method degrades slower for increasing volumes. Finally, the methodology was applied to noisy EPR measurements: using the reduced EPR setup's symmetry and the partial activation method, an increase in reconstruction quality of ≈ 80% can be seen with a speedup of the measurements with 10%. Applying the aforementioned requirements to the EPR setup and stabilizing the EPR measurements showed a tremendous increase in noise robustness, thereby making EPR a valuable method for quantitative imaging of multidimensional MNP distributions.

  11. Conventional and reciprocal approaches to the inverse dipole localization problem for N(20)-P (20) somatosensory evoked potentials.

    PubMed

    Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre

    2013-01-01

    The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.

  12. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  13. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  14. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.

  15. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  16. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  17. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  18. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1990-09-18

    to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the

  19. Cerebellum-inspired neural network solution of the inverse kinematics problem.

    PubMed

    Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan

    2015-12-01

    The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.

  20. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  1. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Geng, Xianguo

    2017-12-01

    The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.

  2. An analytical method for the inverse Cauchy problem of Lame equation in a rectangle

    NASA Astrophysics Data System (ADS)

    Grigor’ev, Yu

    2018-04-01

    In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.

  3. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  4. NLSE: Parameter-Based Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  5. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  6. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.

  7. Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method

    PubMed Central

    Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter

    2017-01-01

    An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated. PMID:28098851

  8. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  9. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.

    PubMed

    Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai

    2004-10-01

    Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.

  10. Extended fault inversion with random slipmaps: A resolution test for the 2012 Mw 7.6 Nicoya, Costa Rica earthquake from a Popperian inversion strategy.

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Stich, Daniel; Ferreira, Ana M. G.; Morales Soto, José

    2015-04-01

    The inversion of seismic data for extended fault slip distributions provides us detailed models of earthquake sources. The validity of the solutions depends on the fit between observed and synthetic seismograms generated with the source model. However, there may exist more than one model that fit the data in a similar way, leading to a multiplicity of solutions. This underdetermined problem has been analyzed and studied by several authors, who agree that inverting for a single best model may become overly dependent on the details of the procedure. We have addressed this resolution problem by using a global search that scans the solutions domain using random slipmaps, applying a Popperian inversion strategy that involves the generation of a representative set of slip distributions. The proposed technique solves the forward problem for a large set of models calculating their corresponding synthetic seismograms. Then, we propose to perform extended fault inversion through falsification, that is, falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. Thereby the ambiguities that might exist can be detected by taking a look at the solutions, allowing for an efficient assessment of the resolution. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity like, for example, different patterns of main slip patches or different patterns of rupture propagation. For a feasibility study, the proposed resolution test has been evaluated using teleseismic body wave recordings from the September 5th 2012 Nicoya, Costa Rica earthquake. Note that the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. A 2D von Karman distribution is used to describe the spectrum of heterogeneity in slipmaps, and we generate possible models by spectral synthesis for random phase, keeping the rake angle, rupture velocity and slip velocity function fixed. The 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. The solution set contains 252 out of 10.000 trial models with normalized L1-fit within 5 percent from the global minimum. The set includes only similar solutions -a single centred slip patch- with minor differences. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2m to 3.5m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns like Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data.

  11. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    NASA Astrophysics Data System (ADS)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  12. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    NASA Astrophysics Data System (ADS)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  13. Recursive inversion of externally defined linear systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1988-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.

  14. Sparse Image Reconstruction on the Sphere: Analysis and Synthesis.

    PubMed

    Wallis, Christopher G R; Wiaux, Yves; McEwen, Jason D

    2017-11-01

    We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l 1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.

  15. Applications of the JARS method to study levee sites in southern Texas and southern New Mexico

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Dunbar, J.B.

    2007-01-01

    We apply the joint analysis of refractions with surface waves (JARS) method to several sites and compare its results to traditional refraction-tomography methods in efforts of finding a more realistic solution to the inverse refraction-traveltime problem. The JARS method uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. In all of the cases JARS estimates appear more realistic than those from the conventional refraction-tomography methods. As a result, we consider, the JARS algorithm as the preferred method for finding solutions to the inverse refraction-tomography problems. ?? 2007 Society of Exploration Geophysicists.

  16. Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.

    2017-04-01

    In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.

  17. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  18. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  19. The inverse Wiener polarity index problem for chemical trees.

    PubMed

    Du, Zhibin; Ali, Akbar

    2018-01-01

    The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.

  20. Assimilating data into open ocean tidal models

    NASA Astrophysics Data System (ADS)

    Kivman, Gennady A.

    The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.

  1. Prize for Industrial Applications of Physics Talk: The Inverse Scattering Problem and the role of measurements in its solution

    NASA Astrophysics Data System (ADS)

    Wyatt, Philip

    2009-03-01

    The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.

  2. Co-evolution for Problem Simplification

    NASA Technical Reports Server (NTRS)

    Haith, Gary L.; Lohn, Jason D.; Cplombano, Silvano P.; Stassinopoulos, Dimitris

    1999-01-01

    This paper explores a co-evolutionary approach applicable to difficult problems with limited failure/success performance feedback. Like familiar "predator-prey" frameworks this algorithm evolves two populations of individuals - the solutions (predators) and the problems (prey). The approach extends previous work by rewarding only the problems that match their difficulty to the level of solut,ion competence. In complex problem domains with limited feedback, this "tractability constraint" helps provide an adaptive fitness gradient that, effectively differentiates the candidate solutions. The algorithm generates selective pressure toward the evolution of increasingly competent solutions by rewarding solution generality and uniqueness and problem tractability and difficulty. Relative (inverse-fitness) and absolute (static objective function) approaches to evaluating problem difficulty are explored and discussed. On a simple control task, this co-evolutionary algorithm was found to have significant advantages over a genetic algorithm with either a static fitness function or a fitness function that changes on a hand-tuned schedule.

  3. Guaranteed estimation of solutions to Helmholtz transmission problems with uncertain data from their indirect noisy observations

    NASA Astrophysics Data System (ADS)

    Podlipenko, Yu. K.; Shestopalov, Yu. V.

    2017-09-01

    We investigate the guaranteed estimation problem of linear functionals from solutions to transmission problems for the Helmholtz equation with inexact data. The right-hand sides of equations entering the statements of transmission problems and the statistical characteristics of observation errors are supposed to be unknown and belonging to certain sets. It is shown that the optimal linear mean square estimates of the above mentioned functionals and estimation errors are expressed via solutions to the systems of transmission problems of the special type. The results and techniques can be applied in the analysis and estimation of solution to forward and inverse electromagnetic and acoustic problems with uncertain data that arise in mathematical models of the wave diffraction on transparent bodies.

  4. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  5. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  6. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  7. Recently Developed Formulations of the Inverse Problem in Acoustics and Electromagnetics

    DTIC Science & Technology

    1974-12-01

    solution for scattering by a sphere. The inverse transform of irs?(K) is calculated, this function yielding --y (x). Figure 4.2 is a graph of this...time or decays "sufficiently rapidly", then T+- o. In this case, we may let T -1 in (8.9) and obtain the inverse transform (k = w/c) of (5.6) as the

  8. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  9. Inverse problem of radiofrequency sounding of ionosphere

    NASA Astrophysics Data System (ADS)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  10. Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

    NASA Astrophysics Data System (ADS)

    Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.

    2018-01-01

    We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

  11. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    PubMed

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  12. Convergent radial dispersion: A note on evaluation of the Laplace transform solution

    USGS Publications Warehouse

    Moench, Allen F.

    1991-01-01

    A numerical inversion algorithm for Laplace transforms that is capable of handling rapid changes in the computed function is applied to the Laplace transform solution to the problem of convergent radial dispersion in a homogeneous aquifer. Prior attempts by the author to invert this solution were unsuccessful for highly advective systems where the Peclet number was relatively large. The algorithm used in this note allows for rapid and accurate inversion of the solution for all Peclet numbers of practical interest, and beyond. Dimensionless breakthrough curves are illustrated for tracer input in the form of a step function, a Dirac impulse, or a rectangular input.

  13. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  14. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  15. A New Paradigm for Satellite Retrieval of Hydrologic Variables: The CDRD Methodology

    NASA Astrophysics Data System (ADS)

    Smith, E. A.; Mugnai, A.; Tripoli, G. J.

    2009-09-01

    Historically, retrieval of thermodynamically active geophysical variables in the atmosphere (e.g., temperature, moisture, precipitation) involved some time of inversion scheme - embedded within the retrieval algorithm - to transform radiometric observations (a vector) to the desired geophysical parameter(s) (either a scalar or a vector). Inversion is fundamentally a mathematical operation involving some type of integral-differential radiative transfer equation - often resisting a straightforward algebraic solution - in which the integral side of the equation (typically the right-hand side) contains the desired geophysical vector, while the left-hand side contains the radiative measurement vector often free of operators. Inversion was considered more desirable than forward modeling because the forward model solution had to be selected from a generally unmanageable set of parameter-observation relationships. However, in the classical inversion problem for retrieval of temperature using multiple radiative frequencies along the wing of an absorption band (or line) of a well-mixed radiatively active gas, in either the infrared or microwave spectrums, the inversion equation to be solved consists of a Fredholm integral equation of the 2nd kind - a specific type of transform problem in which there are an infinite number of solutions. This meant that special treatment of the transform process was required in order to obtain a single solution. Inversion had become the method of choice for retrieval in the 1950s because it appealed to the use of mathematical elegance, and because the numerical approaches used to solve the problems (typically some type of relaxation or perturbation scheme) were computationally fast in an age when computers speeds were slow. Like many solution schemes, inversion has lingered on regardless of the fact that computer speeds have increased many orders of magnitude and forward modeling itself has become far more elegant in combination with Bayesian averaging procedures given that the a priori probabilities of occurrence in the true environment of the parameter(s) in question can be approximated (or are actually known). In this presentation, the theory of the more modern retrieval approach using a combination of cloud, radiation and other specialized forward models in conjunction with Bayesian weighted averaging will be reviewed in light of a brief history of inversion. The application of the theory will be cast in the framework of what we call the Cloud-Dynamics-Radiation-Database (CDRD) methodology - which we now use for the retrieval of precipitation from spaceborne passive microwave radiometers. In a companion presentation, we will specifically describe the CDRD methodology and present results for its application within the Mediterranean basin.

  16. Using machine learning to accelerate sampling-based inversion

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Sambridge, M.

    2017-12-01

    In most cases, a complete solution to a geophysical inverse problem (including robust understanding of the uncertainties associated with the result) requires a sampling-based approach. However, the computational burden is high, and proves intractable for many problems of interest. There is therefore considerable value in developing techniques that can accelerate sampling procedures.The main computational cost lies in evaluation of the forward operator (e.g. calculation of synthetic seismograms) for each candidate model. Modern machine learning techniques-such as Gaussian Processes-offer a route for constructing a computationally-cheap approximation to this calculation, which can replace the accurate solution during sampling. Importantly, the accuracy of the approximation can be refined as inversion proceeds, to ensure high-quality results.In this presentation, we describe and demonstrate this approach-which can be seen as an extension of popular current methods, such as the Neighbourhood Algorithm, and bridges the gap between prior- and posterior-sampling frameworks.

  17. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  18. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  19. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems

  20. The inverse problem for definition of the shape of a molten contact bridge

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.

    2017-09-01

    The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.

  1. Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Lassas, Matti; Uhlmann, Gunther; Wang, Yiran

    2018-06-01

    We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.

  2. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  3. Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation

    NASA Astrophysics Data System (ADS)

    Zhou, Xin

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.

  4. The Ellipticity Filter-A Proposed Solution to the Mixed Event Problem in Nuclear Seismic Discrimination

    DTIC Science & Technology

    1974-09-07

    ellipticity filter. The source waveforms are recreated by an inverse transform of those complex ampli- tudes associated with the same azimuth...terms of the three complex data points and the ellipticity. Having solved the equations for all frequency bins, the inverse transform of...Transform of those complex amplitudes associated with Source 1, yielding the signal a (t). Similarly, take the inverse Transform of all

  5. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    PubMed

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A trade-off solution between model resolution and covariance in surface-wave inversion

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.

    2010-01-01

    Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.

  7. Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods

    NASA Astrophysics Data System (ADS)

    Thurin, J.; Brossier, R.; Métivier, L.

    2017-12-01

    Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012

  8. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    NASA Astrophysics Data System (ADS)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  9. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Simonetto, Andrea; Dall'Anese, Emiliano

    2017-07-26

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonetto, Andrea; Dall'Anese, Emiliano

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  11. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  12. Feasibility of inverse problem solution for determination of city emission function from night sky radiance measurements

    NASA Astrophysics Data System (ADS)

    Petržala, Jaromír

    2018-07-01

    The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov's regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov's regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.

  13. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  14. Heuristics for the inversion median problem

    PubMed Central

    2010-01-01

    Background The study of genome rearrangements has become a mainstay of phylogenetics and comparative genomics. Fundamental in such a study is the median problem: given three genomes find a fourth that minimizes the sum of the evolutionary distances between itself and the given three. Many exact algorithms and heuristics have been developed for the inversion median problem, of which the best known is MGR. Results We present a unifying framework for median heuristics, which enables us to clarify existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new insight: the best strategies continue to refer to the input data rather than reducing the problem to smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses input data to the end of its computation and leverages our previous work with DCJ medians. Finally, we present the results of extensive experimentation showing that our new heuristic outperforms all others in accuracy and, especially, in running time: the heuristic typically returns solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25'000 genes--in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1'000 genes. Conclusion Finding good rearrangement medians, in particular inversion medians, had long been regarded as the computational bottleneck in whole-genome studies. Our new heuristic for inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by providing near-optimal solutions within seconds to minutes on even the largest genomes. PMID:20122203

  15. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Liu, Boda; Liang, Yan

    2017-04-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.

  16. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  17. An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations

    PubMed Central

    Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.

    2016-01-01

    We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360

  18. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.

    2017-04-01

    Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.

  19. Joint Model and Parameter Dimension Reduction for Bayesian Inversion Applied to an Ice Sheet Flow Problem

    NASA Astrophysics Data System (ADS)

    Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.

    2016-12-01

    Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.

  20. Efficient calculation of full waveform time domain inversion for electromagnetic problem using fictitious wave domain method and cascade decimation decomposition

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2016-12-01

    Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which is a practical computational time for the inverse problem.

  1. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  2. A novel post-processing scheme for two-dimensional electrical impedance tomography based on artificial neural networks

    PubMed Central

    2017-01-01

    Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856

  3. Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics

    NASA Astrophysics Data System (ADS)

    Franck, I. M.; Koutsourelakis, P. S.

    2017-01-01

    This paper is concerned with the numerical solution of model-based, Bayesian inverse problems. We are particularly interested in cases where the cost of each likelihood evaluation (forward-model call) is expensive and the number of unknown (latent) variables is high. This is the setting in many problems in computational physics where forward models with nonlinear PDEs are used and the parameters to be calibrated involve spatio-temporarily varying coefficients, which upon discretization give rise to a high-dimensional vector of unknowns. One of the consequences of the well-documented ill-posedness of inverse problems is the possibility of multiple solutions. While such information is contained in the posterior density in Bayesian formulations, the discovery of a single mode, let alone multiple, poses a formidable computational task. The goal of the present paper is two-fold. On one hand, we propose approximate, adaptive inference strategies using mixture densities to capture multi-modal posteriors. On the other, we extend our work in [1] with regard to effective dimensionality reduction techniques that reveal low-dimensional subspaces where the posterior variance is mostly concentrated. We validate the proposed model by employing Importance Sampling which confirms that the bias introduced is small and can be efficiently corrected if the analyst wishes to do so. We demonstrate the performance of the proposed strategy in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. The discovery of multiple modes (solutions) in such problems is critical in achieving the diagnostic objectives.

  4. Analysis of harmonic spline gravity models for Venus and Mars

    NASA Technical Reports Server (NTRS)

    Bowin, Carl

    1986-01-01

    Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.

  5. Inverse problem of HIV cell dynamics using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  6. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  7. Joint Inversion of Gravity and Gravity Tensor Data Using the Structural Index as Weighting Function Rate Decay

    NASA Astrophysics Data System (ADS)

    Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.

    2011-12-01

    Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.

  8. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis vectors (100) contained enough a priori information to constrain the inversion. Increasing the amount of data or number of selected basis images did not translate into significant improvement in imaging results. For synthetic #2, the RMSE and error in total mass were lowest for the POD inversion. However, the peak concentration was significantly overestimated by the POD approach. Regardless, the POD-based inversion was the only technique that could capture the bimodality of the plume in the reconstructed image, thus providing critical information that could be used to reconceptualize the transport problem. We also found that, in the case of synthetic #2, increasing the number of resistivity measurements and the number of selected basis vectors allowed for significant improvements in the reconstructed images.

  9. The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow-Theory. Revision.

    DTIC Science & Technology

    1985-06-10

    The method of Levi Civita is applied to an isolated fully cavitating body at zero cavitation number and adapted to the solution of the inverse...Eigensolutions in Nonlinear Inverse Cavity-Flow Theory [Revised] Abstract: The method of Levi Civita is applied to an isolated fully cavitating body at...problem is not thought * to present much of a challenge at zero cavitation number. In this case, - the classical method of Levi Civita [7] can be

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosla, D.; Singh, M.

    The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less

  11. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  12. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  13. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  14. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  15. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  16. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  17. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  18. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment.more » We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.« less

  19. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  20. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Exact solution for the optimal neuronal layout problem.

    PubMed

    Chklovskii, Dmitri B

    2004-10-01

    Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.

  2. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  3. Solution of the Inverse Problem for Thin Film Patterning by Electrohydrodynamic Forces

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    2017-11-01

    Micro- and nanopatterning techniques for applications ranging from optoelectronics to biofluidics have multiplied in number over the past decade to include adaptations of mature technologies as well as novel lithographic techniques based on periodic spatial modulation of surface stresses. We focus here on one such technique which relies on shape changes in nanofilms responding to a patterned counter-electrode. The interaction of a patterned electric field with the polarization charges at the liquid interface causes a patterned electrostatic pressure counterbalanced by capillary pressure which leads to 3D protrusions whose shape and evolution can be terminated as needed. All studies to date, however, have investigated the evolution of the liquid film in response to a preset counter-electrode pattern. In this talk, we present solution of the inverse problem for the thin film equation governing the electrohydrodynamic response by treating the system as a transient control problem. Optimality conditions are derived and an efficient corresponding solution algorithm is presented. We demonstrate such implementation of film control to achieve periodic, free surface shapes ranging from simple circular cap arrays to more complex square and sawtooth patterns.

