Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
A fixed energy fixed angle inverse scattering in interior transmission problem
NASA Astrophysics Data System (ADS)
Chen, Lung-Hui
2017-06-01
We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.
2018-01-01
In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.
Numerical solution of inverse scattering for near-field optics.
Bao, Gang; Li, Peijun
2007-06-01
A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.
Hesford, Andrew J.; Chew, Weng C.
2010-01-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
NASA Astrophysics Data System (ADS)
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
Nonlinear Waves and Inverse Scattering
1990-09-18
to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the
Inverse problems and coherence
NASA Astrophysics Data System (ADS)
Baltes, H. P.; Ferwerda, H. A.
1981-03-01
A summary of current inverse problems of statistical optics is presented together with a short guide to the pertinent review-type literature. The retrieval of structural information from the far-zone degree of coherence and the average intensity distribution of radiation scattered by a superposition of random and periodic scatterers is discussed.
The Toda lattice as a forced integrable system
NASA Technical Reports Server (NTRS)
Hansen, P. J.; Kaup, D. J.
1985-01-01
The analytic properties of the Jost functions for the inverse scattering transform associated with the forced Toda lattice are shown to determine the time evolution of this particular boundary value problem. It is suggested that inverse scattering methods may be used generally to analyze forced integrable systems. Thus an extension of the applicability of the inverse scattering transform is indicated.
2011-06-01
in giving us of a copy of his habilitation thesis, without which this article would not have been possible. We also thank Prof. Karsten Eppler for...John Wiley & Sons, 1983. [19] Andreas Kirsch. Generalized boundary value- and control problems for the Helmholtz equation. Habilitation thesis, 1984
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
Louis, A. K.
2006-01-01
Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
The importance of coherence in inverse problems in optics
NASA Astrophysics Data System (ADS)
Ferwerda, H. A.; Baltes, H. P.; Glass, A. S.; Steinle, B.
1981-12-01
Current inverse problems of statistical optics are presented with a guide to relevant literature. The inverse problems are categorized into four groups, and the Van Cittert-Zernike theorem and its generalization are discussed. The retrieval of structural information from the far-zone degree of coherence and the time-averaged intensity distribution of radiation scattered by a superposition of random and periodic scatterers are also discussed. In addition, formulas for the calculation of far-zone properties are derived within the framework of scalar optics, and results are applied to two examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less
NASA Astrophysics Data System (ADS)
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
A multiwave range test for obstacle reconstructions with unknown physical properties
NASA Astrophysics Data System (ADS)
Potthast, Roland; Schulz, Jochen
2007-08-01
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Forward and inverse models of electromagnetic scattering from layered media with rough interfaces
NASA Astrophysics Data System (ADS)
Tabatabaeenejad, Seyed Alireza
This work addresses the problem of electromagnetic scattering from layered dielectric structures with rough boundaries and the associated inverse problem of retrieving the subsurface parameters of the structure using the scattered field. To this end, a forward scattering model based on the Small Perturbation Method (SPM) is developed to calculate the first-order spectral-domain bistatic scattering coefficients of a two-layer rough surface structure. SPM requires the boundaries to be slightly rough compared to the wavelength, but to understand the range of applicability of this method in scattering from two-layer rough surfaces, its region of validity is investigated by comparing its output with that of a first principle solver that does not impose roughness restrictions. The Method of Moments (MoM) is used for this purpose. Finally, for retrieval of the model parameters of the layered structure using scattered field, an inversion scheme based on the Simulated Annealing method is investigated and a strategy is proposed to address convergence to local minimum.
Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2017-07-01
MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.
NASA Astrophysics Data System (ADS)
Wyatt, Philip
2009-03-01
The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
Inverse random source scattering for the Helmholtz equation in inhomogeneous media
NASA Astrophysics Data System (ADS)
Li, Ming; Chen, Chuchu; Li, Peijun
2018-01-01
This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
Angle-domain inverse scattering migration/inversion in isotropic media
NASA Astrophysics Data System (ADS)
Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan
2018-07-01
The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2014-06-01
A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
Kouri, Donald J [Houston, TX; Vijay, Amrendra [Houston, TX; Zhang, Haiyan [Houston, TX; Zhang, Jingfeng [Houston, TX; Hoffman, David K [Ames, IA
2007-05-01
A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.
NASA Astrophysics Data System (ADS)
Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.
2018-04-01
The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.
A microwave tomography strategy for structural monitoring
NASA Astrophysics Data System (ADS)
Catapano, I.; Crocco, L.; Isernia, T.
2009-04-01
The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a cost functional. In particular, a local minimization scheme is exploited and a pre-processing step, devoted to preliminary asses the location and the shape of the anomalies, is exploited. The effectiveness of the proposed strategy has been preliminary assessed by means of numerical examples concerning the diagnostic of masonry structures, which will be shown in the Conference. [1] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, Subsurface inverse scattering problems: Quantifying, qualifying and achieving the available information, IEEE Trans. Geosci. Remote Sens., 39(5), 2527-2538, 2001. [2] R. Persico, R. Bernini, and F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the distorted Born approximation," IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 1875-1887, Jun. 2005. [3] I. Catapano, L. Crocco, M. D'Urso, T. Isernia, "On the Effect of Support Estimation and of a New Model in 2-D Inverse Scattering Problems," IEEE Trans. Antennas Propagat., vol.55, no.6, pp.1895-1899, 2007. [4] M. D'Urso, I. Catapano, L. Crocco and T. Isernia, Effective solution of 3D scattering problems via series expansions: applicability and a new hybrid scheme, IEEE Trans. On Geosci. Remote Sens., vol.45, no.3, pp. 639-648, 2007.
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
Reconstruction of local perturbations in periodic surfaces
NASA Astrophysics Data System (ADS)
Lechleiter, Armin; Zhang, Ruming
2018-03-01
This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.
A Literature Survey on Inverse Scattering for Electron Density Profile Determination. Volume II.
1981-09-24
THE INVERSE SCATTERING PROBLEM4 FOR THE EQUAT ION Of ACOUSTIC$ AVILA, G.S.S. DEPT. DE MATEMATICA . INST. DE CIENCIAS EXATAS. UNIV. Of BRASILIA...of Colict support Portinari. Joao C. Departamento do Matematica . Pontificia Universidade Catolica do Rio de Janeiro, Rio do Janeiro. Brasil J. Math
Bayesian parameter estimation in spectral quantitative photoacoustic tomography
NASA Astrophysics Data System (ADS)
Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja
2016-03-01
Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.
Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.
Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y
1999-04-20
A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].
Numerical Inverse Scattering for the Toda Lattice
NASA Astrophysics Data System (ADS)
Bilman, Deniz; Trogdon, Thomas
2017-06-01
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.
Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
NASA Astrophysics Data System (ADS)
Alazzawi, Sabina; Lechner, Gandalf
2017-09-01
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.
Inverse scattering approach to improving pattern recognition
NASA Astrophysics Data System (ADS)
Chapline, George; Fu, Chi-Yung
2005-05-01
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Inverse Scattering Approach to Improving Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
NASA Astrophysics Data System (ADS)
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
Nonlinear Problems in Fluid Dynamics and Inverse Scattering
1993-05-31
nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear
Mature red blood cells: from optical model to inverse light-scattering problem.
Gilev, Konstantin V; Yurkin, Maxim A; Chernyshova, Ekaterina S; Strokotov, Dmitry I; Chernyshev, Andrei V; Maltsev, Valeri P
2016-04-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.
Mature red blood cells: from optical model to inverse light-scattering problem
Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.
2016-01-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656
NASA Astrophysics Data System (ADS)
Voznyuk, I.; Litman, A.; Tortel, H.
2015-08-01
A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.
Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion
NASA Astrophysics Data System (ADS)
Jakobsen, M.; Wu, R. S.
2016-12-01
Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.
2012-08-01
small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately...implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This...probability distribution is given by the inverse of the Hessian of the negative log likelihood function. For Gaussian data noise and model error, this
NASA Astrophysics Data System (ADS)
Entekhabi, Mozhgan Nora; Isakov, Victor
2018-05-01
In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.
Connection of Scattering Principles: A Visual and Mathematical Tour
ERIC Educational Resources Information Center
Broggini, Filippo; Snieder, Roel
2012-01-01
Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…
NASA Astrophysics Data System (ADS)
Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele
2008-11-01
Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.
NASA Astrophysics Data System (ADS)
Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui
2017-09-01
We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.
Inverse Problems in Hydrologic Radiative Transfer
2003-09-30
Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454...coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438⎯1454. G.C. Boynton and H.R. Gordon, 2002, An irradiance inversion
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
Dependence of the forward light scattering on the refractive index of particles
NASA Astrophysics Data System (ADS)
Guo, Lufang; Shen, Jianqi
2018-05-01
In particle sizing technique based on forward light scattering, the scattered light signal (SLS) is closely related to the relative refractive index (RRI) of the particles to the surrounding, especially when the particles are transparent (or weakly absorbent) and the particles are small in size. The interference between the diffraction (Diff) and the multiple internal reflections (MIR) of scattered light can lead to the oscillation of the SLS on RRI and the abnormal intervals, especially for narrowly-distributed small particle systems. This makes the inverse problem more difficult. In order to improve the inverse results, Tikhonov regularization algorithm with B-spline functions is proposed, in which the matrix element is calculated for a range of particle sizes instead using the mean particle diameter of size fractions. In this way, the influence of abnormal intervals on the inverse results can be eliminated. In addition, for measurements on narrowly distributed small particles, it is suggested to detect the SLS in a wider scattering angle to include more information.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
Interface with weakly singular points always scatter
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Guanghui; Yang, Jiansheng
2018-07-01
Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly singular point, we prove that the scattered field cannot vanish identically. This implies the absence of non-scattering energies for piecewise analytic interfaces with one singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
NASA Astrophysics Data System (ADS)
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
Globally Convergent Numerical Methods for Coefficient Inverse Problems
2008-09-23
backgrounds. Probing radiations are usually thought as electric and acoustic waves for the first two applications and light originated by lasers in...fundamental laws of physics. Electric , acoustic or light scattering properties of both unknown targets and the backgrounds are described by coefficients of...with the back-reflected data here, Army applications are quite feasible. The 2-D inverse problem of the determination of the unknown electric
1990-01-01
J. Laurie Snell S. A. Amitsur, D. J. Saltman, and 2 Proceedings of the conference on G. B. Seligman , Editors integration, topology, and geometry in...Rational constructions of modules 17 Nonlinear partial differential equations. for simple Lie algebras, George B. Joel A. Smoller, Editor Seligman 18...number theory, Michael R. Stein and Linda Keen, Editor R. Keith Dennis, Editors 65 Logic and combinatorics, Stephen G. 84 Partition problems in
Inverse scattering in 1-D nonhomogeneous media and recovery of the wave speed
NASA Astrophysics Data System (ADS)
Aktosun, Tuncay; Klaus, Martin; van der Mee, Cornelis
1992-04-01
The inverse scattering problem for the 1-D Schrödinger equation d2ψ/dx2 + k2ψ= k2P(x)ψ + Q(x)ψ is studied. This equation is equivalent to the 1-D wave equation with speed 1/√1-P(x) in a nonhomogeneous medium where Q(x) acts as a restoring force. When Q(x) is integrable with a finite first moment, P(x)<1 and bounded below and satisfies two integrability conditions, P(x) is recovered uniquely when the scattering data and Q(x) are known. Some explicitly solved examples are provided.
Multistatic aerosol-cloud lidar in space: A theoretical perspective
NASA Astrophysics Data System (ADS)
Mishchenko, M. I.; Alexandrov, M. D.; Brian, C.; Travis, L. D.
2016-12-01
Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.
Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.
2016-01-01
Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.
Recently Developed Formulations of the Inverse Problem in Acoustics and Electromagnetics
1974-12-01
solution for scattering by a sphere. The inverse transform of irs?(K) is calculated, this function yielding --y (x). Figure 4.2 is a graph of this...time or decays "sufficiently rapidly", then T+- o. In this case, we may let T -1 in (8.9) and obtain the inverse transform (k = w/c) of (5.6) as the
Application of Dynamic Logic Algorithm to Inverse Scattering Problems Related to Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Perlovsky, L.; Deming, R. W.; Sotnikov, V.
2010-11-01
In plasma diagnostics scattering of electromagnetic waves is widely used for identification of density and wave field perturbations. In the present work we use a powerful mathematical approach, dynamic logic (DL), to identify the spectra of scattered electromagnetic (EM) waves produced by the interaction of the incident EM wave with a Langmuir soliton in the presence of noise. The problem is especially difficult since the spectral amplitudes of the noise pattern are comparable with the amplitudes of the scattered waves. In the past DL has been applied to a number of complex problems in artificial intelligence, pattern recognition, and signal processing, resulting in revolutionary improvements. Here we demonstrate its application to plasma diagnostic problems. [4pt] Perlovsky, L.I., 2001. Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY.
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Migration of scattered teleseismic body waves
NASA Astrophysics Data System (ADS)
Bostock, M. G.; Rondenay, S.
1999-06-01
The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Indoor detection of passive targets recast as an inverse scattering problem
NASA Astrophysics Data System (ADS)
Gottardi, G.; Moriyama, T.
2017-10-01
The wireless local area networks represent an alternative to custom sensors and dedicated surveillance systems for target indoor detection. The availability of the channel state information has opened the exploitation of the spatial and frequency diversity given by the orthogonal frequency division multiplexing. Such a fine-grained information can be used to solve the detection problem as an inverse scattering problem. The goal of the detection is to reconstruct the properties of the investigation domain, namely to estimate if the domain is empty or occupied by targets, starting from the measurement of the electromagnetic perturbation of the wireless channel. An innovative inversion strategy exploiting both the frequency and the spatial diversity of the channel state information is proposed. The target-dependent features are identified combining the Kruskal-Wallis test and the principal component analysis. The experimental validation points out the detection performance of the proposed method when applied to an existing wireless link of a WiFi architecture deployed in a real indoor scenario. False detection rates lower than 2 [%] have been obtained.
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
NASA Astrophysics Data System (ADS)
Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong
2018-05-01
In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.
On the Forward Scattering of Microwave Breast Imaging
Lui, Hoi-Shun; Fhager, Andreas; Persson, Mikael
2012-01-01
Microwave imaging for breast cancer detection has been of significant interest for the last two decades. Recent studies focus on solving the imaging problem using an inverse scattering approach. Efforts have mainly been focused on the development of the inverse scattering algorithms, experimental setup, antenna design and clinical trials. However, the success of microwave breast imaging also heavily relies on the quality of the forward data such that the tumor inside the breast volume is well illuminated. In this work, a numerical study of the forward scattering data is conducted. The scattering behavior of simple breast models under different polarization states and aspect angles of illumination are considered. Numerical results have demonstrated that better data contrast could be obtained when the breast volume is illuminated using cross-polarized components in linear polarization basis or the copolarized components in the circular polarization basis. PMID:22611371
NASA Astrophysics Data System (ADS)
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, T.; Jakubczyk, D.; Archer, J.; Woźniak, M.
2017-07-01
Utilising Compute Unified Device Architecture (CUDA) platform for Graphics Processing Units (GPUs) enables significant reduction of computation time at a moderate cost, by means of parallel computing. In the paper [Jakubczyk et al., Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse problem solving (up to 800-fold speed-up). Here we report the development of two subroutines utilising GPU at data preprocessing stages for the inversion procedure: (i) A subroutine, based on ray tracing, for finding spherical aberration correction function. (ii) A subroutine performing the conversion of an image to a 1D distribution of light intensity versus azimuth angle (i.e. scattering diagram), fed from a movie-reading CPU subroutine running in parallel. All subroutines are incorporated in PikeReader application, which we make available on GitHub repository. PikeReader returns a sequence of intensity distributions versus a common azimuth angle vector, corresponding to the recorded movie. We obtained an overall ∼ 400 -fold speed-up of calculations at data preprocessing stages using CUDA codes running on GPU in comparison to single thread MATLAB-only code running on CPU.
The Cauchy problem for the Pavlov equation
NASA Astrophysics Data System (ADS)
Grinevich, P. G.; Santini, P. M.; Wu, D.
2015-10-01
Commutation of multidimensional vector fields leads to integrable nonlinear dispersionless PDEs that arise in various problems of mathematical physics and have been intensively studied in recent literature. This report aims to solve the scattering and inverse scattering problem for integrable dispersionless PDEs, recently introduced just at a formal level, concentrating on the prototypical example of the Pavlov equation, and to justify an existence theorem for global bounded solutions of the associated Cauchy problem with small data. An essential part of this work was made during the visit of the three authors to the Centro Internacional de Ciencias in Cuernavaca, Mexico in November-December 2012.
Calculations of Total Classical Cross Sections for a Central Field
NASA Astrophysics Data System (ADS)
Tsyganov, D. L.
2018-07-01
In order to find the total collision cross-section a direct method of the effective potential (EPM) in the framework of classical mechanics was proposed. EPM allows to over come both the direct scattering problem (calculation of the total collision cross-section) and the inverse scattering problem (reconstruction of the scattering potential) quickly and effectively. A general analytical expression was proposed for the generalized Lennard-Jones potentials: (6-3), (9-3), (12-3), (6-4), (8-4), (12-4), (8-6), (12-6), (18-6). The values for the scattering potential of the total cross section for pairs such as electron-N2, N-N, and O-O2 were obtained in a good approximation.
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
NASA Astrophysics Data System (ADS)
Audibert, Lorenzo; Cakoni, Fioralba; Haddar, Houssem
2017-12-01
In this paper we develop a general mathematical framework to determine interior eigenvalues from a knowledge of the modified far field operator associated with an unknown (anisotropic) inhomogeneity. The modified far field operator is obtained by subtracting from the measured far field operator the computed far field operator corresponding to a well-posed scattering problem depending on one (possibly complex) parameter. Injectivity of this modified far field operator is related to an appropriate eigenvalue problem whose eigenvalues can be determined from the scattering data, and thus can be used to obtain information about material properties of the unknown inhomogeneity. We discuss here two examples of such modification leading to a Steklov eigenvalue problem, and a new type of the transmission eigenvalue problem. We present some numerical examples demonstrating the viability of our method for determining the interior eigenvalues form far field data.
Solitons of shallow-water models from energy-dependent spectral problems
NASA Astrophysics Data System (ADS)
Haberlin, Jack; Lyons, Tony
2018-01-01
The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.
NASA Astrophysics Data System (ADS)
Dorn, O.; Lesselier, D.
2010-07-01
Inverse problems in electromagnetics have a long history and have stimulated exciting research over many decades. New applications and solution methods are still emerging, providing a rich source of challenging topics for further investigation. The purpose of this special issue is to combine descriptions of several such developments that are expected to have the potential to fundamentally fuel new research, and to provide an overview of novel methods and applications for electromagnetic inverse problems. There have been several special sections published in Inverse Problems over the last decade addressing fully, or partly, electromagnetic inverse problems. Examples are: Electromagnetic imaging and inversion of the Earth's subsurface (Guest Editors: D Lesselier and T Habashy) October 2000 Testing inversion algorithms against experimental data (Guest Editors: K Belkebir and M Saillard) December 2001 Electromagnetic and ultrasonic nondestructive evaluation (Guest Editors: D Lesselier and J Bowler) December 2002 Electromagnetic characterization of buried obstacles (Guest Editors: D Lesselier and W C Chew) December 2004 Testing inversion algorithms against experimental data: inhomogeneous targets (Guest Editors: K Belkebir and M Saillard) December 2005 Testing inversion algorithms against experimental data: 3D targets (Guest Editors: A Litman and L Crocco) February 2009 In a certain sense, the current issue can be understood as a continuation of this series of special sections on electromagnetic inverse problems. On the other hand, its focus is intended to be more general than previous ones. Instead of trying to cover a well-defined, somewhat specialized research topic as completely as possible, this issue aims to show the broad range of techniques and applications that are relevant to electromagnetic imaging nowadays, which may serve as a source of inspiration and encouragement for all those entering this active and rapidly developing research area. Also, the construction of this special issue is likely to have been different from preceding ones. In addition to the invitations sent to specific research groups involved in electromagnetic inverse problems, the Guest Editors also solicited recommendations, from a large number of experts, of potential authors who were thereupon encouraged to contribute. Moreover, an open call for contributions was published on the homepage of Inverse Problems in order to attract as wide a scope of contributions as possible. This special issue's attempt at generality might also define its limitations: by no means could this collection of papers be exhaustive or complete, and as Guest Editors we are well aware that many exciting topics and potential contributions will be missing. This, however, also determines its very special flavor: besides addressing electromagnetic inverse problems in a broad sense, there were only a few restrictions on the contributions considered for this section. One requirement was plausible evidence of either novelty or the emergent nature of the technique or application described, judged mainly by the referees, and in some cases by the Guest Editors. The technical quality of the contributions always remained a stringent condition of acceptance, final adjudication (possibly questionable either way, not always positive) being made in most cases once a thorough revision process had been carried out. Therefore, we hope that the final result presented here constitutes an interesting collection of novel ideas and applications, properly refereed and edited, which will find its own readership and which can stimulate significant new research in the topics represented. Overall, as Guest Editors, we feel quite fortunate to have obtained such a strong response to the call for this issue and to have a really wide-ranging collection of high-quality contributions which, indeed, can be read from the first to the last page with sustained enthusiasm. A large number of applications and techniques is represented, overall via 16 contributions with 45 authors in total. This shows, in our opinion, that electromagnetic imaging and inversion remain amongst the most challenging and active research areas in applied inverse problems today. Below, we give a brief overview of the contributions included in this issue, ordered alphabetically by the surname of the leading author. 1. The complexity of handling potential randomness of the source in an inverse scattering problem is not minor, and the literature is far from being replete in this configuration. The contribution by G Bao, S N Chow, P Li and H Zhou, `Numerical solution of an inverse medium scattering problem with a stochastic source', exemplifies how to hybridize Wiener chaos expansion with a recursive linearization method in order to solve the stochastic problem as a set of decoupled deterministic ones. 2. In cases where the forward problem is expensive to evaluate, database methods might become a reliable method of choice, while enabling one to deliver more information on the inversion itself. The contribution by S Bilicz, M Lambert and Sz Gyimóthy, `Kriging-based generation of optimal databases as forward and inverse surrogate models', describes such a technique which uses kriging for constructing an efficient database with the goal of achieving an equidistant distribution of points in the measurement space. 3. Anisotropy remains a considerable challenge in electromagnetic imaging, which is tackled in the contribution by F Cakoni, D Colton, P Monk and J Sun, `The inverse electromagnetic scattering problem for anisotropic media', via the fact that transmission eigenvalues can be retrieved from a far-field scattering pattern, yielding, in particular, lower and upper bounds of the index of refraction of the unknown (dielectric anisotropic) scatterer. 4. So-called subspace optimization methods (SOM) have attracted a lot of interest recently in many fields. The contribution by X Chen, `Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium', illustrates how to address a realistic situation in which the medium containing the unknown obstacles is not homogeneous, via blending a properly developed SOM with a finite-element approach to the required Green's functions. 5. H Egger, M Hanke, C Schneider, J Schöberl and S Zaglmayr, in their contribution `Adjoint-based sampling methods for electromagnetic scattering', show how to efficiently develop sampling methods without explicit knowledge of the dyadic Green's function once an adjoint problem has been solved at much lower computational cost. This is demonstrated by examples in demanding propagative and diffusive situations. 6. Passive sensor arrays can be employed to image reflectors from ambient noise via proper migration of cross-correlation matrices into their embedding medium. This is investigated, and resolution, in particular, is considered in detail, as a function of the characteristics of the sensor array and those of the noise, in the contribution by J Garnier and G Papanicolaou, `Resolution analysis for imaging with noise'. 7. A direct reconstruction technique based on the conformal mapping theorem is proposed and investigated in depth in the contribution by H Haddar and R Kress, `Conformal mapping and impedance tomography'. This paper expands on previous work, with inclusions in homogeneous media, convergence results, and numerical illustrations. 8. The contribution by T Hohage and S Langer, `Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems', focuses on a spectral preconditioner intended to accelerate regularized Newton methods as employed for the retrieval of a local inhomogeneity in a three-dimensional vector electromagnetic case, while also illustrating the implementation of a Lepskiĭ-type stopping rule outsmarting a traditional discrepancy principle. 9. Geophysical applications are a rich source of practically relevant inverse problems. The contribution by M Li, A Abubakar and T Habashy, `Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion', deals with a model-based inversion technique for electromagnetic imaging which addresses novel challenges such as multi-physics inversion, and incorporation of prior knowledge, such as in hydrocarbon recovery. 10. Non-stationary inverse problems, considered as a special class of Bayesian inverse problems, are framed via an orthogonal decomposition representation in the contribution by A Lipponen, A Seppänen and J P Kaipio, `Reduced order estimation of nonstationary flows with electrical impedance tomography'. The goal is to simultaneously estimate, from electrical impedance tomography data, certain characteristics of the Navier--Stokes fluid flow model together with time-varying concentration distribution. 11. Non-iterative imaging methods of thin, penetrable cracks, based on asymptotic expansion of the scattering amplitude and analysis of the multi-static response matrix, are discussed in the contribution by W-K Park, `On the imaging of thin dielectric inclusions buried within a half-space', completing, for a shallow burial case at multiple frequencies, the direct imaging of small obstacles (here, along their transverse dimension), MUSIC and non-MUSIC type indicator functions being used for that purpose. 12. The contribution by R Potthast, `A study on orthogonality sampling' envisages quick localization and shaping of obstacles from (portions of) far-field scattering patterns collected at one or more time-harmonic frequencies, via the simple calculation (and summation) of scalar products between those patterns and a test function. This is numerically exemplified for Neumann/Dirichlet boundary conditions and homogeneous/heterogeneous embedding media. 13. The contribution by J D Shea, P Kosmas, B D Van Veen and S C Hagness, `Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms', aims at microwave medical imaging, namely the early detection of breast cancer. The use of contrast enhancing agents is discussed in detail and a number of reconstructions in three-dimensional geometry of realistic numerical breast phantoms are presented. 14. The contribution by D A Subbarayappa and V Isakov, `Increasing stability of the continuation for the Maxwell system', discusses enhanced log-type stability results for continuation of solutions of the time-harmonic Maxwell system, adding a fresh chapter to the interesting story of the study of the Cauchy problem for PDE. 15. In their contribution, `Recent developments of a monotonicity imaging method for magnetic induction tomography in the small skin-depth regime', A Tamburrino, S Ventre and G Rubinacci extend the recently developed monotonicity method toward the application of magnetic induction tomography in order to map surface-breaking defects affecting a damaged metal component. 16. The contribution by F Viani, P Rocca, M Benedetti, G Oliveri and A Massa, `Electromagnetic passive localization and tracking of moving targets in a WSN-infrastructured environment', contributes to what could still be seen as a niche problem, yet both useful in terms of applications, e.g., security, and challenging in terms of methodologies and experiments, in particular, in view of the complexity of environments in which this endeavor is to take place and the variability of the wireless sensor networks employed. To conclude, we would like to thank the able and tireless work of Kate Watt and Zoë Crossman, as past and present Publishers of the Journal, on what was definitely a long and exciting journey (sometimes a little discouraging when reports were not arriving, or authors were late, or Guest Editors overwhelmed) that started from a thorough discussion at the `Manchester workshop on electromagnetic inverse problems' held mid-June 2009, between Kate Watt and the Guest Editors. We gratefully acknowledge the fact that W W Symes gave us his full backing to carry out this special issue and that A K Louis completed it successfully. Last, but not least, the staff of Inverse Problems should be thanked, since they work together to make it a premier journal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2006-12-15
In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
The shifting zoom: new possibilities for inverse scattering on electrically large domains
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien
2017-04-01
Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C. Atzeni, R. Persico, F. Soldovieri, Advanced Processing Techniques for Step-frequency Continuous-Wave Penetrating Radar: the Case Study of "Palazzo Vecchio" Walls (Firenze, Italy), Research on Nondestructive Evaluation, vol. 17, pp. 71-83, 2006. [2] N. Masini, R. Persico, E. Rizzo, A. Calia, M. T. Giannotta, G. Quarta, A. Pagliuca, "Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy)." Near Surface Geophysics, vol. 8 (5), pp. 423-432, 2010. [3] E. Pettinelli, A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions", IEEE Transactions on Geoscience and Remote Sensing, vol. 47, n. 8, 2639-2645, Aug. 2009. [4] O. Lopera, E. C. Slob, N. Milisavljevic and S. Lambot, "Filtering soil surface and antenna effects from GPR data to enhance landmine detection", IEEE Transactions on Geoscience and Remote Sensing, vol. 45, n. 3, pp.707-717, 2007. [5] R. Persico, "Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing". Wiley, 2014. [6] R. Persico, J. Sala, "The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data", IEEE Geoscience and Remote Sensing Letters, vol. 11, n. 7, pp. 1215-1219, doi 10.1109/LGRS.2013.2290008, July 2014. [7] R. Persico, F. Soldovieri, S. Lambot, Shifting zoom in 2D linear inversions performed on GPR data gathered along an electrically large investigation domain, Proc. 16th International Conference on Ground Penetrating Radar GPR2016, Honk-Kong, June 13-16, 2016
A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering
NASA Astrophysics Data System (ADS)
Griesmaier, Roland; Schmiedecke, Christian
2017-03-01
We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.