  4. The conformal transformation of an airfoil into a straight line and its application to the inverse problem of airfoil theory

    NASA Technical Reports Server (NTRS)

    Mutterperl, William

    1944-01-01

    A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)

  5. Destructive materials thermal characteristics determination with application for spacecraft structures testing

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Budnik, S. A.; Nenarokomov, A. V.; Netelev, A. V.; Titov, D. M.

    2013-04-01

    In many practical situations it is impossible to measure directly thermal and thermokinetic properties of analyzed composite materials. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurements is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The general method of iterative regularization is concerned with application to the estimation of materials properties. The objective of this paper is to estimate thermal and thermokinetic properties of advanced materials using the approach based on inverse methods. An experimental-computational system is presented for investigating the thermal and kinetics properties of composite materials by methods of inverse heat transfer problems and which is developed at the Thermal Laboratory of Department Space Systems Engineering, of Moscow Aviation Institute (MAI). The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium.

  6. Solving ill-posed inverse problems using iterative deep neural networks

    NASA Astrophysics Data System (ADS)

    Adler, Jonas; Öktem, Ozan

    2017-12-01

    We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).

  7. Forward and inverse solutions for three-element Risley prism beam scanners.

    PubMed

    Li, Anhu; Liu, Xingsheng; Sun, Wansong

    2017-04-03

    Scan blind zone and control singularity are two adverse issues for the beam scanning performance in double-prism Risley systems. In this paper, a theoretical model which introduces a third prism is developed. The critical condition for a fully eliminated scan blind zone is determined through a geometric derivation, providing several useful formulae for three-Risley-prism system design. Moreover, inverse solutions for a three-prism system are established, based on the damped least-squares iterative refinement by a forward ray tracing method. It is shown that the efficiency of this iterative calculation of the inverse solutions can be greatly enhanced by a numerical differentiation method. In order to overcome the control singularity problem, the motion law of any one prism in a three-prism system needs to be conditioned, resulting in continuous and steady motion profiles for the other two prisms.

  8. Seismic data restoration with a fast L1 norm trust region method

    NASA Astrophysics Data System (ADS)

    Cao, Jingjie; Wang, Yanfei

    2014-08-01

    Seismic data restoration is a major strategy to provide reliable wavefield when field data dissatisfy the Shannon sampling theorem. Recovery by sparsity-promoting inversion often get sparse solutions of seismic data in a transformed domains, however, most methods for sparsity-promoting inversion are line-searching methods which are efficient but are inclined to obtain local solutions. Using trust region method which can provide globally convergent solutions is a good choice to overcome this shortcoming. A trust region method for sparse inversion has been proposed, however, the efficiency should be improved to suitable for large-scale computation. In this paper, a new L1 norm trust region model is proposed for seismic data restoration and a robust gradient projection method for solving the sub-problem is utilized. Numerical results of synthetic and field data demonstrate that the proposed trust region method can get excellent computation speed and is a viable alternative for large-scale computation.

  9. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  10. Model based approach to UXO imaging using the time domain electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavely, E.M.

    1999-04-01

    Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detectormore » modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.« less

  11. Active and Passive Hydrologic Tomographic Surveys:A Revolution in Hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    Yeh, T. J.

    2013-12-01

    Mathematical forward or inverse problems of flow through geological media always have unique solutions if necessary conditions are givens. Unique mathematical solutions to forward or inverse modeling of field problems are however always uncertain (an infinite number of possibilities) due to many reasons. They include non-representativeness of the governing equations, inaccurate necessary conditions, multi-scale heterogeneity, scale discrepancies between observation and model, noise and others. Conditional stochastic approaches, which derives the unbiased solution and quantifies the solution uncertainty, are therefore most appropriate for forward and inverse modeling of hydrological processes. Conditioning using non-redundant data sets reduces uncertainty. In this presentation, we explain non-redundant data sets in cross-hole aquifer tests, and demonstrate that active hydraulic tomographic survey (using man-made excitations) is a cost-effective approach to collect the same type but non-redundant data sets for reducing uncertainty in the inverse modeling. We subsequently show that including flux measurements (a piece of non-redundant data set) collected in the same well setup as in hydraulic tomography improves the estimated hydraulic conductivity field. We finally conclude with examples and propositions regarding how to collect and analyze data intelligently by exploiting natural recurrent events (river stage fluctuations, earthquakes, lightning, etc.) as energy sources for basin-scale passive tomographic surveys. The development of information fusion technologies that integrate traditional point measurements and active/passive hydrogeophysical tomographic surveys, as well as advances in sensor, computing, and information technologies may ultimately advance our capability of characterizing groundwater basins to achieve resolution far beyond the feat of current science and technology.

  12. a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.

    2017-12-01

    We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.

  13. Techniques for Accelerating Iterative Methods for the Solution of Mathematical Problems

    DTIC Science & Technology

    1989-07-01

    m, we can find a solu ion to the problem by using generalized inverses. Hence, ;= Ih.i = GAi = G - where G is of the form (18). A simple choice for V...have understood why I was not available for many of their activities and not home many of the nights. Their love is forever. I have saved the best for...Xk) Extrapolation applied to terms xP through Xk F Operator on x G Iteration function Ik Identity matrix of rank k Solution of the problem or the limit

  14. Ellipsoidal head model for fetal magnetoencephalography: forward and inverse solutions

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David; Nehorai, Arye; Preissl, Hubert

    2005-05-01

    Fetal magnetoencephalography (fMEG) is a non-invasive technique where measurements of the magnetic field outside the maternal abdomen are used to infer the source location and signals of the fetus' neural activity. There are a number of aspects related to fMEG modelling that must be addressed, such as the conductor volume, fetal position and orientation, gestation period, etc. We propose a solution to the forward problem of fMEG based on an ellipsoidal head geometry. This model has the advantage of highlighting special characteristics of the field that are inherent to the anisotropy of the human head, such as the spread and orientation of the field in relationship with the localization and position of the fetal head. Our forward solution is presented in the form of a kernel matrix that facilitates the solution of the inverse problem through decoupling of the dipole localization parameters from the source signals. Then, we use this model and the maximum likelihood technique to solve the inverse problem assuming the availability of measurements from multiple trials. The applicability and performance of our methods are illustrated through numerical examples based on a real 151-channel SQUID fMEG measurement system (SARA). SARA is an MEG system especially designed for fetal assessment and is currently used for heart and brain studies. Finally, since our model requires knowledge of the best-fitting ellipsoid's centre location and semiaxes lengths, we propose a method for estimating these parameters through a least-squares fit on anatomical information obtained from three-dimensional ultrasound images.

  15. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  16. Multicomponent pre-stack seismic waveform inversion in transversely isotropic media using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Padhi, Amit; Mallick, Subhashis

    2014-03-01

    Inversion of band- and offset-limited single component (P wave) seismic data does not provide robust estimates of subsurface elastic parameters and density. Multicomponent seismic data can, in principle, circumvent this limitation but adds to the complexity of the inversion algorithm because it requires simultaneous optimization of multiple objective functions, one for each data component. In seismology, these multiple objectives are typically handled by constructing a single objective given as a weighted sum of the objectives of individual data components and sometimes with additional regularization terms reflecting their interdependence; which is then followed by a single objective optimization. Multi-objective problems, inclusive of the multicomponent seismic inversion are however non-linear. They have non-unique solutions, known as the Pareto-optimal solutions. Therefore, casting such problems as a single objective optimization provides one out of the entire set of the Pareto-optimal solutions, which in turn, may be biased by the choice of the weights. To handle multiple objectives, it is thus appropriate to treat the objective as a vector and simultaneously optimize each of its components so that the entire Pareto-optimal set of solutions could be estimated. This paper proposes such a novel multi-objective methodology using a non-dominated sorting genetic algorithm for waveform inversion of multicomponent seismic data. The applicability of the method is demonstrated using synthetic data generated from multilayer models based on a real well log. We document that the proposed method can reliably extract subsurface elastic parameters and density from multicomponent seismic data both when the subsurface is considered isotropic and transversely isotropic with a vertical symmetry axis. We also compute approximate uncertainty values in the derived parameters. Although we restrict our inversion applications to horizontally stratified models, we outline a practical procedure of extending the method to approximately include local dips for each source-receiver offset pair. Finally, the applicability of the proposed method is not just limited to seismic inversion but it could be used to invert different data types not only requiring multiple objectives but also multiple physics to describe them.

  17. Estimating uncertainties in complex joint inverse problems

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related to the forward and statistical models, I will also address other uncertainties associated with data and uncertainty propagation.

  18. Turbulent Equilibria for Charged Particles in Space

    NASA Astrophysics Data System (ADS)

    Yoon, Peter

    2017-04-01

    The solar wind electron distribution function is apparently composed of several components including non-thermal tail population. The electron distribution that contains energetic tail feature is well fitted with the kappa distribution function. The solar wind protons also possess quasi power-law tail distribution function that is well fitted with an inverse power law model. The present paper discusses the latest theoretical development regarding the dynamical steady-state solution of electrons and Langmuir turbulence that are in turbulent equilibrium. According to such a theory, the Maxwellian and kappa distribution functions for the electrons emerge as the only two possible solution that satisfy the steady-state weak turbulence plasma kinetic equation. For the proton inverse power-law tail problem, a similar turbulent equilibrium solution can be conceived of, but instead of high-frequency Langmuir fluctuation, the theory involves low-frequency kinetic Alfvenic turbulence. The steady-state solution of the self-consistent proton kinetic equation and wave kinetic equation for Alfvenic waves can be found in order to obtain a self-consistent solution for the inverse power law tail distribution function.

  19. A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order

    NASA Astrophysics Data System (ADS)

    Bobodzhanov, A. A.; Safonov, V. F.

    2016-04-01

    We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).

  20. Not Just Hats Anymore: Binomial Inversion and the Problem of Multiple Coincidences

    ERIC Educational Resources Information Center

    Hathout, Leith

    2007-01-01

    The well-known "hats" problem, in which a number of people enter a restaurant and check their hats, and then receive them back at random, is often used to illustrate the concept of derangements, that is, permutations with no fixed points. In this paper, the problem is extended to multiple items of clothing, and a general solution to the problem of…

  1. TOPEX/POSEIDON tides estimated using a global inverse model

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.

    1994-01-01

    Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.

  2. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  3. LS-APC v1.0: a tuning-free method for the linear inverse problem and its application to source-term determination

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas

    2016-11-01

    Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.

  4. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  5. Efficient mapping algorithms for scheduling robot inverse dynamics computation on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chen, C. L.

    1989-01-01

    Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.

  6. Adjoint Sensitivity Analysis of Orbital Mechanics: Application to Computations of Observables' Partials with Respect to Harmonics of the Planetary Gravity Fields

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.; Sunseri, Richard F.

    2005-01-01

    An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.

  7. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some iterative method. A powerful tool for proving convergence rates of Tikhonov type but also other regularization methods in Banach spaces are assumptions of the type of variational inequalities that combine conditions on solution smoothness (i.e., source conditions in the Hilbert space case) and nonlinearity of the forward operator. In Parameter choice in Banach space regularization under variational inequalities, Bernd Hofmann and Peter Mathé provide results with general error measures and especially study the question of regularization parameter choice. Daijun Jiang, Hui Feng, and Jun Zou consider an application of Banach space ideas in the context of an application problem in their paper Convergence rates of Tikhonov regularizations for parameter identifiation in a parabolic-elliptic system, namely the identification of a distributed diffusion coefficient in a coupled elliptic-parabolic system. In particular, they show convergence rates of Lp-H1 (variational) regularization for the application under consideration via the use and verification of certain source and nonlinearity conditions. In computational practice, the Lp norm with p close to one is often used as a substitute for the actually sparsity promoting L1 norm. In Norm sensitivity of sparsity regularization with respect to p, Kamil S Kazimierski, Peter Maass and Robin Strehlow consider the question of how sensitive the Tikhonov regularized solution is with respect to p. They do so by computing the derivative via the implicit function theorem, particularly at the crucial value, p=1. Another iterative regularization method in Banach space is considered by Qinian Jin and Linda Stals in Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Using a variational formulation and under some smoothness and convexity assumption on the preimage space, they extend the convergence analysis of the well-known iterative Tikhonov method for linear problems in Hilbert space to a more general Banach space framework. Systems of linear or nonlinear operators can be efficiently treated by cyclic iterations, thus several variants of gradient and Newton-type Kaczmarz methods have already been studied in the Hilbert space setting. Antonio Leitão and M Marques Alves in their paper On Landweber---Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces carry out an extension to Banach spaces for the fundamental Landweber version. The impact of perturbations in the evaluation of the forward operator and its derivative on the convergence behaviour of regularization methods is a practically and highly relevant issue. It is treated in the paper Convergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators by Shuai Lu and Jens Flemming for variational regularization of nonlinear problems in Banach spaces. In The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting, Thomas Schuster, Andreas Rieder and Frank Schöpfer extend the concept of approximate inverse to the practically and highly relevant situation of finitely many measurements and a general smooth and convex Banach space as preimage space. They devise two approaches for computing the reconstruction kernels required in the method and provide convergence and regularization results. Frank Werner and Thorsten Hohage in Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data prove convergence rates results for variational regularization with general convex regularization term and the Kullback-Leibler distance as data fidelity term by combining a new result on Poisson distributed data with a deterministic rates analysis. Finally, we would like to thank the Inverse Problems team, especially Joanna Evangelides and Chris Wileman, for their extraordinary smooth and productive cooperation, as well as Alfred K Louis for his kind support of our initiative.

  8. Variable-permittivity linear inverse problem for the H(sub z)-polarized case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Chew, W. C.

    1993-01-01

    The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.

  9. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.

  10. Kinematics and design of a class of parallel manipulators

    NASA Astrophysics Data System (ADS)

    Hertz, Roger Barry

    1998-12-01

    This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.

  11. Quantitative imaging technique using the layer-stripping algorithm

    NASA Astrophysics Data System (ADS)

    Beilina, L.

    2017-07-01

    We present the layer-stripping algorithm for the solution of the hyperbolic coefficient inverse problem (CIP). Our numerical examples show quantitative reconstruction of small tumor-like inclusions in two-dimensions.

  12. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  13. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to themore » full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.« less

  14. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  15. Frnakenstein: multiple target inverse RNA folding.

    PubMed

    Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun

    2012-10-09

    RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.

  16. Frnakenstein: multiple target inverse RNA folding

    PubMed Central

    2012-01-01

    Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260

  17. The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian—MCMC method

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng

    2013-02-01

    The estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem. This paper deals with the RFC problem in a Bayesian framework. It uses the unbiased Markov Chain Monte Carlo (MCMC) sampling technique, which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework. In contrast to the global optimization algorithm, the Bayesian—MCMC can obtain not only the approximate solutions, but also the probability distributions of the solutions, that is, uncertainty analyses of solutions. The Bayesian—MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar sea-clutter data. Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter. The inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.

  18. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  19. Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles

    NASA Astrophysics Data System (ADS)

    Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm

    2018-02-01

    This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.

  20. The Distortion of a Body's Visible Shape at Relativistic Speeds

    ERIC Educational Resources Information Center

    Arkadiy, Leonov

    2009-01-01

    The problem of obtaining the apparent equation of motion and shape of a moving body from its arbitrary given equation of motion in special relativity is considered. Also the inverse problem of obtaining the body's equation of motion from a known equation of motion of its image is discussed. Some examples of this problem solution are considered. As…

  1. Singular value decomposition for the truncated Hilbert transform

    NASA Astrophysics Data System (ADS)

    Katsevich, A.

    2010-11-01

    Starting from a breakthrough result by Gelfand and Graev, inversion of the Hilbert transform became a very important tool for image reconstruction in tomography. In particular, their result is useful when the tomographic data are truncated and one deals with an interior problem. As was established recently, the interior problem admits a stable and unique solution when some a priori information about the object being scanned is available. The most common approach to solving the interior problem is based on converting it to the Hilbert transform and performing analytic continuation. Depending on what type of tomographic data are available, one gets different Hilbert inversion problems. In this paper, we consider two such problems and establish singular value decomposition for the operators involved. We also propose algorithms for performing analytic continuation.

  2. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  3. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  4. The inverse problem of estimating the gravitational time dilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, A. V., E-mail: avg@sai.msu.ru; Litvinov, D. A.; Rudenko, V. N.

    2016-11-15

    Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class ofmore » distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f){sup γ}, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.« less

  5. On the Geometrical Optics Approach in the Theory of Freely-Localized Microwave Gas Breakdown

    NASA Astrophysics Data System (ADS)

    Shapiro, Michael; Schaub, Samuel; Hummelt, Jason; Temkin, Richard; Semenov, Vladimir

    2015-11-01

    Large filamentary arrays of high pressure gas microwave breakdown have been experimentally studied at MIT using a 110 GHz, 1.5 MW pulsed gyrotron. The experiments have been modeled by other groups using numerical codes. The plasma density distribution in the filaments can be as well analytically calculated using the geometrical optics approach neglecting plasma diffusion. The field outside the filament is a solution of an inverse electromagnetic problem. The solutions are found for the cylindrical and spherical filaments and for the multi-layered planar filaments with a finite plasma density at the boundaries. We present new results of this theory showing a variety of filaments with complex shapes. The solutions for plasma density distribution are found with a zero plasma density at the boundary of the filament. Therefore, to solve the inverse problem within the geometrical optics approximation, it can be assumed that there is no reflection from the filament. The results of this research are useful for modeling future MIT experiments.

  6. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  7. Probability density of spatially distributed soil moisture inferred from crosshole georadar traveltime measurements

    NASA Astrophysics Data System (ADS)

    Linde, N.; Vrugt, J. A.

    2009-04-01

    Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.

  8. Domain decomposition method for the Baltic Sea based on theory of adjoint equation and inverse problem.

    NASA Astrophysics Data System (ADS)

    Lezina, Natalya; Agoshkov, Valery

    2017-04-01

    Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).