NASA Astrophysics Data System (ADS)
Darrh, A.; Downs, C. M.; Poppeliers, C.
2017-12-01
Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.
NASA Astrophysics Data System (ADS)
Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2018-04-01
An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.
NASA Astrophysics Data System (ADS)
Chen, Xudong
2010-07-01
This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.
Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.
NASA Astrophysics Data System (ADS)
Xia, Jake Jiqing
The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
Using seismic coda waves to resolve intrinsic and scattering attenuation
NASA Astrophysics Data System (ADS)
Wang, W.; Shearer, P. M.
2016-12-01
Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Characterizing scattering and absorbing properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing problem in seismology. The wavetrain following the direct body wave phases is called the coda, which is caused by scattered energy. Many studies have analyzed the coda of local events to constrain crustal and upper-mantle scattering strength and intrinsic attenuation. Here we examine two popular attenuation inversion methods, the Multiple Lapse Time Window Method (MLTWM) and the Coda Qc Method. First, based on our previous work on California attenuation structure, we apply an efficient and accurate method, the Monte Carlo Approach, to synthesize seismic envelope functions. We use this code to generate a series of synthetic data based on several complex and realistic forward models. Although the MLTWM assumes a uniform whole space, we use the MLTWM to invert for both scattering and intrinsic attenuation from the synthetic data to test how accurately it can recover the attenuation models. Results for the coda Qc method depend on choices for the length and starting time of the coda-wave time window. Here we explore the relation between the inversion results for Qc, the windowing parameters, and the intrinsic and scattering Q structure of our synthetic model. These results should help assess the practicality and accuracy of the Multiple Lapse Time Window Method and Coda Qc Method when applied to realistic crustal velocity and attenuation models.
NASA Astrophysics Data System (ADS)
Zhou, Yajun
This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
The chaotic set and the cross section for chaotic scattering in three degrees of freedom
NASA Astrophysics Data System (ADS)
Jung, C.; Merlo, O.; Seligman, T. H.; Zapfe, W. P. K.
2010-10-01
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step towards a more general understanding of chaotic scattering in higher dimensions. Despite the strong restrictions, it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out the implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern that reflects the fractal structure of the chaotic invariant set. This allows us to determine structures in the cross section from the invariant set and, conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
Microwave imaging by three-dimensional Born linearization of electromagnetic scattering
NASA Astrophysics Data System (ADS)
Caorsi, S.; Gragnani, G. L.; Pastorino, M.
1990-11-01
An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.
Theoretical Studies in Chemical Kinetics - Annual Report, 1970.
DOE R&D Accomplishments Database
Karplus, Martin
1970-10-01
The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.
NASA Astrophysics Data System (ADS)
Eliçabe, Guillermo E.
2013-09-01
In this work, an exact scattering model for a system of clusters of spherical particles, based on the Rayleigh-Gans approximation, has been parameterized in such a way that it can be solved in inverse form using Thikhonov Regularization to obtain the morphological parameters of the clusters. That is to say, the average number of particles per cluster, the size of the primary spherical units that form the cluster, and the Discrete Distance Distribution Function from which the z-average square radius of gyration of the system of clusters is obtained. The methodology is validated through a series of simulated and experimental examples of x-ray and light scattering that show that the proposed methodology works satisfactorily in unideal situations such as: presence of error in the measurements, presence of error in the model, and several types of unideallities present in the experimental cases.
Sparseness- and continuity-constrained seismic imaging
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.
2005-04-01
Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.
Source splitting via the point source method
NASA Astrophysics Data System (ADS)
Potthast, Roland; Fazi, Filippo M.; Nelson, Philip A.
2010-04-01
We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119-40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731-42). The task is to separate the sound fields uj, j = 1, ..., n of n \\in \\mathbb {N} sound sources supported in different bounded domains G1, ..., Gn in \\mathbb {R}^3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + sdotsdotsdot + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g_1, \\ldots, g_n, n\\in \\mathbb {N} , to construct uell for ell = 1, ..., n from u|Λ in the form u_{\\ell }(x) = \\int _{\\Lambda } g_{\\ell,x}(y) u(y) {\\,\\rm d}s(y), \\qquad \\ell =1,\\ldots, n. We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.
Microwave tomography for GPR data processing in archaeology and cultural heritages diagnostics
NASA Astrophysics Data System (ADS)
Soldovieri, F.
2009-04-01
Ground Penetrating Radar (GPR) is one of the most feasible and friendly instrumentation to detect buried remains and perform diagnostics of archaeological structures with the aim of detecting hidden objects (defects, voids, constructive typology; etc..). In fact, GPR technique allows to perform measurements over large areas in a very fast way thanks to a portable instrumentation. Despite of the widespread exploitation of the GPR as data acquisition system, many difficulties arise in processing GPR data so to obtain images reliable and easily interpretable by the end-users. This difficulty is exacerbated when no a priori information is available as for example arises in the case of historical heritages for which the knowledge of the constructive modalities and materials of the structure might be completely missed. A possible answer to the above cited difficulties resides in the development and the exploitation of microwave tomography algorithms [1, 2], based on more refined electromagnetic scattering model with respect to the ones usually adopted in the classic radaristic approach. By exploitation of the microwave tomographic approach, it is possible to gain accurate and reliable "images" of the investigated structure in order to detect, localize and possibly determine the extent and the geometrical features of the embedded objects. In this framework, the adoption of simplified models of the electromagnetic scattering appears very convenient for practical and theoretical reasons. First, the linear inversion algorithms are numerically efficient thus allowing to investigate domains large in terms of the probing wavelength in a quasi real- time also in the case of 3D case also by adopting schemes based on the combination of 2D reconstruction [3]. In addition, the solution approaches are very robust against the uncertainties in the parameters of the measurement configuration and on the investigated scenario. From a theoretical point of view, the linear models allow further advantages such as: the absence of the false solutions (a question to be arisen in non linear inverse problems); the exploitation of well known regularization tools for achieving a stable solution of the problem; the possibility to analyze the reconstruction performances of the algorithm once the measurement configuration and the properties of the host medium are known. Here, we will present the main features and the reconstruction results of a linear inversion algorithm based on the Born approximation in realistic applications in archaeology and cultural heritage diagnostics. Born model is useful when penetrable objects are under investigations. As well known, the Born Approximation is used to solve the forward problem, that is the determination of the scattered field from a known object under the hypothesis of weak scatterer, i.e. an object whose dielectric permittivity is slightly different from the one of the host medium and whose extent is small in term of probing wavelength. Differently, for the inverse scattering problem, the above hypotheses can be relaxed at the cost to renounce to a "quantitative reconstruction" of the object. In fact, as already shown by results in realistic conditions [4, 5], the adoption of a Born model inversion scheme allows to detect, to localize and to determine the geometry of the object also in the case of not weak scattering objects. [1] R. Persico, R. Bernini, F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the Born approximation", IEEE Trans. Antennas and Propagation, vol. 53, no.6, pp. 1875-1887, June 2005. [2] F. Soldovieri, J. Hugenschmidt, R. Persico and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications", Near Surface Geophysics, vol. 5, no. 1, pp. 29-42, February 2007. [3] R. Solimene, F. Soldovieri, G. Prisco, R.Pierri, "Three-Dimensional Microwave Tomography by a 2-D Slice-Based Reconstruction Algorithm", IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 556 - 560, Oct. 2007. [4] L. Orlando, F. Soldovieri, "Two different approaches for georadar data processing: a case study in archaeological prospecting", Journal of Applied Geophysics, vol. 64, pp. 1-13, March 2008. [5] F. Soldovieri, M. Bavusi, L. Crocco, S. Piscitelli, A. Giocoli, F. Vallianatos, S. Pantellis, A. Sarris, "A comparison between two GPR data processing techniques for fracture detection and characterization", Proc. of 70th EAGE Conference & Exhibition, Rome, Italy, 9 - 12 June 2008
Photon migration in non-scattering tissue and the effects on image reconstruction
NASA Astrophysics Data System (ADS)
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
Support Minimized Inversion of Acoustic and Elastic Wave Scattering
NASA Astrophysics Data System (ADS)
Safaeinili, Ali
Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
Maximum likelihood techniques applied to quasi-elastic light scattering
NASA Technical Reports Server (NTRS)
Edwards, Robert V.
1992-01-01
There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.
Stochastic description of geometric phase for polarized waves in random media
NASA Astrophysics Data System (ADS)
Boulanger, Jérémie; Le Bihan, Nicolas; Rossetto, Vincent
2013-01-01
We present a stochastic description of multiple scattering of polarized waves in the regime of forward scattering. In this regime, if the source is polarized, polarization survives along a few transport mean free paths, making it possible to measure an outgoing polarization distribution. We consider thin scattering media illuminated by a polarized source and compute the probability distribution function of the polarization on the exit surface. We solve the direct problem using compound Poisson processes on the rotation group SO(3) and non-commutative harmonic analysis. We obtain an exact expression for the polarization distribution which generalizes previous works and design an algorithm solving the inverse problem of estimating the scattering properties of the medium from the measured polarization distribution. This technique applies to thin disordered layers, spatially fluctuating media and multiple scattering systems and is based on the polarization but not on the signal amplitude. We suggest that it can be used as a non-invasive testing method.
Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system
Li, C.; Song, Z.
2016-01-01
We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252
Electromagnetic inverse scattering
NASA Technical Reports Server (NTRS)
Bojarski, N. N.
1972-01-01
A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.
Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.
Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro
2017-07-10
Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
Linearized inversion of multiple scattering seismic energy
NASA Astrophysics Data System (ADS)
Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad
2014-05-01
Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.
P- and S-wave Receiver Function Imaging with Scattering Kernels
NASA Astrophysics Data System (ADS)
Hansen, S. M.; Schmandt, B.
2017-12-01
Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).
a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface
NASA Astrophysics Data System (ADS)
Westlund, Jonathan; Boström, Anders
2010-02-01
2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.
Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.
NASA Technical Reports Server (NTRS)
Schuerman, D. W.; Giovane, F.; Greenberg, J. M.
1976-01-01
The aerosol scattering coefficient as a function of height can be recovered from a direct inversion of the single-scattering horizon radiance provided the sun is above the horizon and an independent measurement of extinction as a function of height is made. Aerosol detection is effected by means of spacecraft measurements of the horizon radiance made during periods of spacecraft twilight. A solar occultation technique which allows the twilight measurements to be made when the sun is still above the horizon greatly reduces the complexity of the inversion problem. The second part of the paper reports on the use of a coronograph aboard Skylab to photograph the horizon just before spacecraft twilight in order to monitor the aerosol component above the tropopause. The coronograph picture, centered on 26.5 degrees E longitude and 63.0 degrees S latitude, shows that the aerosol layer peaks at a height of 48 plus or minus 1 km.
Signal Estimation, Inverse Scattering, and Problems in One and Two Dimensions.
1982-11-01
attention to implication for new estimation algorithms and signal processing and, to a lesser extent, for system theory . The publications resulting...from the work are listed by category and date. They are briefly organized and reviewed under five major headings: (1) Two-Dimensional System Theory ; (2
The solution of Cauchy's problem for the Toda lattice with limit periodic initial data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanmamedov, A Kh
Cauchy's problem for Toda lattices with initial data equal to the sum of a periodic and a rapidly decreasing sequence is solved with the use of the inverse scattering method. A method allowing one to find a limit periodic solution of the Toda lattice from a known periodic solution is described. The existence and uniqueness of a limit periodic solution is proved. Bibliography: 17 titles.
NASA Technical Reports Server (NTRS)
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems
NASA Astrophysics Data System (ADS)
Vourc'h, Eric; Rodet, Thomas
2015-11-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.
NASA Technical Reports Server (NTRS)
Deepak, A.; Becher, J.
1979-01-01
Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.
Acoustic Scattering from Corners, Edges and Circular Cones
NASA Astrophysics Data System (ADS)
Elschner, Johannes; Hu, Guanghui
2018-05-01
Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in {(0,2π)π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.
Three-dimensional imaging of buried objects in very lossy earth by inversion of VETEM data
Cui, T.J.; Aydiner, A.A.; Chew, W.C.; Wright, D.L.; Smith, D.V.
2003-01-01
The very early time electromagnetic system (VETEM) is an efficient tool for the detection of buried objects in very lossy earth, which allows a deeper penetration depth compared to the ground-penetrating radar. In this paper, the inversion of VETEM data is investigated using three-dimensional (3-D) inverse scattering techniques, where multiple frequencies are applied in the frequency range from 0-5 MHz. For small and moderately sized problems, the Born approximation and/or the Born iterative method have been used with the aid of the singular value decomposition and/or the conjugate gradient method in solving the linearized integral equations. For large-scale problems, a localized 3-D inversion method based on the Born approximation has been proposed for the inversion of VETEM data over a large measurement domain. Ways to process and to calibrate the experimental VETEM data are discussed to capture the real physics of buried objects. Reconstruction examples using synthesized VETEM data and real-world VETEM data are given to test the validity and efficiency of the proposed approach.
Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja
2016-11-01
Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang
Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).
NASA Astrophysics Data System (ADS)
Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro
2005-01-01
The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in atmospheric sciences and oceanography. Last but not least is our gratitude. As editors we would like to express our sincere thanks to all the plenary and invited speakers, the members of the International Scientific Committee and the Advisory Board for the success of the conference, which has given rise to this present volume of selected papers. We would also like to thank Mr Wang Yanbo, Miss Wan Xiqiong and the graduate students at Fudan University for their effective work to make this conference a success. The conference was financially supported by the NFS of China, the Mathematical Center of Ministry of Education of China, E-Institutes of Shanghai Municipal Education Commission (No E03004) and Fudan University, Grant 15340027 from the Japan Society for the Promotion of Science, and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.
Retrieval of the aerosol size distribution in the complex anomalous diffraction approximation
NASA Astrophysics Data System (ADS)
Franssens, Ghislain R.
This contribution reports some recently achieved results in aerosol size distribution retrieval in the complex anomalous diffraction approximation (ADA) to MIE scattering theory. This approximation is valid for spherical particles that are large compared to the wavelength and have a refractive index close to 1. The ADA kernel is compared with the exact MIE kernel. Despite being a simple approximation, the ADA seems to have some practical value for the retrieval of the larger modes of tropospheric and lower stratospheric aerosols. The ADA has the advantage over MIE theory that an analytic inversion of the associated Fredholm integral equation becomes possible. In addition, spectral inversion in the ADA can be formulated as a well-posed problem. In this way, a new inverse formula was obtained, which allows the direct computation of the size distribution as an integral over the spectral extinction function. This formula is valid for particles that both scatter and absorb light and it also takes the spectral dispersion of the refractive index into account. Some details of the numerical implementation of the inverse formula are illustrated using a modified gamma test distribution. Special attention is given to the integration of spectrally truncated discrete extinction data with errors.
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.; Lamara, S.
2016-02-01
We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.
Data compression strategies for ptychographic diffraction imaging
NASA Astrophysics Data System (ADS)
Loetgering, Lars; Rose, Max; Treffer, David; Vartanyants, Ivan A.; Rosenhahn, Axel; Wilhein, Thomas
2017-12-01
Ptychography is a computational imaging method for solving inverse scattering problems. To date, the high amount of redundancy present in ptychographic data sets requires computer memory that is orders of magnitude larger than the retrieved information. Here, we propose and compare data compression strategies that significantly reduce the amount of data required for wavefield inversion. Information metrics are used to measure the amount of data redundancy present in ptychographic data. Experimental results demonstrate the technique to be memory efficient and stable in the presence of systematic errors such as partial coherence and noise.
Inverse resonance scattering for Jacobi operators
NASA Astrophysics Data System (ADS)
Korotyaev, E. L.
2011-12-01
The Jacobi operator ( Jf) n = a n-1 f n-1 + a n f n+1 + b n f n on ℤ with real finitely supported sequences ( a n - 1) n∈ℤ and ( b n ) n∈ℤ is considered. The inverse problem for two mappings (including their characterization): ( a n , b n , n ∈ ℤ) → {the zeros of the reflection coefficient} and ( a n , b n , n ∈ ℤ) → {the eigenvalues and the resonances} is solved. All Jacobi operators with the same eigenvalues and resonances are also described.
Nanophotonic particle simulation and inverse design using artificial neural networks
Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max
2018-01-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Hong, Siyu
2018-07-01
In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.
FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)
NASA Astrophysics Data System (ADS)
2014-10-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet
Direct and Inverse Scattering Problem Associated with the Elliptic Sinh-Gordon Equation
1989-11-14
the simple matter of an ambiguity in the quantization of two dimensional Hamiltonian systems, a problem that is easily handled. Our notation is as...siderable evidence has been found in support of a dark- matter fluctuation equations on a background satisfying an expansion hypothesis: suppose the... matter that does porate the case in which one of the fluids is a photon fluid. Of not interact directly with ordinary matter and in particular with
3D Compton scattering imaging and contour reconstruction for a class of Radon transforms
NASA Astrophysics Data System (ADS)
Rigaud, Gaël; Hahn, Bernadette N.
2018-07-01
Compton scattering imaging is a nascent concept arising from the current development of high-sensitive energy detectors and is devoted to exploit the scattering radiation to image the electron density of the studied medium. Such detectors are able to collect incoming photons in terms of energy. This paper introduces potential 3D modalities in Compton scattering imaging (CSI). The associated measured data are modeled using a class of generalized Radon transforms. The study of this class of operators leads to build a filtered back-projection kind algorithm preserving the contours of the sought-for function and offering a fast approach to partially solve the associated inverse problems. Simulation results including Poisson noise demonstrate the potential of this new imaging concept as well as the proposed image reconstruction approach.
Sun, Xiao-gang; Tang, Hong; Dai, Jing-min
2008-12-01
The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.
Book review: Nonlinear ocean waves and the inverse scattering transform
Geist, Eric L.
2011-01-01
Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts. Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.
Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics
NASA Astrophysics Data System (ADS)
Guzina, Bojan B.; Bonnet, Marc
2006-10-01
The aim of this study is an extension and employment of the concept of topological derivative as it pertains to the nucleation of infinitesimal inclusions in a reference (i.e. background) acoustic medium. The developments are motivated by the need to develop a preliminary indicator functional that would aid the solution of inverse scattering problems in terms of a rational initial 'guess' about the geometry and material characteristics of a hidden (finite) obstacle; an information that is often required by iterative minimization algorithms. To this end the customary definition of topological derivative, which quantifies the sensitivity of a given cost functional with respect to the creation of an infinitesimal hole, is adapted to permit the nucleation of a dissimilar acoustic medium. On employing the Green's function for the background domain, computation of topological sensitivity for the three-dimensional Helmholtz equation is reduced to the solution of a reference, Laplace transmission problem. Explicit formulae are given for the nucleating inclusions of spherical and ellipsoidal shapes. For generality the developments are also presented in an alternative, adjoint-field setting that permits nucleation of inclusions in an infinite, semi-infinite or finite background medium. Through numerical examples, it is shown that the featured topological sensitivity could be used, in the context of inverse scattering, as an effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying a material characteristic (density) of the nucleating obstacle, it is also shown that the proposed methodology can be used as a preparatory tool for both geometric and material identification.
Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1997-01-01
The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.
1989-05-22
multidimensional systems of physi- cal significance. Prototypes are the Kadomtsev - Petviashvili and Davey-Stewartson equations . The nature of the boundary value...Ono equation bears many similarities to multidimensional problems, specifically the Kadomtsev - Petviashvili equation . In some sense the nonlocality...Inverse scattering and Direct Linearizing Transforms for the Kadomtsev - Petviashvili Equations , A.S. Fokas, and M.J. Ablowitz, Phys. Lett. Vol., 94A, No. 2
3D optical tomography in the presence of void regions
NASA Astrophysics Data System (ADS)
Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel
2000-12-01
We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.
3D optical tomography in the presence of void regions.
Riley, J; Dehghani, H; Schweiger, M; Arridge, S; Ripoll, J; Nieto-Vesperinas, M
2000-12-18
We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.
NASA Astrophysics Data System (ADS)
Podgornova, O.; Leaney, S.; Liang, L.
2018-07-01
Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.
Non Fermi Liquid Crossovers in a Quasi-One-Dimensional Conductor in an Inclined Magnetic Field
NASA Astrophysics Data System (ADS)
Lebed, Andrei
We consider a theoretical problem of electron-electron scattering time in a quasi-one-dimensional (Q1D) conductor in a magnetic field, perpendicular to its conducting axis. We show that inverse electron-electron scattering time becomes of the order of characteristic electron energy, 1 / τ ~ ɛ ~ T , in a high magnetic field, directed far from the main crystallographic axes, which indicates breakdown of the Fermi liquid theory. In a magnetic field, directed close to one of the main crystallographic axis, inverse electron-electron scattering time becomes much smaller than characteristic electron energy and, thus, applicability of Fermi liquid theory restores. We suggest that there exist crossovers between Fermi liquid and some non Fermi liquid states in a strong enough inclined magnetic field. Application of our results to the Q1D conductor (Per)2Au(mnt)2 shows that it has to be possible to observe the above mentioned phenomenon in feasibly high magnetic fields of the order of H >=H* ~= 25 T . It was partially supported by NFS grant DMR-1104512.
Inverse Scattering for Electron Density Profile Determination. Volume I.
1981-09-24
Ant. Prop., AP-24, 906-7, 1976. 39. T. Kailath, A. Vierra, and M. Morf, "Inverses of Toeplitz Operators, Innovations, and Orthogonal Polynomials ...aspect of these results is the tremendous amount of new insight into the basic physics of inverse scattering (and, indeed, into fundamental field...inhomogeneous media in general and on scattering by the ionosphere in particular were identified. These results have important implications for other
Hesford, Andrew J.; Waag, Robert C.
2010-01-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366
NASA Astrophysics Data System (ADS)
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Hesford, Andrew J; Waag, Robert C
2010-10-20
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements
NASA Astrophysics Data System (ADS)
Qu, Fenglong; Yang, Jiaqing; Zhang, Bo
2018-01-01
Consider the inverse scattering problem of time-harmonic acoustic waves by a 3D bounded elastic obstacle which may contain embedded impenetrable obstacles inside. We propose a novel and simple technique to show that the elastic obstacle can be uniquely recovered by the acoustic far-field pattern at a fixed frequency, disregarding its contents. Our method is based on constructing a well-posed modified interior transmission problem on a small domain and makes use of an a priori estimate for both the acoustic and elastic wave fields in the usual H 1-norm. In the case when there is no obstacle embedded inside the elastic body, our method gives a much simpler proof for the uniqueness result obtained previously in the literature (Natroshvili et al 2000 Rend. Mat. Serie VII 20 57-92 Monk and Selgas 2009 Inverse Problems Imaging 3 173-98).