  9. Mathematics of Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  10. Electroencephalography in ellipsoidal geometry with fourth-order harmonics.

    PubMed

    Alcocer-Sosa, M; Gutierrez, D

    2016-08-01

    We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.

  11. Radiative-conductive inverse problem for lumped parameter systems

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2008-11-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  12. Study of multilayer thermal insulation by inverse problems method

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2009-11-01

    The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.

  13. Evaluation of global equal-area mass grid solutions from GRACE

    NASA Astrophysics Data System (ADS)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron

    2015-04-01

    The Gravity Recovery and Climate Experiment (GRACE) range-rate data was inverted into global equal-area mass grid solutions at the Center for Space Research (CSR) using Tikhonov Regularization to stabilize the ill-posed inversion problem. These solutions are intended to be used for applications in Hydrology, Oceanography, Cryosphere etc without any need for post-processing. This paper evaluates these solutions with emphasis on spatial and temporal characteristics of the signal content. These solutions will be validated against multiple models and in-situ data sets.

  14. Estimation on nonlinear damping in second order distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.

  15. Forward and inverse kinematics of double universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  16. Markov chain Monte Carlo techniques and spatial-temporal modelling for medical EIT.

    PubMed

    West, Robert M; Aykroyd, Robert G; Meng, Sha; Williams, Richard A

    2004-02-01

    Many imaging problems such as imaging with electrical impedance tomography (EIT) can be shown to be inverse problems: that is either there is no unique solution or the solution does not depend continuously on the data. As a consequence solution of inverse problems based on measured data alone is unstable, particularly if the mapping between the solution distribution and the measurements is also nonlinear as in EIT. To deliver a practical stable solution, it is necessary to make considerable use of prior information or regularization techniques. The role of a Bayesian approach is therefore of fundamental importance, especially when coupled with Markov chain Monte Carlo (MCMC) sampling to provide information about solution behaviour. Spatial smoothing is a commonly used approach to regularization. In the human thorax EIT example considered here nonlinearity increases the difficulty of imaging, using only boundary data, leading to reconstructions which are often rather too smooth. In particular, in medical imaging the resistivity distribution usually contains substantial jumps at the boundaries of different anatomical regions. With spatial smoothing these boundaries can be masked by blurring. This paper focuses on the medical application of EIT to monitor lung and cardiac function and uses explicit geometric information regarding anatomical structure and incorporates temporal correlation. Some simple properties are assumed known, or at least reliably estimated from separate studies, whereas others are estimated from the voltage measurements. This structural formulation will also allow direct estimation of clinically important quantities, such as ejection fraction and residual capacity, along with assessment of precision.

  17. Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data

    NASA Astrophysics Data System (ADS)

    Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar

    2017-04-01

    A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions.

  18. Optimization method for an evolutional type inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.

  19. Image processing and reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartrand, Rick

    2012-06-15

    This talk will examine some mathematical methods for image processing and the solution of underdetermined, linear inverse problems. The talk will have a tutorial flavor, mostly accessible to undergraduates, while still presenting research results. The primary approach is the use of optimization problems. We will find that relaxing the usual assumption of convexity will give us much better results.

  20. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masahiro

    2003-06-01

    This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.

  1. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  2. Optimal parallel solution of sparse triangular systems

    NASA Technical Reports Server (NTRS)

    Alvarado, Fernando L.; Schreiber, Robert

    1990-01-01

    A method for the parallel solution of triangular sets of equations is described that is appropriate when there are many right-handed sides. By preprocessing, the method can reduce the number of parallel steps required to solve Lx = b compared to parallel forward or backsolve. Applications are to iterative solvers with triangular preconditioners, to structural analysis, or to power systems applications, where there may be many right-handed sides (not all available a priori). The inverse of L is represented as a product of sparse triangular factors. The problem is to find a factored representation of this inverse of L with the smallest number of factors (or partitions), subject to the requirement that no new nonzero elements be created in the formation of these inverse factors. A method from an earlier reference is shown to solve this problem. This method is improved upon by constructing a permutation of the rows and columns of L that preserves triangularity and allow for the best possible such partition. A number of practical examples and algorithmic details are presented. The parallelism attainable is illustrated by means of elimination trees and clique trees.

  3. Analysis of the Hessian for Inverse Scattering Problems. Part 3. Inverse Medium Scattering of Electromagnetic Waves in Three Dimensions

    DTIC Science & Technology

    2012-08-01

    small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately...implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This...probability distribution is given by the inverse of the Hessian of the negative log likelihood function. For Gaussian data noise and model error, this

  4. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  5. On increasing stability in the two dimensional inverse source scattering problem with many frequencies

    NASA Astrophysics Data System (ADS)

    Entekhabi, Mozhgan Nora; Isakov, Victor

    2018-05-01

    In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.

  6. S-Genius, a universal software platform with versatile inverse problem resolution for scatterometry

    NASA Astrophysics Data System (ADS)

    Fuard, David; Troscompt, Nicolas; El Kalyoubi, Ismael; Soulan, Sébastien; Besacier, Maxime

    2013-05-01

    S-Genius is a new universal scatterometry platform, which gathers all the LTM-CNRS know-how regarding the rigorous electromagnetic computation and several inverse problem solver solutions. This software platform is built to be a userfriendly, light, swift, accurate, user-oriented scatterometry tool, compatible with any ellipsometric measurements to fit and any types of pattern. It aims to combine a set of inverse problem solver capabilities — via adapted Levenberg- Marquard optimization, Kriging, Neural Network solutions — that greatly improve the reliability and the velocity of the solution determination. Furthermore, as the model solution is mainly vulnerable to materials optical properties, S-Genius may be coupled with an innovative material refractive indices determination. This paper will a little bit more focuses on the modified Levenberg-Marquardt optimization, one of the indirect method solver built up in parallel with the total SGenius software coding by yours truly. This modified Levenberg-Marquardt optimization corresponds to a Newton algorithm with an adapted damping parameter regarding the definition domains of the optimized parameters. Currently, S-Genius is technically ready for scientific collaboration, python-powered, multi-platform (windows/linux/macOS), multi-core, ready for 2D- (infinite features along the direction perpendicular to the incident plane), conical, and 3D-features computation, compatible with all kinds of input data from any possible ellipsometers (angle or wavelength resolved) or reflectometers, and widely used in our laboratory for resist trimming studies, etching features characterization (such as complex stack) or nano-imprint lithography measurements for instance. The work about kriging solver, neural network solver and material refractive indices determination is done (or about to) by other LTM members and about to be integrated on S-Genius platform.

  7. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  8. Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.

    PubMed

    Han, Lei; Zhang, Yu; Zhang, Tong

    2016-08-01

    The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.

  9. The 2-D magnetotelluric inverse problem solved with optimization

    NASA Astrophysics Data System (ADS)

    van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven

    2011-02-01

    The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.

  10. Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval

    NASA Astrophysics Data System (ADS)

    Bondarenko, Natalia

    2017-03-01

    The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.

  11. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet

  12. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  13. Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui

    2017-09-01

    We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.

  14. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.

  15. Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.

    PubMed

    Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens

    2005-05-01

    Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.

  16. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  17. Variational methods for direct/inverse problems of atmospheric dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena

    2013-04-01

    We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the monotone and stable discrete-analytical numerical schemes [1]-[3] conserving the positivity of the chemical substance concentrations and possessing the properties of energy and mass balance that are postulated in the general variational principle for integrated models. All algorithms for solution of transport, diffusion and transformation problems are direct (without iterations). The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004. References Penenko V., Tsvetova E. Discrete-analytical methods for the implementation of variational principles in environmental applications// Journal of computational and applied mathematics, 2009, v. 226, 319-330. Penenko A.V. Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods// Numerical Analysis and Applications, 2012, V. 5, pp 326-341. V. Penenko, E. Tsvetova. Variational methods for constructing the monotone approximations for atmospheric chemistry models //Numerical Analysis and Applications, 2013 (in press).

  18. Eigenproblem solution by a combined Sturm sequence and inverse iteration technique.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    Description of an efficient and numerically stable algorithm, along with a complete listing of the associated computer program, developed for the accurate computation of specified roots and associated vectors of the eigenvalue problem Aq = lambda Bq with band symmetric A and B, B being also positive-definite. The desired roots are first isolated by the Sturm sequence procedure; then a special variant of the inverse iteration technique is applied for the individual determination of each root along with its vector. The algorithm fully exploits the banded form of relevant matrices, and the associated program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be most significantly economical in comparison to similar existing procedures. The program may be conveniently utilized for the efficient solution of practical engineering problems, involving free vibration and buckling analysis of structures. Results of such analyses are presented for representative structures.

  19. Early breast tumor and late SARS detections using space-variant multispectral infrared imaging at a single pixel

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Buss, James R.; Kopriva, Ivica

    2004-04-01

    We proposed the physics approach to solve a physical inverse problem, namely to choose the unique equilibrium solution (at the minimum free energy: H= E - ToS, including the Wiener, l.m.s E, and ICA, Max S, as special cases). The "unsupervised classification" presumes that required information must be learned and derived directly and solely from the data alone, in consistence with the classical Duda-Hart ATR definition of the "unlabelled data". Such truly unsupervised methodology is presented for space-variant imaging processing for a single pixel in the real world case of remote sensing, early tumor detections and SARS. The indeterminacy of the multiple solutions of the inverse problem is regulated or selected by means of the absolute minimum of isothermal free energy as the ground truth of local equilibrium condition at the single-pixel foot print.

  20. Solution of underdetermined systems of equations with gridded a priori constraints.

    PubMed

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  1. SISYPHUS: A high performance seismic inversion factory

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).

  2. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  3. On the Use of Nonlinear Regularization in Inverse Methods for the Solar Tachocline Profile Determination

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.

    Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.

  4. On the use of the Reciprocity Gap Functional in inverse scattering with near-field data: An application to mammography

    NASA Astrophysics Data System (ADS)

    Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele

    2008-11-01

    Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Simonetto, Andrea

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are establishedmore » to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.« less

  6. The inverse problems of wing panel manufacture processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  7. Mathematical Problems in Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  8. The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix

    NASA Astrophysics Data System (ADS)

    Antipov, Yuri A.

    2014-10-01

    A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.

  9. Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps

    NASA Astrophysics Data System (ADS)

    Carrillo Lopez, J.; Gallardo, L. A.

    2016-12-01

    Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.

  10. The Priority Inversion Problem and Real-Time Symbolic Model Checking

    DTIC Science & Technology

    1993-04-23

    real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties

  11. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is influenced by the strength of measurement errors and it is not significantly diminished or increased by adding noisy reciprocal information.

  12. Recursive recovery of Markov transition probabilities from boundary value data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, Sarah Kathyrn

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less

  13. Flowing partially penetrating well: solution to a mixed-type boundary value problem

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Kabala, Z. J.; Medina, M. A.

    A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.

  14. Application of the Discrete Regularization Method to the Inverse of the Chord Vibration Equation

    NASA Astrophysics Data System (ADS)

    Wang, Linjun; Han, Xu; Wei, Zhouchao

    The inverse problem of the initial condition about the boundary value of the chord vibration equation is ill-posed. First, we transform it into a Fredholm integral equation. Second, we discretize it by the trapezoidal formula method, and then obtain a severely ill-conditioned linear equation, which is sensitive to the disturbance of the data. In addition, the tiny error of right data causes the huge concussion of the solution. We cannot obtain good results by the traditional method. In this paper, we solve this problem by the Tikhonov regularization method, and the numerical simulations demonstrate that this method is feasible and effective.

  15. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.

  16. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    PubMed Central

    Rahim, Ruzairi Abdul; Chen, Leong Lai; San, Chan Kok; Rahiman, Mohd Hafiz Fazalul; Fea, Pang Jon

    2009-01-01

    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image. PMID:22291523

  17. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  18. Inverse dynamics of underactuated mechanical systems: A simple case study and experimental verification

    NASA Astrophysics Data System (ADS)

    Blajer, W.; Dziewiecki, K.; Kołodziejczyk, K.; Mazur, Z.

    2011-05-01

    Underactuated systems are featured by fewer control inputs than the degrees-of-freedom, m < n. The determination of an input control strategy that forces such a system to complete a set of m specified motion tasks is a challenging task, and the explicit solution existence is conditioned to differential flatness of the problem. The flatness-based solution denotes that all the 2 n states and m control inputs can be algebraically expressed in terms of the m specified outputs and their time derivatives up to a certain order, which is in practice attainable only for simple systems. In this contribution the problem is posed in a more practical way as a set of index-three differential-algebraic equations, and the solution is obtained numerically. The formulation is then illustrated by a two-degree-of-freedom underactuated system composed of two rotating discs connected by a torsional spring, in which the pre-specified motion of one of the discs is actuated by the torque applied to the other disc, n = 2 and m = 1. Experimental verification of the inverse simulation control methodology is reported.

  19. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    NASA Astrophysics Data System (ADS)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306

  20. A microwave tomography strategy for structural monitoring

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Crocco, L.; Isernia, T.

    2009-04-01

    The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a cost functional. In particular, a local minimization scheme is exploited and a pre-processing step, devoted to preliminary asses the location and the shape of the anomalies, is exploited. The effectiveness of the proposed strategy has been preliminary assessed by means of numerical examples concerning the diagnostic of masonry structures, which will be shown in the Conference. [1] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, Subsurface inverse scattering problems: Quantifying, qualifying and achieving the available information, IEEE Trans. Geosci. Remote Sens., 39(5), 2527-2538, 2001. [2] R. Persico, R. Bernini, and F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the distorted Born approximation," IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 1875-1887, Jun. 2005. [3] I. Catapano, L. Crocco, M. D'Urso, T. Isernia, "On the Effect of Support Estimation and of a New Model in 2-D Inverse Scattering Problems," IEEE Trans. Antennas Propagat., vol.55, no.6, pp.1895-1899, 2007. [4] M. D'Urso, I. Catapano, L. Crocco and T. Isernia, Effective solution of 3D scattering problems via series expansions: applicability and a new hybrid scheme, IEEE Trans. On Geosci. Remote Sens., vol.45, no.3, pp. 639-648, 2007.

  1. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  2. Systematic evaluation of sequential geostatistical resampling within MCMC for posterior sampling of near-surface geophysical inverse problems

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Irving, James; Holliger, Klaus

    2015-08-01

    We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.

  3. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  4. Source localization in electromyography using the inverse potential problem

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  5. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

    PubMed

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-04-07

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions that have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called minimum norm estimates (MNE), promote source estimates with a small ℓ₂ norm. Here, we consider a more general class of priors based on mixed norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as mixed-norm estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ₁/ℓ₂ mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ₁/ℓ₂ norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furthermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data.

  6. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

    PubMed Central

    Gramfort, Alexandre; Kowalski, Matthieu; Hämäläinen, Matti

    2012-01-01

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell’s equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in time, the brain regions than have produced the recorded data. However, due to the physics of the problem, the limited number of sensors compared to the number of possible source locations, and measurement noise, this inverse problem is ill-posed. Consequently, additional constraints are needed. Classical inverse solvers, often called Minimum Norm Estimates (MNE), promote source estimates with a small ℓ2 norm. Here, we consider a more general class of priors based on mixed-norms. Such norms have the ability to structure the prior in order to incorporate some additional assumptions about the sources. We refer to such solvers as Mixed-Norm Estimates (MxNE). In the context of M/EEG, MxNE can promote spatially focal sources with smooth temporal estimates with a two-level ℓ1/ℓ2 mixed-norm, while a three-level mixed-norm can be used to promote spatially non-overlapping sources between different experimental conditions. In order to efficiently solve the optimization problems of MxNE, we introduce fast first-order iterative schemes that for the ℓ1/ℓ2 norm give solutions in a few seconds making such a prior as convenient as the simple MNE. Furhermore, thanks to the convexity of the optimization problem, we can provide optimality conditions that guarantee global convergence. The utility of the methods is demonstrated both with simulations and experimental MEG data. PMID:22421459

  7. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  8. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  9. Using informative priors in facies inversion: The case of C-ISR method

    NASA Astrophysics Data System (ADS)

    Valakas, G.; Modis, K.

    2016-08-01

    Inverse problems involving the characterization of hydraulic properties of groundwater flow systems by conditioning on observations of the state variables are mathematically ill-posed because they have multiple solutions and are sensitive to small changes in the data. In the framework of McMC methods for nonlinear optimization and under an iterative spatial resampling transition kernel, we present an algorithm for narrowing the prior and thus producing improved proposal realizations. To achieve this goal, we cosimulate the facies distribution conditionally to facies observations and normal scores transformed hydrologic response measurements, assuming a linear coregionalization model. The approach works by creating an importance sampling effect that steers the process to selected areas of the prior. The effectiveness of our approach is demonstrated by an example application on a synthetic underdetermined inverse problem in aquifer characterization.

  10. GRACE RL03-v2 monthly time series of solutions from CNES/GRGS

    NASA Astrophysics Data System (ADS)

    Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard

    2015-04-01

    Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.

  11. GALA: group analysis leads to accuracy, a novel approach for solving the inverse problem in exploratory analysis of group MEG recordings

    PubMed Central

    Kozunov, Vladimir V.; Ossadtchi, Alexei

    2015-01-01

    Although MEG/EEG signals are highly variable between subjects, they allow characterizing systematic changes of cortical activity in both space and time. Traditionally a two-step procedure is used. The first step is a transition from sensor to source space by the means of solving an ill-posed inverse problem for each subject individually. The second is mapping of cortical regions consistently active across subjects. In practice the first step often leads to a set of active cortical regions whose location and timecourses display a great amount of interindividual variability hindering the subsequent group analysis. We propose Group Analysis Leads to Accuracy (GALA)—a solution that combines the two steps into one. GALA takes advantage of individual variations of cortical geometry and sensor locations. It exploits the ensuing variability in electromagnetic forward model as a source of additional information. We assume that for different subjects functionally identical cortical regions are located in close proximity and partially overlap and their timecourses are correlated. This relaxed similarity constraint on the inverse solution can be expressed within a probabilistic framework, allowing for an iterative algorithm solving the inverse problem jointly for all subjects. A systematic simulation study showed that GALA, as compared with the standard min-norm approach, improves accuracy of true activity recovery, when accuracy is assessed both in terms of spatial proximity of the estimated and true activations and correct specification of spatial extent of the activated regions. This improvement obtained without using any noise normalization techniques for both solutions, preserved for a wide range of between-subject variations in both spatial and temporal features of regional activation. The corresponding activation timecourses exhibit significantly higher similarity across subjects. Similar results were obtained for a real MEG dataset of face-specific evoked responses. PMID:25954141

  12. Alternative formulations of the Laplace transform boundary element (LTBE) numerical method for the solution of diffusion-type equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.

    1992-03-01

    The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.

  13. Hessian Schatten-norm regularization for linear inverse problems.

    PubMed

    Lefkimmiatis, Stamatios; Ward, John Paul; Unser, Michael

    2013-05-01

    We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto lq norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.

  14. Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data

    PubMed Central

    Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar

    2017-01-01

    A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions. PMID:28402332

  15. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  16. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  17. Parameterizations for ensemble Kalman inversion

    NASA Astrophysics Data System (ADS)

    Chada, Neil K.; Iglesias, Marco A.; Roininen, Lassi; Stuart, Andrew M.

    2018-05-01

    The use of ensemble methods to solve inverse problems is attractive because it is a derivative-free methodology which is also well-adapted to parallelization. In its basic iterative form the method produces an ensemble of solutions which lie in the linear span of the initial ensemble. Choice of the parameterization of the unknown field is thus a key component of the success of the method. We demonstrate how both geometric ideas and hierarchical ideas can be used to design effective parameterizations for a number of applied inverse problems arising in electrical impedance tomography, groundwater flow and source inversion. In particular we show how geometric ideas, including the level set method, can be used to reconstruct piecewise continuous fields, and we show how hierarchical methods can be used to learn key parameters in continuous fields, such as length-scales, resulting in improved reconstructions. Geometric and hierarchical ideas are combined in the level set method to find piecewise constant reconstructions with interfaces of unknown topology.

  18. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.

  19. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  20. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  1. Extended resolvent and inverse scattering with an application to KPI

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.

    2003-08-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.

  2. Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; Simutė, S.

    2017-12-01

    We present a probabilistic seismic source inversion method that properly accounts for 3D heterogeneous Earth structure and provides full uncertainty information on the timing, location and mechanism of the event. Our method rests on two essential elements: (1) reciprocity and spectral-element simulations in complex media, and (2) Hamiltonian Monte Carlo sampling that requires only a small amount of test models. Using spectral-element simulations of 3D, visco-elastic, anisotropic wave propagation, we precompute a data base of the strain tensor in time and space by placing sources at the positions of receivers. Exploiting reciprocity, this receiver-side strain data base can be used to promptly compute synthetic seismograms at the receiver locations for any hypothetical source within the volume of interest. The rapid solution of the forward problem enables a Bayesian solution of the inverse problem. For this, we developed a variant of Hamiltonian Monte Carlo (HMC) sampling. Taking advantage of easily computable derivatives, HMC converges to the posterior probability density with orders of magnitude less samples than derivative-free Monte Carlo methods. (Exact numbers depend on observational errors and the quality of the prior). We apply our method to the Japanese Islands region where we previously constrained 3D structure of the crust and upper mantle using full-waveform inversion with a minimum period of around 15 s.

  3. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  4. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  5. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.; Ji, C.; Larson, K.M.

    2007-01-01

    The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.

  6. On the perturbation and subproper splittings for the generalized inverse AT,S(2) of rectangular matrix A

    NASA Astrophysics Data System (ADS)

    Wei, Yimin; Wu, Hebing

    2001-12-01

    In this paper, the perturbation and subproper splittings for the generalized inverse AT,S(2), the unique matrix X such that XAX=X, R(X)=T and N(X)=S, are considered. We present lower and upper bounds for the perturbation of AT,S(2). Convergence of subproper splittings for computing the special solution AT,S(2)b of restricted rectangular linear system Ax=b, x[set membership, variant]T, are studied. For the solution AT,S(2)b we develop a characterization. Therefore, we give a unified treatment of the related problems considered in literature by Ben-Israel, Berman, Hanke, Neumann, Plemmons, etc.

  7. Solving the Integral of Quadratic Forms of Covariance Matrices for Applications in Polarimetric Radar Imagery

    NASA Astrophysics Data System (ADS)

    Marino, Armando; Hajnsek, Irena

    2015-04-01

    In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.

  8. Successive Over-Relaxation Technique for High-Performance Blind Image Deconvolution

    DTIC Science & Technology

    2015-06-08

    deconvolution, space surveillance, Gauss - Seidel iteration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 5...sensible approximate solutions to the ill-posed nonlinear inverse problem. These solutions are addresses as fixed points of the iteration which consists in...alternating approximations (AA) for the object and for the PSF performed with a prescribed number of inner iterative descents from trivial (zero

  9. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these machine learning models and the advantages and disadvantages for each approach are discussed. These results indicate that using the proposed two-step methodology leads to significant reduction in user-fatigue without deteriorating the solution quality of the IMOGA.

  10. The uniqueness of the solution of cone-like inversion models for halo CMEs

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  11. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  12. 3D first-arrival traveltime tomography with modified total variation regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbin; Zhang, Jie

    2018-02-01

    Three-dimensional (3D) seismic surveys have become a major tool in the exploration and exploitation of hydrocarbons. 3D seismic first-arrival traveltime tomography is a robust method for near-surface velocity estimation. A common approach for stabilizing the ill-posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a 3D first-arrival traveltime tomography method with modified total variation (MTV) regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total variation problem. We apply the conjugate gradient method and split-Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization. We apply the technique to field data. The stacking section shows significant improvements with static corrections from the MTV traveltime tomography.

  13. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  14. Eigenvectors phase correction in inverse modal problem

    NASA Astrophysics Data System (ADS)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  15. Anthropic versus cosmological solutions to the coincidence problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, A.; Avelino, P. P.; Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto

    2011-05-15

    In this paper, we investigate possible solutions to the coincidence problem in flat phantom dark-energy models with a constant dark-energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the {Lambda} cold dark matter model. This relates a cosmological solution to the coincidence problem with a dynamical dark-energymore » component having an equation-of-state parameter not too close to -1 at the present time. We further show that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.« less

  16. A study of selected radiation and propagation problems related to antennas and probes in magneto-ionic media

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research consisted of computations toward the solution of the problem of the current distribution on a cylindrical antenna in a magnetoplasma. The case of an antenna parallel to the applied magnetic field was investigated. A systematic method of asymptotic expansion was found which simplifies the solution in the general case by giving the field of a dipole even at relatively short range. Some useful properties of the dispersion surfaces in a lossy medium have also been found. A laboratory experiment was directed toward evaluating nonlinear effects, such as those due to power level, bias voltage and electron heating. The problem of reflection and transmission of waves in an electron heated plasma was treated theoretically. The profile inversion problem has been pursued. Some results are very encouraging, however, the general question of stability of the solution remains unsolved.

  17. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  18. Bayesian Inversion of 2D Models from Airborne Transient EM Data

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Key, K.; Ray, A.

    2016-12-01

    The inherent non-uniqueness in most geophysical inverse problems leads to an infinite number of Earth models that fit observed data to within an adequate tolerance. To resolve this ambiguity, traditional inversion methods based on optimization techniques such as the Gauss-Newton and conjugate gradient methods rely on an additional regularization constraint on the properties that an acceptable model can possess, such as having minimal roughness. While allowing such an inversion scheme to converge on a solution, regularization makes it difficult to estimate the uncertainty associated with the model parameters. This is because regularization biases the inversion process toward certain models that satisfy the regularization constraint and away from others that don't, even when both may suitably fit the data. By contrast, a Bayesian inversion framework aims to produce not a single `most acceptable' model but an estimate of the posterior likelihood of the model parameters, given the observed data. In this work, we develop a 2D Bayesian framework for the inversion of transient electromagnetic (TEM) data. Our method relies on a reversible-jump Markov Chain Monte Carlo (RJ-MCMC) Bayesian inverse method with parallel tempering. Previous gradient-based inversion work in this area used a spatially constrained scheme wherein individual (1D) soundings were inverted together and non-uniqueness was tackled by using lateral and vertical smoothness constraints. By contrast, our work uses a 2D model space of Voronoi cells whose parameterization (including number of cells) is fully data-driven. To make the problem work practically, we approximate the forward solution for each TEM sounding using a local 1D approximation where the model is obtained from the 2D model by retrieving a vertical profile through the Voronoi cells. The implicit parsimony of the Bayesian inversion process leads to the simplest models that adequately explain the data, obviating the need for explicit smoothness constraints. In addition, credible intervals in model space are directly obtained, resolving some of the uncertainty introduced by regularization. An example application shows how the method can be used to quantify the uncertainty in airborne EM soundings for imaging subglacial brine channels and groundwater systems.

  19. Children's strategies to solving additive inverse problems: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Ding, Meixia; Auxter, Abbey E.

    2017-03-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  20. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  1. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning.

    PubMed

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-03-21

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  2. Extended fault inversion with random slipmaps: a resolution test for the 2012 Mw 7.6 Nicoya, Costa Rica earthquake

    NASA Astrophysics Data System (ADS)

    López-Comino, José Ángel; Stich, Daniel; Ferreira, Ana M. G.; Morales, Jose

    2015-09-01

    Inversions for the full slip distribution of earthquakes provide detailed models of earthquake sources, but stability and non-uniqueness of the inversions is a major concern. The problem is underdetermined in any realistic setting, and significantly different slip distributions may translate to fairly similar seismograms. In such circumstances, inverting for a single best model may become overly dependent on the details of the procedure. Instead, we propose to perform extended fault inversion trough falsification. We generate a representative set of heterogeneous slipmaps, compute their forward predictions, and falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity such as, for example, different patterns of main slip patches. For a feasibility study, we use teleseismic body wave recordings from the 2012 September 5 Nicoya, Costa Rica earthquake, although the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. We generate 10 000 pseudo-random, heterogeneous slip distributions assuming a von Karman autocorrelation function, keeping the rake angle, rupture velocity and slip velocity function fixed. The slip distribution of the 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. Two hundred fifty-two slip models with normalized L1-fit within 5 per cent from the global minimum from our solution set. They consistently show a single dominant slip patch around the hypocentre. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2-3.5 m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns such as Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data.

  3. A fast marching algorithm for the factored eikonal equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less

  4. Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements

    NASA Astrophysics Data System (ADS)

    Parker, Robert L.; Booker, John R.

    1996-12-01

    The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.

  5. The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow-Theory.

    DTIC Science & Technology

    1983-01-25

    ere, side if necessary and id.ntify hv hlock number) " The method of Levi Civita is applied to an isolated fully cavitating body at zero cavitation... Levi Civita is applied to an isolated fully cavitating body at zero cavitation number and adapted to the solution of the inverse problem in which one...case, the classical method of Levi Civita [71 can be applied to an isolated •Numbers in square brackets indicate citations in the references listed below

  6. SaaS Platform for Time Series Data Handling

    NASA Astrophysics Data System (ADS)

    Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail

    2018-02-01

    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.

  7. New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients

    NASA Astrophysics Data System (ADS)

    Jaradat, H. M.; Syam, Muhammed; Jaradat, M. M. M.; Mustafa, Zead; Moman, S.

    2018-03-01

    In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem, rational exponential function method, tanh method, homotopy perturbation method, exp-function method, and coth method, are made. From these comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth mention that the proposed solution can solve many physical problems.

  8. Recursive partitioned inversion of large (1500 x 1500) symmetric matrices

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Brownd, J. E.; Gomez, R. A.

    1976-01-01

    A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.

  9. Inverse transport calculations in optical imaging with subspace optimization algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less

  10. Method of Harmonic Balance in Full-Scale-Model Tests of Electrical Devices

    NASA Astrophysics Data System (ADS)

    Gorbatenko, N. I.; Lankin, A. M.; Lankin, M. V.

    2017-01-01

    Methods for determining the weber-ampere characteristics of electrical devices, one of which is based on solution of direct problem of harmonic balance and the other on solution of inverse problem of harmonic balance by the method of full-scale-model tests, are suggested. The mathematical model of the device is constructed using the describing function and simplex optimization methods. The presented results of experimental applications of the method show its efficiency. The advantage of the method is the possibility of application for nondestructive inspection of electrical devices in the processes of their production and operation.

  11. Identifying the principal coefficient of parabolic equations with non-divergent form

    NASA Astrophysics Data System (ADS)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  12. An inverse model for a free-boundary problem with a contact line: Steady case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Oleg; Protas, Bartosz

    2009-07-20

    This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less

  13. Modulated elliptic wave and asymptotic solitons in a shock problem to the modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Kotlyarov, Vladimir; Minakov, Alexander

    2015-07-01

    We study the long-time asymptotic behavior of the Cauchy problem for the modified Korteweg—de Vries equation with an initial function of the step type. This function rapidly tends to zero as x\\to +∞ and to some positive constant c as x\\to -∞ . In 1989 Khruslov and Kotlyarov have found (Khruslov and Kotlyarov 1989 Inverse Problems 5 1075-88) that for a large time the solution breaks up into a train of asymptotic solitons located in the domain 4{c}2t-{C}N{ln}t\\lt x≤slant 4{c}2t ({C}N is a constant). The number N of these solitons grows unboundedly as t\\to ∞ . In 2010 Kotlyarov and Minakov have studied temporary asymptotics of the solution of the Cauchy problem on the whole line (Kotlyarov and Minakov 2010 J. Math. Phys. 51 093506) and have found that in the domain -6{c}2t\\lt x\\lt 4{c}2t this solution is described by a modulated elliptic wave. We consider here the modulated elliptic wave in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. Our main result shows that the modulated elliptic wave also breaks up into solitons, which are similar to the asymptotic solitons in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88), but differ from them in phase. It means that the modulated elliptic wave does not represent the asymptotics of the solution in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. The correct asymptotic behavior of the solution is given by the train of asymptotic solitons given in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88). However, in the asymptotic regime as t\\to ∞ in the region 4{c}2t-\\displaystyle \\frac{N+1/4}{c}{ln}t\\lt x\\lt 4{c}2t-\\displaystyle \\frac{N-3/4}{c}{ln}t we can watch precisely a pair of solitons with numbers N. One of them is the asymptotic soliton while the other soliton is generated from the elliptic wave. Their phases become closer to each other for a large N, i.e. these solitons are also close to each other. This result gives the answer on a very important question about matching of the asymptotic formulas in the mentioned region where the both formulas are well-defined. Thus we have here a new and previously unknown mechanism (5.35) of matching of the asymptotics of the solution in the adjacent regions.

  14. An investigation on a two-dimensional problem of Mode-I crack in a thermoelastic medium

    NASA Astrophysics Data System (ADS)

    Kant, Shashi; Gupta, Manushi; Shivay, Om Namha; Mukhopadhyay, Santwana

    2018-04-01

    In this work, we consider a two-dimensional dynamical problem of an infinite space with finite linear Mode-I crack and employ a recently proposed heat conduction model: an exact heat conduction with a single delay term. The thermoelastic medium is taken to be homogeneous and isotropic. However, the boundary of the crack is subjected to a prescribed temperature and stress distributions. The Fourier and Laplace transform techniques are used to solve the problem. Mathematical modeling of the present problem reduces the solution of the problem into the solution of a system of four dual integral equations. The solution of these equations is equivalent to the solution of the Fredholm's integral equation of the first kind which has been solved by using the regularization method. Inverse Laplace transform is carried out by using the Bellman method, and we obtain the numerical solution for all the physical field variables in the physical domain. Results are shown graphically, and we highlight the effects of the presence of crack in the behavior of thermoelastic interactions inside the medium in the present context, and its results are compared with the results of the thermoelasticity of type-III.

  15. Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe

    2014-10-01

    Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.

  16. Minimum relative entropy, Bayes and Kapur

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean are constrained not by d=Gm but by its first moment E(d=Gm), a weakened form of the constraints. If there is no error in the data then one should expect a complete agreement between Bayes and MRE and this is what is shown. Similar results are shown when second moment data is available (e.g. posterior covariance equal to zero). But dissimilar results are noted when we attempt to derive a Bayesian like result from MRE. In the various examples given in this paper, the problems look similar but are, in the final analysis, not equal. The methods of attack are different and so are the results even though we have used the linear inverse problem as a common template.

  17. A theoretical formulation of the electrophysiological inverse problem on the sphere

    NASA Astrophysics Data System (ADS)

    Riera, Jorge J.; Valdés, Pedro A.; Tanabe, Kunio; Kawashima, Ryuta

    2006-04-01

    The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.

  18. Methodes entropiques appliquees au probleme inverse en magnetoencephalographie

    NASA Astrophysics Data System (ADS)

    Lapalme, Ervig

    2005-07-01

    This thesis is devoted to biomagnetic source localization using magnetoencephalography. This problem is known to have an infinite number of solutions. So methods are required to take into account anatomical and functional information on the solution. The work presented in this thesis uses the maximum entropy on the mean method to constrain the solution. This method originates from statistical mechanics and information theory. This thesis is divided into two main parts containing three chapters each. The first part reviews the magnetoencephalographic inverse problem: the theory needed to understand its context and the hypotheses for simplifying the problem. In the last chapter of this first part, the maximum entropy on the mean method is presented: its origins are explained and also how it is applied to our problem. The second part is the original work of this thesis presenting three articles; one of them already published and two others submitted for publication. In the first article, a biomagnetic source model is developed and applied in a theoretical con text but still demonstrating the efficiency of the method. In the second article, we go one step further towards a realistic modelization of the cerebral activation. The main priors are estimated using the magnetoencephalographic data. This method proved to be very efficient in realistic simulations. In the third article, the previous method is extended to deal with time signals thus exploiting the excellent time resolution offered by magnetoencephalography. Compared with our previous work, the temporal method is applied to real magnetoencephalographic data coming from a somatotopy experience and results agree with previous physiological knowledge about this kind of cognitive process.