NASA Astrophysics Data System (ADS)
Fokas, A. S.; Pogrebkov, A. K.
2003-03-01
We study the initial value problem of the Kadomtsev-Petviashvili I (KPI) equation with initial data u(x1,x2,0) = u1(x1)+u2(x1,x2), where u1(x1) is the one-soliton solution of the Korteweg-de Vries equation evaluated at zero time and u2(x1,x2) decays sufficiently rapidly on the (x1,x2)-plane. This involves the analysis of the nonstationary Schrödinger equation (with time replaced by x2) with potential u(x1,x2,0). We introduce an appropriate sectionally analytic eigenfunction in the complex k-plane where k is the spectral parameter. This eigenfunction has the novelty that in addition to the usual jump across the real k-axis, it also has a jump across a segment of the imaginary k-axis. We show that this eigenfunction can be reconstructed through a linear integral equation uniquely defined in terms of appropriate scattering data. In turn, these scattering data are uniquely constructed in terms of u1(x1) and u2(x1,x2). This result implies that the solution of the KPI equation can be obtained through the above linear integral equation where the scattering data have a simple t-dependence.
NASA Astrophysics Data System (ADS)
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.
NASA Astrophysics Data System (ADS)
Custo, Anna; Wells, William M., III; Barnett, Alex H.; Hillman, Elizabeth M. C.; Boas, David A.
2006-07-01
An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm-1, without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.
Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2001-01-01
A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.
Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P
2013-01-01
We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems.more » Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.« less
AKNS eigenvalue spectrum for densely spaced envelope solitary waves
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey; Starobor, Alexey
2010-05-01
The problem of the influence of one envelope soliton to the discrete eigenvalues of the associated scattering problem for the other envelope soliton, which is situated close to the first one, is discussed. Envelope solitons are exact solutions of the integrable nonlinear Schrödinger equation (NLS). Their generalizations (taking into account the background nonlinear waves [1-4] or strongly nonlinear effects [5, 6]) are possible candidates to rogue waves in the ocean. The envelope solitary waves could be in principle detected in the stochastic wave field by approaches based on the Inverse Scattering Technique in terms of ‘unstable modes' (see [1-3]), or envelope solitons [7-8]. However, densely spaced intense groups influence the spectrum of the associated scattering problem, so that the solitary trains cannot be considered alone. Here we solve the initial-value problem exactly for some simplified configurations of the wave field, representing two closely placed intense wave groups, within the frameworks of the NLS equation by virtue of the solution of the AKNS system [9]. We show that the analogues of the level splitting and the tunneling effects, known in quantum physics, exist in the context of the NLS equation, and thus may be observed in application to sea waves [10]. These effects make the detecting of single solitary wave groups surrounded by other nonlinear wave groups difficult. [1]. A.L. Islas, C.M. Schober (2005) Predicting rogue waves in random oceanic sea states. Phys. Fluids 17, 031701-1-4. [2]. A.R. Osborne, M. Onorato, M. Serio (2005) Nonlinear Fourier analysis of deep-water random surface waves: Theoretical formulation and and experimental observations of rogue waves. 14th Aha Huliko's Winter Workshop, Honolulu, Hawaii. [3]. C.M. Schober, A. Calini (2008) Rogue waves in higher order nonlinear Schrödinger models. In: Extreme Waves (Eds.: E. Pelinovsky & C. Kharif), Springer. [4]. N. Akhmediev, A. Ankiewicz, M. Taki (2009) Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675-678. [5]. A.I. Dyachenko, V.E. Zakharov (2008) On the formation of freak waves on the surface of deep water. JETP Lett. 88 (5), 307-311. [6]. A.V. Slunyaev (2009) Numerical simulation of "limiting" envelope solitons of gravity waves on deep water. JETP 109, 676-686. [7]. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares (2005) Modeling freak waves from the North Sea. Appl. Ocean Res. 27, 12-22. [8]. A. Slunyaev (2006) Nonlinear analysis and simulations of measured freak wave time series. Eur. J. Mech. B / Fluids 25, 621-635. [9]. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur (1974) The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249-315. [10]. A.V. Starobor (2009) Interpretation of the inverse scattering data for the analysis of wave groups on water surface. Bachelor degree thesis. N. Novgorod State University, in Russian.
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.
NASA Astrophysics Data System (ADS)
Belkebir, Kamal; Saillard, Marc
2005-12-01
This special section deals with the reconstruction of scattering objects from experimental data. A few years ago, inspired by the Ipswich database [1 4], we started to build an experimental database in order to validate and test inversion algorithms against experimental data. In the special section entitled 'Testing inversion algorithms against experimental data' [5], preliminary results were reported through 11 contributions from several research teams. (The experimental data are free for scientific use and can be downloaded from the web site.) The success of this previous section has encouraged us to go further and to design new challenges for the inverse scattering community. Taking into account the remarks formulated by several colleagues, the new data sets deal with inhomogeneous cylindrical targets and transverse electric (TE) polarized incident fields have also been used. Among the four inhomogeneous targets, three are purely dielectric, while the last one is a `hybrid' target mixing dielectric and metallic cylinders. Data have been collected in the anechoic chamber of the Centre Commun de Ressources Micro-ondes in Marseille. The experimental setup as well as the layout of the files containing the measurements are presented in the contribution by J-M Geffrin, P Sabouroux and C Eyraud. The antennas did not change from the ones used previously [5], namely wide-band horn antennas. However, improvements have been achieved by refining the mechanical positioning devices. In order to enlarge the scope of applications, both TE and transverse magnetic (TM) polarizations have been carried out for all targets. Special care has been taken not to move the target under test when switching from TE to TM measurements, ensuring that TE and TM data are available for the same configuration. All data correspond to electric field measurements. In TE polarization the measured component is orthogonal to the axis of invariance. Contributions A Abubakar, P M van den Berg and T M Habashy, Application of the multiplicative regularized contrast source inversion method TM- and TE-polarized experimental Fresnel data, present results of profile inversions obtained using the contrast source inversion (CSI) method, in which a multiplicative regularization is plugged in. The authors successfully inverted both TM- and TE-polarized fields. Note that this paper is one of only two contributions which address the inversion of TE-polarized data. A Baussard, Inversion of multi-frequency experimental data using an adaptive multiscale approach, reports results of reconstructions using the modified gradient method (MGM). It suggests that a coarse-to-fine iterative strategy based on spline pyramids. In this iterative technique, the number of degrees of freedom is reduced, which improves robustness. The introduction, during the iterative process, of finer scales inside areas of interest leads to an accurate representation of the object under test. The efficiency of this technique is shown via comparisons between the results obtained with the standard MGM and those from an adaptive approach. L Crocco, M D'Urso and T Isernia, Testing the contrast source extended Born inversion method against real data: the case of TM data, assume that the main contribution in the domain integral formulation comes from the singularity of Green's function, even though the media involved are lossless. A Fourier Bessel analysis of the incident and scattered measured fields is used to derive a model of the incident field and an estimate of the location and size of the target. The iterative procedure lies on a conjugate gradient method associated with Tikhonov regularization, and the multi-frequency data are dealt with using a frequency-hopping approach. In many cases, it is difficult to reconstruct accurately both real and imaginary parts of the permittivity if no prior information is included. M Donelli, D Franceschini, A Massa, M Pastorino and A Zanetti, Multi-resolution iterative inversion of real inhomogeneous targets, adopt a multi-resolution strategy, which, at each step, adaptive discretization of the integral equation is performed over an irregular mesh, with a coarser grid outside the regions of interest and tighter sampling where better resolution is required. Here, this procedure is achieved while keeping the number of unknowns constant. The way such a strategy could be combined with multi-frequency data, edge preserving regularization, or any technique also devoted to improve resolution, remains to be studied. As done by some other contributors, the model of incident field is chosen to fit the Fourier Bessel expansion of the measured one. A Dubois, K Belkebir and M Saillard, Retrieval of inhomogeneous targets from experimental frequency diversity data, present results of the reconstruction of targets using three different non-regularized techniques. It is suggested to minimize a frequency weighted cost function rather than a standard one. The different approaches are compared and discussed. C Estatico, G Bozza, A Massa, M Pastorino and A Randazzo, A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data, use a two nested iterative methods scheme, based on the second-order Born approximation, which is nonlinear in terms of contrast but does not involve the total field. At each step of the outer iteration, the problem is linearized and solved iteratively using the Landweber method. Better reconstructions than with the Born approximation are obtained at low numerical cost. O Feron, B Duchêne and A Mohammad-Djafari, Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data, adopt a Bayesian framework based on a hidden Markov model, built to take into account, as prior knowledge, that the target is composed of a finite number of homogeneous regions. It has been applied to diffraction tomography and to a rigorous formulation of the inverse problem. The latter can be viewed as a Bayesian adaptation of the contrast source method such that prior information about the contrast can be introduced in the prior law distribution, and it results in estimating the posterior mean instead of minimizing a cost functional. The accuracy of the result is thus closely linked to the prior knowledge of the contrast, making this approach well suited for non-destructive testing. J-M Geffrin, P Sabouroux and C Eyraud, Free space experimental scattering database continuation: experimental set-up and measurement precision, describe the experimental set-up used to carry out the data for the inversions. They report the modifications of the experimental system used previously in order to improve the precision of the measurements. Reliability of data is demonstrated through comparisons between measurements and computed scattered field with both fundamental polarizations. In addition, the reader interested in using the database will find the relevant information needed to perform inversions as well as the description of the targets under test. A Litman, Reconstruction by level sets of n-ary scattering obstacles, presents the reconstruction of targets using a level sets representation. It is assumed that the constitutive materials of the obstacles under test are known and the shape is retrieved. Two approaches are reported. In the first one the obstacles of different constitutive materials are represented in a single level set, while in the second approach several level sets are combined. The approaches are applied to the experimental data and compared. U Shahid, M Testorf and M A Fiddy, Minimum-phase-based inverse scattering algorithm applied to Institut Fresnel data, suggest a way of extending the use of minimum phase functions to 2D problems. In the kind of inverse problems we are concerned with, it consists of separating the contributions from the field and from the contrast in the so-called contrast source term, through homomorphic filtering. Images of the targets are obtained by combination with diffraction tomography. Both pre-processing and imaging are thus based on the use of Fourier transforms, making the algorithm very fast compared to classical iterative approaches. It is also pointed out that the design of appropriate filters remains an open topic. C Yu, L-P Song and Q H Liu, Inversion of multi-frequency experimental data for imaging complex objects by a DTA CSI method, use the contrast source inversion (CSI) method for the reconstruction of the targets, in which the initial guess is a solution deduced from another iterative technique based on the diagonal tensor approximation (DTA). In so doing, the authors combine the fast convergence of the DTA method for generating an accurate initial estimate for the CSI method. Note that this paper is one of only two contributions which address the inversion of TE-polarized data. Conclusion In this special section various inverse scattering techniques were used to successfully reconstruct inhomogeneous targets from multi-frequency multi-static measurements. This shows that the database is reliable and can be useful for researchers wanting to test and validate inversion algorithms. From the database, it is also possible to extract subsets to study particular inverse problems, for instance from phaseless data or from `aspect-limited' configurations. Our future efforts will be directed towards extending the database in order to explore inversions from transient fields and the full three-dimensional problem. Acknowledgments The authors would like to thank the Inverse Problems board for opening the journal to us, and offer profound thanks to Elaine Longden-Chapman and Kate Hooper for their help in organizing this special section.
Inverse scattering transform analysis of rogue waves using local periodization procedure
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Suret, Pierre; El, Gennady
2016-07-01
The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra.
Inverse scattering transform analysis of rogue waves using local periodization procedure
Randoux, Stéphane; Suret, Pierre; El, Gennady
2016-01-01
The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra. PMID:27385164
Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.
2015-01-01
The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643
Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities
NASA Astrophysics Data System (ADS)
Sakaguchi, H.; Zenihiro, J.
2017-11-01
Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.
Analytical optical scattering in clouds
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1989-01-01
An analytical optical model for scattering of light due to lightning by clouds of different geometry is being developed. The self-consistent approach and the equivalent medium concept of Twersky was used to treat the case corresponding to outside illumination. Thus, the resulting multiple scattering problem is transformed with the knowledge of the bulk parameters, into scattering by a single obstacle in isolation. Based on the size parameter of a typical water droplet as compared to the incident wave length, the problem for the single scatterer equivalent to the distribution of cloud particles can be solved either by Mie or Rayleigh scattering theory. The super computing code of Wiscombe can be used immediately to produce results that can be compared to the Monte Carlo computer simulation for outside incidence. A fairly reasonable inverse approach using the solution of the outside illumination case was proposed to model analytically the situation for point sources located inside the thick optical cloud. Its mathematical details are still being investigated. When finished, it will provide scientists an enhanced capability to study more realistic clouds. For testing purposes, the direct approach to the inside illumination of clouds by lightning is under consideration. Presently, an analytical solution for the cubic cloud will soon be obtained. For cylindrical or spherical clouds, preliminary results are needed for scattering by bounded obstacles above or below a penetrable surface interface.
Topics Associated with Nonlinear Evolution Equations and Inverse Scattering in Multidimensions,
1987-03-01
significant that these concepts can be generalized to 2 spatial plus one time dimension. Here the prototype equation is the Kadomtsev - Petviashvili (K-P...O-193 32 ? T TOPICS ASSOCIATED WITH NONLINEAR E VOLUTION EQUATIONS / AND INVERSE SCATTER! .(U) CLARKSON UNIV POTSDAM NY INST...8217 - Evolution Equations and L Inverse Scattering in Multi- dimensions by _i A ,’I Mark J. Ablowi ClrsnUiest PosaNwYr/37 LaRMFOMON* .F-5 Anwo~~~d kr /ua
Forward and inverse functional variations in rotationally inelastic scattering
NASA Astrophysics Data System (ADS)
Guzman, Robert; Rabitz, Herschel
1986-09-01
This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were typically small such that ‖δV(R,r)‖≪‖V(R,r)‖. From the viewpoint of an actual inversion, these results indicate that only through an extensive effort will significant knowledge of the potential be gained from the cross sections. All of these calculations serve to illustrate the methodology, and other observables as well as dynamical schemes could be explored as desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.
Data of a partial-wave analysis of nucleon-nucleon scattering at energies of up to E{sub lab} = 3 GeV (lower partial waves) and the properties of the deuteron are described within the relativistic optical model based on deep attractive quasipotentials involving forbidden states (as exemplified by the Moscow potential). Partial-wave potentials are derived by the inverse-scattering-problem method based on the Marchenko equation by using present-day data from the partial-wave analysis of nucleon-nucleon scattering at energies of up to 3 GeV. Channel coupling is taken into account. The imaginary parts of the potentials are deduced from the phase equation of the variable-phasemore » approach. The general situation around the manifestation of quark effects in nucleon-nucleon interaction is discussed.« less
Studies of phosphatidylcholine vesicles by spectroturbidimetric and dynamic light scattering methods
NASA Astrophysics Data System (ADS)
Khlebtsov, B. N.; Kovler, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.; Shchyogolev, S. Yu.
2003-09-01
A spectroturbidimetric method for the determination of the average size and thickness of the shell in polydisperse suspensions of liposome particles is discussed. The method is based on measuring the wavelength exponent of a suspension (a slope of the logarithmic turbidity spectrum) and the specific turbidity (the turbidity per unit mass concentration of the dispersed substance). The inverse problem was solved using an exact calculation of characteristics of light scattering for polydisperse suspensions of spherical bilayer particles with allowance for the spectral dependence of optical constants. A practical realization of this method is illustrated by the experimental determinations of the structural parameters of liposomes prepared from egg lecithin. Comparison experiments to determine the liposome size by the dynamic (quasielastic) light scattering method were performed as an independent control.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
begin{center} MUSIC Algorithms for Rebar Detection
NASA Astrophysics Data System (ADS)
Leone, G.; Solimene, R.
2012-04-01
In this contribution we consider the problem of detecting and localizing small cross section, with respect to the wavelength, scatterers from their scattered field once a known incident field interrogated the scene where they reside. A pertinent applicative context is rebar detection within concrete pillar. For such a case, scatterers to be detected are represented by rebars themselves or by voids due to their lacking. In both cases, as scatterers have point-like support, a subspace projection method can be conveniently exploited [1]. However, as the field scattered by rebars is stronger than the one due to voids, it is expected that the latter can be difficult to be detected. In order to circumvent this problem, in this contribution we adopt a two-step MUltiple SIgnal Classification (MUSIC) detection algorithm. In particular, the first stage aims at detecting rebars. Once rebar are detected, their positions are exploited to update the Green's function and then a further detection scheme is run to locate voids. However, in this second case, background medium encompasses also the rabars. The analysis is conducted numerically for a simplified two-dimensional scalar scattering geometry. More in detail, as is usual in MUSIC algorithm, a multi-view/multi-static single-frequency configuration is considered [2]. Baratonia, G. Leone, R. Pierri, R. Solimene, "Fault Detection in Grid Scattering by a Time-Reversal MUSIC Approach," Porc. Of ICEAA 2011, Turin, 2011. E. A. Marengo, F. K. Gruber, "Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets," EURASIP Journal on Advances in Signal Processing, 2007, Article ID 17342, 16 pages (2007).
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions
NASA Astrophysics Data System (ADS)
Biondini, Gino; Kraus, Daniel K.; Prinari, Barbara
2016-12-01
We present a rigorous theory of the inverse scattering transform (IST) for the three-component defocusing nonlinear Schrödinger (NLS) equation with initial conditions approaching constant values with the same amplitude as {xto±∞}. The theory combines and extends to a problem with non-zero boundary conditions three fundamental ideas: (i) the tensor approach used by Beals, Deift and Tomei for the n-th order scattering problem, (ii) the triangular decompositions of the scattering matrix used by Novikov, Manakov, Pitaevski and Zakharov for the N-wave interaction equations, and (iii) a generalization of the cross product via the Hodge star duality, which, to the best of our knowledge, is used in the context of the IST for the first time in this work. The combination of the first two ideas allows us to rigorously obtain a fundamental set of analytic eigenfunctions. The third idea allows us to establish the symmetries of the eigenfunctions and scattering data. The results are used to characterize the discrete spectrum and to obtain exact soliton solutions, which describe generalizations of the so-called dark-bright solitons of the two-component NLS equation.
NASA Astrophysics Data System (ADS)
Zakhariev, B. N.; Chabanov, V. M.
It was an important examination to give a review talk at the previous Conference on Inverse Quantum Scattering (1996, Lake Balaton) about computer visualization of this science in front of its fathers — creators, B. M. Levitan and V. A. Marchenko. We have achieved a new understanding that the discovered main rules of transformations of a single wave function bump, e.g., for the ground bound states of one dimensional quantum systems are applicable to any state of any potential with arbitrary number of bumps from finite to unlimited ones as scattering states and bound states embedded into continuum. It appeared that we need only to repeat the rule mentally the necessary number of times. That uttermost simplification and unification of physical notion of spectral, scattering and decay control for any potential have got an obligatory praise from B. M. Levitan at the conference and was a mighty stimulus for our further research After that we have written both Russian (2002) and improved English editions of “Submissive Quantum Mechanics. New Status of the Theory in Inverse Problem Approach”1 (appeared at the very end of 2007). This book was written for correction of the present defect in quantum education throughout the world. Recently the quantum IP intuition helped us to discover a new concept of permanent wave resonance with potential spatial oscillations.2 This means the constant wave swinging frequency on the whole energy intervals of spectral forbidden zones destroying physical solutions and deepening the theory of waves in periodic potentials. It also shows the other side of strengthening the fundamentally important magic structures. A ‘new language’ of wave bending will be presented to enrich our quantum intuition, e.g., the paradoxical effective attraction of barriers and repulsion of wells in multichannel systems, etc.
Analysis of a Two-Dimensional Thermal Cloaking Problem on the Basis of Optimization
NASA Astrophysics Data System (ADS)
Alekseev, G. V.
2018-04-01
For a two-dimensional model of thermal scattering, inverse problems arising in the development of tools for cloaking material bodies on the basis of a mixed thermal cloaking strategy are considered. By applying the optimization approach, these problems are reduced to optimization ones in which the role of controls is played by variable parameters of the medium occupying the cloaking shell and by the heat flux through a boundary segment of the basic domain. The solvability of the direct and optimization problems is proved, and an optimality system is derived. Based on its analysis, sufficient conditions on the input data are established that ensure the uniqueness and stability of optimal solutions.
1983-12-30
Transform for the Kadomtsev - Petviashvili Equation , M.J. Ablowitz , D. Bar Yaacov and A.S. Fokas, to appear in Stud. in Appl. Math. I.N.S. #21 preprint...Benjamin-Ono equation bears many similariti to the multidimensional problem, especially the Kadomtsev - Petviashvili equation . We discuss many of these...appear in Stud. in Appl. Math. I.N.S. #22 preprint, 1982. 67. On the Inverse Scattering Transform for the Kadomtsev - Petviashvili Equation , M.J. Ablowitz
Effects of the measurement configuration in GPR prospecting
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Soldovieri, Francesco
2017-04-01
The measurement configuration is an issue of great interest in problems of inverse scattering in general, and in particular in problems regarding GPR data. In particular, the measurement configuration has an influence on the amount of retrievable information [1-2] and can be a way to achieve an intrinsic two dimensional filtering of the data [3], possibly accounting for the characteristics of the exploited antennas too [4]. However, no filter is able to erase exactly the undesired contribution to the comprehensive signal while leaving unperturbed the useful part of the gathered datum. In other word, any filtering of the data (included those implicitly imposed through the measurement configuration) has some price in terms of loss or distortion of the received information, and therefore it has to be applied only when needed and only at the right degree of intensity. In particular, differential measurement configurations have been introduced in the last few years, especially with interest in the field of detection of UXO [5-6]. The filtering effects in some differential configuration are not immediately understood, but need some deep reasoning. In particular, the theory of the diffraction tomography, allows to quantify the retrievable spatial frequencies under the measurement configuration at hand, and so allows to quantify the filtering effect of the differential configurations. Examples will be shown at the conference, regarding both a horizontal and a vertical differential configuration. References [1] R. Persico, R. Bernini, F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the Born approximation", IEEE Trans. On Antennas and Prop., vol. 53, n. 6, pp. 1875-1886, June 2005. [2] R. Persico, "On the role of measurement Configuration in Contactless GPR data Processing by Means of Linear Inverse Scattering, IEEE Trans. On Antennas and Prop AP, Vol. 54 n. 7 p. 2062-2071, July 2006. [3] R. Persico, F. Soldovieri, Effects of the Background Removal in Linear Inverse Scattering, IEEE Trans. on Geos. and Rem. Sens., vol. 46, n. 4, pp. 1104-1114, April 2008. [4] F. Soldovieri, R. Persico and G. Leone, "Effect of source and receiver radiation characteristics in subsurface prospecting within the DBA", Radio Science, vol. 40, RS3006, May 2005. [5] R. Persico, F. Soldovieri, A Microwave Tomography approach for a Differential Configuration in GPR Prospecting, IEEE Trans. On Antennas and Prop AP, vol. 54, n. 11, pp. 3541-3548, November 2006. [6] R. Persico, G. Pochanin, V. Ruban, I. Catapano, F. Soldovieri, Performances of a Microwave Tomographic Algorithm for GPR Systems Working in Differential Configuration, IEEE Jstars, vol. 9, n. 4, pp. 1343-1356, April 2016.
Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.
Cejnar, M; Kobler, H; Hunyor, S N
1993-03-01
Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.
NASA Astrophysics Data System (ADS)
Tsunoda, Takaya; Suzuki, Keigo; Saitoh, Takahiro
2018-04-01
This study develops a method to visualize the state of steel-concrete interface with ultrasonic testing. Scattered waves are obtained by the UT pitch-catch mode from the surface of the concrete. Discrete wavelet transform is applied in order to extract echoes scattered from the steel-concrete interface. Then Linearized Inverse Scattering Methods are used for imaging the interface. The results show that LISM with Born and Kirchhoff approximation provide clear images for the target.
NASA Astrophysics Data System (ADS)
Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min
2018-04-01
The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.