  19. Inverse eigenproblem for R-symmetric matrices and their approximation

    NASA Astrophysics Data System (ADS)

    Yuan, Yongxin

    2009-11-01

    Let be a nontrivial involution, i.e., R=R-1[not equal to]±In. We say that is R-symmetric if RGR=G. The set of all -symmetric matrices is denoted by . In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors in and a set of complex numbers , find a matrix such that and are, respectively, the eigenvalues and eigenvectors of A. We then consider the following approximation problem: Given an n×n matrix , find such that , where is the solution set of IEP and ||[dot operator]|| is the Frobenius norm. We provide an explicit formula for the best approximation solution by means of the canonical correlation decomposition.

  20. New procedure for the determination of Hansen solubility parameters by means of inverse gas chromatography.

    PubMed

    Adamska, K; Bellinghausen, R; Voelkel, A

    2008-06-27

    The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.

  1. Numerical reconstruction of unknown Robin inclusions inside a heat conductor by a non-iterative method

    NASA Astrophysics Data System (ADS)

    Nakamura, Gen; Wang, Haibing

    2017-05-01

    Consider the problem of reconstructing unknown Robin inclusions inside a heat conductor from boundary measurements. This problem arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the Robin inclusion and gave its rigorous mathematical justification. This method is non-iterative and based on the characterization of the solution to the so-called Neumann- to-Dirichlet map gap equation. In this paper, we give a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function associated with an initial-boundary value problem for the heat equation inside the Robin inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map and explains what is the input for the linear sampling method. Assuming that the Neumann-to-Dirichlet map gap equation has a unique solution, we also show the convergence of our method for noisy measurements. Second, we give the numerical implementation of the reconstruction method for two-dimensional spatial domains. The measurements for our inverse problem are simulated by solving the forward problem via the boundary integral equation method. Numerical results are presented to illustrate the efficiency and stability of the proposed method. By using a finite sequence of transient input over a time interval, we propose a new sampling method over the time interval by single measurement which is most likely to be practical.

  2. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  3. Reconstructing Images in Astrophysics, an Inverse Problem Point of View

    NASA Astrophysics Data System (ADS)

    Theys, Céline; Aime, Claude

    2016-04-01

    After a short introduction, a first section provides a brief tutorial to the physics of image formation and its detection in the presence of noises. The rest of the chapter focuses on the resolution of the inverse problem . In the general form, the observed image is given by a Fredholm integral containing the object and the response of the instrument. Its inversion is formulated using a linear algebra. The discretized object and image of size N × N are stored in vectors x and y of length N 2. They are related one another by the linear relation y = H x, where H is a matrix of size N 2 × N 2 that contains the elements of the instrument response. This matrix presents particular properties for a shift invariant point spread function for which the Fredholm integral is reduced to a convolution relation. The presence of noise complicates the resolution of the problem. It is shown that minimum variance unbiased solutions fail to give good results because H is badly conditioned, leading to the need of a regularized solution. Relative strength of regularization versus fidelity to the data is discussed and briefly illustrated on an example using L-curves. The origins and construction of iterative algorithms are explained, and illustrations are given for the algorithms ISRA , for a Gaussian additive noise, and Richardson-Lucy , for a pure photodetected image (Poisson statistics). In this latter case, the way the algorithm modifies the spatial frequencies of the reconstructed image is illustrated for a diluted array of apertures in space. Throughout the chapter, the inverse problem is formulated in matrix form for the general case of the Fredholm integral, while numerical illustrations are limited to the deconvolution case, allowing the use of discrete Fourier transforms, because of computer limitations.

  4. Identification of subsurface structures using electromagnetic data and shape priors

    NASA Astrophysics Data System (ADS)

    Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  5. A comparative study of minimum norm inverse methods for MEG imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, R.M.; Mosher, J.C.; Phillips, J.W.

    1996-07-01

    The majority of MEG imaging techniques currently in use fall into the general class of (weighted) minimum norm methods. The minimization of a norm is used as the basis for choosing one from a generally infinite set of solutions that provide an equally good fit to the data. This ambiguity in the solution arises from the inherent non- uniqueness of the continuous inverse problem and is compounded by the imbalance between the relatively small number of measurements and the large number of source voxels. Here we present a unified view of the minimum norm methods and describe how we canmore » use Tikhonov regularization to avoid instabilities in the solutions due to noise. We then compare the performance of regularized versions of three well known linear minimum norm methods with the non-linear iteratively reweighted minimum norm method and a Bayesian approach.« less

  6. Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics

    PubMed Central

    Petrov, Yury

    2012-01-01

    EEG/MEG source localization based on a “distributed solution” is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data. PMID:23071497

  7. Mature red blood cells: from optical model to inverse light-scattering problem.

    PubMed

    Gilev, Konstantin V; Yurkin, Maxim A; Chernyshova, Ekaterina S; Strokotov, Dmitry I; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-04-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.

  8. Mature red blood cells: from optical model to inverse light-scattering problem

    PubMed Central

    Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.

    2016-01-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656

  9. Global uniqueness in an inverse problem for time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Kian, Y.; Oksanen, L.; Soccorsi, E.; Yamamoto, M.

    2018-01-01

    Given (M , g), a compact connected Riemannian manifold of dimension d ⩾ 2, with boundary ∂M, we consider an initial boundary value problem for a fractional diffusion equation on (0 , T) × M, T > 0, with time-fractional Caputo derivative of order α ∈ (0 , 1) ∪ (1 , 2). We prove uniqueness in the inverse problem of determining the smooth manifold (M , g) (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solutions on a subset of ∂M at fixed time. In the "flat" case where M is a compact subset of Rd, two out the three coefficients ρ (density), a (conductivity) and q (potential) appearing in the equation ρ ∂tα u - div (a∇u) + qu = 0 on (0 , T) × M are recovered simultaneously.

  10. Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.; Kuvshinov, Alexey V.

    2016-05-01

    This paper presents a methodology to sample equivalence domain (ED) in nonlinear partial differential equation (PDE)-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low-misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of magneotelluric, controlled-source electromagnetic (EM) and global EM induction data.

  11. Introduction to the 30th volume of Inverse Problems

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2014-01-01

    The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and Bill Symes in their big footsteps, and I consider it a privilege to thank all that have contributed to the success of the journal. In its 30 years of existence, the journal has evolved from a trimestral to monthly print publication, now paralleled by an electronic version that has led to publication speeds unheard of when the journal began. This timely publication is especially important for younger researchers, but equally for experienced ones, who in that respect still feel young. In addition, the scope has changed to focus more precisely on the core of inverse problems, characterized, for example, by data errors, incomplete information and so on. In the beginning, fields where questions were considered to lead to inverse problems were listed in the journal's scope to make it clear that the problems being discussed were inverse problems in character. With the development of the solution methods, we now see that inverse problems are fundamental to almost all areas of research. The journal now hosts a number of additional features. With Insights we provide a platform for authors to introduce themselves and their work group, and present their scientific results in a popular and non-specialist form. Insights are made freely available on the journal website to ensure that they are seen by a wider community, beyond the immediate readership of the journal. Special issues are devoted to fields that have matured in such a way that the readers of our journal can profit from their presentation when the time for writing text books has not yet come. In addition, the different approaches taken by different contributors to a special issue disclose the multiple aspects of that field. With Topical reviews we aim to present the new ideas and areas that are stimulating future research. We are thankful that highly acclaimed authors take the time to present the research at the forefront of their respective fields. It is always very enlightening to read these articles as they introduce challenging research domains in condensed form. The diversity of the different topics is especially impressive. The 25th anniversary of Inverse Problems was celebrated with a service to the community, the publication of an issue of topical reviews selected by board members, which presented the achievements and state-of-the-art of the field. The 30th birthday of the journal is now approaching and we found it appropriate to include in the celebration the scientific community that supports the journal by their submissions. A conference, IPTA 2014: Inverse Problems - From Theory to Application (http://ipta2014.iopconfs.org/home), will be held in the home town of our publisher, IOP Publishing, in Bristol on 26-28 August 2014. The conference brings together top researchers, both from academia and industry, and will look at the scientific future of the field. Presentations by keynote speakers, which summarize what the board considers to be new trends, are complemented by contributions submitted by specialists and younger researchers in several minisymposia. To build a bridge to the future generation of researchers, a scientist at the beginning of their career will be giving a lecture. Let me finish with cordial thanks to all of our authors, referees, the members of the Editorial Board and International Advisory Panel, and the publishing team. I wish all of you a successful and healthy New Year and hope to meet many of you in August in Bristol. References [1] Sabatier P C 2012 Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse (Paris: L'Harmattan)

  12. Methods for Handling Missing Secondary Respondent Data

    ERIC Educational Resources Information Center

    Young, Rebekah; Johnson, David

    2013-01-01

    Secondary respondent data are underutilized because researchers avoid using these data in the presence of substantial missing data. The authors reviewed, evaluated, and tested solutions to this problem. Five strategies of dealing with missing partner data were reviewed: (a) complete case analysis, (b) inverse probability weighting, (c) correction…

  13. Computational Methods for Sparse Solution of Linear Inverse Problems

    DTIC Science & Technology

    2009-03-01

    this approach is that the algorithms take advantage of fast matrix–vector multiplications. An implementation is available as pdco and SolveBP in the...M. A. Saunders, “ PDCO : primal-dual interior-point method for con- vex objectives,” Systems Optimization Laboratory, Stanford University, Tech. Rep

  14. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  15. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  16. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    PubMed Central

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  17. Including geological information in the inverse problem of palaeothermal reconstruction

    NASA Astrophysics Data System (ADS)

    Trautner, S.; Nielsen, S. B.

    2003-04-01

    A reliable reconstruction of sediment thermal history is of central importance to the assessment of hydrocarbon potential and the understanding of basin evolution. However, only rarely do sedimentation history and borehole data in the form of present day temperatures and vitrinite reflectance constrain the past thermal evolution to a useful level of accuracy (Gallagher and Sambridge,1992; Nielsen,1998; Trautner and Nielsen,2003). This is reflected in the inverse solutions to the problem of determining heat flow history from borehole data: The recent heat flow is constrained by data while older values are governed by the chosen a prior heat flow. In this paper we reduce this problem by including geological information in the inverse problem. Through a careful analysis of geological and geophysical data the timing of the tectonic processes, which may influence heat flow, can be inferred. The heat flow history is then parameterised to allow for the temporal variations characteristic of the different tectonic events. The inversion scheme applies a Markov chain Monte Carlo (MCMC) approach (Nielsen and Gallagher, 1999; Ferrero and Gallagher,2002), which efficiently explores the model space and futhermore samples the posterior probability distribution of the model. The technique is demonstrated on wells in the northern North Sea with emphasis on the stretching event in Late Jurassic. The wells are characterised by maximum sediment temperature at the present day, which is the worst case for resolution of the past thermal history because vitrinite reflectance is determined mainly by the maximum temperature. Including geological information significantly improves the thermal resolution. Ferrero, C. and Gallagher,K.,2002. Stochastic thermal history modelling.1. Constraining heat flow histories and their uncertainty. Marine and Petroleum Geology, 19, 633-648. Gallagher,K. and Sambridge, M., 1992. The resolution of past heat flow in sedimentary basins from non-linear inversion of geochemical data: the smoothest model approach, with synthetic examples. Geophysical Journal International, 109, 78-95. Nielsen, S.B, 1998. Inversion and sensitivity analysis in basin modelling. Geoscience 98. Keele University, UK, Abstract Volume, 56. Nielsen, S.B. and Gallagher, K., 1999. Efficient sampling of 3-D basin modelling scenarios. Extended Abstracts Volume, 1999 AAPG International Conference &Exhibition, Birmingham, England, September 12-15, 1999, p. 369 - 372. Trautner S. and Nielsen, S.B., 2003. 2-D inverse thermal modelling in the Norwegian shelf using Fast Approximate Forward (FAF) solutions. In R. Marzi and Duppenbecker, S. (Ed.), Multi-Dimensional Basin Modeling, AAPG, in press.

  18. Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Schwede, R. L.; Li, W.

    2012-12-01

    Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.

  19. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    NASA Astrophysics Data System (ADS)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  20. Application of L1-norm regularization to epicardial potential reconstruction based on gradient projection.

    PubMed

    Wang, Liansheng; Qin, Jing; Wong, Tien Tsin; Heng, Pheng Ann

    2011-10-07

    The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.

  1. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    NASA Astrophysics Data System (ADS)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  2. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674

  3. Exact finite element method analysis of viscoelastic tapered structures to transient loads

    NASA Technical Reports Server (NTRS)

    Spyrakos, Constantine Chris

    1987-01-01

    A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.

  4. Presymplectic current and the inverse problem of the calculus of variations

    NASA Astrophysics Data System (ADS)

    Khavkine, Igor

    2013-11-01

    The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159-178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45-64 (1982)] from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.

  5. A Strassen-Newton algorithm for high-speed parallelizable matrix inversion

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Ferguson, Helaman R. P.

    1988-01-01

    Techniques are described for computing matrix inverses by algorithms that are highly suited to massively parallel computation. The techniques are based on an algorithm suggested by Strassen (1969). Variations of this scheme use matrix Newton iterations and other methods to improve the numerical stability while at the same time preserving a very high level of parallelism. One-processor Cray-2 implementations of these schemes range from one that is up to 55 percent faster than a conventional library routine to one that is slower than a library routine but achieves excellent numerical stability. The problem of computing the solution to a single set of linear equations is discussed, and it is shown that this problem can also be solved efficiently using these techniques.

  6. A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization.

    PubMed

    Cao, Cheng; Akalin Acar, Zeynep; Kreutz-Delgado, Kenneth; Makeig, Scott

    2012-01-01

    Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.

  7. Genetic algorithms and their use in Geophysical Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less

  8. Genetic algorithms and their use in geophysical problems

    NASA Astrophysics Data System (ADS)

    Parker, Paul Bradley

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  9. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  10. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  11. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

    NASA Astrophysics Data System (ADS)

    Codd, A. L.; Gross, L.

    2018-03-01

    We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

  12. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems.more » Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.« less

  14. On the inverse problem of blade design for centrifugal pumps and fans

    NASA Astrophysics Data System (ADS)

    Kruyt, N. P.; Westra, R. W.

    2014-06-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated.

  15. Stochastic reduced order models for inverse problems under uncertainty

    PubMed Central

    Warner, James E.; Aquino, Wilkins; Grigoriu, Mircea D.

    2014-01-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well. PMID:25558115

  16. The effects of environmental variability and spatial sampling on the three-dimensional inversion problem.

    PubMed

    Bender, Christopher M; Ballard, Megan S; Wilson, Preston S

    2014-06-01

    The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.

  17. EEG-distributed inverse solutions for a spherical head model

    NASA Astrophysics Data System (ADS)

    Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.

    1998-08-01

    The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.

  18. A Neural Network Aero Design System for Advanced Turbo-Engines

    NASA Technical Reports Server (NTRS)

    Sanz, Jose M.

    1999-01-01

    An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.

  19. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  20. Inexact trajectory planning and inverse problems in the Hamilton–Pontryagin framework

    PubMed Central

    Burnett, Christopher L.; Holm, Darryl D.; Meier, David M.

    2013-01-01

    We study a trajectory-planning problem whose solution path evolves by means of a Lie group action and passes near a designated set of target positions at particular times. This is a higher-order variational problem in optimal control, motivated by potential applications in computational anatomy and quantum control. Reduction by symmetry in such problems naturally summons methods from Lie group theory and Riemannian geometry. A geometrically illuminating form of the Euler–Lagrange equations is obtained from a higher-order Hamilton–Pontryagin variational formulation. In this context, the previously known node equations are recovered with a new interpretation as Legendre–Ostrogradsky momenta possessing certain conservation properties. Three example applications are discussed as well as a numerical integration scheme that follows naturally from the Hamilton–Pontryagin principle and preserves the geometric properties of the continuous-time solution. PMID:24353467

  1. Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.

  2. Models for determining the geometrical properties of halo coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Y.

    2005-12-01

    To this day, the prediction of space weather effects near the Earth suffer from a fundamental problem: the necessary condition for determining whether or not and when a part of the huge interplanetary counterpart (ICME) of frontside halo coronal mass ejections (CMEs) is able to hit the Earth and generate goemagnetic storms, i.e., the real angular width, the propagation direction and speed of the CMEs, cannot be measured directly because of the unfavorable geometry. To inverse these geometrical and kinematical properties we have recently developed a few geometrical models, such as the cone model, the ice cream cone model, and the spherical cone model. The inversing solution of the cone model for the 12 may 1997 halo CME has been used as an input to the ENLIL model (a 3D MHD solar wind code) and successfully predicted the ICME near the Earth (Zhao, Plukett & Liu, 2002; Odstrcil, Riley & Zhao, 2004). After briefly describing the geometrical models this presentation will discuss: 1. What kind of halo CMEs can be inversed? 2. How to select the geometrical models given a specific halo CME? 3. Whether or not the inversing solution is unique?

  3. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  4. ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.

    PubMed

    Bodily, Paul M; Fujimoto, M Stanley; Snell, Quinn; Ventura, Dan; Clement, Mark J

    2016-01-01

    The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. http://bioresearch.byu.edu/scaffoldscaffolder. paulmbodily@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Reduction of Dynamic Loads in Mine Lifting Installations

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu

    2018-01-01

    Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.

  6. A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef; Fast P.; Kraus, M.

    2006-01-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that thesemore » data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.« less

  7. The Cauchy problem for the Pavlov equation

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.; Wu, D.

    2015-10-01

    Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. An essential part of this work was made during the visit of the three authors to the Centro Internacional de Ciencias in Cuernavaca, Mexico in November-December 2012.

  8. Users manual for the Variable dimension Automatic Synthesis Program (VASP)

    NASA Technical Reports Server (NTRS)

    White, J. S.; Lee, H. Q.

    1971-01-01

    A dictionary and some problems for the Variable Automatic Synthesis Program VASP are submitted. The dictionary contains a description of each subroutine and instructions on its use. The example problems give the user a better perspective on the use of VASP for solving problems in modern control theory. These example problems include dynamic response, optimal control gain, solution of the sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix. Listings of all subroutines are also included. The VASP program has been adapted to run in the conversational mode on the Ames 360/67 computer.

  9. Large-scale 3D inversion of marine controlled source electromagnetic data using the integral equation method

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.

    2009-12-01

    The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.

  10. High performance GPU processing for inversion using uniform grid searches

    NASA Astrophysics Data System (ADS)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.

  11. Using the sensors of shaft position for simulation of misalignments of shafting supports of turbounits

    NASA Astrophysics Data System (ADS)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.

    2017-09-01

    Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.

  12. The general linear inverse problem - Implication of surface waves and free oscillations for earth structure.

    NASA Technical Reports Server (NTRS)

    Wiggins, R. A.

    1972-01-01

    The discrete general linear inverse problem reduces to a set of m equations in n unknowns. There is generally no unique solution, but we can find k linear combinations of parameters for which restraints are determined. The parameter combinations are given by the eigenvectors of the coefficient matrix. The number k is determined by the ratio of the standard deviations of the observations to the allowable standard deviations in the resulting solution. Various linear combinations of the eigenvectors can be used to determine parameter resolution and information distribution among the observations. Thus we can determine where information comes from among the observations and exactly how it constraints the set of possible models. The application of such analyses to surface-wave and free-oscillation observations indicates that (1) phase, group, and amplitude observations for any particular mode provide basically the same type of information about the model; (2) observations of overtones can enhance the resolution considerably; and (3) the degree of resolution has generally been overestimated for many model determinations made from surface waves.

  13. A variational regularization of Abel transform for GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon

    2018-04-01

    In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.

  14. Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics

    NASA Astrophysics Data System (ADS)

    Guzina, Bojan B.; Bonnet, Marc

    2006-10-01

    The aim of this study is an extension and employment of the concept of topological derivative as it pertains to the nucleation of infinitesimal inclusions in a reference (i.e. background) acoustic medium. The developments are motivated by the need to develop a preliminary indicator functional that would aid the solution of inverse scattering problems in terms of a rational initial 'guess' about the geometry and material characteristics of a hidden (finite) obstacle; an information that is often required by iterative minimization algorithms. To this end the customary definition of topological derivative, which quantifies the sensitivity of a given cost functional with respect to the creation of an infinitesimal hole, is adapted to permit the nucleation of a dissimilar acoustic medium. On employing the Green's function for the background domain, computation of topological sensitivity for the three-dimensional Helmholtz equation is reduced to the solution of a reference, Laplace transmission problem. Explicit formulae are given for the nucleating inclusions of spherical and ellipsoidal shapes. For generality the developments are also presented in an alternative, adjoint-field setting that permits nucleation of inclusions in an infinite, semi-infinite or finite background medium. Through numerical examples, it is shown that the featured topological sensitivity could be used, in the context of inverse scattering, as an effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying a material characteristic (density) of the nucleating obstacle, it is also shown that the proposed methodology can be used as a preparatory tool for both geometric and material identification.

  15. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.

  16. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  17. Multiple crack detection in 3D using a stable XFEM and global optimization

    NASA Astrophysics Data System (ADS)

    Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.

    2018-02-01

    A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.

  18. Projected Regression Methods for Inverting Fredholm Integrals: Formalism and Application to Analytical Continuation

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-Francois; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.

    We present a machine learning-based statistical regression approach to the inversion of Fredholm integrals of the first kind by studying an important example for the quantum materials community, the analytical continuation problem of quantum many-body physics. It involves reconstructing the frequency dependence of physical excitation spectra from data obtained at specific points in the complex frequency plane. The approach provides a natural regularization in cases where the inverse of the Fredholm kernel is ill-conditioned and yields robust error metrics. The stability of the forward problem permits the construction of a large database of input-output pairs. Machine learning methods applied to this database generate approximate solutions which are projected onto the subspace of functions satisfying relevant constraints. We show that for low input noise the method performs as well or better than Maximum Entropy (MaxEnt) under standard error metrics, and is substantially more robust to noise. We expect the methodology to be similarly effective for any problem involving a formally ill-conditioned inversion, provided that the forward problem can be efficiently solved. AJM was supported by the Office of Science of the U.S. Department of Energy under Subcontract No. 3F-3138 and LFA by the Columbia Univeristy IDS-ROADS project, UR009033-05 which also provided part support to RN and LH.

  19. The octapolic ellipsoidal term in magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Dassios, George; Hadjiloizi, Demetra; Kariotou, Fotini

    2009-01-01

    The forward problem of magnetoencephalography (MEG) in ellipsoidal geometry has been studied by Dassios and Kariotou ["Magnetoencephalography in ellipsoidal geometry," J. Math. Phys. 44, 220 (2003)] using the theory of ellipsoidal harmonics. In fact, the analytic solution of the quadrupolic term for the magnetic induction field has been calculated in the case of a dipolar neuronal current. Nevertheless, since the quadrupolic term is only the leading nonvanishing term in the multipole expansion of the magnetic field, it contains not enough information for the construction of an effective algorithm to solve the inverse MEG problem, i.e., to recover the position and the orientation of a dipole from measurements of the magnetic field outside the head. For this task, the next multipole of the magnetic field is also needed. The present work provides exactly this octapolic contribution of the dipolar current to the expansion of the magnetic induction field. The octapolic term is expressed in terms of the ellipsoidal harmonics of the third degree, and therefore it provides the highest order terms that can be expressed in closed form using long but reasonable analytic and algebraic manipulations. In principle, the knowledge of the quadrupolic and the octapolic terms is enough to solve the inverse problem of identifying a dipole inside an ellipsoid. Nevertheless, a simple inversion algorithm for this problem is not yet known.

  20. A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  1. Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.

    PubMed

    Abbasi, Mahdi

    2014-01-01

    Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.

  2. Presymplectic current and the inverse problem of the calculus of variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khavkine, Igor, E-mail: i.khavkine@uu.nl

    2013-11-15

    The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159–178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45–64 (1982)]more » from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.« less

  3. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the KPI equation

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.

    1992-11-01

    The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.

  4. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase

    NASA Astrophysics Data System (ADS)

    Kiryushkin, A. E.; Minkov, L. L.

    2017-10-01

    Solid rocket motor (SRM) internal ballistics problems are related to the problems with moving boundaries. The algorithm able to solve similar problems in axisymmetric formulation on Cartesian mesh with an arbitrary order of accuracy is considered in this paper. The base of this algorithm is the ghost point extrapolation using inverse Lax-Wendroff procedure. Level set method is used as an implicit representation of the domain boundary. As an example, the internal ballistics problem for SRM with umbrella type grain was solved during the main firing phase. In addition, flow parameters distribution in the combustion chamber was obtained for different time moments.

  5. 3-D imaging of large scale buried structure by 1-D inversion of very early time electromagnetic (VETEM) data

    USGS Publications Warehouse

    Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2001-01-01

    A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.

  6. Moving from pixel to object scale when inverting radiative transfer models for quantitative estimation of biophysical variables in vegetation (Invited)

    NASA Astrophysics Data System (ADS)

    Atzberger, C.

    2013-12-01

    The robust and accurate retrieval of vegetation biophysical variables using RTM is seriously hampered by the ill-posedness of the inverse problem. The contribution presents our object-based inversion approach and evaluate it against measured data. The proposed method takes advantage of the fact that nearby pixels are generally more similar than those at a larger distance. For example, within a given vegetation patch, nearby pixels often share similar leaf angular distributions. This leads to spectral co-variations in the n-dimensional spectral features space, which can be used for regularization purposes. Using a set of leaf area index (LAI) measurements (n=26) acquired over alfalfa, sugar beet and garlic crops of the Barrax test site (Spain), it is demonstrated that the proposed regularization using neighbourhood information yields more accurate results compared to the traditional pixel-based inversion. Principle of the ill-posed inverse problem and the proposed solution illustrated in the red-nIR feature space using (PROSAIL). [A] spectral trajectory ('soil trajectory') obtained for one leaf angle (ALA) and one soil brightness (αsoil), when LAI varies between 0 and 10, [B] 'soil trajectories' for 5 soil brightness values and three leaf angles, [C] ill-posed inverse problem: different combinations of ALA × αsoil yield an identical crossing point, [D] object-based RTM inversion; only one 'soil trajectory' fits all nine pixelswithin a gliding (3×3) window. The black dots (plus the rectangle=central pixel) represent the hypothetical position of nine pixels within a 3×3 (gliding) window. Assuming that over short distances (× 1 pixel) variations in soil brightness can be neglected, the proposed object-based inversion searches for one common set of ALA × αsoil so that the resulting 'soil trajectory' best fits the nine measured pixels. Ground measured vs. retrieved LAI values for three crops. Left: proposed object-based approach. Right: pixel-based inversion

  7. SYNTHESIS OF NOVEL ALL-DIELECTRIC GRATING FILTERS USING GENETIC ALGORITHMS

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Cwik, Tom; Ditchman, Christopher

    1997-01-01

    We are concerned with the design of inhomogeneous, all dielectric (lossless) periodic structures which act as filters. Dielectric filters made as stacks of inhomogeneous gratings and layers of materials are being used in optical technology, but are not common at microwave frequencies. The problem is then finding the periodic cell's geometric configuration and permittivity values which correspond to a specified reflectivity/transmittivity response as a function of frequency/illumination angle. This type of design can be thought of as an inverse-source problem, since it entails finding a distribution of sources which produce fields (or quantities derived from them) of given characteristics. Electromagnetic sources (electric and magnetic current densities) in a volume are related to the outside fields by a well known linear integral equation. Additionally, the sources are related to the fields inside the volume by a constitutive equation, involving the material properties. Then, the relationship linking the fields outside the source region to those inside is non-linear, in terms of material properties such as permittivity, permeability and conductivity. The solution of the non-linear inverse problem is cast here as a combination of two linear steps, by explicitly introducing the electromagnetic sources in the computational volume as a set of unknowns in addition to the material unknowns. This allows to solve for material parameters and related electric fields in the source volume which are consistent with Maxwell's equations. Solutions are obtained iteratively by decoupling the two steps. First, we invert for the permittivity only in the minimization of a cost function and second, given the materials, we find the corresponding electric fields through direct solution of the integral equation in the source volume. The sources thus computed are used to generate the far fields and the synthesized triter response. The cost function is obtained by calculating the deviation between the synthesized value of reflectivity/transmittivity and the desired one. Solution geometries for the periodic cell are sought as gratings (ensembles of columns of different heights and widths), or combinations of homogeneous layers of different dielectric materials and gratings. Hence the explicit unknowns of the inversion step are the material permittivities and the relative boundaries separating homogeneous parcels of the periodic cell.

  8. An industrial robot singular trajectories planning based on graphs and neural networks

    NASA Astrophysics Data System (ADS)

    Łęgowski, Adrian; Niezabitowski, Michał

    2016-06-01

    Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.

  9. The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry

    2015-01-01

    We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.

  10. Fracture characterization by hybrid enumerative search and Gauss-Newton least-squares inversion methods

    NASA Astrophysics Data System (ADS)

    Alkharji, Mohammed N.

    Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.

  11. Applied Mathematics in EM Studies with Special Emphasis on an Uncertainty Quantification and 3-D Integral Equation Modelling

    NASA Astrophysics Data System (ADS)

    Pankratov, Oleg; Kuvshinov, Alexey

    2016-01-01

    Despite impressive progress in the development and application of electromagnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical conductivity within the Earth, there is one question which remains poorly addressed—uncertainty quantification of the recovered conductivity models. Apparently, only an inversion based on a statistical approach provides a systematic framework to quantify such uncertainties. The Metropolis-Hastings (M-H) algorithm is the most popular technique for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. However, all statistical inverse schemes require an enormous amount of forward simulations and thus appear to be extremely demanding computationally, if not prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D modelling codes which can run large-scale 3-D models of practical interest for fractions of a second on high-performance multi-core platforms. But, even with these codes, the challenge for M-H methods is to construct proposal functions that simultaneously provide a good approximation of the target density function while being inexpensive to be sampled. In this paper we address both of these issues. First we introduce a variant of the M-H method which uses information about the local gradient and Hessian of the penalty function. This, in particular, allows us to exploit adjoint-based machinery that has been instrumental for the fast solution of deterministic inverse problems. We explain why this modification of M-H significantly accelerates sampling of the posterior probability distribution. In addition we show how Hessian handling (inverse, square root) can be made practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we discuss uncertainty analysis based on stochastic inversion results. In addition, we demonstrate how this analysis can be performed within a deterministic approach. In the second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.

  12. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  13. Probabilistic Magnetotelluric Inversion with Adaptive Regularisation Using the No-U-Turns Sampler

    NASA Astrophysics Data System (ADS)

    Conway, Dennis; Simpson, Janelle; Didana, Yohannes; Rugari, Joseph; Heinson, Graham

    2018-04-01

    We present the first inversion of magnetotelluric (MT) data using a Hamiltonian Monte Carlo algorithm. The inversion of MT data is an underdetermined problem which leads to an ensemble of feasible models for a given dataset. A standard approach in MT inversion is to perform a deterministic search for the single solution which is maximally smooth for a given data-fit threshold. An alternative approach is to use Markov Chain Monte Carlo (MCMC) methods, which have been used in MT inversion to explore the entire solution space and produce a suite of likely models. This approach has the advantage of assigning confidence to resistivity models, leading to better geological interpretations. Recent advances in MCMC techniques include the No-U-Turns Sampler (NUTS), an efficient and rapidly converging method which is based on Hamiltonian Monte Carlo. We have implemented a 1D MT inversion which uses the NUTS algorithm. Our model includes a fixed number of layers of variable thickness and resistivity, as well as probabilistic smoothing constraints which allow sharp and smooth transitions. We present the results of a synthetic study and show the accuracy of the technique, as well as the fast convergence, independence of starting models, and sampling efficiency. Finally, we test our technique on MT data collected from a site in Boulia, Queensland, Australia to show its utility in geological interpretation and ability to provide probabilistic estimates of features such as depth to basement.

  14. 3-D linear inversion of gravity data: method and application to Basse-Terre volcanic island, Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien

    2016-04-01

    We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.

  15. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    NASA Astrophysics Data System (ADS)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  16. Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns

    NASA Astrophysics Data System (ADS)

    Kopacz, Monika; Jacob, Daniel J.; Henze, Daven K.; Heald, Colette L.; Streets, David G.; Zhang, Qiang

    2009-02-01

    We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem CTM) to constrain Asian sources of carbon monoxide (CO) with 2° × 2.5° spatial resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite observations of CO columns in February-April 2001. Results are compared to the more common analytical method for solving the same Bayesian inverse problem and applied to the same data set. The analytical method is more exact but because of computational limitations it can only constrain emissions over coarse regions. We find that the correction factors to the a priori CO emission inventory from the adjoint inversion are generally consistent with those of the analytical inversion when averaged over the large regions of the latter. The adjoint solution reveals fine-scale variability (cities, political boundaries) that the analytical inversion cannot resolve, for example, in the Indian subcontinent or between Korea and Japan, and some of that variability is of opposite sign which points to large aggregation errors in the analytical solution. Upward correction factors to Chinese emissions from the prior inventory are largest in central and eastern China, consistent with a recent bottom-up revision of that inventory, although the revised inventory also sees the need for upward corrections in southern China where the adjoint and analytical inversions call for downward correction. Correction factors for biomass burning emissions derived from the adjoint and analytical inversions are consistent with a recent bottom-up inventory on the basis of MODIS satellite fire data.

  17. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  18. Wavefield reconstruction inversion with a multiplicative cost function

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  19. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  20. Complex optimization for big computational and experimental neutron datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Oak Ridge National Lab.; Archibald, Richard

    Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less

  1. Complex optimization for big computational and experimental neutron datasets

    DOE PAGES

    Bao, Feng; Oak Ridge National Lab.; Archibald, Richard; ...

    2016-11-07

    Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less

  2. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  3. Forward and Inverse Modeling of Self-potential. A Tomography of Groundwater Flow and Comparison Between Deterministic and Stochastic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.

    2016-12-01

    Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.

  4. Application of genetic algorithms to focal mechanism determination

    NASA Astrophysics Data System (ADS)

    Kobayashi, Reiji; Nakanishi, Ichiro

    1994-04-01

    Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.

  5. Optimal Control of Thermo--Fluid Phenomena in Variable Domains

    NASA Astrophysics Data System (ADS)

    Volkov, Oleg; Protas, Bartosz

    2008-11-01

    This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.

  6. Three-dimensional inverse problem of geometrical optics: a mathematical comparison between Fermat's principle and the eikonal equation.

    PubMed

    Borghero, Francesco; Demontis, Francesco

    2016-09-01

    In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions.

  7. A spherical harmonic approach for the determination of HCP texture from ultrasound: A solution to the inverse problem

    NASA Astrophysics Data System (ADS)

    Lan, Bo; Lowe, Michael J. S.; Dunne, Fionn P. E.

    2015-10-01

    A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.

  8. The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., III

    1992-01-01

    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.

  9. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  10. 2-D inversion of VES data in Saqqara archaeological area, Egypt

    NASA Astrophysics Data System (ADS)

    El-Qady, Gad; Sakamoto, Chika; Ushijima, Keisuke

    1999-10-01

    The interpretation of actual geophysical field data still has a problem for obtaining a unique solution. In order to investigate the groundwater potentials in Saqqara archaeological area, vertical electrical soundings with Schlumberger array have been carried out. In the interpretation of VES data, 1D resistivity inversion has been performed based on a horizontally layered earth model by El-Qady (1995). However, some results of 1D inversion are not fully satisfied for actual 3D structures such as archaeological tombs. Therefore, we have carried out 2D inversion based on ABIC least squares method for Schlumberger VES data obtained in Saqqara area. Although the results of 2D cross sections were correlated with the previous interpretation, the 2D inversion still shows a rough spatial resistivity distribution, which is the abrupt change in resistivity between two neighboring blocks of the computed region. It is concluded that 3D interpretation is recommended for visualizing ground water distribution with depth in the Saqqara area.

  11. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  12. Analytical study and numerical solution of the inverse source problem arising in thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Holman, Benjamin R.