A Vertical Differential Configuration in GPR prospecting
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco
2015-04-01
The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically small objects and interfaces. This configuration can be labeled as a vertical differential configuration. At the conference, the reconstruction capabilities of this differential GPR configuration system will be discussed by means of an analysis of the problem based on a properly designed microwave tomographic inversion approach. The proposed approach exploits the Born approximation and faces the imaging as the solution of a linear inverse scattering problem. In this way, the problem of the local minima is avoided [7] and it is possible to impose some regularization to the problem in an easy way problem [8-9]. At the conference, a theoretical analysis of the mathematical propserties of the scattering operator under the vertical differential configuration will be presented showing that, with respect to the horizontal differential configuration, the vertical one allows to reject the direct coupling between the antennas but not the coupling of the antennas occurring through the air-soil interface. On the other hand, the filtering properties of the operator at hand con be considered, let say, less severe in some cases. At the conference, both some numerical and experimental results will be shown. References [1] R. Persico, F. Soldovieri, "Effects of the background removal in linear inverse scattering", IEEE Trans. Geosci. Remote Sens, vol. 46, pp. 1104-1114, April 2008. [2] L. Gurel, U. Oguz, "Three-Dimensional FDTD modeling of a ground penetrating radar", IEEE Trans. Geosci. Remote Sens, vol. 38, pp. 1513-1521, July 2000. [3] L. Gurel, U. Oguz, "Optimization of the transmitter-receiver separation in the ground penetrating radar", IEEE Trans. Antennas and Propag., vol. 51, no 3, pp. 362-370, March 2003. [4] R. Persico, F. Soldovieri, "A microwave tomography approach for a differential configuration in GPR prospecting", IEEE Trans. Antennas and Propag., vol. 54, pp. 3541 - 3548, 2006. [5] Y.A. Kopylov, S.A. Masalov, G.P. Pochanin, "The way of isolation between transmitting and receiving modules of antenna", Patent 81652 Ukraine: IPC (2006) H01Q 9/00 H01Q 19/10 / publ. 25.01.08, Bull. N. 2 [6] G.P. Pochanin, "Some Advances in UWB GPR," in "Unexploded Ordnance Detection and Mitigation, - NATO Science for Peace and Security Series -B: Physics and Biophysics - Ed. by Jim Byrnes, Springer: Dordrecht, (The Nederland), 2009. pp.223-233. [7] R. Persico, F. Soldovieri, R. Pierri, "Convergence Properties of a Quadratic Approach to the Inverse Scattering Problem", Journal of Optical Society of America Part A, vol. 19, n. 12, pp. 2424-2428, December 2002. [8] R. Pierri, G. Leone, F. Soldovieri, R. Persico, "Electromagnetic inversion for subsurface applications under the distorted Born approximation" Nuovo Cimento, vol. 24C, N. 2, pp 245-261, March-April 2001. [9] R. Persico, Introduction to ground penetrating Radar: Inverse Scattering and data Processing, in print on Wiley and Sons, 2014, ISBN 9781118305003.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.
2017-02-01
Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.
NASA Astrophysics Data System (ADS)
Eftekhar, Roya; Hu, Hao; Zheng, Yingcai
2018-06-01
Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.
Research of microwave scattering properties of snow fields
NASA Technical Reports Server (NTRS)
Angelakos, D. J.
1978-01-01
The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.
Tomographic phase microscopy: principles and applications in bioimaging [Invited
Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.
2017-01-01
Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research. PMID:29386746
Evanescent waves and deaf bands in sonic crystals
NASA Astrophysics Data System (ADS)
Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.
2011-12-01
The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.
NASA Astrophysics Data System (ADS)
Lazri, H.; Ogam, E.; Amar, B.; Fellah, Z. E. A.; Sayoud, N.; Boumaiza, Y.
2018-05-01
Flexible, supple thermoplastic thin films (PVB and PET) placed on elastic substrates were probed using ultrasonic waves to identify their mechanical moduli and density. The composite medium immersed in a fluid host medium (water) was excited using a 50 Mhz transducer operating at normal incidence in reflection mode. Elastic wave propagation data from the stratified medium was captured in the host medium as scattered field. These data were used along with theoretical fluid-solid interaction forward models for stratified-media developed using elasticity theory, to solve an inverse problem for the recovery of the model parameters of the thin films. Two configurations were modeled, one considering the substrate as a semi-infinite elastic medium and the second the substrate having a finite thickness and flanked by a semi-infinite host medium. Transverse slip for the sliding interface between the films and substrate was chosen. This was found to agree with the experiments whereby the thin films were just placed on the substrate without bonding. The inverse problems for the recovery of the mechanical parameters were successful in retrieving the thin films’ parameters under the slip boundary condition. The possible improvements to the new method for the characterization of thin films are discussed.
Detecting a subsurface cylinder by a Time Reversal MUSIC like method
NASA Astrophysics Data System (ADS)
Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni
2014-05-01
In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R. Solimene, 'Development Of New Methods For The Solution Of Inverse Electromagnetic Scattering Problems By Buried Structures: State of the Art and Open Issues ,'in COST ACTION TU1208: CIVIL ENGINEERING APPLICATIONS OF GROUND PENETRATING RADAR, Proceedings of first Action's General Meeting, 2013. ISBN: 978-88-548-6191-6. [2] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, G. Schettini, "Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches, Journal of Applied Geophysics, vol. 97, pp. 60-68, 2013. [3] E. A. Marengo, F. K. Gruber, F. Simonetti, 'Time-reversal MUSIC imaging of extended targets,' IEEE Trans Image Process. vol. 16, pp. 1967-84, 2007
Time Domain Radar Laboratory Operating System Development and Transient EM Analysis.
1981-09-01
polarization of the return, arg used. Other similar methods use amplitude and phase differences or special properties of Rayleigh region scattering. All these...3ptias Inverse Scattering ... 19 2. "!xact" Inverse Scattering !Nethod .. 20 3. Other Methods ................... 21 C. REVIEW OF TDRL PROGRESS AT SPS...explicit independant variable in.most methods . In the past, frequency domain analysis has been the primary means of analyzing aan-monochromatic EM
Radar scattering functions using Itokawa as ground truth
NASA Astrophysics Data System (ADS)
Nolan, M.; Bramson, A.; Magri, C.
2014-07-01
Determining shape models from radar and lightcurve data is an inverse problem that involves computing the expected radar image that would result from a given shape and viewing geometry. The original work of Hudson [1] used models of radar scattering derived from observations of the terrestrial planets. Hudson verified his results using a laboratory simulation of delay-Doppler imaging. Here we compare radar data to synthetic data using the Hayabusa-derived shape model of Itokawa [2] to model Arecibo and Goldstone radar images [3,4]. The synthetic images match the observations well (see figure), but sometimes have bright pixels on the leading edge (top) of the data that are not seen in the synthetic images. We model the scattering dependence on incidence angle as a function tabulated every 0.1 degrees of incidence angle. The resulting fit is a good match to a cos^n θ distribution, but with a strong spike near (but not exactly at) zero incidence. We are studying the details of the low-angle scattering.
NASA Astrophysics Data System (ADS)
Kleemann, Bernd H.; Kurz, Julian; Hetzler, Jochen; Pomplun, Jan; Burger, Sven; Zschiedrich, Lin; Schmidt, Frank
2011-05-01
Finite element methods (FEM) for the rigorous electromagnetic solution of Maxwell's equations are known to be very accurate. They possess a high convergence rate for the determination of near field and far field quantities of scattering and diffraction processes of light with structures having feature sizes in the range of the light wavelength. We are using FEM software for 3D scatterometric diffraction calculations allowing the application of a brilliant and extremely fast solution method: the reduced basis method (RBM). The RBM constructs a reduced model of the scattering problem from precalculated snapshot solutions, guided self-adaptively by an error estimator. Using RBM, we achieve an efficiency accuracy of about 10-4 compared to the direct problem with only 35 precalculated snapshots being the reduced basis dimension. This speeds up the calculation of diffraction amplitudes by a factor of about 1000 compared to the conventional solution of Maxwell's equations by FEM. This allows us to reconstruct the three geometrical parameters of our phase grating from "measured" scattering data in a 3D parameter manifold online in a minute having the full FEM accuracy available. Additionally, also a sensitivity analysis or the choice of robust measuring strategies, for example, can be done online in a few minutes.
Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman
2017-11-10
Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; Haddar, Houssem
2013-10-01
In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission eigenvalue problem. The need to answer these questions became important after a series of papers by Cakoni et al [5], and Cakoni et al [6] suggesting that these transmission eigenvalues could be used to obtain qualitative information about the material properties of the scattering object from far-field data. The first answer to the existence of transmission eigenvalues in the general case was given in 2008 when Päivärinta and Sylvester showed the existence of transmission eigenvalues for the index of refraction sufficiently large [7] followed in 2010 by the paper of Cakoni et al who removed the size restriction on the index of refraction [8]. More importantly, in the latter it was shown that transmission eigenvalues yielded qualitative information on the material properties of the scattering object and Cakoni et al established in [9] that transmission eigenvalues could be determined from the Tikhonov regularized solution of the far-field equation. Since the appearance of these papers there has been an explosion of interest in the transmission eigenvalue problem (we refer the reader to our recent survey paper [10] for a detailed account of the developments in this field up to 2012) and the papers in this special issue are representative of the myriad directions that this research has taken. Indeed, we are happy to see that many open theoretical and numerical questions raised in [10] have been answered (totally or partially) in the contributions of this special issue: the existence of transmission eigenvalues with minimal assumptions on the contrast, the numerical evaluation of transmission eigenvalues, the inverse spectral problem, applications to non-destructive testing, etc. In addition to these topics, many other new investigations and research directions have been proposed as we shall see in the brief content summary below. A number of papers in this special issue are concerned with the question of existence of transmission eigenvalues and the structure of the associated transmission eigenfunctions. The three papers by respectively Robbiano [11], Blasten and Päivärinta [12], and Lakshtanov and Vainberg [13] provide new complementary results on the existence of transmission eigenvalues for the scalar problem under weak assumptions on the (possibly complex valued) refractive index that mainly stipulates that the contrast does not change sign on the boundary. It is interesting here to see three different new methods to obtain these results. On the other hand, the paper by Bonnet-Ben Dhia and Chesnel [14] addresses the Fredholm properties of the interior transmission problem when the contrast changes sign on the boundary, exhibiting cases where this property fails. Using more standard approaches, the existence and structure of transmission eigenvalues are analyzed in the paper by Delbary [15] for the case of frequency dependent materials in the context of Maxwell's equations, whereas the paper by Vesalainen [16] initiates the study of the transmission eigenvalue problem in unbounded domains by considering the transmission eigenvalues for Schrödinger equation with non-compactly supported potential. The paper by Monk and Selgas [17] addresses the case where the dielectric is mounted on a perfect conductor and provides some numerical examples of the localization of associated eigenvalues using the linear sampling method. A series of papers then addresses the question of localization of transmission eigenvalues and the associated inverse spectral problem for spherically stratified media. More specifically, the paper by Colton and Leung [18] provides new results on complex transmission eigenvalues and a new proof for uniqueness of a solution to the inverse spectral problem, whereas the paper by Sylvester [19] provides sharp results on how to locate all the transmission eigenvalues associated with angular independent eigenfunctions when the index of refraction is constant. The paper by Gintides and Pallikarakis [20] investigates an iterative least square method to identify the spherically stratified index of refraction from transmission eigenvalues. On the characterization of transmission eigenvalues in terms of far-field measurements, a promising new result is obtained by Kirsch and Lechleiter [21] showing how one can identify the transmission eigenvalues using the eigenvalues of the scattering operator which are available in terms of measured scattering data. In the paper by Kleefeld [22], an accurate method for computing transmission eigenvalues based on a surface integral formulation of the interior transmission problem and numerical methods for nonlinear eigenvalue problems is proposed and numerically validated for the scalar problem in three dimensions. On the other hand, the paper by Sun and Xu [23] investigates the computation of transmission eigenvalues for Maxwell's equations using a standard iterative method associated with a variational formulation of the interior transmission problem with an emphasis on the effect of anisotropy on transmission eigenvalues. From the perspective of using transmission eigenvalues in non-destructive testing, the paper by Cakoni and Moskow [24] investigates the asymptotic behavior of transmission eigenvalues with respect to small inhomogeneities. The paper by Nakamura and Wang [25] investigates the linear sampling method for the time dependent heat equation and analyses the interior transmission problem associated with this equation. Finally, in the paper by Finch and Hickmann [26], the spectrum of the interior transmission problem is related to the unique determination of the acoustic properties of a body in thermoacoustic imaging. We hope that this collection of papers will stimulate further research in the rapidly growing area of transmission eigenvalues and inverse scattering theory.
2 + 1 Toda chain. I. Inverse scattering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipovskii, V.D.; Shirokov, A.V.
A formal scheme of the inverse scattering method is constructed for the2 + 1 Toda chain in the class of rapidly decreasing Cauchy data. Application of the inverse scattering method to the two-dimensional infinite Toda chain was made difficult by the circumstance that this system is a (2 + 1)-dimensional object, i.e., possesses time and two spatial variables, the role of one of these being played by the chain site number. Because of this, our information about the 2 + 1 Toda chain was limited to a rich set of particular solutions of soliton type obtained in the cycle ofmore » studies by the Darboux transformation method.« less
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
NASA Astrophysics Data System (ADS)
Marchuk, Gurii I.; Imshennik, Vladimir S.; Basko, Mikhail M.
2009-03-01
The hydrodynamic problem of a thermonuclear explosion in a sphere of normal-density liquid deuterium was solved (Institute for Physics and Power Engineering, Obninsk) in 1952-1954 in the framework of the Soviet Atomic Project. The principal result was that the explosion shockwave in deuterium strongly decayed because of radiation energy loss and nonlocal energy release by fast neutrons. At that time, this negative result implied in essence that the straightforward approach to creating a thermonuclear weapon was in fact a blind alley. This paper describes a numerical solution to the stated problem, obtained with the modern DEIRA code developed for numerical modeling of inertially confined fusion. Detailed numerical calculations have confirmed the above 'historic' result and shed additional light on the physical causes of the detonation wave decay. The most pernicious factor is the radiation energy loss due to the combined effect of bremsstrahlung and the inverse Compton scattering of the emitted photons on the hot electrons. The impact of energy transfer by fast neutrons — which was already quite adequately accounted for in the above-cited historical work — is less significant. We present a more rigorous (compared to that of the 1950s) study of the role of inverse Compton scattering for which, in particular, an independent analytic estimate is obtained.
Periodic Landau-Zener problem in long-range migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksengendler, B. L.; Turaeva, N. N.
From studies of radiation effects in semiconductors at low temperatures, it is known that an interstitial atom migrates over a distance of up to 1000 A (Watkins effect). The interpretation of this effect is based on the inversion of potential energy curves of an interstitial atom in semiconductors when it changes its charge. At low temperatures, a cascade of radiationless transitions can occur between the ground and excited states of a relocalized electron, which leads to the coherent tunneling of the interstitial atom through the lattice. The description of this effect using the scattering matrix S leads to the dispersionmore » law and to an equation for the effective mass of such a quasiparticle called an inversion.« less
Discovery of polarized light scattered by dust around Alpha Orionis
NASA Technical Reports Server (NTRS)
Mcmillan, R. S.; Tapia, S.
1978-01-01
Following the suggestion by Jura and Jacoby (1976), linearly polarized blue continuum starlight scattered by the dust shell around the M2 Iab star Alpha Orionis (Betelgeuse) has been discovered. The polarization has been traced in the NE, NW, SE, and SW directions and has positive (tangential) orientation. Some asymmetry of the optical depth in the shell exists 15 and 30 arcsec from the star. In the NE direction the polarization was measured as far as 90 arcsec (17,000 AU) from the star. The dependence of the average intensity of the scattered light from the nebula on angular distance from the star is more consistent with an inverse-square density law than with inverse 1.5 or inverse-cube laws. Assuming that the density is proportional to the inverse square of distance from the star, the scattering optical depth in blue light along a radius of 0.03 arcsec is no more than 0.15 + or - 0.05. Future observations of the wavelength dependence of polarization will allow a determination of grain size.
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.
2013-04-01
Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA Astrophysics Theory and Fundamental Program.
Inverse scattering for an exterior Dirichlet program
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1981-01-01
Scattering due to a metallic cylinder which is in the field of a wire carrying a periodic current is considered. The location and shape of the cylinder is obtained with a far field measurement in between the wire and the cylinder. The same analysis is applicable in acoustics in the situation that the cylinder is a soft wall body and the wire is a line source. The associated direct problem in this situation is an exterior Dirichlet problem for the Helmholtz equation in two dimensions. An improved low frequency estimate for the solution of this problem using integral equation methods is presented. The far field measurements are related to the solutions of boundary integral equations in the low frequency situation. These solutions are expressed in terms of mapping function which maps the exterior of the unknown curve onto the exterior of a unit disk. The coefficients of the Laurent expansion of the conformal transformations are related to the far field coefficients. The first far field coefficient leads to the calculation of the distance between the source and the cylinder.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonis; van der Kruk, Jan
2015-04-01
This work aims at presenting the ongoing research activities carried out in Working Group 3 (WG3) 'EM methods for near-field scattering problems by buried structures; data processing techniques' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. WG3 is structured in four Projects. Project 3.1 deals with 'Electromagnetic modelling for GPR applications.' Project 3.2 is concerned with 'Inversion and imaging techniques for GPR applications.' The topic of Project 3.3 is the 'Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion.' Project 3.4 focuses on 'Advanced GPR data-processing algorithms.' Electromagnetic modeling tools that are being developed and improved include the Finite-Difference Time-Domain (FDTD) technique and the spectral domain Cylindrical-Wave Approach (CWA). One of the well-known freeware and versatile FDTD simulators is GprMax that enables an improved realistic representation of the soil/material hosting the sought structures and of the GPR antennas. Here, input/output tools are being developed to ease the definition of scenarios and the visualisation of numerical results. The CWA expresses the field scattered by subsurface two-dimensional targets with arbitrary cross-section as a sum of cylindrical waves. In this way, the interaction is taken into account of multiple scattered fields within the medium hosting the sought targets. Recently, the method has been extended to deal with through-the-wall scenarios. One of the inversion techniques currently being improved is Full-Waveform Inversion (FWI) for on-ground, off-ground, and crosshole GPR configurations. In contrast to conventional inversion tools which are often based on approximations and use only part of the available data, FWI uses the complete measured data and detailed modeling tools to obtain an improved estimation of medium properties. During the first year of the Action, information was collected and shared about state-of-the-art of the available modelling, imaging, inversion, and data-processing methods. Advancements achieved by WG3 Members were presented during the TU1208 Second General Meeting (April 30 - May 2, 2014, Vienna, Austria) and the 15th International Conference on Ground Penetrating Radar (June 30 - July 4, 2014, Brussels, Belgium). Currently, a database of numerical and experimental GPR responses from natural and manmade structures is being designed. A geometrical and physical description of the scenarios, together with the available synthetic and experimental data, will be at the disposal of the scientific community. Researchers will thus have a further opportunity of testing and validating, against reliable data, their electromagnetic forward- and inverse-scattering techniques, imaging methods and data-processing algorithms. The motivation to start this database came out during TU1208 meetings and takes inspiration by successful past initiatives carried out in different areas, as the Ipswich and Fresnel databases in the field of free-space electromagnetic scattering, and the Marmousi database in seismic science. Acknowledgement The Authors thank COST, for funding the Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.'
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
NASA Astrophysics Data System (ADS)
Strom, Brandon William
In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.
2005-08-30
of the computed Rayleigh coefficients from the measured data, and the third is a regularization term to cope with the ill-posedness of the inverse...objects and properties of non-scattering scatterers. This was a residential workshop organized along the lines of a Gordon Conference, with talks... with all of those inevitable logistical and planning details that go into making a workshop such as this a success. This meeting would not have
Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,
1986-12-01
time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H
2017-06-01
We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .
NASA Technical Reports Server (NTRS)
Flesia, C.; Schwendimann, P.
1992-01-01
The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
NASA Astrophysics Data System (ADS)
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
NASA Astrophysics Data System (ADS)
Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel
2015-04-01
We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.
The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry
2015-01-01
We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.
NASA Astrophysics Data System (ADS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-01-01
A method to retrieve characteristics of ordered particulate structures, such as photonic crystals, is proposed. It is based on the solution of the inverse problem using data on the photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of the refractive index of particles is demonstrated. Refractive indices of the artificial opal particles are estimated using the published experimental data.
A numerical procedure for solving the inverse scattering problem for stratified dielectric media
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Yevick, D.; Ferwerda, H. A.
1983-05-01
In this paper the refractive index profile of a dielectric stratified medium, terminated by a perfect conductor, is calculated from the complex reflection coefficient for monochromatic plane waves, incident from different directions. The advantage of this approach is that the dispersion of the refractive index does not enter the calculations. The calculation is based on the Marchenko and Gelfand-Levitan equations taking into account the bound modes of the layer. Some illustrative numerical examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Hammer, Hans; Lou, Jijie
2016-11-01
The common definition of the diffusion coeffcient as the inverse of three times the transport cross section is not compat- ible with voids. Morel introduced a non-local tensor diffusion coeffcient that remains finite in voids[1]. It can be obtained by solving an auxiliary transport problem without scattering or fission. Larsen and Trahan successfully applied this diffusion coeffcient for enhancing the accuracy of diffusion solutions of very high temperature reactor (VHTR) problems that feature large, optically thin channels in the z-direction [2]. It is demonstrated that a significant reduction of error can be achieved in particular in the optically thin region.more » Along the same line of thought, non-local diffusion tensors are applied modeling the TREAT reactor confirming the findings of Larsen and Trahan [3]. Previous work of the authors have introduced a flexible Nonlinear-Diffusion Acceleration (NDA) method for the first order S N equations discretized with the discontinuous finite element method (DFEM), [4], [5], [6]. This NDA method uses a scalar diffusion coeffcient in the low-order system that is obtained as the flux weighted average of the inverse transport cross section. Hence, it su?ers from very large and potentially unbounded diffusion coeffcients in the low order problem. However, it was noted that the choice of the diffusion coeffcient does not influence consistency of the method at convergence and hence the di?usion coeffcient is essentially a free parameter. The choice of the di?usion coeffcient does, however, affect the convergence behavior of the nonlinear di?usion iterations. Within this work we use Morel’s non-local di?usion coef- ficient in the aforementioned NDA formulation in lieu of the flux weighted inverse of three times the transport cross section. The goal of this paper is to demonstrate that significant en- hancement of the spectral properties of NDA can be achieved in near void regions. For testing the spectral properties of the NDA with non-local diffusion coeffcients, the periodical horizontal interface problem is used [7]. This problem consists of alternating stripes of optically thin and thick materials both of which feature scattering ratios close to unity.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaodong
2017-08-01
A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.
Nonlinear Waves and Inverse Scattering
1992-01-29
equations include the Kadomtsev - Petviashvili (K-P), Davey-Stewartson (D-S), 2+1 Toda, and Self-Dual Yang-Mills (SDYM) equations . We have uncovered a... Petviashvili Equation and Associated Constraints, M.J. Ablowitz and Javier Villaroel, Studies in Appl. Math. 85, (1991), 195-213. 12. On the Hamiltonian...nonlinear wave equations of physical significance, multidimensional inverse scattering, numer- ically induced instabilities and chaos, and forced
ERIC Educational Resources Information Center
Debnath, Lokenath
2007-01-01
This paper deals with a brief introduction to major remarkable discoveries of the "soliton" and the "inverse scattering transform" in the 1960s. The discovery of the soliton (or the solitary waves) began with the famous physical experiments of the Scottish Engineer and Naval Architect John Scott Russell in the Glasgow-Edinburgh…
DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Jacobson, B.; Murokh, A.
2016-10-10
A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.
Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong
2017-07-01
Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.
Zero-order bows in radially inhomogeneous spheres: direct and inverse problems.
Adam, John A
2011-10-01
Zero-order ray paths are examined in radially inhomogeneous spheres with differentiable refractive index profiles. It is demonstrated that zero-order and sometimes twin zero-order bows can exist when the gradient of refractive index is sufficiently negative. Abel inversion is used to "recover" the refractive index profiles; it is therefore possible in principle to specify the nature and type of bows and determine the refractive index profile that induces them. This may be of interest in the field of rainbow refractometry and optical fiber studies. This ray-theoretic analysis has direct similarities with the phenomenon of "orbiting" and other phenomena in scattering theory and also in seismological, surface gravity wave, and gravitational "lensing" studies. For completeness these topics are briefly discussed in the appendixes; they may also be of pedagogic interest.
Simulation of Forward and Inverse X-ray Scattering From Shocked Materials
NASA Astrophysics Data System (ADS)
Barber, John; Marksteiner, Quinn; Barnes, Cris
2012-02-01
The next generation of high-intensity, coherent light sources should generate sufficient brilliance to perform in-situ coherent x-ray diffraction imaging (CXDI) of shocked materials. In this work, we present beginning-to-end simulations of this process. This includes the calculation of the partially-coherent intensity profiles of self-amplified stimulated emission (SASE) x-ray free electron lasers (XFELs), as well as the use of simulated, shocked molecular-dynamics-based samples to predict the evolution of the resulting diffraction patterns. In addition, we will explore the corresponding inverse problem by performing iterative phase retrieval to generate reconstructed images of the simulated sample. The development of these methods in the context of materials under extreme conditions should provide crucial insights into the design and capabilities of shocked in-situ imaging experiments.
NASA Astrophysics Data System (ADS)
Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.
2017-01-01
Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.
High order Nyström method for elastodynamic scattering
NASA Astrophysics Data System (ADS)
Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron
2016-02-01
Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.
Using Diffraction Tomography to Estimate Marine Animal Size
NASA Astrophysics Data System (ADS)
Jaffe, J. S.; Roberts, P.
In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape
Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.
Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man
2012-01-01
The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.
Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN
NASA Astrophysics Data System (ADS)
Rozanov, V. V.; Rozanov, A. V.; Kokhanovsky, A. A.; Burrows, J. P.
2014-01-01
SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18 - 40 μm) including multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable tool for a wide range of remote sensing applications. Here, we present some selected comparisons of SCIATRAN simulations to published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship instruments. Methods for solving inverse problems related to remote sensing of the Earth's atmosphere using the SCIATRAN software are outside the scope of this study and will be discussed in a follow-up paper. The SCIATRAN software package along with a detailed User's Guide is freely available for non-commercial use via the webpage of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de/sciatran.
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
Ogam, Erick; Depollier, Claude; Fellah, Z E A
2010-09-01
Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.
Levels of detail analysis of microwave scattering from human head models for brain stroke detection
2017-01-01
In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115
Marais, Willem J; Holz, Robert E; Hu, Yu Hen; Kuehn, Ralph E; Eloranta, Edwin E; Willett, Rebecca M
2016-10-10
Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes. This paper describes a novel method for solving the inverse problem with high-resolution, lower signal-to-noise ratio observations that are effective in non-uniform scenes. The novelty is twofold. First, the inferences of the backscatter and extinction are applied to images, whereas current lidar algorithms only use the information content of single profiles. Hence, the latent spatial and temporal information in noisy images are utilized to infer the cross-sections. Second, the noise associated with photon-counting lidar observations can be modeled using a Poisson distribution, and state-of-the-art tools for solving Poisson inverse problems are adapted to the atmospheric lidar problem. It is demonstrated through photon-counting high spectral resolution lidar (HSRL) simulations that the proposed algorithm yields inverted backscatter and extinction cross-sections (per unit volume) with smaller mean squared error values at higher spatial and temporal resolutions, compared to the standard approach. Two case studies of real experimental data are also provided where the proposed algorithm is applied on HSRL observations and the inverted backscatter and extinction cross-sections are compared against the standard approach.
Complex optimization for big computational and experimental neutron datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
Complex optimization for big computational and experimental neutron datasets
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard; ...
2016-11-07
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
NASA Astrophysics Data System (ADS)
Ogiso, M.
2017-12-01
Heterogeneous attenuation structure is important for not only understanding the earth structure and seismotectonics, but also ground motion prediction. Attenuation of ground motion in high frequency range is often characterized by the distribution of intrinsic and scattering attenuation parameters (intrinsic Q and scattering coefficient). From the viewpoint of ground motion prediction, both intrinsic and scattering attenuation affect the maximum amplitude of ground motion while scattering attenuation also affect the duration time of ground motion. Hence, estimation of both attenuation parameters will lead to sophisticate the ground motion prediction. In this study, we try to estimate both parameters in southwestern Japan in a tomographic manner. We will conduct envelope fitting of seismic coda since coda has sensitivity to both intrinsic attenuation and scattering coefficients. Recently, Takeuchi (2016) successfully calculated differential envelope when these parameters have fluctuations. We adopted his equations to calculate partial derivatives of these parameters since we did not need to assume homogeneous velocity structure. Matrix for inversion of structural parameters would become too huge to solve in a straightforward manner. Hence, we adopted ART-type Bayesian Reconstruction Method (Hirahara, 1998) to project the difference of envelopes to structural parameters iteratively. We conducted checkerboard reconstruction test. We assumed checkerboard pattern of 0.4 degree interval in horizontal direction and 20 km in depth direction. Reconstructed structures well reproduced the assumed pattern in shallower part while not in deeper part. Since the inversion kernel has large sensitivity around source and stations, resolution in deeper part would be limited due to the sparse distribution of earthquakes. To apply the inversion method which described above to actual waveforms, we have to correct the effects of source and site amplification term. We consider these issues to estimate the actual intrinsic and scattering structures of the target region.Acknowledgment We used the waveforms of Hi-net, NIED. This study was supported by the Earthquake Research Institute of the University of Tokyo cooperative research program.
Three-dimensional generalization of the Van Cittert-Zernike theorem to wave and particle scattering
NASA Astrophysics Data System (ADS)
Zarubin, Alexander M.
1993-07-01
Coherence properties of primary partially coherent radiations (light, X-rays and particles) elastically scattered from a 3D object consisting of a collection of electrons and nuclei are analyzed in the Fresnel diffraction region and in the far field. The behaviour of the cross-spectral density of the scattered radiation transverse and along to the local direction of propagation is shown to be described by respectively the 3D Fourier and Fresnel transform of the generalized radiance function of a scattering secondary source associated with the object. A relativistic correct expression is derived for the mutual coherence function of radiation which takes account of the dispersive propagation of particle beams in vacuum. An effect of the spatial coherence of radiation on the temporal one is found; in the Fresnel diffraction region, in distinction to the field, both the longitudinal spatial coherence and the spectral width of radiation affect the longitudinal coherence. A solution of the 3D inverse scattering problem for partially coherent radiation is presented. It is shown that squared modulus of the scattering potential and its 2D projections can be reconstructed from measurements of the modulus and phase of the degree of transverse spatial coherence of the scattered radiation. The results provide a theoretical basis for new methods of image formation and structure analysis in X-ray, electron, ion, and neutron optics.
Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D
2018-05-01
An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.
NASA Technical Reports Server (NTRS)
You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.
2003-01-01
We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.
Two-dimensional analytic weighting functions for limb scattering
NASA Astrophysics Data System (ADS)
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
New nonlinear evolution equations from surface theory
NASA Astrophysics Data System (ADS)
Gürses, Metin; Nutku, Yavuz
1981-07-01
We point out that the connection between surfaces in three-dimensional flat space and the inverse scattering problem provides a systematic way for constructing new nonlinear evolution equations. In particular we study the imbedding for Guichard surfaces which gives rise to the Calapso-Guichard equations generalizing the sine-Gordon (SG) equation. Further, we investigate the geometry of surfaces and their imbedding which results in the Korteweg-deVries (KdV) equation. Then by constructing a family of applicable surfaces we obtain a generalization of the KdV equation to a compressible fluid.
MUSIC-type imaging of small perfectly conducting cracks with an unknown frequency
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-09-01
MUltiple SIgnal Classification (MUSIC) is a famous non-iterative detection algorithm in inverse scattering problems. However, when the applied frequency is unknown, inaccurate locations are identified via MUSIC. This fact has been confirmed through numerical simulations. However, the reason behind this phenomenon has not been investigated theoretically. Motivated by this fact, we identify the structure of MUSIC-type imaging functionals with unknown frequency, by establishing a relationship with Bessel functions of order zero of the first kind. Through this, we can explain why inaccurate results appear.
Near-Field Resonance Microwave Tomography and Holography
NASA Astrophysics Data System (ADS)
Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.
2018-02-01
We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.
Inverse Problems, Control and Modeling in the Presence of Uncertainty
2007-10-30
using a Kelvin model, CRSC- TR07-08, March, 2007; IEEE Transactions on Biomedical Engineering, submitted. [P18] K. Ito, Q. Huynh and J . Toivanen, A fast...Science and Engineering, Springer (2006), 595 602 . [P19] K.Ito and J . Toivanen, A fast iterative solver for scattering by elastic objects in layered...and N.G. Medhin, " A stick-slip/Rouse hybrid model", CRSC-TR05-28, August, 2005. [P23] H.T. Banks, A . F. Karr, H. K. Nguyen, and J . R. Samuels, Jr
Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories
NASA Astrophysics Data System (ADS)
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.
Breakdown of equipartition in diffuse fields caused by energy leakage
NASA Astrophysics Data System (ADS)
Margerin, L.
2017-05-01
Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.
Multiple scattering and the density distribution of a Cs MOT.
Overstreet, K; Zabawa, P; Tallant, J; Schwettmann, A; Shaffer, J
2005-11-28
Multiple scattering is studied in a Cs magneto-optical trap (MOT). We use two Abel inversion algorithms to recover density distributions of the MOT from fluorescence images. Deviations of the density distribution from a Gaussian are attributed to multiple scattering.
Imaging model for the scintillator and its application to digital radiography image enhancement.
Wang, Qian; Zhu, Yining; Li, Hongwei
2015-12-28
Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.
On the "Optimal" Choice of Trial Functions for Modelling Potential Fields
NASA Astrophysics Data System (ADS)
Michel, Volker
2015-04-01
There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.
Transurethral Ultrasound Diffraction Tomography
2007-03-01
the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering
Digital signal processing based on inverse scattering transform.
Turitsyna, Elena G; Turitsyn, Sergei K
2013-10-15
Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal.
Atmospheric particulate analysis using angular light scattering
NASA Technical Reports Server (NTRS)
Hansen, M. Z.
1980-01-01
Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.
NASA Astrophysics Data System (ADS)
Heng, Ri-Liang; Pilon, Laurent
2016-05-01
This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.
Laser pulsing in linear Compton scattering
Krafft, G. A.; Johnson, E.; Deitrick, K.; ...
2016-12-16
Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such anmore » approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. In addition, as discussed in the body of the paper, many of the results allow easy scaling estimates to be made of the expected spectrum. A misconception in the literature on Compton scattering of circularly polarized beams is corrected and recorded.« less
Iterative electromagnetic Born inversion applied to earth conductivity imaging
NASA Astrophysics Data System (ADS)
Alumbaugh, D. L.
1993-08-01
This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2008-01-01
Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454. Gordon, H.R., 2004, Inverse Radiative Transfer, Coccolith Backscattering, and Light Scattering...16430. Voss, K.J., W.M. Balch, and K.A. Kilpatrick, 1998, Scattering and attenuation properties of Emiliania huxleyi cells and their detached
NASA Astrophysics Data System (ADS)
Alhajdarwish, Mustafa Yousef
This thesis describes studies of two phenomena: Current-Induced Magnetization Switching (CIMS), and Current-Induced Generation of GHz Radiation. The CIMS part contains results of measurements of current-perpendicular-to-plane (CPP) magnetoresistance (MR) and CIMS behavior on Ferromagnetic/Nonmetal/Ferromagnetic (F1/N/F2) nanopillars. Judicious combinations of F1 and F2 metals with different bulk scattering asymmetries, and with F1/N and N/F2 interfaces having different interfacial scattering asymmetries, are shown to be able to controllably, and independently, 'invert' both the CPP-MR and the CIMS. In 'normal' CPP-MR, R(AP) > R(P), where R(AP) and R(P) are the nanopillar resistances for the anti-parallel (AP) and parallel (P) orientations of the Fi and F2 magnetic moments. In 'inverse' CPP-MR, R(P) > R(AP). In 'normal' CIMS, positive current switches the nanopillar from the P to the AP state. In 'inverse' CIMS, positive current switches the nanopillar from AP to P. All four possible combinations of CPP-MR and CIMS---(a) 'normal'-'normal', (b) 'normal'- 'inverse', 'inverse'-'normal', and (d) 'inverse'-'inverse' are shown and explained. These results rule out the self-Oersted field as the switching source, since the direction of that field is independent of the bulk or interfacial scattering asymmetries. Successful use of impurities to reverse the bulk scattering asymmetry shows the importance of scattering off of impurities within the bulk F1 and F2 metals---i.e. that the transport must be treated as 'diffusive' rather than 'ballistic'. The GHz studies consist of five parts: (1) designing a sample geometry that allows reliable measurements; (2) making nanopillar samples with this geometry; (3) constructing a system for measuring frequencies up to 12 GHz and measuring current-driven GHz radiation data with it; (4) showing 'scaling' behavior of GHz data with the critical fields and currents for nominally identical (but actually slightly different) samples, and justifying such scaling; and (5) designing and constructing a system for frequency domain studies up to 40 GHz and for time domain studies.
Effects of a finite aperture on the Inverse Born Approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, V.G.; Rose, J.H.
1983-01-01
One of the most important effects of complex part geometry is that the available entrance and exit angles for ultrasound are limited. We will present a study of the Inverse Born approximation in which we have data for incident (and exit) directions confined to a conical aperture. Modeling the direct problem by the Born Approximation, we obtained analytical results for (1) a weak spherical inclusion, and (2) a penny shaped crack (modeled by an oblate spheroid). General results are: (a) the value of the characteristic function ..gamma.. is constant in the interior of the flaw, but reduced in value; (b)more » the discontinuity at the boundary of the flaw occurs over the lighted portion of the flaw; (c) this discontinuity is contrasted by a region where ..gamma.. is negative; and (d) new non-physical discontinuities and non-analyticities appear in the reconstructed characteristic function. These general features also appear in numerical calculations which use as input strong scattering data from a spherical void and a flat penny shaped crack in Titanium. The numerical results can be straightforwardly interpreted in terms of the analytical calculation mentioned above, indicating that they will be useful in the study of realistic flaws. We conclude by discussing the stabilization of the aperture limited inversion problem and the removal of non-physical features in the reconstruction.« less
NASA Astrophysics Data System (ADS)
Świrniak, Grzegorz; Głomb, Grzegorz
2017-06-01
This study reports an application of a fiber-optic LED-based illumination system to solve an inverse problem in optical measurements of characteristics of a single-mode fiber. The illumination system has the advantages of low temporal coherence, high intensity, collimation, and thermal stability of the emission spectrum. The inverse analysis is investigated to predict the values of the diameter and refractive index of a single-mode fiber and applies to the far field scattering pattern in the vicinity of a polychromatic rainbow. As the inversion possibility depends considerably on the properties of the incident radiation, a detailed discussion is provided on both the specification of the illumination system as well as preliminary characteristics of the produced radiation. The illumination system uses a direct coupling between a thermally-stabilized LED junction and a plastic optical fiber, which transmits light to an optical collimator. A numerical study of fiber-to-LED coupling efficiency helps to understand the influence of lateral and longitudinal misalignments on the output power.
Potential Benefits of Manmade Opals Demonstrated for First Time (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NREL experiments show that disordered inverse opals significantly scatter and trap near-infrared light, with possible impact on optoelectronic materials. Inverse opals, familiar in the form of brilliantly colored opal gemstones, are a class of materials that has astounding optical properties. Scientists have been exploring the ability of inverse opals to manipulate light in the hopes of harnessing this capacity for advanced technologies such as displays, detectors, lasers, and photovoltaics. A research group at the National Renewable Energy Laboratory (NREL) discovered that man-made inverse opal films containing significant morphological disorder exhibit substantial light scattering, consequently trapping wavelengths in the near-infrared (NIR),more » which is important to a number of technologies. This discovery is the first experimental evidence to validate a 2005 theoretical model predicting the confinement of light in such structures, and it holds great promise for improving the performance of technologies that rely on careful light control. This breakthrough also makes possible optoelectronic technologies that use a range of low-cost molecular and semiconductor species that otherwise absorb light too weakly to be useful. The disordered inverse opal architecture validates the theoretical model that predicts the diffusion and confinement of light in such structures. Electrochemically deposited CdSe inverse opal films containing significant morphological disorder exhibit substantial light scattering and consequent NIR light trapping. This discovery holds promise for NIR light management in optoelectronic technologies, particularly those involving weakly absorbing molecular and semiconductor photomaterials.« less
Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O
2008-05-01
A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.
NASA Astrophysics Data System (ADS)
Sumlin, Benjamin J.; Heinson, William R.; Chakrabarty, Rajan K.
2018-01-01
The complex refractive index m = n + ik of a particle is an intrinsic property which cannot be directly measured; it must be inferred from its extrinsic properties such as the scattering and absorption cross-sections. Bohren and Huffman called this approach "describing the dragon from its tracks", since the inversion of Lorenz-Mie theory equations is intractable without the use of computers. This article describes PyMieScatt, an open-source module for Python that contains functionality for solving the inverse problem for complex m using extensive optical and physical properties as input, and calculating regions where valid solutions may exist within the error bounds of laboratory measurements. Additionally, the module has comprehensive capabilities for studying homogeneous and coated single spheres, as well as ensembles of homogeneous spheres with user-defined size distributions, making it a complete tool for studying the optical behavior of spherical particles.
NASA Astrophysics Data System (ADS)
Gelmini, A.; Gottardi, G.; Moriyama, T.
2017-10-01
This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.
Sky-radiance gradient measurements at narrow bands in the visible.
Winter, E M; Metcalf, T W; Stotts, L B
1995-07-01
Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.; ...
2012-05-01
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.
2005-01-01
This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.
FOREWORD: Imaging from coupled physics Imaging from coupled physics
NASA Astrophysics Data System (ADS)
Arridge, S. R.; Scherzer, O.
2012-08-01
Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all new imaging techniques, the discovery of physical principles which can be exploited to yield information about internal physical parameters has led, hand in hand, to the development of new mathematical methods for solving the corresponding inverse problems. In many cases, the coupled physics imaging problems are expected to be much better posed than conventional tomographical imaging problems. However, still, at the current state of research, there exist a variety of open mathematical questions regarding uniqueness, existence and stability. In this special section we have invited contributions from many of the leading researchers in the mathematics, physics and engineering of these techniques to survey and to elaborate on these novel methodologies, and to present recent research directions. Historically, one of the best studied strongly ill-posed problems in the mathematical literature is the Calderón problem occuring in conductivity imaging, and one of the first examples of ICP is the use of magnetic resonance imaging (MRI) to detect internal current distributions. This topic, known as current density imaging (CDI) or magnetic resonance elecrical impedance tomography (MREIT), and its related technique of magnetic resonance electrical property tomography (MREPT), is reviewed by Wildak and Scherzer [1], and also by Seo et al [3], where experimental studies are documented. Mathematically, several of the ICP problems can be analyzed in terms of the 'p-Laplacian' which raises interesting research questions of non-linear partial differential equations. One approach for analyzing and for the solution of the CDI problem, using characteristics of the 1-Laplacian, is discussed by Tamasan and Veras [4]. Moreover, Moradifam et al [5] present a novel iterative algorithm based on Bregman splitting for solving the CDI problem. Probably the most active research areas in ICP are related to acoustic detection, because most of these techniques rely on the photoacoustic effect wherein absorption of an ultrashort pulse of light, having propagated by multiple scattering some distance into a diffusing medium, generates a source of acoustic waves that are propagated with hyperbolic stability to a surface detector. A complementary problem is that of 'acousto-optics' which uses focussed acoustic waves as the primary field to induce perturbations in optical or electrical properties, which are thus spatially localized. Similar physical principles apply to implement ultrasound modulated electrical impedance tomography (UMEIT). These topics are included in the review of Wildak and Scherzer [1], and Kuchment and Steinhauer [2] offer a general analysis of their structure in terms of pseudo-differential operators. 'Acousto-electrical' imaging is analyzed as a particular case by Ammari et al [6]. In the paper by Tarvainen et al [7], the photo-acoustic problem is studied with respect to different models of the light propagation step. In the paper by Monard and Bal [8], a more general problem for the reconstruction of an anisotropic diffusion parameter from power density measurements is considered; here, issues of uniqueness with respect to the number of measurements is of great importance. A distinctive, and highly important, example of ICP is that of elastography, in which the primary field is low-frequency ultrasound giving rise to mechanical displacement that reveals information on the local elasticity tensor. As in all the methods discussed in this section, this contrast mechanism is measured internally, with a secondary technique, which in this case can be either MRI or ultrasound. McLaughlin et al [9] give a comprehensive analysis of this problem. Our intention for this special section was to provide both an overview and a snapshot of current work in this exciting area. The increasing interest, and the involvement of cross-disciplinary groups of scientists, will continue to lead to the rapid expansion and important new results in this novel area of imaging science. References [1] Widlak T and Scherzer O 2012 Inverse Problems 28 084008 [2] Kuchment P and Steinhauer D 2012 Inverse Problems 28 084007 [3] Seo J K, Kim D-H, Lee J, Kwon O I, Sajib S Z K and Woo E J 2012 Inverse Problems 28 084002 [4] Tamasan A and Veras J 2012 Inverse Problems 28 084006 [5] Moradifam A, Nachman A and Timonov A 2012 Inverse Problems 28 084003 [6] Ammari H, Garnier J and Jing W 2012 Inverse Problems 28 084005 [7] Tarvainen T, Cox B T, Kaipio J P and Arridge S R 2012 Inverse Problems 28 084009 [8] Monard F and Bal G 2012 Inverse Problems 28 084001 [9] McLaughlin J, Oberai A and Yoon J R 2012 Inverse Problems 28 084004
Development of an experiment for visible radiation measurements from a satellite
NASA Technical Reports Server (NTRS)
Sekera, Z.; Bradbury, R. E.
1973-01-01
The inversion problem, I.E., determining the atmospheric turbidity from polarimetry of radiation emerging from the earth's atmosphere, is presented. A major theoretical advance was made by finding a successful approximation for the forward peak scattering of aerosols together with a simplified characterization of particle size distributions. An engineering model of a multibarreled photopolarimeter suitable for operation from a satellite was evaluated in laboratory and high altitude jet aircraft tests. Comparison of the data from flights over the Mexican desert with theoretical curves for a Rayleigh atmosphere with negligible turbidity is in agreement.
The soliton transform and a possible application to nonlinear Alfven waves in space
NASA Technical Reports Server (NTRS)
Hada, T.; Hamilton, R. L.; Kennel, C. F.
1993-01-01
The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.
Determining the Size of Pores in a Partially Transparent Ceramics from Total-Reflection Spectra
NASA Astrophysics Data System (ADS)
Mironov, R. A.; Zabezhailov, M. O.; Georgiu, I. F.; Cherepanov, V. V.; Rusin, M. Yu.
2018-03-01
A technique is proposed for determining the pore-size distribution based on measuring the dependence of total reflectance in the domain of partial transparency of a material. An assumption about equality of scattering-coefficient spectra determined by solving the inverse radiation transfer problem and by theoretical calculation with the Mie theory is used. The technique is applied to studying a quartz ceramics. The poresize distribution is also determined using mercury and gas porosimetry. All three methods are shown to produce close results for pores with diameters of <180 nm, which occupy 90% of the void volume. In the domain of pore dimensions of >180 nm, the methods show differences that might be related to both specific procedural features and the structural properties of ceramics. The spectral-scattering method has a number of advantages over traditional porosimetry, and it can be viewed as a routine industrial technique.
Inverse obstacle problem for the scalar Helmholtz equation
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.
1994-07-01
The method presented is aimed at identifying the shape of an axially symmetric, sound soft acoustic scatterer from knowledge of the incident plane wave and of the scattering amplitude. The method relies on the approximate back propagation (ABP) of the estimated far field coefficients to the obstacle boundary and iteratively minimizes a boundary defect, without the addition of any penalty term. The ABP operator owes its structure to the properties of complete families of linearly independent solutions of Helmholtz equation. If the obstacle is known, as it happens in simulations, the theory also provides some independent means of predicting the performance of the ABP method. The ABP algorithm and the related computer code are outlined. Several reconstruction examples are considered, where noise is added to the estimated far field coefficients and other errors are deliberately introduced in the data. Many numerical and graphical results are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Ramos, A. Asensio, E-mail: escarlin@irsol.es
This paper presents a synthetic tomography of the quiet solar chromosphere formed by spatial maps of scattering polarization. It has been calculated for the Ca II 8498, 8542, and 3934 Å lines by solving the non-LTE radiative transfer problem of the second kind in a three-dimensional atmosphere model obtained from realistic magneto-hydrodynamical simulations. Our investigation focuses on the linear polarization signals induced by kinematics, radiation field anisotropy, and the Hanle effect in forward-scattering geometry. Thus, instead of considering slit profiles at the limb as normally done in the study of the second solar spectrum, we synthesize and analyze spatial mapsmore » of polarization at the disk center. This allows us to understand the spatial signatures of dynamics and magnetic field in the linear polarization in order to discriminate them observationally. Our results suggest some ideas for chromospheric diagnosis that will be developed throughout a series of papers. In particular, Hanle polarity inversion lines and dynamic Hanle diagrams are two concepts introduced in the present work. We find that chromospheric dynamics and magnetic field topology create spatial polarization fingerprints that trace the dynamic situation of the plasma and the magnetic field. This allows us to reconstruct the magnetic field intensity in the middle chromosphere using Stokes V along grooves of null linear polarization. We finally address the problems of diagnosing Hanle saturation and kinematic amplification of scattering signals using Hanle diagrams.« less
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
On the electromagnetic scattering from infinite rectangular conducting grids
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1985-01-01
The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1989-01-01
The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.
Modeling silica aerogel optical performance by determining its radiative properties
NASA Astrophysics Data System (ADS)
Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.
2016-02-01
Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.
NASA Astrophysics Data System (ADS)
Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J. P.; Devaux, J. F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P.; Prazeres, R.
2016-12-01
An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.
Born scattering and inversion sensitivities in viscoelastic transversely isotropic media
NASA Astrophysics Data System (ADS)
Moradi, Shahpoor; Innanen, Kristopher A.
2017-11-01
We analyse the scattering of seismic waves from anisotropic-viscoelastic inclusions using the Born approximation. We consider the specific case of Vertical Transverse Isotropic (VTI) media with low-loss attenuation and weak anisotropy such that second- and higher-order contributions from quality factors and Thomsen parameters are negligible. To accommodate the volume scattering approach, the viscoelastic VTI media is broken into a homogeneous viscoelastic reference medium with distributed inclusions in both viscoelastic and anisotropic properties. In viscoelastic reference media in which all propagations take place, wave modes are of P-wave type, SI-wave type and SII-wave type, all with complex slowness and polarization vectors. We generate expressions for P-to-P, P-to-SI, SI-to-SI and SII-to-SII scattering potentials, and demonstrate that they reduce to previously derived isotropic results. These scattering potential expressions are sensitivity kernels related to the Fréchet derivatives which provide the weights for multiparameter full waveform inversion updates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.