    In recent years, revolutionary "hybrid" or "multi-physics" methods of medical imaging have emerged. By combining two or three different types of waves these methods overcome limitations of classical tomography techniques and deliver otherwise unavailable, potentially life-saving diagnostic information. Thermoacoustic (and photoacoustic) tomography is the most developed multi-physics imaging modality. Thermo- and photo- acoustic tomography require reconstructing initial acoustic pressure in a body from time series of pressure measured on a surface surrounding the body. For the classical case of free space wave propagation, various reconstruction techniques are well known. However, some novel measurement schemes place the object of interest between reflecting walls that form a de facto resonant cavity. In this case, known methods cannot be used. In chapter 2 we present a fast iterative reconstruction algorithm for measurements made at the walls of a rectangular reverberant cavity with a constant speed of sound. We prove the convergence of the iterations under a certain sufficient condition, and demonstrate the effectiveness and efficiency of the algorithm in numerical simulations. In chapter 3 we consider the more general problem of an arbitrarily shaped resonant cavity with a non constant speed of sound and present the gradual time reversal method for computing solutions to the inverse source problem. It consists in solving back in time on the interval [0, T] the initial/boundary value problem for the wave equation, with the Dirichlet boundary data multiplied by a smooth cutoff function. If T is sufficiently large one obtains a good approximation to the initial pressure; in the limit of large T such an approximation converges (under certain conditions) to the exact solution.

  13. Probabilistic Solution of Inverse Problems.

    DTIC Science & Technology

    1985-09-01

    AODRESSIl differentI from Conat.oildun 0111C*) It. SECURITY CLASS (ofll ~e vport) Office of Naval Research UCASFE Information Systems ...report describes research done within the Laboratory for Information and Decision Systems and the Artificial Intelligence Laboratory at the Massachusetts...analysis of systems endowed with perceptual abilities is the construction of internal representations of the physical structures in the external world

  14. Scattering transform for nonstationary Schroedinger equation with bidimensionally perturbed N-soliton potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2006-12-15

    In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.

  15. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).

  16. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun

    2013-12-01

    Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.

  17. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  18. Unlocking the spatial inversion of large scanning magnetic microscopy datasets

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Lascu, I.; Andrade Lima, E.; Feinberg, J. M.; Saar, M. O.; Weiss, B. P.

    2013-12-01

    Modern scanning magnetic microscopy provides the ability to perform high-resolution, ultra-high sensitivity moment magnetometry, with spatial resolutions better than 10^-4 m and magnetic moments as weak as 10^-16 Am^2. These microscopy capabilities have enhanced numerous magnetic studies, including investigations of the paleointensity of the Earth's magnetic field, shock magnetization and demagnetization of impacts, magnetostratigraphy, the magnetic record in speleothems, and the records of ancient core dynamos of planetary bodies. A common component among many studies utilizing scanning magnetic microscopy is solving an inverse problem to determine the non-negative magnitude of the magnetic moments that produce the measured component of the magnetic field. The two most frequently used methods to solve this inverse problem are classic fast Fourier techniques in the frequency domain and non-negative least squares (NNLS) methods in the spatial domain. Although Fourier techniques are extremely fast, they typically violate non-negativity and it is difficult to implement constraints associated with the space domain. NNLS methods do not violate non-negativity, but have typically been computation time prohibitive for samples of practical size or resolution. Existing NNLS methods use multiple techniques to attain tractable computation. To reduce computation time in the past, typically sample size or scan resolution would have to be reduced. Similarly, multiple inversions of smaller sample subdivisions can be performed, although this frequently results in undesirable artifacts at subdivision boundaries. Dipole interactions can also be filtered to only compute interactions above a threshold which enables the use of sparse methods through artificial sparsity. To improve upon existing spatial domain techniques, we present the application of the TNT algorithm, named TNT as it is a "dynamite" non-negative least squares algorithm which enhances the performance and accuracy of spatial domain inversions. We show that the TNT algorithm reduces the execution time of spatial domain inversions from months to hours and that inverse solution accuracy is improved as the TNT algorithm naturally produces solutions with small norms. Using sIRM and NRM measures of multiple synthetic and natural samples we show that the capabilities of the TNT algorithm allow very large samples to be inverted without the need for alternative techniques to make the problems tractable. Ultimately, the TNT algorithm enables accurate spatial domain analysis of scanning magnetic microscopy data on an accelerated time scale that renders spatial domain analyses tractable for numerous studies, including searches for the best fit of unidirectional magnetization direction and high-resolution step-wise magnetization and demagnetization.

  19. On epicardial potential reconstruction using regularization schemes with the L1-norm data term.

    PubMed

    Shou, Guofa; Xia, Ling; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart

    2011-01-07

    The electrocardiographic (ECG) inverse problem is ill-posed and usually solved by regularization schemes. These regularization methods, such as the Tikhonov method, are often based on the L2-norm data and constraint terms. However, L2-norm-based methods inherently provide smoothed inverse solutions that are sensitive to measurement errors, and also lack the capability of localizing and distinguishing multiple proximal cardiac electrical sources. This paper presents alternative regularization schemes employing the L1-norm data term for the reconstruction of epicardial potentials (EPs) from measured body surface potentials (BSPs). During numerical implementation, the iteratively reweighted norm algorithm was applied to solve the L1-norm-related schemes, and measurement noises were considered in the BSP data. The proposed L1-norm data term-based regularization schemes (with L1 and L2 penalty terms of the normal derivative constraint (labelled as L1TV and L1L2)) were compared with the L2-norm data terms (Tikhonov with zero-order and normal derivative constraints, labelled as ZOT and FOT, and the total variation method labelled as L2TV). The studies demonstrated that, with averaged measurement noise, the inverse solutions provided by the L1L2 and FOT algorithms have less relative error values. However, when larger noise occurred in some electrodes (for example, signal lost during measurement), the L1TV and L1L2 methods can obtain more accurate EPs in a robust manner. Therefore the L1-norm data term-based solutions are generally less perturbed by measurement noises, suggesting that the new regularization scheme is promising for providing practical ECG inverse solutions.

  20. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  1. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  2. Approximate nonlinear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-07-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.

  3. The Earthquake‐Source Inversion Validation (SIV) Project

    USGS Publications Warehouse

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  4. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  5. Dynamic data integration and stochastic inversion of a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Y.; Irsa, J.; Huang, H.; Wang, L.

    2013-12-01

    Much work has been done in developing and applying inverse methods to aquifer modeling. The scope of this paper is to investigate the applicability of a new direct method for large inversion problems and to incorporate uncertainty measures in the inversion outcomes (Wang et al., 2013). The problem considered is a two-dimensional inverse model (50×50 grid) of steady-state flow for a heterogeneous ground truth model (500×500 grid) with two hydrofacies. From the ground truth model, decreasing number of wells (12, 6, 3) were sampled for facies types, based on which experimental indicator histograms and directional variograms were computed. These parameters and models were used by Sequential Indicator Simulation to generate 100 realizations of hydrofacies patterns in a 100×100 (geostatistical) grid, which were conditioned to the facies measurements at wells. These realizations were smoothed with Simulated Annealing, coarsened to the 50×50 inverse grid, before they were conditioned with the direct method to the dynamic data, i.e., observed heads and groundwater fluxes at the same sampled wells. A set of realizations of estimated hydraulic conductivities (Ks), flow fields, and boundary conditions were created, which centered on the 'true' solutions from solving the ground truth model. Both hydrofacies conductivities were computed with an estimation accuracy of ×10% (12 wells), ×20% (6 wells), ×35% (3 wells) of the true values. For boundary condition estimation, the accuracy was within × 15% (12 wells), 30% (6 wells), and 50% (3 wells) of the true values. The inversion system of equations was solved with LSQR (Paige et al, 1982), for which coordinate transform and matrix scaling preprocessor were used to improve the condition number (CN) of the coefficient matrix. However, when the inverse grid was refined to 100×100, Gaussian Noise Perturbation was used to limit the growth of the CN before the matrix solve. To scale the inverse problem up (i.e., without smoothing and coarsening and therefore reducing the associated estimation uncertainty), a parallel LSQR solver was written and verified. For the 50×50 grid, the parallel solver sped up the serial solution time by 14X using 4 CPUs (research on parallel performance and scaling is ongoing). A sensitivity analysis was conducted to examine the relation between the observed data and the inversion outcomes, where measurement errors of increasing magnitudes (i.e., ×1, 2, 5, 10% of the total head variation and up to ×2% of the total flux variation) were imposed on the observed data. Inversion results were stable but the accuracy of Ks and boundary estimation degraded with increasing errors, as expected. In particular, quality of the observed heads is critical to hydraulic head recovery, while quality of the observed fluxes plays a dominant role in K estimation. References: Wang, D., Y. Zhang, J. Irsa, H. Huang, and L. Wang (2013), Data integration and stochastic inversion of a confined aquifer with high performance computing, Advances in Water Resources, in preparation. Paige, C. C., and M. A. Saunders (1982), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Transactions on Mathematical Software, 8(1), 43-71.

  6. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.

  7. FOREWORD: Special section on electromagnetic characterization of buried obstacles

    NASA Astrophysics Data System (ADS)

    Lesselier, Dominique; Chew, Weng Cho

    2004-12-01

    This Inverse Problems special section on electromagnetic characterization of buried obstacles contains a selection of 14 invited papers, involving 41 authors and 19 research groups worldwide. (Though this section consists of invited papers, the standard refereeing procedures of Inverse Problems have been rigorously observed.) We do not claim to have reached all the high-level researchers in the field, but we believe that we have made a fair attempt. As illustrated by the variety of contributions included, the aim of this special section is to address theoretical and practical inversion problems (and the solutions thereof) that arise in the field of electromagnetic characterization of obstacles (artificial or natural) buried on the Earth or in planetary subsoil. Civil and military engineering, archaeological and environmental issues are typically among those within the scope of the investigation. An example is the characterization of a single (or multiple) obstacle(s) located near the interface or at shallow depths via electromagnetic means operating within relevant frequency bands. However, we also welcomed novel and thought-provoking investigations, even though their direct application to the real world, or even to laboratory-controlled settings, may still be far off. Within this general mathematical and applied framework, the submitted papers focused on a combination of theoretical, computational and experimental developments. They either reviewed the most recent advances in a particular area of research or were an original and specialized contribution. Let us now take the opportunity to remind the readers that this special section harks back (in addition to sharing some common contributors) to two special sections already published in the journal which possessed the same flavour of wave-field inversion and its many applications. They were `Electromagnetic imaging and inversion of the Earth's subsurface', which was published in October 2000 (volume 16, issue 5), and was co-ordinated by the Guest Editors, D Lesselier and T Habashy, and comprised 14 invited papers; and `Electromagnetic and ultrasonic nondestructive evaluation', which was published in December 2002 (volume 18, issue 6), was organized by the Guest Editors, D Lesselier and J Bowler, and comprised 12 invited papers. In particular in the latter special section, it was noted in the foreword that: `Much of the research effort in NDE (nondestructive evaluation) is aligned with the interests of the broader community of scientists and engineers who study inverse problems and their applications in areas such as geophysics, medical imaging, remote sensing or underwater acoustics, to mention but a few. Indeed, many of the basic methods adopted for NDE including tomography, synthetic aperture techniques and iterative inversions, under many guises, are widely used in these other areas'. In a similar fashion, the foreword of the former special section noted that: `Many developments have been driven by several new applications and some old ones, such as mathematical physics, atmospheric sciences, geophysical prospecting, quantum mechanics, remote sensing, underwater acoustics, nondestructive testing and evaluation, medical imaging, to mention only a few'. One was confronted in these two previous special sections, as one is confronted today, with the same difficult endeavour: a signal resulting from the interrogation of an object embedded in some complicated medium by a probing radiation contains arcane, encoded information about this object. Inversion is the procedure by which this signal is transformed into some intelligible, decoded form in order to provide the user with some of this information. This could be estimates of locations, volumes, boundaries, shapes, values, and distributions of electromagnetic (elastic) constitutive parameters. This endeavour forces us to go from mathematical theory to numerical solution methods, to validation from laboratory-controlled data, to processing of real-world data, and back again. Unfortunately, we face critical configurations in practice. They require increasingly sophisticated models, which exhaust most of our computational resources—notably due to the three-dimensionally bounded objects in possibly vast and little known search zones. Furthermore, we have to reckon with vector fields and dyadic Green functions, complex behaviours of materials and often with severely incomplete and limited data. The latter limitation is a severe one and is pervasive in the specific situation of buried objects in layered media, upon which we focus in the special section. In brief, this means that the solution methods must not be reduced to incremental improvements over existing ones. They must be validated in-depth, have sound theoretical bases and knowledge of the peculiarities and of the limitations of the measurements. Naturally, this means that the technologically advanced sensors that are available nowadays, together with advanced computers, provide increasingly reliable data and powerful implementations of solution methods. But as yet they do not provide us with the solution itself. This is evident in the papers published today—they rely on rigorous analyses, clever insights and much labour. Also, it is necessary to solve first and often simultaneously (within iterative retrievals) a sequence of direct (forward) wave-field problems. This is needed to understand the interaction, determine key parameters, estimate which models best fit our inversion needs and acquire well-generated synthetic data for cost-effective preliminary testing of methods. The 14 papers in this special section should do justice to the above, overall if not every one individually. Ordered alphabetically, by the first author, the articles are as follows: • A Baussard, E L Miller and D Lesselier, in `Adaptive multiscale reconstruction of buried objects', seek to improve the speed and robustness of a nonlinear inversion (here limited to the case of two-dimensional objects in a half space) using a novel coarse-to-fine iterative strategy which involves a pyramid of B-splines of degree 3. In order to map the distribution of electromagnetic parameters sought, increasingly finer representations are progressively introduced in the areas of interest, i.e. those where the objects emerge from the background as the iterations go on. This was done following the testing of the improvement which such representations may or may not bring. • N V Budko and R F Remis, in `Electromagnetic inversion using a reduced-order three-dimensional homogeneous model', start from the idea of seeking an effective medium three-dimensional homogeneous scatterer which will be equivalent to the true one, with the assumption of a known target support. They then develop, and illustrate through a variety of numerical examples (including an inhomogeneous target), a model-based approach which involves the so-called Arnoldi decomposition and uses a reduced-order representation of the objective functional in order to avoid (in particular) the unusually high computational costs caused by repetitive solutions of the forward problem. This may have interesting applications in the low frequency limit. • X Chen, K O'Neill, B E Barrowes, T M Grzegorczyk and J A Kong, in `Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination', tackle the critical issue of the detection and characterization of unexploded ordnance in conflict and training zones, using low-frequency probing tools (working in the quasistatic regime) available in the field. They address both the case of spheroidal objects and that of complex objects possibly included within spheroidal surfaces, and compute the coefficients of spheroidal field expansions that are characteristic of their magnetic response. From a library of coefficients, fast forward models are employed within a differential evolution approach in order to reconstruct in an effective fashion pertinent features of actual ordnances as shown from synthetic and measured data. Then, the detection and characterization problem can be made much simpler than the inverse problem. • T J Cui, Y Qin, G-L Wang and W C Chew, in `Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations', develop a full range of higher and higher approximations (starting from the Born one and encompassing the extended Born one, and then pursue beyond them both in a recursive fashion) in order to avoid solving the fully nonlinear problem for large contrasts of the sought obstacles. Then they show how these developments can be employed for such types of objects in lossy media at low enough frequency, yielding reliable images at the moderate computational expense of tackling a properly regularized linear inverse problem and recursively using the high-order approximations thereupon. • A Dubois, K Belkebir and M Saillard, in `Localization and characterization of two-dimensional targets buried in a cluttered environment', counter the clutter problem (so far only in a two-dimensional setting) via a combination of a hybrid iterative minimization—reduced to a modified gradient or to a Newton-type algorithm—and of the DORT (decomposition of the time reversal operator) method—which currently enjoys a number of developments for electromagnetic detection and numbering of buried objects. This novel combination enables one to synthesize waves that are focused onto the scatterers, an appropriate DORT-related objective functional being added or multiplied to the standard one minimized along the course of the iterations. In so doing, strong clutter, which usually tends to shadow the targets and/or produce severe artifacts, is overcome to a suitable extent. • B Duchêne, A Joisel and M Lambert, in `Nonlinear inversions of immersed objects using laboratory-controlled data', discuss the inversion of laboratory data that emulate buried objects in the ocean and where the data are very limited and the environment is highly attenuative. The forward model is employed with an integral equation approach. The inverse scattering algorithm uses the level set method as well as a binary specialized contrast source method. Though computationally intensive these approaches are expected to be effective whenever linearization of the inversion fails. Two types of antennae were tested out in the experiment, a small one and a larger one. It is found, in particular, that the smaller antenna reproduces the modelled result better than the larger one. • X Feng and M Sato, in `Pre-stack migration applied to GPR for landmine detection', investigate the testing of a ground penetrating radar with synthetic aperture, acquiring mid-point multi-offset data in the demanding situations (strong clutter) of inhomogeneous soil and rough ground and/or of steeply oblique landmines. This is done in practice with experimental data, and is thoroughly illustrated by numerical experiments in the framework of migration techniques. These techniques are tailored to provide an approximate but robust solution to the highly involved three-dimensional vector wave-field inversion problem which is relevant here. • A Kirsch, in `The factorization method for Maxwell's equations', shows how the theory of the recently introduced and much considered factorization method can be developed in a sound theoretical fashion for the time-harmonic three-dimensional Maxwell system when far-field scattering patterns are known—by constructing a binary criterion which tells whether, if a given point lies inside or outside an unknown obstacle, the shape of which is to be retrieved. The vector nature of the electromagnetic field is fully considered in this paper. This is investigated in depth both for a lossy obstacle (with lower-bounded imaginary part of the dielectric permittivity) and for a lossless one (albeit with smoothly varying dielectric permittivity). Useful comparisons with the linear sampling method are also made in the conclusion. • A Massa, M Pastorino and A Randazzo, in `Reconstruction of two-dimensional buried objects by a differential evolution method', cast the nonlinear inversion problem into the form of a global optimization problem. They combine properly weighted state (coupling) and data (observation) residuals and solve the problem by means of the differential evolution algorithm. Though limited at this stage to a two-dimensional setting and scalar fields, and to a limited exploration zone in space, the applicability of the procedure strongly relies on an appropriate strategy to construct trial solutions at low computational cost. Ways to achieve this strategy are studied and illustrated by the authors. • G A Newman and P T Boggs, in `Solution accelerators for large scale three-dimensional electromagnetic inverse problems', are interested in the solution of full vector three-dimensional inversion problems which involve a large number of unknowns, such as for monitoring oil recovery at diffusive frequencies. Much relies on properly preconditioning—an approximate Hessian was introduced to that effect via the solution of an approximate adjoint problem. They then propose two solution algorithms, known as the nonlinear conjugate gradient and the limited-memory quasi-Newton, and investigate their behaviour both in theory and via numerical experiments that are closely inspired by real-world applications. • L-P Song and Q H Liu, in `Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation', introduce within a full vector three-dimensional setting a source-dependent diagonal scattering tensor which leads them to a modelling method with a wider range of validity than the existing extended Born and other similar approaches. Then they show the efficiency of their model for electromagnetic imaging via an iterative inversion which involves carefully tuned regularization factors that are functions of the Fréchet sensitivity matrix. • G L Wang, W C Chew, T J Cui, A A Aydiner, D L Wright and D V Smith, in `3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method', are preoccupied by the deciphering of data provided by the very early time electromagnetic (VETEM) system in the kHz to MHz range in order to reconstruct conductive structures in subsoils. A fast direct solver is introduced and used in the iterative reconstruction with a properly chosen regularization parameter. Yet this remains computationally expensive, as the authors illustrate. Through examples drawn from synthetic and real-world data, they retrieve the conductivity map of the search zone as a combination of sub-maps found separately, demonstrating its usefulness. • Y Yu, B Krishnapuram and L Carin, in `Inverse scattering with sparse Bayesian vector regression', develop on strong Bayesian foundations and statistical learning, a regression-based method in a vector framework (the sought parameters are in vector form), which preserves sparsity (only the most relevant examples from the training set are employed) and is appropriate for on-line decisions since here, in particular, all forward calculations are carried out beforehand. Once trained using synthetic and measured data, they apply the method to the retrieval of cubical targets buried in soil which are equivalent to the actual target. • M S Zhdanov and A Chernyavskiy, in `Rapid three-dimensional inversion of multi-transmitter electromagnetic data using the spectral Lanczos decomposition method', work out a spectral Lanczos decomposition method in order to apply it to vector three-dimensional inversion (with present-day applications to mining exploration from helicopter-borne data along prescribed flight lines) using the localized quasilinear inversion previously introduced in the literature. This decomposition method has the advantage of providing a regularized solution for all values of the regularization parameter (which weighs in a data error and a model error, the latter with respect to some priors) at once. Synthetic and real data are shown to be amenable to useful retrievals in complex geological environments. To conclude, we would like to thank all those involved in the preparation of this special section at the Institute of Physics for their dedicated work, and to thank all referees (there were many of them) for their thorough and timely reviews of the papers, which was not an easy task in view of the constraints we put on them and of the technical complexity of many of the contributions. Special thanks should go to the Publisher, Elaine Longden-Chapman, and the Publishing Administrator, Kate Hooper, without whom none of this could have been done and, in particular, no deadlines met! The Editor-in-Chief, F A Grünbaum, and all the members of the Editorial Board, gave us the great opportunity to organize this section, and they should be thanked again for their kind support. The last word of this introduction should, however, go out to the reader. We hope that he/she will appreciate the in-depth analysis of the electromagnetic retrieval of buried obstacles presented in the contributions of the special section, the variety of challenging issues dealt within and the cleverness of many of the solution methods proposed and investigated. We also know that many contributions will require from the reader a good level of multi-disciplinary expertise and sometimes quite considerable labour to get into the intricacies of the authors' analyses. And, to tell the truth, we have often found ourselves, as Guest Editors, on the verge of also being overwhelmed by the vast amount of knowledge required to understand and judge those intricacies. Ultimately, however, what should matter most now this special section is published is that some good light has been shed on many open and critical issues in the theoretical and applied field of electromagnetic inversion of buried obstacles. This is, in our opinion, very stimulating for those who are interested in this domain and who understand its relevance to many technical fields, as well as the integration of and synergy between such fields required to achieve a reliable result.