2012-03-08
We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 Januarymore » 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.« less
NASA Technical Reports Server (NTRS)
Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.;
2012-01-01
We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
Inverse scattering and GPR data processing: an Introduction
NASA Astrophysics Data System (ADS)
Persico, Raffaele
2014-05-01
Inverse scattering and GPR data processing: an Introduction Raffaele Persico This abstract is meant to propose a brief overview of the book "Introduction to Ground Penetrating Radar: Inverse scattering and data processing", edited by Wiley Press (ISBN 9781118305003). The reason why I propose this contribution is the fact that, in spite of the large relevant literature, to the best of my knowledge it is not very common to find a text entirely devoted to the physical-mathematical aspects (a part of them, of course) of GPR data processing. Also due to this, probably a sort of gap between the GPR practice and the underlying theory has been created, and indeed we can meet practitioners convinced that the quality of the achieved results is indefinitely improvable by making narrower the spatial step of the data, or that it is desirable to have extremely directive antennas because this would improve the resolution. In order to provide a work hopefully able to address these and other aspects and hopefully able to give a contribution to the correction of these imprecise beliefs, a dealing from the beginning has been proposed, i.e. a sequential, relatively plane, and as much as possible self consistent, dealing starting from the Maxwell's equations and reaching the most commonly exploited migration formulas and linear inversion algorithms, both within a 2D and a 3D framework. This follows the didactic aim to provide to the reader an insight about what can be reasonably achieved and what should be reasonably done in the field and during the processing phase in order to achieve satisfying results. In particular, the reader will be hopefully made aware not only of the mathematical passages, but also of the involved approximations, the needed assumptions and the physical limits of the final algorithms. The results have been also back-upped with numerical exercises and with some experimental tests, all of which conceived on purpose for this text, and some questions with the relative answers have been inserted at the end of many chapters. On the other hand, it seemed also well advised to stress the fact that, within a GPR prospecting, the main involved parameters (especially the propagation velocity of the electromagnetic waves in the soil) and the same useful datum, i.e. "the scattered field", in most cases have to be worked out from the same GPR data. In particular, usually we don't have the possibility to measure apart the "incident field" and then retrieve the scattered field by means of an immediate subtraction operation. Indeed, these aspects are an intrinsic part of the GPR data processing, and should not left out from a text on this topic. In the end, GPR data processing has its own specificities within the larger framework of the inverse scattering problems, and the book has tried to put into evidence this fact too. Finally, even if this text is not focused on electronics, it was important to account for the fact that there are two categories of GPR systems, namely those working in time domain and those working in frequency domain. This implies some consequences in terms of the parametric choices in order to gather and process correctly the data, which has been devoted some attention too. The main aim of the book is to resume and gather together things mostly already known, but usually spread within different texts and contexts, often dealt with different approaches and expressed, let say, with different languages. The book is mainly thought of for Ph.D. students, students of master courses and university students at their last year in geophysics end engineering, but it is accessible to any GPR user with some minimal basis (i.e. at university level) on electromagnetism. Some small research work has been performed too, as e.g. with regard to the calculation in closed form of the Hermitian images for stepped frequency systems, or with respect to the introduction of the effective maximum view angle, or in order to propose a new plane demonstration of the ill-posedness of the problem. Acknowledgement The author acknowledges COST for funding COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar", supporting this work.
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.
2011-09-01
We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA';s acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
A general rough-surface inversion algorithm: Theory and application to SAR data
NASA Technical Reports Server (NTRS)
Moghaddam, M.
1993-01-01
Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.
Gain measurements in stimulated rotational Raman scattering in para hydrogen
NASA Astrophysics Data System (ADS)
Corat, E. J.; Airoldi, V. J. T.; Scolari, S. L.; Ghizoni, C. C.
1986-06-01
The dependence on CO2-laser pump energy of the output Stokes radiation obtained through stimulated rotational Raman scattering in parahydrogen is studied experimentally. The effective plane-wave gain for this process was determined as a function of the scattered wavelength by using a theoretical expression for the scattered pulse energy. Experimental values for the gain follow an inverse-wavelength law and are in close agreement with theory.
NASA Astrophysics Data System (ADS)
Gosselin, J.; Audet, P.; Schaeffer, A. J.
2017-12-01
The seismic velocity structure in the forearc of subduction zones provides important constraints on material properties, with implications for seismogenesis. In Cascadia, previous studies have imaged a downgoing low-velocity zone (LVZ) characterized by an elevated P-to-S velocity ratio (Vp/Vs) down to 45 km depth, near the intersection with the mantle wedge corner, beyond which the signature of the LVZ disappears. These results, combined with the absence of a "normal" continental Moho, indicate that the down-going oceanic crust likely carries large amounts of overpressured free fluids that are released downdip at the onset of crustal eclogitization, and are further stored in the mantle wedge as serpentinite. These overpressured free fluids affect the stability of the plate interface and facilitate slow slip. These results are based on the inversion and migration of scattered teleseismic data for individual layer properties; a methodology which suffers from regularization and smoothing, non-uniqueness, and does not consider model uncertainty. This study instead applies trans-dimensional Bayesian inversion of teleseismic data collected in the forearc of northern Cascadia (the CAFÉ experiment in northern Washington) to provide rigorous, quantitative estimates of local velocity structure, and associated uncertainties (particularly Vp/Vs structure and depth to the plate interface). Trans-dimensional inversion is a generalization of fixed-dimensional inversion that includes the number (and type) of parameters required to describe the velocity model (or data error model) as unknown in the problem. This allows model complexity to be inherently determined by data information content, not by subjective regularization. The inversion is implemented here using the reversible-jump Markov chain Monte Carlo algorithm. The result is an ensemble set of candidate velocity-structure models which approximate the posterior probability density (PPD) of the model parameters. The solution to the inverse problem, and associated uncertainties, are described by properties of the PPD. The results obtained here will eventually be integrated with teleseismic data from OBS stations from the Cascadia Initiative to provide constraints across the entire seismogenic portion of the plate interface.
Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.
2017-01-01
Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291
FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)
NASA Astrophysics Data System (ADS)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2013-10-01
Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2013 was a one-day workshop held in May 2013 which attracted around 60 attendees. Each of the submitted papers has been reviewed by three reviewers. Among the accepted papers, there are seven oral presentations, five posters and one invited poster (On a deconvolution challenge presented by C Vonesch from EPFL, Switzerland). In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following research laboratories CMLA, LMT, LSV, LURPA, SATIE. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop co-chair Laure Blanc-Féraud, I3S laboratory and INRIA Nice Sophia-Antipolis, France Pierre-Yves Joubert, IEF, Paris-Sud University, CNRS, France Technical program committee Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Nabil Anwer, LURPA, ENS Cachan, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Antonin Chambolle, CMAP, Ecole Polytechnique, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Cécile Durieu, SATIE, ENS Cachan, CNRS, France Gérard Favier, I3S Laboratory, University of Nice Sophia-Antipolis, France Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Dominique Lesselier, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Matteo Pastorino, DIBE, University of Genoa, Italy Christian Rey, LMT, ENS Cachan, CNRS, France Simon Setzer, Saarland University, Germany Cedric Vonesch, EPFL, Switzerland Local chair Sophie Abriet, SATIE Laboratory, ENS Cachan, France Béatrice Bacquet, SATIE Laboratory, ENS Cachan, France Lydia Matijevic, LMT Laboratory, ENS Cachan France Invited speakers Jérôme Idier, IRCCyN (UMR CNRS 6597), Ecole Centrale de Nantes, France Massimo Fornasier, Faculty of Mathematics, Technical University of Munich, Germany Matthias Fink, Institut Langevin, ESPCI, Université Paris Diderot, France
1987-03-01
Oct. 1985. 28. D.L. Jaggard, K. Schultz, Y. Kim and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985...T.H. Chu - Graduate Student (50%) C.Y. Ho - Graduate Student (50%) Y. Kim - Graduate Student (50%) K S. Lee - Graduate Student (50%) P. Frangos ...1982. 3. P. Frangos (Ph.D.) - "One-Dimensional Inverse Scattering: Exact Methods and Applications". 4. C.L. Werner (Ph.D.) - ŗ-D Imaging of Coherent and
Inverse medium scattering from periodic structures with fixed-direction incoming waves
NASA Astrophysics Data System (ADS)
Gibson, Peter; Hu, Guanghui; Zhao, Yue
2018-07-01
This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.
RF Tomography for Tunnel Detection: Principles and Inversion Schemes
NASA Astrophysics Data System (ADS)
Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.
2008-12-01
We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.
Length scales involved in decoherence of trapped bosons by buffer-gas scattering
NASA Astrophysics Data System (ADS)
Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.
2014-05-01
We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.
NASA Astrophysics Data System (ADS)
Talukdar, Karabi; Behera, Laxmidhar
2018-03-01
Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.
Numerical methods for the inverse problem of density functional theory
Jensen, Daniel S.; Wasserman, Adam
2017-07-17
Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less
Numerical methods for the inverse problem of density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Daniel S.; Wasserman, Adam
Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less
Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14
NASA Astrophysics Data System (ADS)
Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration
2018-02-01
Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes.
NASA Astrophysics Data System (ADS)
Yan, Jun; Chen, Shao-Yu; Naylor, Carl; Goldstein, Thomas; Johnson, Charlie; Venkataraman, Dhandapani; Ramasubramaniam, Ashwin
Distorted octahedral (T') transition metal dichalcogenides (TMDCs) are topologically interesting material systems. Inversion-symmetry-broken bulk T'-TMDCs are predicted to be type II Weyl semimetals and inversion-symmetric monolayer (1L) T'-TMDCs are shown to be 2D topological insulators. In this talk, I will show that both the inversion symmetry and the mirror symmetry are important for understanding the lattice dynamics and Raman scattering of T'-TMDCs. The mirror plane that is perpendicular to the zigzag transition metal atomic chain classifies lattice vibrations into z-modes and m-modes where ` z' stands for zigzag and ` m' stands for mirror. Raman active z- and m- modes can be experimentally determined with light-polarization and crystal angle-resolved Raman tensor analysis. We report observation of all 9 even-parity zone-center phonons in 1L-T'-MoTe2. In bulk T'-MoTe2, we monitor inversion symmetry breaking with the shear lattice vibrations, which is important for supporting Weyl fermions. This work is supported by the Armstrong Fund for Science and NSF EFRI 2DARE EFMA-1542879.
FOREWORD: Special section on electromagnetic characterization of buried obstacles
NASA Astrophysics Data System (ADS)
Lesselier, Dominique; Chew, Weng Cho
2004-12-01
This Inverse Problems special section on electromagnetic characterization of buried obstacles contains a selection of 14 invited papers, involving 41 authors and 19 research groups worldwide. (Though this section consists of invited papers, the standard refereeing procedures of Inverse Problems have been rigorously observed.) We do not claim to have reached all the high-level researchers in the field, but we believe that we have made a fair attempt. As illustrated by the variety of contributions included, the aim of this special section is to address theoretical and practical inversion problems (and the solutions thereof) that arise in the field of electromagnetic characterization of obstacles (artificial or natural) buried on the Earth or in planetary subsoil. Civil and military engineering, archaeological and environmental issues are typically among those within the scope of the investigation. An example is the characterization of a single (or multiple) obstacle(s) located near the interface or at shallow depths via electromagnetic means operating within relevant frequency bands. However, we also welcomed novel and thought-provoking investigations, even though their direct application to the real world, or even to laboratory-controlled settings, may still be far off. Within this general mathematical and applied framework, the submitted papers focused on a combination of theoretical, computational and experimental developments. They either reviewed the most recent advances in a particular area of research or were an original and specialized contribution. Let us now take the opportunity to remind the readers that this special section harks back (in addition to sharing some common contributors) to two special sections already published in the journal which possessed the same flavour of wave-field inversion and its many applications. They were `Electromagnetic imaging and inversion of the Earth's subsurface', which was published in October 2000 (volume 16, issue 5), and was co-ordinated by the Guest Editors, D Lesselier and T Habashy, and comprised 14 invited papers; and `Electromagnetic and ultrasonic nondestructive evaluation', which was published in December 2002 (volume 18, issue 6), was organized by the Guest Editors, D Lesselier and J Bowler, and comprised 12 invited papers. In particular in the latter special section, it was noted in the foreword that: `Much of the research effort in NDE (nondestructive evaluation) is aligned with the interests of the broader community of scientists and engineers who study inverse problems and their applications in areas such as geophysics, medical imaging, remote sensing or underwater acoustics, to mention but a few. Indeed, many of the basic methods adopted for NDE including tomography, synthetic aperture techniques and iterative inversions, under many guises, are widely used in these other areas'. In a similar fashion, the foreword of the former special section noted that: `Many developments have been driven by several new applications and some old ones, such as mathematical physics, atmospheric sciences, geophysical prospecting, quantum mechanics, remote sensing, underwater acoustics, nondestructive testing and evaluation, medical imaging, to mention only a few'. One was confronted in these two previous special sections, as one is confronted today, with the same difficult endeavour: a signal resulting from the interrogation of an object embedded in some complicated medium by a probing radiation contains arcane, encoded information about this object. Inversion is the procedure by which this signal is transformed into some intelligible, decoded form in order to provide the user with some of this information. This could be estimates of locations, volumes, boundaries, shapes, values, and distributions of electromagnetic (elastic) constitutive parameters. This endeavour forces us to go from mathematical theory to numerical solution methods, to validation from laboratory-controlled data, to processing of real-world data, and back again. Unfortunately, we face critical configurations in practice. They require increasingly sophisticated models, which exhaust most of our computational resources—notably due to the three-dimensionally bounded objects in possibly vast and little known search zones. Furthermore, we have to reckon with vector fields and dyadic Green functions, complex behaviours of materials and often with severely incomplete and limited data. The latter limitation is a severe one and is pervasive in the specific situation of buried objects in layered media, upon which we focus in the special section. In brief, this means that the solution methods must not be reduced to incremental improvements over existing ones. They must be validated in-depth, have sound theoretical bases and knowledge of the peculiarities and of the limitations of the measurements. Naturally, this means that the technologically advanced sensors that are available nowadays, together with advanced computers, provide increasingly reliable data and powerful implementations of solution methods. But as yet they do not provide us with the solution itself. This is evident in the papers published today—they rely on rigorous analyses, clever insights and much labour. Also, it is necessary to solve first and often simultaneously (within iterative retrievals) a sequence of direct (forward) wave-field problems. This is needed to understand the interaction, determine key parameters, estimate which models best fit our inversion needs and acquire well-generated synthetic data for cost-effective preliminary testing of methods. The 14 papers in this special section should do justice to the above, overall if not every one individually. Ordered alphabetically, by the first author, the articles are as follows: • A Baussard, E L Miller and D Lesselier, in `Adaptive multiscale reconstruction of buried objects', seek to improve the speed and robustness of a nonlinear inversion (here limited to the case of two-dimensional objects in a half space) using a novel coarse-to-fine iterative strategy which involves a pyramid of B-splines of degree 3. In order to map the distribution of electromagnetic parameters sought, increasingly finer representations are progressively introduced in the areas of interest, i.e. those where the objects emerge from the background as the iterations go on. This was done following the testing of the improvement which such representations may or may not bring. • N V Budko and R F Remis, in `Electromagnetic inversion using a reduced-order three-dimensional homogeneous model', start from the idea of seeking an effective medium three-dimensional homogeneous scatterer which will be equivalent to the true one, with the assumption of a known target support. They then develop, and illustrate through a variety of numerical examples (including an inhomogeneous target), a model-based approach which involves the so-called Arnoldi decomposition and uses a reduced-order representation of the objective functional in order to avoid (in particular) the unusually high computational costs caused by repetitive solutions of the forward problem. This may have interesting applications in the low frequency limit. • X Chen, K O'Neill, B E Barrowes, T M Grzegorczyk and J A Kong, in `Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination', tackle the critical issue of the detection and characterization of unexploded ordnance in conflict and training zones, using low-frequency probing tools (working in the quasistatic regime) available in the field. They address both the case of spheroidal objects and that of complex objects possibly included within spheroidal surfaces, and compute the coefficients of spheroidal field expansions that are characteristic of their magnetic response. From a library of coefficients, fast forward models are employed within a differential evolution approach in order to reconstruct in an effective fashion pertinent features of actual ordnances as shown from synthetic and measured data. Then, the detection and characterization problem can be made much simpler than the inverse problem. • T J Cui, Y Qin, G-L Wang and W C Chew, in `Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations', develop a full range of higher and higher approximations (starting from the Born one and encompassing the extended Born one, and then pursue beyond them both in a recursive fashion) in order to avoid solving the fully nonlinear problem for large contrasts of the sought obstacles. Then they show how these developments can be employed for such types of objects in lossy media at low enough frequency, yielding reliable images at the moderate computational expense of tackling a properly regularized linear inverse problem and recursively using the high-order approximations thereupon. • A Dubois, K Belkebir and M Saillard, in `Localization and characterization of two-dimensional targets buried in a cluttered environment', counter the clutter problem (so far only in a two-dimensional setting) via a combination of a hybrid iterative minimization—reduced to a modified gradient or to a Newton-type algorithm—and of the DORT (decomposition of the time reversal operator) method—which currently enjoys a number of developments for electromagnetic detection and numbering of buried objects. This novel combination enables one to synthesize waves that are focused onto the scatterers, an appropriate DORT-related objective functional being added or multiplied to the standard one minimized along the course of the iterations. In so doing, strong clutter, which usually tends to shadow the targets and/or produce severe artifacts, is overcome to a suitable extent. • B Duchêne, A Joisel and M Lambert, in `Nonlinear inversions of immersed objects using laboratory-controlled data', discuss the inversion of laboratory data that emulate buried objects in the ocean and where the data are very limited and the environment is highly attenuative. The forward model is employed with an integral equation approach. The inverse scattering algorithm uses the level set method as well as a binary specialized contrast source method. Though computationally intensive these approaches are expected to be effective whenever linearization of the inversion fails. Two types of antennae were tested out in the experiment, a small one and a larger one. It is found, in particular, that the smaller antenna reproduces the modelled result better than the larger one. • X Feng and M Sato, in `Pre-stack migration applied to GPR for landmine detection', investigate the testing of a ground penetrating radar with synthetic aperture, acquiring mid-point multi-offset data in the demanding situations (strong clutter) of inhomogeneous soil and rough ground and/or of steeply oblique landmines. This is done in practice with experimental data, and is thoroughly illustrated by numerical experiments in the framework of migration techniques. These techniques are tailored to provide an approximate but robust solution to the highly involved three-dimensional vector wave-field inversion problem which is relevant here. • A Kirsch, in `The factorization method for Maxwell's equations', shows how the theory of the recently introduced and much considered factorization method can be developed in a sound theoretical fashion for the time-harmonic three-dimensional Maxwell system when far-field scattering patterns are known—by constructing a binary criterion which tells whether, if a given point lies inside or outside an unknown obstacle, the shape of which is to be retrieved. The vector nature of the electromagnetic field is fully considered in this paper. This is investigated in depth both for a lossy obstacle (with lower-bounded imaginary part of the dielectric permittivity) and for a lossless one (albeit with smoothly varying dielectric permittivity). Useful comparisons with the linear sampling method are also made in the conclusion. • A Massa, M Pastorino and A Randazzo, in `Reconstruction of two-dimensional buried objects by a differential evolution method', cast the nonlinear inversion problem into the form of a global optimization problem. They combine properly weighted state (coupling) and data (observation) residuals and solve the problem by means of the differential evolution algorithm. Though limited at this stage to a two-dimensional setting and scalar fields, and to a limited exploration zone in space, the applicability of the procedure strongly relies on an appropriate strategy to construct trial solutions at low computational cost. Ways to achieve this strategy are studied and illustrated by the authors. • G A Newman and P T Boggs, in `Solution accelerators for large scale three-dimensional electromagnetic inverse problems', are interested in the solution of full vector three-dimensional inversion problems which involve a large number of unknowns, such as for monitoring oil recovery at diffusive frequencies. Much relies on properly preconditioning—an approximate Hessian was introduced to that effect via the solution of an approximate adjoint problem. They then propose two solution algorithms, known as the nonlinear conjugate gradient and the limited-memory quasi-Newton, and investigate their behaviour both in theory and via numerical experiments that are closely inspired by real-world applications. • L-P Song and Q H Liu, in `Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation', introduce within a full vector three-dimensional setting a source-dependent diagonal scattering tensor which leads them to a modelling method with a wider range of validity than the existing extended Born and other similar approaches. Then they show the efficiency of their model for electromagnetic imaging via an iterative inversion which involves carefully tuned regularization factors that are functions of the Fréchet sensitivity matrix. • G L Wang, W C Chew, T J Cui, A A Aydiner, D L Wright and D V Smith, in `3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method', are preoccupied by the deciphering of data provided by the very early time electromagnetic (VETEM) system in the kHz to MHz range in order to reconstruct conductive structures in subsoils. A fast direct solver is introduced and used in the iterative reconstruction with a properly chosen regularization parameter. Yet this remains computationally expensive, as the authors illustrate. Through examples drawn from synthetic and real-world data, they retrieve the conductivity map of the search zone as a combination of sub-maps found separately, demonstrating its usefulness. • Y Yu, B Krishnapuram and L Carin, in `Inverse scattering with sparse Bayesian vector regression', develop on strong Bayesian foundations and statistical learning, a regression-based method in a vector framework (the sought parameters are in vector form), which preserves sparsity (only the most relevant examples from the training set are employed) and is appropriate for on-line decisions since here, in particular, all forward calculations are carried out beforehand. Once trained using synthetic and measured data, they apply the method to the retrieval of cubical targets buried in soil which are equivalent to the actual target. • M S Zhdanov and A Chernyavskiy, in `Rapid three-dimensional inversion of multi-transmitter electromagnetic data using the spectral Lanczos decomposition method', work out a spectral Lanczos decomposition method in order to apply it to vector three-dimensional inversion (with present-day applications to mining exploration from helicopter-borne data along prescribed flight lines) using the localized quasilinear inversion previously introduced in the literature. This decomposition method has the advantage of providing a regularized solution for all values of the regularization parameter (which weighs in a data error and a model error, the latter with respect to some priors) at once. Synthetic and real data are shown to be amenable to useful retrievals in complex geological environments. To conclude, we would like to thank all those involved in the preparation of this special section at the Institute of Physics for their dedicated work, and to thank all referees (there were many of them) for their thorough and timely reviews of the papers, which was not an easy task in view of the constraints we put on them and of the technical complexity of many of the contributions. Special thanks should go to the Publisher, Elaine Longden-Chapman, and the Publishing Administrator, Kate Hooper, without whom none of this could have been done and, in particular, no deadlines met! The Editor-in-Chief, F A Grünbaum, and all the members of the Editorial Board, gave us the great opportunity to organize this section, and they should be thanked again for their kind support. The last word of this introduction should, however, go out to the reader. We hope that he/she will appreciate the in-depth analysis of the electromagnetic retrieval of buried obstacles presented in the contributions of the special section, the variety of challenging issues dealt within and the cleverness of many of the solution methods proposed and investigated. We also know that many contributions will require from the reader a good level of multi-disciplinary expertise and sometimes quite considerable labour to get into the intricacies of the authors' analyses. And, to tell the truth, we have often found ourselves, as Guest Editors, on the verge of also being overwhelmed by the vast amount of knowledge required to understand and judge those intricacies. Ultimately, however, what should matter most now this special section is published is that some good light has been shed on many open and critical issues in the theoretical and applied field of electromagnetic inversion of buried obstacles. This is, in our opinion, very stimulating for those who are interested in this domain and who understand its relevance to many technical fields, as well as the integration of and synergy between such fields required to achieve a reliable result.
A non-stochastic iterative computational method to model light propagation in turbid media
NASA Astrophysics Data System (ADS)
McIntyre, Thomas J.; Zemp, Roger J.
2015-03-01
Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
On the use of variable coherence in inverse scattering problems
NASA Astrophysics Data System (ADS)
Baleine, Erwan
Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-08-01
The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the direct or inverse characterization of multiple scattering systems in acoustically-engineered metamaterials, cloaking devices, particle dynamics, levitation, manipulation and handling, and other areas.
Simulation of inverse Compton scattering and its implications on the scattered linewidth
NASA Astrophysics Data System (ADS)
Ranjan, N.; Terzić, B.; Krafft, G. A.; Petrillo, V.; Drebot, I.; Serafini, L.
2018-03-01
Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016), 10.1103/PhysRevAccelBeams.19.121302], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.
Simulation of inverse Compton scattering and its implications on the scattered linewidth
Ranjan, N.; Terzić, B.; Krafft, G. A.; ...
2018-03-06
Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. Here in this article, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model tomore » describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016)], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.« less
NASA Technical Reports Server (NTRS)
Deshpande, Manohar
2011-01-01
A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.
NASA Astrophysics Data System (ADS)
Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene
2011-03-01
Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.
NASA Technical Reports Server (NTRS)
Bernstein, R. B.; Labudde, R. A.
1972-01-01
The problem of inversion is considered in relation to absolute total cross sections Q(v) for atom-atom collisions and their velocity dependence, and the glory undulations and the transition to high velocity behavior. There is a limit to the amount of information available from Q(v) even when observations of good accuracy (e.g., + or - 0.25%) are in hand over an extended energy range (from thermal energies upward by a factor of greater than 1000 in relative kinetic energy). Methods were developed for data utilization, which take full advantage of the accuracy of the experimental Q(v) measurements.
The short pulse equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2017-07-01
We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.
Reconstructed imaging of acoustic cloak using time-lapse reversal method
NASA Astrophysics Data System (ADS)
Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun
2014-08-01
We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.
NASA Astrophysics Data System (ADS)
Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Coker, C.; Hei, M. A.; Groves, K. M.
2015-12-01
The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors flying on the Defense Meteorological Satellite Program (DMSP) satellites. The SSULIs observe the 80-170 nanometer wavelength range covering emissions at 91 and 136 nm, which are produced by radiative recombination of the ionosphere. We invert these emissions tomographically using newly developed algorithms that include optical depth effects due to pure absorption and resonant scattering. We present the details of our approach including how the optimal altitude and along-track sampling were determined and the newly developed approach we are using for regularizing the SSULI tomographic inversions. Finally, we conclude with validations of the SSULI inversions against ALTAIR incoherent scatter radar measurements and demonstrate excellent agreement between the measurements.
Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons
NASA Technical Reports Server (NTRS)
Schlickeiser, R.
1979-01-01
The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.
On the interpolation of light-scattering responses from irregularly shaped particles
NASA Astrophysics Data System (ADS)
Videen, Gorden; Zubko, Evgenij; Arnold, Jessica A.; MacCall, Benjamin; Weinberger, Alycia J.; Shkuratov, Yuriy; Muñoz, Olga
2018-05-01
Common particle characteristics needed for many applications may include size, eccentricity, porosity and refractive index. Determining such characteristics from scattered light is a primary goal of remote sensing. For other applications, like differentiating a hazardous particle from the natural background, information about higher fidelity particle characteristics may be required, including specific shape or chemical composition. While a complete characterization of a particle system from its scattered light through the inversion process remains unachievable, great strides have been made in providing information in the form of constraints on particle characteristics. Recent advances have been made in quantifying the characteristics of polydispersions of irregularly shaped particles by making comparisons of the light-scattering signals from model simulant particles. We show that when the refractive index is changed, the light-scattering characteristics from polydispersions of such particles behave monotonically over relatively large parameter ranges compared with those of monodisperse distributions of particles having regular shapes, like spheres, spheroids, etc. This allows for their properties to be interpolated, which results in a significant reduction of the computational load when performing inversions.
The uniqueness of the solution of cone-like inversion models for halo CMEs
NASA Astrophysics Data System (ADS)
Zhao, X. P.
2006-12-01
Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.
The cloud radiation impact from optics simulation and airborne observation
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles
2017-02-01
The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.
Simulation of a fast diffuse optical tomography system based on radiative transfer equation
NASA Astrophysics Data System (ADS)
Motevalli, S. M.; Payani, A.
2016-12-01
Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.
A Riemann-Hilbert Approach for the Novikov Equation
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
Remote Sensing of Precipitation from Airborne and Spaceborne Radar. Chapter 13
NASA Technical Reports Server (NTRS)
Munchak, S. Joseph
2017-01-01
Weather radar measurements from airborne or satellite platforms can be an effective remote sensing tool for examining the three-dimensional structures of clouds and precipitation. This chapter describes some fundamental properties of radar measurements and their dependence on the particle size distribution (PSD) and radar frequency. The inverse problem of solving for the vertical profile of PSD from a profile of measured reflectivity is stated as an optimal estimation problem for single- and multi-frequency measurements. Phenomena that can change the measured reflectivity Z(sub m) from its intrinsic value Z(sub e), namely attenuation, non-uniform beam filling, and multiple scattering, are described and mitigation of these effects in the context of the optimal estimation framework is discussed. Finally, some techniques involving the use of passive microwave measurements to further constrain the retrieval of the PSD are presented.
Modeling of scattering from ice surfaces
NASA Astrophysics Data System (ADS)
Dahlberg, Michael Ross
Theoretical research is proposed to study electromagnetic wave scattering from ice surfaces. A mathematical formulation that is more representative of the electromagnetic scattering from ice, with volume mechanisms included, and capable of handling multiple scattering effects is developed. This research is essential to advancing the field of environmental science and engineering by enabling more accurate inversion of remote sensing data. The results of this research contributed towards a more accurate representation of the scattering from ice surfaces, that is computationally more efficient and that can be applied to many remote-sensing applications.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity
NASA Astrophysics Data System (ADS)
Ciarkowski, Adam
Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact solution, found yet by Sommerfeld. We take advantage of this solution and transform it back from complex frequency to the time domain. In this transformation both inverse Fourier transform and Felsen technique are used. Finally, the transient field obtained in the moving frame of reference is Lorentz transformed to the laboratory frame. We carry our calculations for both E- and H-field polarizations and show that the field distribution in the laboratory frame is not simply a moving image of that in the moving frame. For wedge velocities much lower than the velocity of light we reduce general expressions for the field in this frame to simpler ones.
Frequency-scanning particle size spectrometer
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1979-01-01
A particle size spectrometer having a fixed field of view within the forward light scattering cone at an angle theta sub s between approximately 100 and 200 minutes of arc (preferably at 150 minutes), a spectral range extending approximately from 0.2 to 4.0 inverse micrometers, and a spectral resolution between about 0.1 and 0.2 inverse micrometers (preferably toward the lower end of this range of spectral resolution), is employed to determine the distribution of particle sizes, independently of the chemical composition of the particles, from measurements of incident light, at each frequency, sigma (=1/lambda), and scattered light, I(sigma).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Murokh, A.; Piot, P.
2017-07-01
A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
Easy way to determine quantitative spatial resolution distribution for a general inverse problem
NASA Astrophysics Data System (ADS)
An, M.; Feng, M.
2013-12-01
The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.
Use of scatterometry for resist process control
NASA Astrophysics Data System (ADS)
Bishop, Kenneth P.; Milner, Lisa-Michelle; Naqvi, S. Sohail H.; McNeil, John R.; Draper, B. L.
1992-06-01
The formation of resist lines having submicron critical dimensions (CDs) is a complex multistep process, requiring precise control of each processing step. Optimization of parameters for each processing step may be accomplished through theoretical modeling techniques and/or the use of send-ahead wafers followed by scanning electron microscope measurements. Once the optimum parameters for any process having been selected, (e.g., time duration and temperature for post-exposure bake process), no in-situ CD measurements are made. In this paper we describe the use of scatterometry to provide this essential metrology capability. It involves focusing a laser beam on a periodic grating and predicting the shape of the grating lines from a measurement of the scattered power in the diffraction orders. The inverse prediction of lineshape from a measurement of the scatter power is based on a vector diffraction analysis used in conjunction with photolithography simulation tools to provide an accurate scatter model for latent image gratings. This diffraction technique has previously been applied to looking at latent image grating formation, as exposure is taking place. We have broadened the scope of the application and consider the problem of determination of optimal focus.
NASA Astrophysics Data System (ADS)
He, L.; Arvidson, R. E.; O'Sullivan, J. A.
2018-04-01
We use a neural network (NN) approach to simultaneously retrieve surface single scattering albedos and temperature maps for CRISM data from 1.40 to 3.85 µm. It approximates the inverse of DISORT which simulates solar and emission radiative streams.
Regularized wave equation migration for imaging and data reconstruction
NASA Astrophysics Data System (ADS)
Kaplan, Sam T.
The reflection seismic experiment results in a measurement (reflection seismic data) of the seismic wavefield. The linear Born approximation to the seismic wavefield leads to a forward modelling operator that we use to approximate reflection seismic data in terms of a scattering potential. We consider approximations to the scattering potential using two methods: the adjoint of the forward modelling operator (migration), and regularized numerical inversion using the forward and adjoint operators. We implement two parameterizations of the forward modelling and migration operators: source-receiver and shot-profile. For both parameterizations, we find requisite Green's function using the split-step approximation. We first develop the forward modelling operator, and then find the adjoint (migration) operator by recognizing a Fredholm integral equation of the first kind. The resulting numerical system is generally under-determined, requiring prior information to find a solution. In source-receiver migration, the parameterization of the scattering potential is understood using the migration imaging condition, and this encourages us to apply sparse prior models to the scattering potential. To that end, we use both a Cauchy prior and a mixed Cauchy-Gaussian prior, finding better resolved estimates of the scattering potential than are given by the adjoint. In shot-profile migration, the parameterization of the scattering potential has its redundancy in multiple active energy sources (i.e. shots). We find that a smallest model regularized inverse representation of the scattering potential gives a more resolved picture of the earth, as compared to the simpler adjoint representation. The shot-profile parameterization allows us to introduce a joint inversion to further improve the estimate of the scattering potential. Moreover, it allows us to introduce a novel data reconstruction algorithm so that limited data can be interpolated/extrapolated. The linearized operators are expensive, encouraging their parallel implementation. For the source-receiver parameterization of the scattering potential this parallelization is non-trivial. Seismic data is typically corrupted by various types of noise. Sparse coding can be used to suppress noise prior to migration. It is a method that stems from information theory and that we apply to noise suppression in seismic data.
Argo, Paul E.; Fitzgerald, T. Joseph
1993-01-01
Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.
Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics
Petrov, Yury
2012-01-01
EEG/MEG source localization based on a “distributed solution” is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data. PMID:23071497
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
NASA Astrophysics Data System (ADS)
Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan
2017-03-01
Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.
Double-Difference Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Orsvuran, R.; Bozdag, E.; Lei, W.; Tromp, J.
2017-12-01
The adjoint method allows us to incorporate full waveform simulations in inverse problems. Misfit functions play an important role in extracting the relevant information from seismic waveforms. In this study, our goal is to apply the Double-Difference (DD) methodology proposed by Yuan et al. (2016) to global adjoint tomography. Dense seismic networks, such as USArray, lead to higher-resolution seismic images underneath continents. However, the imbalanced distribution of stations and sources poses challenges in global ray coverage. We adapt double-difference multitaper measurements to global adjoint tomography. We normalize each DD measurement by its number of pairs, and if a measurement has no pair, as may frequently happen for data recorded at oceanic stations, classical multitaper measurements are used. As a result, the differential measurements and pair-wise weighting strategy help balance uneven global kernel coverage. Our initial experiments with minor- and major-arc surface waves show promising results, revealing more pronounced structure near dense networks while reducing the prominence of paths towards cluster of stations. We have started using this new measurement in global adjoint inversions, addressing azimuthal anisotropy in upper mantle. Meanwhile, we are working on combining the double-difference approach with instantaneous phase measurements to emphasize contributions of scattered waves in global inversions and extending it to body waves. We will present our results and discuss challenges and future directions in the context of global tomographic inversions.
Robinson, Katherine M; Ninowski, Jerilyn E
2003-12-01
Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.
NASA Astrophysics Data System (ADS)
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Kulish-Sklyanin-type models: Integrability and reductions
NASA Astrophysics Data System (ADS)
Gerdjikov, V. S.
2017-08-01
We start with a Riemann-Hilbert problem ( RHP) related to BD.I- type symmetric spaces SO(2 r + 1)/ S( O(2 r - 2 s+1) ⊗ O(2 s)), s ≥ 1. We consider two RHPs: the first is formulated on the real axis R in the complex-λ plane; the second, on R ⊗ iR. The first RHP for s = 1 allows solving the Kulish-Sklyanin (KS) model; the second RHP is related to a new type of KS model. We consider an important example of nontrivial deep reductions of the KS model and show its effect on the scattering matrix. In particular, we obtain new two-component nonlinear Schrödinger equations. Finally, using the Wronski relations, we show that the inverse scattering method for KS models can be understood as generalized Fourier transforms. We thus find a way to characterize all the fundamental properties of KS models including the hierarchy of equations and the hierarchy of their Hamiltonian structures.
Govyadinov, Alexander A; Amenabar, Iban; Huth, Florian; Carney, P Scott; Hillenbrand, Rainer
2013-05-02
Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.
Compton camera imaging and the cone transform: a brief overview
NASA Astrophysics Data System (ADS)
Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid
2018-05-01
While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.
Computationally effective solution of the inverse problem in time-of-flight spectroscopy.
Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry
2015-03-09
Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.
Random-subset fitting of digital holograms for fast three-dimensional particle tracking [invited].
Dimiduk, Thomas G; Perry, Rebecca W; Fung, Jerome; Manoharan, Vinothan N
2014-09-20
Fitting scattering solutions to time series of digital holograms is a precise way to measure three-dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem approach is computationally expensive. We show that the computational time can be reduced by an order of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in the particle positions of 10 nm or less. The method is straightforward to implement and works for any scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach may prove particularly useful for studying rare events, such as nucleation, that can only be captured with high frame rates over long times.
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
NASA Astrophysics Data System (ADS)
Eriçok, Ozan Burak; Ertürk, Hakan
2018-07-01
Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.
2015-01-01
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.
Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A
2015-02-21
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.
NASA Astrophysics Data System (ADS)
Holmes, Timothy W.
2001-01-01
A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.
Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
NASA Astrophysics Data System (ADS)
Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong
2017-03-01
A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.
Children's Understanding of the Arithmetic Concepts of Inversion and Associativity
ERIC Educational Resources Information Center
Robinson, Katherine M.; Ninowski, Jerilyn E.; Gray, Melissa L.
2006-01-01
Previous studies have shown that even preschoolers can solve inversion problems of the form a + b - b by using the knowledge that addition and subtraction are inverse operations. In this study, a new type of inversion problem of the form d x e [divided by] e was also examined. Grade 6 and 8 students solved inversion problems of both types as well…
Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers
2002-09-30
layers and the presence of individual zooplankton taxa. For example, physonect siphonophore larvae with small gas filled pneumatophores (~0.20 mm...over an approximately 2h period. The white circles indicate the presence of physonect siphonophore larvae detected by the VPR. Note the coincidence...of the distributions of these organisms and layers of elevated scattering. The high scattering in the vicinity of siphonophore larvae at 43 kHz is
Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers
2001-09-30
individual zooplankton taxa. For example, physonect siphonophore larvae with small gas filled pneumatophores (~0.20 mm) detected by the VPR appear...period. The white circles indicate the presence of physonect siphonophore larvae detected by the VPR. Note the coincidence of the distributions of...these organisms and layers of elevated scattering. The high scattering in the vicinity of siphonophore larvae at 43 kHz is believed to be an artifact
Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.
Abbasi, Mahdi
2014-01-01
Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.
Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface
2016-12-22
reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the
Remote sensing of earth terrain
NASA Technical Reports Server (NTRS)
Yueh, Herng-Aung; Kong, Jin AU
1991-01-01
In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach.
Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.
Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E
2016-04-13
Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)
NASA Astrophysics Data System (ADS)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2012-09-01
Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, applications (bio-medical imaging, non-destructive evaluation etc). NCMIP 2012 was a one-day workshop. Each of the submitted papers was reviewed by 2 to 4 reviewers. Among the accepted papers, there are 8 oral presentations and 5 posters. Three international speakers were invited for a long talk. This second edition attracted 60 registered attendees in May 2012. NCMIP 2012 was supported by Institut Farman (ENS Cachan) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following laboratories CMLA, LMT, LSV, LURPA, SATIE, as well as DIGITEO Network. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop Co-chairs Laure Blanc-Féraud, I3S laboratory, CNRS, France Pierre-Yves Joubert, IEF laboratory, Paris-Sud University, CNRS, France Technical Program Committee Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Anthony Quinn, Trinity College, Dublin, Ireland Christian Rey, LMT, ENS Cachan, CNRS, France Joachim Weickert, Saarland University, Germany Local Chair Alejandro Mottini, Morpheme group I3S-INRIA Sophie Abriet, SATIE, ENS Cachan, CNRS, France Béatrice Bacquet, SATIE, ENS Cachan, CNRS, France Reviewers Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Laure Blanc-Féraud, I3S laboratory, CNRS, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Gérard Favier, I3S laboratory, CNRS, France Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Jérôme Idier, IRCCyN, CNRS, France Pierre-Yves Joubert, IEF laboratory, Paris-Sud University, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Dominique Lesselier, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Anthony Quinn, Trinity College, Dublin, Ireland Christian Rey, LMT, ENS Cachan, CNRS, France Simon Setzer, Saarland University, Germany Joachim Weickert, Saarland University, Germany Invited speakers Antonin Chambolle: CMAP, Ecole Polytechnique, CNRS, France Matteo Pastorino: University of Genoa, Italy Michael Unser: Ecole polytechnique Fédérale de Lausanne, Switzerland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardaś, T. M., E-mail: kardas@chem.uw.edu.pl; Ratajska-Gadomska, B.; Gadomski, W.
2014-05-28
We have studied the effect of transient vibrational inversion of population in trans-β-apo-8{sup ′}-carotenal on the time-resolved femtosecond stimulated Raman scattering (TR-FSRS) signal. The experimental data are interpreted by applying a quantum mechanical approach, using the formalism of projection operators for constructing the theoretical model of TR-FSRS. Within this theoretical frame we explain the presence of transient Raman losses on the Stokes side of the TR-FSRS spectrum as the effect of vibrational inversion of population. In view of the obtained experimental and theoretical results, we conclude that the excited S{sub 2} electronic level of trans-β-apo-8{sup ′}-carotenal relaxes towards the S{submore » 0} ground state through a set of four vibrational sublevels of S{sub 1} state.« less
Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khamis, E. G.; Tovbis, A.
2016-09-01
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.
Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging.
Yuffa, Alex J; Gurton, Kristan P; Videen, Gorden
2014-12-20
We use a polarimetric camera to record the Stokes parameters and the degree of linear polarization of long-wavelength infrared radiation emitted by human faces. These Stokes images are combined with Fresnel relations to extract the surface normal at each pixel. Integrating over these surface normals yields a three-dimensional facial image. One major difficulty of this technique is that the normal vectors determined from the polarizations are not unique. We overcome this problem by introducing an additional boundary condition on the subject. The major sources of error in producing inversions are noise in the images caused by scattering of the background signal and the ambiguity in determining the surface normals from the Fresnel coefficients.
Introduction to the 30th volume of Inverse Problems
NASA Astrophysics Data System (ADS)
Louis, Alfred K.
2014-01-01
The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and Bill Symes in their big footsteps, and I consider it a privilege to thank all that have contributed to the success of the journal. In its 30 years of existence, the journal has evolved from a trimestral to monthly print publication, now paralleled by an electronic version that has led to publication speeds unheard of when the journal began. This timely publication is especially important for younger researchers, but equally for experienced ones, who in that respect still feel young. In addition, the scope has changed to focus more precisely on the core of inverse problems, characterized, for example, by data errors, incomplete information and so on. In the beginning, fields where questions were considered to lead to inverse problems were listed in the journal's scope to make it clear that the problems being discussed were inverse problems in character. With the development of the solution methods, we now see that inverse problems are fundamental to almost all areas of research. The journal now hosts a number of additional features. With Insights we provide a platform for authors to introduce themselves and their work group, and present their scientific results in a popular and non-specialist form. Insights are made freely available on the journal website to ensure that they are seen by a wider community, beyond the immediate readership of the journal. Special issues are devoted to fields that have matured in such a way that the readers of our journal can profit from their presentation when the time for writing text books has not yet come. In addition, the different approaches taken by different contributors to a special issue disclose the multiple aspects of that field. With Topical reviews we aim to present the new ideas and areas that are stimulating future research. We are thankful that highly acclaimed authors take the time to present the research at the forefront of their respective fields. It is always very enlightening to read these articles as they introduce challenging research domains in condensed form. The diversity of the different topics is especially impressive. The 25th anniversary of Inverse Problems was celebrated with a service to the community, the publication of an issue of topical reviews selected by board members, which presented the achievements and state-of-the-art of the field. The 30th birthday of the journal is now approaching and we found it appropriate to include in the celebration the scientific community that supports the journal by their submissions. A conference, IPTA 2014: Inverse Problems - From Theory to Application (http://ipta2014.iopconfs.org/home), will be held in the home town of our publisher, IOP Publishing, in Bristol on 26-28 August 2014. The conference brings together top researchers, both from academia and industry, and will look at the scientific future of the field. Presentations by keynote speakers, which summarize what the board considers to be new trends, are complemented by contributions submitted by specialists and younger researchers in several minisymposia. To build a bridge to the future generation of researchers, a scientist at the beginning of their career will be giving a lecture. Let me finish with cordial thanks to all of our authors, referees, the members of the Editorial Board and International Advisory Panel, and the publishing team. I wish all of you a successful and healthy New Year and hope to meet many of you in August in Bristol. References [1] Sabatier P C 2012 Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse (Paris: L'Harmattan)
NASA Astrophysics Data System (ADS)
Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.
2017-10-01
We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.
Measurement of proton momentum distributions using a direct geometry instrument
NASA Astrophysics Data System (ADS)
Senesi, R.; Kolesnikov, A. I.; Andreani, C.
2014-12-01
We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
NASA Astrophysics Data System (ADS)
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.
Konokhova, Anastasiya I; Chernova, Darya N; Moskalensky, Alexander E; Strokotov, Dmitry I; Yurkin, Maxim A; Chernyshev, Andrei V; Maltsev, Valeri P
2016-02-01
Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population. © 2015 International Society for Advancement of Cytometry.
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
NASA Astrophysics Data System (ADS)
Korolev, G. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Alkhazov, G. D.; Egelhof, P.; Estradé, A.; Dillmann, I.; Farinon, F.; Geissel, H.; Ilieva, S.; Ke, Y.; Khanzadeev, A. V.; Kiselev, O. A.; Kurcewicz, J.; Le, X. C.; Litvinov, Yu. A.; Petrov, G. E.; Prochazka, A.; Scheidenberger, C.; Sergeev, L. O.; Simon, H.; Takechi, M.; Tang, S.; Volkov, V.; Vorobyov, A. A.; Weick, H.; Yatsoura, V. I.
2018-05-01
The absolute differential cross section for small-angle proton elastic scattering on the proton-rich 8B nucleus has been measured in inverse kinematics for the first time. The experiment was performed using a secondary radioactive beam with an energy of 0.7 GeV/u at GSI, Darmstadt. The active target, namely hydrogen-filled time projection ionization chamber IKAR, was used to measure the energy, angle and vertex point of the recoil protons. The scattering angle of the projectiles was simultaneously determined by the tracking detectors. The measured differential cross section is analyzed on the basis of the Glauber multiple scattering theory using phenomenological nuclear-density distributions with two free parameters. The radial density distribution deduced for 8B exhibits a halo structure with the root-mean-square (rms) matter radius Rm = 2.58 (6) fm and the rms halo radius Rh = 4.24 (25) fm. The results on 8B are compared to those on the mirror nucleus 8Li investigated earlier by the same method. A comparison is also made with previous experimental results and theoretical predictions for both nuclei.
Seabed roughness parameters from joint backscatter and reflection inversion at the Malta Plateau.
Steininger, Gavin; Holland, Charles W; Dosso, Stan E; Dettmer, Jan
2013-09-01
This paper presents estimates of seabed roughness and geoacoustic parameters and uncertainties on the Malta Plateau, Mediterranean Sea, by joint Bayesian inversion of mono-static backscatter and spherical wave reflection-coefficient data. The data are modeled using homogeneous fluid sediment layers overlying an elastic basement. The scattering model assumes a randomly rough water-sediment interface with a von Karman roughness power spectrum. Scattering and reflection data are inverted simultaneously using a population of interacting Markov chains to sample roughness and geoacoustic parameters as well as residual error parameters. Trans-dimensional sampling is applied to treat the number of sediment layers and the order (zeroth or first) of an autoregressive error model (to represent potential residual correlation) as unknowns. Results are considered in terms of marginal posterior probability profiles and distributions, which quantify the effective data information content to resolve scattering/geoacoustic structure. Results indicate well-defined scattering (roughness) parameters in good agreement with existing measurements, and a multi-layer sediment profile over a high-speed (elastic) basement, consistent with independent knowledge of sand layers over limestone.
NASA Astrophysics Data System (ADS)
Kamaruddin, Nur Nasyita; Kassim, Syara; Harun, Noor Aniza
2017-09-01
Polymeric nanoparticles have drawn tremendous attention to researchers and have utilized in diverse fields especially in biomedical applications. Nevertheless, question has raised about the safety and hydrophilicity of the nanoparticles to be utilized in medical and biological applications. One promising solution to this problem is to develop biodegradable polymeric nanoparticles with improve hydrophilicity. This study is focusing to develop safer and "greener" polymeric nanoparticles via inverse miniemulsion polymerization techniques, a robust and convenient method to produce water-soluble polymer nanoparticles. Acrylamide (Am), acrylic acid (AA) and methacrylic acid (MAA) monomers have chosen, as they are biocompatible, non-toxic and ecological. The effect of different volumes of cyclohexane towards the formation of polymer nanoparticles, particle size, particle size distribution and morphology of polymer nanoparticles are investigated. The formation and morphology of polymer nanoparticles are determined using FTIR and SEM respectively. The mean diameters of the polymer nanoparticles were in a range of 80 - 250 nm and with broad particle size distributions as determined by dynamic light scattering (DLS). Hydrophilic polyacrylamide (pAm), poly(acrylic acid) (pAA) and poly(methacrylic acid) (pMAA) nanoparticles were successfully achieved by inverse miniemulsion polymerization and have potentiality to be further utilized in the fabrication of hybrid polymer composite nanoparticles especially in biological and medical applications.
Density reconstruction in multiparameter elastic full-waveform inversion
NASA Astrophysics Data System (ADS)
Sun, Min'ao; Yang, Jizhong; Dong, Liangguo; Liu, Yuzhu; Huang, Chao
2017-12-01
Elastic full-waveform inversion (EFWI) is a quantitative data fitting procedure that recovers multiple subsurface parameters from multicomponent seismic data. As density is involved in addition to P- and S-wave velocities, the multiparameter EFWI suffers from more serious tradeoffs. In addition, compared with P- and S-wave velocities, the misfit function is less sensitive to density perturbation. Thus, a robust density reconstruction remains a difficult problem in multiparameter EFWI. In this paper, we develop an improved scattering-integral-based truncated Gauss-Newton method to simultaneously recover P- and S-wave velocities and density in EFWI. In this method, the inverse Gauss-Newton Hessian has been estimated by iteratively solving the Gauss-Newton equation with a matrix-free conjugate gradient algorithm. Therefore, it is able to properly handle the parameter tradeoffs. To give a detailed illustration of the tradeoffs between P- and S-wave velocities and density in EFWI, wavefield-separated sensitivity kernels and the Gauss-Newton Hessian are numerically computed, and their distribution characteristics are analyzed. Numerical experiments on a canonical inclusion model and a modified SEG/EAGE Overthrust model have demonstrated that the proposed method can effectively mitigate the tradeoff effects, and improve multiparameter gradients. Thus, a high convergence rate and an accurate density reconstruction can be achieved.
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters
2017-03-07
please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for
Acoustic classification of zooplankton
NASA Astrophysics Data System (ADS)
Martin Traykovski, Linda V.
1998-11-01
Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 kHz-750 kHz) insonifications of live zooplankton collected on Georges Bank and the Gulf of Maine to determine scatterer class. CMVC techniques were also applied to echoes from fluid-like zooplankton (Antarctic krill) to invert for angle of orientation using generic and animal-specific theoretical and empirical models. Application of these inversion techniques in situ will allow correct apportionment of backscattered energy to animal biomass, significantly improving estimates of zooplankton biomass based on acoustic surveys. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science
NASA Astrophysics Data System (ADS)
Sébilleau, Didier; Natoli, Calogero; Gavaza, George M.; Zhao, Haifeng; Da Pieve, Fabiana; Hatada, Keisuke
2011-12-01
We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile. Program summaryProgram title: MsSpec-1.0 Catalogue identifier: AEJT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 504 438 No. of bytes in distributed program, including test data, etc.: 14 448 180 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any Operating system: Linux, MacOs RAM: Bytes Classification: 7.2 External routines: Lapack ( http://www.netlib.org/lapack/) Nature of problem: Calculation of the cross-section of various spectroscopies. Solution method: Multiple scattering. Running time: The test runs provided only take a few seconds to run.