  8. Determination of photophysical parameters of chlorophyll {alpha} in photosynthetic organisms using the method of nonlinear laser fluorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gostev, T S; Fadeev, V V

    2011-05-31

    We study the possibility of solving the multiparameter inverse problem of nonlinear laser fluorimetry of molecular systems with high local concentration of fluorophores (by the example of chlorophyll {alpha} molecules in photosynthetic organisms). The algorithms are proposed that allow determination of up to four photophysical parameters of chlorophyll {alpha} from the experimental fluorescence saturation curves. The uniqueness and stability of the inverse problem solution obtained using the proposed algorithms were assessed numerically. The laser spectrometer, designed in the course of carrying out the work and aimed at nonlinear laser fluorimetry in the quasi-stationary and nonstationary excitation regimes is described. Themore » algorithms, proposed in this paper, are tested on pure cultures of microalgae Chlorella pyrenoidosa and Chlamydomonas reinhardtii under different functional conditions. (optical technologies in biophysics and medicine)« less

  9. An inverse problem for a mathematical model of aquaponic agriculture

    NASA Astrophysics Data System (ADS)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  10. A comparison of discrete versus continuous adjoint states to invert groundwater flow in heterogeneous dual porosity systems

    NASA Astrophysics Data System (ADS)

    Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe

    2017-12-01

    Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.

  11. Solution of the symmetric eigenproblem AX=lambda BX by delayed division

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Bains, N. J. C.

    1986-01-01

    Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.

  12. Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2016-09-01

    It is shown that finding the equivalence set for solving multiobjective discrete optimization problems is advantageous over finding the set of Pareto optimal decisions. An example of a set of key parameters characterizing the economic efficiency of a commercial firm is proposed, and a mathematical model of its activities is constructed. In contrast to the classical problem of finding the maximum profit for any business, this study deals with a multiobjective optimization problem. A method for solving inverse multiobjective problems in a multidimensional pseudometric space is proposed for finding the best project of firm's activities. The solution of a particular problem of this type is presented.

  13. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  14. Lax Integrability and the Peakon Problem for the Modified Camassa-Holm Equation

    NASA Astrophysics Data System (ADS)

    Chang, Xiangke; Szmigielski, Jacek

    2018-02-01

    Peakons are special weak solutions of a class of nonlinear partial differential equations modelling non-linear phenomena such as the breakdown of regularity and the onset of shocks. We show that the natural concept of weak solutions in the case of the modified Camassa-Holm equation studied in this paper is dictated by the distributional compatibility of its Lax pair and, as a result, it differs from the one proposed and used in the literature based on the concept of weak solutions used for equations of the Burgers type. Subsequently, we give a complete construction of peakon solutions satisfying the modified Camassa-Holm equation in the sense of distributions; our approach is based on solving certain inverse boundary value problem, the solution of which hinges on a combination of classical techniques of analysis involving Stieltjes' continued fractions and multi-point Padé approximations. We propose sufficient conditions needed to ensure the global existence of peakon solutions and analyze the large time asymptotic behaviour whose special features include a formation of pairs of peakons that share asymptotic speeds, as well as Toda-like sorting property.

  15. Geomagnetic inverse problem and data assimilation: a progress report

    NASA Astrophysics Data System (ADS)

    Aubert, Julien; Fournier, Alexandre

    2013-04-01

    In this presentation I will present two studies recently undertaken by our group in an effort to bring the benefits of data assimilation to the study of Earth's magnetic field and the dynamics of its liquid iron core, where the geodynamo operates. In a first part I will focus on the geomagnetic inverse problem, which attempts to recover the fluid flow in the core from the temporal variation of the magnetic field (known as the secular variation). Geomagnetic data can be downward continued from the surface of the Earth down to the core-mantle boundary, but not further below, since the core is an electrical conductor. Historically, solutions to the geomagnetic inverse problem in such a sparsely observed system were thus found only for flow immediately below the core mantle boundary. We have recently shown that combining a numerical model of the geodynamo together with magnetic observations, through the use of Kalman filtering, now allows to present solutions for flow throughout the core. In a second part, I will present synthetic tests of sequential geomagnetic data assimilation aiming at evaluating the range at which the future of the geodynamo can be predicted, and our corresponding prospects to refine the current geomagnetic predictions. Fournier, Aubert, Thébault: Inference on core surface flow from observations and 3-D dynamo modelling, Geophys. J. Int. 186, 118-136, 2011, doi: 10.1111/j.1365-246X.2011.05037.x Aubert, Fournier: Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model, Nonlinear Proc. Geoph. 18, 657-674, 2011, doi:10.5194/npg-18-657-2011 Aubert: Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models, Geophys. J. Int., 2012, doi: 10.1093/gji/ggs051

  16. Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Mirza; Kirkeby, Adrian; Knudsen, Kim

    2018-06-01

    We consider the multi-frequency inverse source problem for the scalar Helmholtz equation in the plane. The goal is to reconstruct the source term in the equation from measurements of the solution on a surface outside the support of the source. We study the problem in a certain finite dimensional setting: from measurements made at a finite set of frequencies we uniquely determine and reconstruct sources in a subspace spanned by finitely many Fourier–Bessel functions. Further, we obtain a constructive criterion for identifying a minimal set of measurement frequencies sufficient for reconstruction, and under an additional, mild assumption, the reconstruction method is shown to be stable. Our analysis is based on a singular value decomposition of the source-to-measurement forward operators and the distribution of positive zeros of the Bessel functions of the first kind. The reconstruction method is implemented numerically and our theoretical findings are supported by numerical experiments.

  17. The point-spread function measure of resolution for the 3-D electrical resistivity experiment

    NASA Astrophysics Data System (ADS)

    Oldenborger, Greg A.; Routh, Partha S.

    2009-02-01

    The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.

  18. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS

    NASA Astrophysics Data System (ADS)

    Rana, Sachin; Ertekin, Turgay; King, Gregory R.

    2018-05-01

    Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.

  19. Minimizing EIT image artefacts from mesh variability in finite element models.

    PubMed

    Adler, Andy; Lionheart, William R B

    2011-07-01

    Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.

  20. Are two plasma equilibrium states possible when the emission coefficient exceeds unity?

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-05-01

    Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a "space-charge limited" (SCL) sheath and an "inverse" sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different ways when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's "dip" forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.

  1. The short pulse equation by a Riemann-Hilbert approach

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech

    2017-07-01

    We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.

  2. The Natural-CCD Algorithm, a Novel Method to Solve the Inverse Kinematics of Hyper-redundant and Soft Robots.

    PubMed

    Martín, Andrés; Barrientos, Antonio; Del Cerro, Jaime

    2018-03-22

    This article presents a new method to solve the inverse kinematics problem of hyper-redundant and soft manipulators. From an engineering perspective, this kind of robots are underdetermined systems. Therefore, they exhibit an infinite number of solutions for the inverse kinematics problem, and to choose the best one can be a great challenge. A new algorithm based on the cyclic coordinate descent (CCD) and named as natural-CCD is proposed to solve this issue. It takes its name as a result of generating very harmonious robot movements and trajectories that also appear in nature, such as the golden spiral. In addition, it has been applied to perform continuous trajectories, to develop whole-body movements, to analyze motion planning in complex environments, and to study fault tolerance, even for both prismatic and rotational joints. The proposed algorithm is very simple, precise, and computationally efficient. It works for robots either in two or three spatial dimensions and handles a large amount of degrees-of-freedom. Because of this, it is aimed to break down barriers between discrete hyper-redundant and continuum soft robots.

  3. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.

    PubMed

    Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C

    2015-05-13

    This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length.

  4. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  5. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  6. A Markov Chain Monte Carlo Inversion Approach For Inverting InSAR Data With Application To Subsurface CO2 Injection

    NASA Astrophysics Data System (ADS)

    Ramirez, A. L.; Foxall, W.

    2011-12-01

    Surface displacements caused by reservoir pressure perturbations resulting from CO2 injection can often be measured by geodetic methods such as InSAR, tilt and GPS. We have developed a Markov Chain Monte Carlo (MCMC) approach to invert surface displacements measured by InSAR to map the pressure distribution associated with CO2 injection at the In Salah Krechba field, Algeria. The MCMC inversion entails sampling the solution space by proposing a series of trial 3D pressure-plume models. In the case of In Salah, the range of allowable models is constrained by prior information provided by well and geophysical data for the reservoir and possible fluid pathways in the overburden, and injection pressures and volumes. Each trial pressure distribution source is run through a (mathematical) forward model to calculate a set of synthetic surface deformation data. The likelihood that a particular proposal represents the true source is determined from the fit of the calculated data to the InSAR measurements, and those having higher likelihoods are passed to the posterior distribution. This procedure is repeated over typically ~104 - 105 trials until the posterior distribution converges to a stable solution. The solution to each stochastic inversion is in the form of Bayesian posterior probability density function (pdf) over the range of the alternative models that are consistent with the measured data and prior information. Therefore, the solution provides not only the highest likelihood model but also a realistic estimate of the solution uncertainty. Our InSalah work considered three flow model alternatives: 1) The first model assumed that the CO2 saturation and fluid pressure changes were confined to the reservoir; 2) the second model allowed the perturbations to occur also in a damage zone inferred in the lower caprock from 3D seismic surveys; and 3) the third model allowed fluid pressure changes anywhere within the reservoir and overburden. Alternative (2) yielded optimal fits to the data in inversions of InSAR data collected in 2007. The results indicate that pressure changes developed near the injection well and then penetrated into the lower caprock along the postulated damage zone. As in many geophysical inverse problems, inversion of surface displacement data for subsurface sources of deformation is inherently uncertain and non-unique. We will also discuss the approach used to characterize solution uncertainty. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Inversion of potential field data using the finite element method on parallel computers

    NASA Astrophysics Data System (ADS)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  8. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  9. Implementing wavelet inverse-transform processor with surface acoustic wave device.

    PubMed

    Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan

    2013-02-01

    The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Bayesian inversion of refraction seismic traveltime data

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test for a synthetic data set from a known model is also presented.

  11. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  12. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  13. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun

    2017-12-01

    At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.

  14. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  15. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleinikov, A. I., E-mail: a.i.oleinikov@mail.ru; Bormotin, K. S., E-mail: cvmi@knastu.ru

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendousmore » challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.« less

  17. On decoupling of volatility smile and term structure in inverse option pricing

    NASA Astrophysics Data System (ADS)

    Egger, Herbert; Hein, Torsten; Hofmann, Bernd

    2006-08-01

    Correct pricing of options and other financial derivatives is of great importance to financial markets and one of the key subjects of mathematical finance. Usually, parameters specifying the underlying stochastic model are not directly observable, but have to be determined indirectly from observable quantities. The identification of local volatility surfaces from market data of European vanilla options is one very important example of this type. As with many other parameter identification problems, the reconstruction of local volatility surfaces is ill-posed, and reasonable results can only be achieved via regularization methods. Moreover, due to the sparsity of data, the local volatility is not uniquely determined, but depends strongly on the kind of regularization norm used and a good a priori guess for the parameter. By assuming a multiplicative structure for the local volatility, which is motivated by the specific data situation, the inverse problem can be decomposed into two separate sub-problems. This removes part of the non-uniqueness and allows us to establish convergence and convergence rates under weak assumptions. Additionally, a numerical solution of the two sub-problems is much cheaper than that of the overall identification problem. The theoretical results are illustrated by numerical tests.

  18. 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids

    NASA Astrophysics Data System (ADS)

    Jahandari, H.; Farquharson, C. G.

    2017-11-01

    Unstructured grids enable representing arbitrary structures more accurately and with fewer cells compared to regular structured grids. These grids also allow more efficient refinements compared to rectilinear meshes. In this study, tetrahedral grids are used for the inversion of magnetotelluric (MT) data, which allows for the direct inclusion of topography in the model, for constraining an inversion using a wireframe-based geological model and for local refinement at the observation stations. A minimum-structure method with an iterative model-space Gauss-Newton algorithm for optimization is used. An iterative solver is employed for solving the normal system of equations at each Gauss-Newton step and the sensitivity matrix-vector products that are required by this solver are calculated using pseudo-forward problems. This method alleviates the need to explicitly form the Hessian or Jacobian matrices which significantly reduces the required computation memory. Forward problems are formulated using an edge-based finite-element approach and a sparse direct solver is used for the solutions. This solver allows saving and re-using the factorization of matrices for similar pseudo-forward problems within a Gauss-Newton iteration which greatly minimizes the computation time. Two examples are presented to show the capability of the algorithm: the first example uses a benchmark model while the second example represents a realistic geological setting with topography and a sulphide deposit. The data that are inverted are the full-tensor impedance and the magnetic transfer function vector. The inversions sufficiently recovered the models and reproduced the data, which shows the effectiveness of unstructured grids for complex and realistic MT inversion scenarios. The first example is also used to demonstrate the computational efficiency of the presented model-space method by comparison with its data-space counterpart.

  19. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less

  20. Remote sensing of phytoplankton chlorophyll-a concentration by use of ridge function fields.

    PubMed

    Pelletier, Bruno; Frouin, Robert

    2006-02-01

    A methodology is presented for retrieving phytoplankton chlorophyll-a concentration from space. The data to be inverted, namely, vectors of top-of-atmosphere reflectance in the solar spectrum, are treated as explanatory variables conditioned by angular geometry. This approach leads to a continuum of inverse problems, i.e., a collection of similar inverse problems continuously indexed by the angular variables. The resolution of the continuum of inverse problems is studied from the least-squares viewpoint and yields a solution expressed as a function field over the set of permitted values for the angular variables, i.e., a map defined on that set and valued in a subspace of a function space. The function fields of interest, for reasons of approximation theory, are those valued in nested sequences of subspaces, such as ridge function approximation spaces, the union of which is dense. Ridge function fields constructed on synthetic yet realistic data for case I waters handle well situations of both weakly and strongly absorbing aerosols, and they are robust to noise, showing improvement in accuracy compared with classic inversion techniques. The methodology is applied to actual imagery from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS); noise in the data are taken into account. The chlorophyll-a concentration obtained with the function field methodology differs from that obtained by use of the standard SeaWiFS algorithm by 15.7% on average. The results empirically validate the underlying hypothesis that the inversion is solved in a least-squares sense. They also show that large levels of noise can be managed if the noise distribution is known or estimated.

Top