1999-09-30
Dec. (1998) Yamamoto, T., “ A poroelastic model of highly permeable rocks,” Geophysics, revised August 1999a. Yamamoto, T., “ Acoustical imaging of...scattering mechanisms (volume fluctuation, bottom and sub-bottom roughness) on the acoustic propagation and scattering, and the effects of poroelastic ...properties of the sediments on the propagation of acoustic waves. OBJECTIVES To develop a universal (forward/inverse) model for the seafloor roughness
Weak scattering of scalar and electromagnetic random fields
NASA Astrophysics Data System (ADS)
Tong, Zhisong
This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.
NASA Astrophysics Data System (ADS)
Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.
2018-02-01
We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.
SU-E-I-08: Investigation of Deconvolution Methods for Blocker-Based CBCT Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, C; Jin, M; Ouyang, L
2015-06-15
Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An “ideal” projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used tomore » recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (∼20 RMSE) can achieve 4-fold improvement over the direct method (∼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation compared to the direct method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less
Geometric capture and escape of a microswimmer colliding with an obstacle.
Spagnolie, Saverio E; Moreno-Flores, Gregorio R; Bartolo, Denis; Lauga, Eric
2015-05-07
Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a stationary spherical obstacle. Simulations of model equations show that a swimmer approaching a small spherical colloid is simply scattered. In contrast, when the colloid is larger than a critical size it acts as a passive trap: the swimmer is hydrodynamically captured along closed trajectories and endlessly orbits around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering problem, we address it analytically. We provide expressions for the critical trapping radius, the depth of the "basin of attraction," and the scattering angle, which show excellent agreement with our numerical findings. We also demonstrate and rationalize the strong impact of swimming-flow symmetries on the trapping efficiency. Finally, we give the swimmer an opportunity to escape the colloidal traps by considering the effects of Brownian, or active, diffusion. We show that in some cases the trapping time is governed by an Ornstein-Uhlenbeck process, which results in a trapping time distribution that is well-approximated as inverse-Gaussian. The predictions again compare very favorably with the numerical simulations. We envision applications of the theory to bioremediation, microorganism sorting techniques, and the study of bacterial populations in heterogeneous or porous environments.
On nonsingular potentials of Cox-Thompson inversion scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmai, Tamas; Apagyi, Barnabas
2010-02-15
We establish a condition for obtaining nonsingular potentials using the Cox-Thompson inverse scattering method with one phase shift. The anomalous singularities of the potentials are avoided by maintaining unique solutions of the underlying Regge-Newton integral equation for the transformation kernel. As a by-product, new inequality sequences of zeros of Bessel functions are discovered.
1984-02-01
conducting sphere 35 compared to inverse transform of exact solution. 4-5. Measured impulse response of a conducting 2:1 right 37 circular cylinder with...frequency domain. This is equivalent to multiplication in the time domain by the inverse transform of w(n), which is shown in Figure 3-1 for N=15. The...equivalent pulse width from 0.066 T for the rectangular window to 0.10 T for the Hanning window. The inverse transform of the Hanning window is shown
1984-05-29
radial distribution and inverse transform of this range. The region commonly used for the inverse transform usually corresponds to the first or second...r-space and comparing it with the corresponding model function. Figure 5 shows the filtered spectra (k weighting), where the pe. 48 allowed inverse ... transform range was successively increased from the radial distance corresponding to the first shell to all the first four shells. There are no multiple
A Forward Glimpse into Inverse Problems through a Geology Example
ERIC Educational Resources Information Center
Winkel, Brian J.
2012-01-01
This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)
Coarse mesh and one-cell block inversion based diffusion synthetic acceleration
NASA Astrophysics Data System (ADS)
Kim, Kang-Seog
DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.
Effects of magnetic field on electron-electron intersubband scattering rates in quantum wells.
NASA Astrophysics Data System (ADS)
Kempa, K.; Zhou, Y.; Engelbrecht, J.; Bakshi, P.
2001-03-01
Electron-electron scattering dominates the physics of carrier relaxation in quantum nano-structures used as active regions of THz radiation sources. This is the limiting mechanism in achieving population inversion, and reducing its deleterious effects could clear the way to a THz laser. We study here the inter-subband relaxation processes due to the electron-electron scattering in quantum well structures, in a magnetic field. We obtain the scattering rate from the imaginary part of the electron self-energy in the random phase approximation, extending our earlier studies [1] to nonzero magnetic fields. We find that the scattering rate is peaked at two possible sets of arrangements of the Landau levels (LL) of the two subbands of interest. The first set occurs when the LL of both subbands align, and the other when the LL misalign, so that the LL of one subband lie exactly in the middle between those of the other subband. Experiments on various quantum cascade structures show that the misaligned set of transitions is completely suppressed. >From our calculations this implies that there is no population inversion in those structures. Work supported by US Army Research Office. [1] K. Kempa, P. Bakshi, J. R. Engelbrecht, and Y. Zhou, Phys. Rev. B61, 11083 (2000).
An Investigation of the Distribution of Radiation Scattered by Optical Surfaces
1975-08-01
Profile Inversion Workshop, Ames Research Center, Moffett Field, California, L. Colin, ed., pp. 6-34 to 6-37 ( NASA TM X-62, 150). (Available from th...Surface EM Scattering Solutions," IEEE Trans. AP-21:393-396. Judd, D. B., 1967, "Terms, Definitions, and Symbols in Reflectometry ," J. Opt. Soc. Am. 57:445
Inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters
NASA Technical Reports Server (NTRS)
Malchow, H. L.; Whitney, C. K.
1977-01-01
Techniques have been developed and used to invert limb scan measurements for vertical profiles of atmospheric state parameters. The parameters which can be found are concentrations of Rayleigh scatters, ozone, NO2, and aerosols, and aerosol physical properties including a Junge-size distribution parameter and real and imaginary parts of the index of refraction.
Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction
NASA Astrophysics Data System (ADS)
Krywonos, Andrey
Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.
Ionospheric-thermospheric UV tomography: 2. Comparison with incoherent scatter radar measurements
NASA Astrophysics Data System (ADS)
Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Coker, C.; Hei, M. A.; Groves, K. M.
2017-03-01
The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors that fly on the Defense Meteorological Satellite Program F16-F19 satellites. The SSULIs cover the 80-170 nm wavelength range which contains emissions at 91 and 136 nm, which are produced by radiative recombination of the ionosphere. We invert the 91.1 nm emission tomographically using a newly developed algorithm that includes optical depth effects due to pure absorption and resonant scattering. We present the details of our approach including how the optimal altitude and along-track sampling were determined and the newly developed approach we are using for regularizing the SSULI tomographic inversions. Finally, we conclude with validations of the SSULI inversions against Advanced Research Project Agency Long-range Tracking and Identification Radar (ALTAIR) incoherent scatter radar measurements and demonstrate excellent agreement between the measurements. As part of this study, we include the effects of pure absorption by O2, N2, and O in the inversions and find that best agreement between the ALTAIR and SSULI measurements is obtained when only O2 and O are included, but the agreement degrades when N2 absorption is included. This suggests that the absorption cross section of N2 needs to be reinvestigated near 91.1 nm wavelengths.
Theory of Thomson scattering in inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Belyi, V. V.
2018-05-01
A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a nonuniform plasma is derived. We show that not only the imaginary part, but also the time and space derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. Our theory provides a method of a remote probing and measurement of electron density gradients in plasma; this is based on the demonstrated asymmetry of the Thomson scattering lines.
Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam
2014-01-01
We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350
GNSS-ISR data fusion: General framework with application to the high-latitude ionosphere
NASA Astrophysics Data System (ADS)
Semeter, Joshua; Hirsch, Michael; Lind, Frank; Coster, Anthea; Erickson, Philip; Pankratius, Victor
2016-03-01
A mathematical framework is presented for the fusion of electron density measured by incoherent scatter radar (ISR) and total electron content (TEC) measured using global navigation satellite systems (GNSS). Both measurements are treated as projections of an unknown density field (for GNSS-TEC the projection is tomographic; for ISR the projection is a weighted average over a local spatial region) and discrete inverse theory is applied to obtain a higher fidelity representation of the field than could be obtained from either modality individually. The specific implementation explored herein uses the interpolated ISR density field as initial guess to the combined inverse problem, which is subsequently solved using maximum entropy regularization. Simulations involving a dense meridional network of GNSS receivers near the Poker Flat ISR demonstrate the potential of this approach to resolve sub-beam structure in ISR measurements. Several future directions are outlined, including (1) data fusion using lower level (lag product) ISR data, (2) consideration of the different temporal sampling rates, (3) application of physics-based regularization, (4) consideration of nonoptimal observing geometries, and (5) use of an ISR simulation framework for optimal experiment design.
NASA Technical Reports Server (NTRS)
Craven, P. D.; Gary, G. A.
1972-01-01
The Mie theory of light scattering by spheres was used to calculate the scattered intensity functions resulting from single scattering in a polydispersed collection of spheres. The distribution used behaves according to the inverse fourth power law; graphs and tables for the angular dependence of the intensity and polarization for this law are given. The effects of the particle size range and the integration increment are investigated.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Bayesian approach to inverse statistical mechanics
NASA Astrophysics Data System (ADS)
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
An inverse problem in thermal imaging
NASA Technical Reports Server (NTRS)
Bryan, Kurt; Caudill, Lester F., Jr.
1994-01-01
This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.
Inverse problems in quantum chemistry
NASA Astrophysics Data System (ADS)
Karwowski, Jacek
Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.
Application of a stochastic inverse to the geophysical inverse problem
NASA Technical Reports Server (NTRS)
Jordan, T. H.; Minster, J. B.
1972-01-01
The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Impact of optical phonon scattering on inversion channel mobility in 4H-SiC trenched MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Kawaji, Sachiko; Watanabe, Yukihiko; Onishi, Toru; Fujiwara, Hirokazu; Yamamoto, Kensaku; Yamamoto, Toshimasa
2017-04-01
Temperature characteristics of the channel mobility were investigated for 4H-SiC trenched MOSFETs in the range from 30 to 200 °C. The conventional model of channel mobility limited by carrier scattering is based on Si-MOSFETs and shows a greatly different channel mobility from the experimental value, especially at high temperatures. On the other hand, our improved mobility model taking into account optical phonon scattering yielded results in excellent agreement with experimental results. Moreover, the major factors limiting the channel mobility were found to be Coulomb scattering in a low effective field (<0.7 MV/cm) and optical phonon scattering in a high effective field.
Determination of elastic moduli from measured acoustic velocities.
Brown, J Michael
2018-06-01
Methods are evaluated in solution of the inverse problem associated with determination of elastic moduli for crystals of arbitrary symmetry from elastic wave velocities measured in many crystallographic directions. A package of MATLAB functions provides a robust and flexible environment for analysis of ultrasonic, Brillouin, or Impulsive Stimulated Light Scattering datasets. Three inverse algorithms are considered: the gradient-based methods of Levenberg-Marquardt and Backus-Gilbert, and a non-gradient-based (Nelder-Mead) simplex approach. Several data types are considered: body wave velocities alone, surface wave velocities plus a side constraint on X-ray-diffraction-based axes compressibilities, or joint body and surface wave velocities. The numerical algorithms are validated through comparisons with prior published results and through analysis of synthetic datasets. Although all approaches succeed in finding low-misfit solutions, the Levenberg-Marquardt method consistently demonstrates effectiveness and computational efficiency. However, linearized gradient-based methods, when applied to a strongly non-linear problem, may not adequately converge to the global minimum. The simplex method, while slower, is less susceptible to being trapped in local misfit minima. A "multi-start" strategy (initiate searches from more than one initial guess) provides better assurance that global minima have been located. Numerical estimates of parameter uncertainties based on Monte Carlo simulations are compared to formal uncertainties based on covariance calculations. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling of the Light Speckle Field Structure Inside a Multilayer Human Skin Tissue
NASA Astrophysics Data System (ADS)
Barun, V. V.; Dik, S. K.; Ivanov, A. P.; Abramovich, N. D.
2013-11-01
We present an analytic method and the results of investigating the characteristics of the interference pattern formed by multiply scattered light in a multilayer biological tissue of the type of human skin at the wavelengths of the visible and neat IR spectral regions under laser irradiation. Calculations were performed with the use of the known solutions of the equations of radiation transfer in the biotissue and the relation between the theory of propagation of light in a scattering medium and the coherence theory. The radial structure of the light field in the depth of the human skin formed by coherent and incoherent radiation depending on its biophysical parameters has been investigated. The characteristic sizes of speckles in each layer of the skin have been estimated. The biophysical factors connected with the volume concentration of blood in the dermis and the degree of its oxygenation influencing the contrast of the speckle pattern in the dermis have been discussed. The possibility of formulating and solving inverse problems of biomedical optics on the restoration of blood parameters from measurements of speckle characteristics has been shown.
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-01-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS. PMID:29875506
NASA Astrophysics Data System (ADS)
Weniger, Kirsten K.; Muller, Gerhard J.
2005-03-01
In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.
NASA Astrophysics Data System (ADS)
Taira, Yoshitaka; Katoh, Masahiro
2018-06-01
We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.
Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.
Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario
2008-08-01
This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.
NASA Astrophysics Data System (ADS)
Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.
2018-01-01
Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.
NASA Astrophysics Data System (ADS)
Amsallem, David; Tezaur, Radek; Farhat, Charbel
2016-12-01
A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.
Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source
NASA Astrophysics Data System (ADS)
Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.
2013-04-01
In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian
Matlab code for inversion of frequency domain, electrostatic geophysical data in terms of scalar scattering amplitudes in the subsurface. The data is assumed to be the difference between two measurements: electric field measurements prior to the injection of an electrically conductive proppant, and the electric field measurements after proppant injection. The proppant is injected into the subsurface via a well, and its purpose is to prop open fractures created by hydraulic fracturing. In both cases the illuminating electric field is assumed to be a vertically incident plane wave. The inversion strategy is to solve a set of linear system ofmore » equations, where each equation defines the amplitude of a candidate scattering volume. The model space is defined by M potential scattering locations and the frequency domain (of which there are k frequencies) data are recorded on N receivers. The solution thus solves a kN x M system of linear equations for M scalar amplitudes within the user-defined solution space. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed to be scattered by subsurface proppant volumes. No field validation examples have so far been provided.« less
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost
2016-04-01
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.
NASA Astrophysics Data System (ADS)
Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad
2017-08-01
Unique properties of coda waves are employed to evaluate the frequency dependent quality factor of Lg waves using the coda normalization method in the New Madrid seismic zone of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface wave contamination, site effects, or even a change in coda wave scattering regime which can exacerbate the scatter of the data.
Guided wave localization of damage via sparse reconstruction
NASA Astrophysics Data System (ADS)
Levine, Ross M.; Michaels, Jennifer E.; Lee, Sang Jun
2012-05-01
Ultrasonic guided waves are frequently applied for structural health monitoring and nondestructive evaluation of plate-like metallic and composite structures. Spatially distributed arrays of fixed piezoelectric transducers can be used to detect damage by recording and analyzing all pairwise signal combinations. By subtracting pre-recorded baseline signals, the effects due to scatterer interactions can be isolated. Given these residual signals, techniques such as delay-and-sum imaging are capable of detecting flaws, but do not exploit the expected sparse nature of damage. It is desired to determine the location of a possible flaw by leveraging the anticipated sparsity of damage; i.e., most of the structure is assumed to be damage-free. Unlike least-squares methods, L1-norm minimization techniques favor sparse solutions to inverse problems such as the one considered here of locating damage. Using this type of method, it is possible to exploit sparsity of damage by formulating the imaging process as an optimization problem. A model-based damage localization method is presented that simultaneously decomposes all scattered signals into location-based signal components. The method is first applied to simulated data to investigate sensitivity to both model mismatch and additive noise, and then to experimental data recorded from an aluminum plate with artificial damage. Compared to delay-and-sum imaging, results exhibit a significant reduction in both spot size and imaging artifacts when the model is reasonably well-matched to the data.
Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities.
Hamilton, Sarah J; Mueller, J L; Alsaker, M
2017-02-01
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. Including prior data with the approximate locations of major organ boundaries in the scattering transform provides a means of extending the radius of the low-pass filter to include higher frequency components in the reconstruction, in particular, features that are known with high confidence. This information is additionally included in the system of D-bar equations with an independent regularization parameter from that of the extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity (conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the pathology is used in the construction of the prior, yet the method still produces significant enhancements of the underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing
NASA Technical Reports Server (NTRS)
Chu, W. P.
1985-01-01
The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.
Computational inverse methods of heat source in fatigue damage problems
NASA Astrophysics Data System (ADS)
Chen, Aizhou; Li, Yuan; Yan, Bo
2018-04-01
Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.
Evolution of the scattering anisotropy of aged foams in the wet-to-dry transition
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Isaeva, A. A.; Isaeva, E. A.; Samorodina, T. V.
2018-04-01
Empirical data on the diffuse and collimated transmittance of aged liquid foams are discussed in terms of influence of mutual correlations in the scatter positions. This influence can be described introducing the static structure factor of a scattering system and occurs remarkable in the case of wet foams with gas bubbles as the basic scattering units. On the contrary, mutual correlations of basic scattering units (Plateau-Gibbs channels and vertices) in dry foams are negligible due to low values of their volume fraction. This causes dramatic changes of the scattering anisotropy of foam layers in the vicinity of the wet-to-dry transition. Some analogies can be drawn between this effect and a previously reported "optical inversion" of densely packed random media.
Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers
2017-08-09
inversion curve (green)……………….……….40 Figure 22: A schematic of the counter-pumped amplifier is shown above………….…..41 Figure 23: A temporal response of...excites electrons to the upper state, N2, and provides inversion for all other signals. The laser 6 Approved for public release. Distribution is...as is the case below, the Stokes light will have its highest fields present at the z = 0 boundary of the fiber where the highest levels of inversion
Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S
2014-09-01
Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.
Children's Understanding of the Inverse Relation between Multiplication and Division
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2009-01-01
Children's understanding of the inversion concept in multiplication and division problems (i.e., that on problems of the form "d multiplied by e/e" no calculations are required) was investigated. Children in Grades 6, 7, and 8 completed an inversion problem-solving task, an assessment of procedures task, and a factual knowledge task of simple…
NASA Astrophysics Data System (ADS)
Paz, Y.; Naaman, R.
1990-08-01
Energy distribution in aniline molecules scattered from organized organic monolayers was investigated using a resonance-enhanced two-photon ionization technique. Two type of monolayers were used, one exposing a floppy unsubstituted aliphatic chain (OTS, n-octadecyltrichlorosilane), and the second having a perfluorinated tail (PFDA, perfluorodecanoic acid). The dependence of the internal and translational energy of the scattered aniline is monitored as a function of collision energy and surface properties. The data reveal an unusually high propensity for excitation of the NH 2 inversion mode in aniline. Vibrationally excited molecules are scattered with a narrower time-of-flight (TOF) distribution than those in the ground vibrational state.
A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
NASA Astrophysics Data System (ADS)
Zaikin, Oleg; Petrov, Pavel; Posypkin, Mikhail; Bulavintsev, Vadim; Kurochkin, Ilya
2017-12-01
A volunteer computing project aimed at solving computationally hard inverse problems in underwater acoustics is described. This project was used to study the possibilities of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. The computational capabilities provided by the project allowed us to investigate the accuracy of the inversion for different mesh sizes of the sound speed profile discretization grid. This problem suits well for volunteer computing because it can be easily decomposed into independent simpler subproblems.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Spectral solution of the inverse Mie problem
NASA Astrophysics Data System (ADS)
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.
2015-04-01
Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bledsoe, Keith C.
2015-04-01
The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)
1999-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)
2000-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Characterization of an Explosion Source in a Complex Medium by Modeling and Wavelet Domain Inversion
2006-06-01
1 2. Mechanisms on Scattering due to an Explosive Source...the S wave at the tunnel. TRA has great potential for determining the seismic source properties. 2 2. Mechanisms on Scattering due to an Explosive...and prominent SH and Love waves. Various mechanisms have been proposed to explain the generation of these transverse waves. 2.2 Objectives of This
Molecular structures and intramolecular dynamics of pentahalides
NASA Astrophysics Data System (ADS)
Ischenko, A. A.
2017-03-01
This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.
2005-01-01
In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.
Computational methods for inverse problems in geophysics: inversion of travel time observations
Pereyra, V.; Keller, H.B.; Lee, W.H.K.
1980-01-01
General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.
Total-variation based velocity inversion with Bregmanized operator splitting algorithm
NASA Astrophysics Data System (ADS)
Zand, Toktam; Gholami, Ali
2018-04-01
Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.
Zatsiorsky, Vladimir M.
2011-01-01
One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.; Wadiasingh, Zorawar
2014-08-01
Various telescopes including RXTE, INTEGRAL, Suzaku and Fermi have detected steady non-thermal X-ray emission in the 10 ~ 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be a leading candidate for the production of this intense X-ray radiation. Generated by electrons possessing ultra-relativistic energies, this leads to attractive simplifications of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. Such scattering in magnetar magnetospheres can cool electrons down to mildly-relativistic energies. Moreover, soft gamma-ray flaring in magnetars may well involve strong Comptonization in expanding clouds of mildly-relativistic pairs. These situations necessitate the development of more general magnetic scattering cross sections, where the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. Here, we highlight results from such a generalization using ST formalism. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization dependence of the cross section for the four scattering modes is illustrated and compared with the non-relativistic Thompson cross section with classical widths. Results will find application to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.We express our gratitude for the generous support of Michigan Space Grant Consortium, the National Science Foundation (grants AST-0607651, AST-1009725, AST-1009731 and PHY/DMR-1004811), and the NASA Astrophysics Theory Program through grants NNX06AI32G, NNX09AQ71G and NNX10AC59A.
An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function
NASA Technical Reports Server (NTRS)
Liang, Shunlin; Strahler, Alan H.
1992-01-01
Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.
NASA Astrophysics Data System (ADS)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.
Optical properties of human colon tissues in the 350 – 2500 nm spectral range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkatov, A N; Genina, E A; Kochubey, V I
2014-08-31
We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)
Imaging through Scattering Media with Grating-Based Interferometers.
1980-12-01
Theoretically, if the instantaneous impulse response nf the scat- tering medium can be measured and an inverse filter [7, 8] can be created in real time, it... impulse response of a time- varying volume scattering medium. Moreover, no modulator appears to possess the required temporal and spatial bandwidth for...or optical deblurring techniques. Thirdly, since the achromatic grating interferometric system discriminates by the directions of propa- gation, the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
NASA Astrophysics Data System (ADS)
Zeisberger, Matthias; Schneidewind, Henrik; Huebner, Uwe; Popp, Juergen; Schmidt, Markus A.
2017-03-01
Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongbin; White, R. D.
In the calculation of the linearized Boltzmann collision operator for an inverse-square force law interaction (Coulomb interaction) F(r)=κ/r{sup 2}, we found the widely used scattering angle cutoff θ≥θ{sub min} is a wrong practise since the divergence still exists after the cutoff has been made. When the correct velocity change cutoff |v′−v|≥δ{sub min} is employed, the scattering angle can be integrated. A unified linearized Boltzmann collision operator for both inverse-square force law and rigid-sphere interactions is obtained. Like many other unified quantities such as transition moments, Fokker-Planck expansion coefficients and energy exchange rates obtained recently [Y. B. Chang and L. A.more » Viehland, AIP Adv. 1, 032128 (2011)], the difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and −3 for inverse-square force law interactions. When the cutoff is removed by setting δ{sub min}=0, Hilbert's well known kernel for rigid-sphere interactions is recovered for γ = 1.« less
Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...
2018-02-01
X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less
Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.
2017-01-01
The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851
NASA Astrophysics Data System (ADS)
Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco; Pettinelli, Elena
2013-04-01
This work is focused on the three-dimensional (3-D) imaging of buried metallic targets achievable by processing GPR (ground penetrating radar) simulation data via a tomographic inversion algorithm. The direct scattering problem has been analysed by means of a recently-developed numerical setup based on an electromagnetic time-domain CAD tool (CST Microwave Studio), which enables us to efficiently explore different GPR scenarios of interest [1]. The investigated 3D domain considers here two media, representing, e.g., an air/soil environment in which variously-shaped metallic (PEC) scatterers can be buried. The GPR system is simulated with Tx/Rx antennas placed in a bistatic configuration at the soil interface. In the implementation, the characteristics of the antennas may suitably be chosen in terms of topology, offset, radiative features, frequency ranges, etc. Arbitrary time-domain waveforms can be used as the input GPR signal (e.g., a Gaussian-like pulse having the frequency spectrum in the microwave range). The gathered signal at the output port includes the backscattered wave from the objects to be reconstructed, and the relevant data may be displayed in canonical radargram forms [1]. The GPR system sweeps along one main rectilinear direction, and the scanning process is here repeated along different close parallel lines to acquire data for a full 3-D analysis. Starting from the processing of the synthetic GPR data, a microwave tomographic approach is used to tackle the imaging, which is based on the Kirchhoff approximation to linearize the inverse scattering problem [2]. The target reconstruction is given in terms of the amplitude of the 'object function' (normalized with respect to its maximum inside the 3-D investigation domain). The data of the scattered field are collected considering a multi-frequency step process inside the fixed range of the signal spectrum, under a multi-bistatic configuration where the Tx and Rx antennas are separated by an offset distance and move at the interface over rectilinear observation domains. Analyses have been performed for some canonical scatterer shapes (e.g., sphere and cylinder, cube and parallelepiped, cone and wedge) in order to specifically highlight the influence of all the three dimensions (length, depth, and width) in the reconstruction of the targets. The roles of both size and location of the objects are also addressed in terms of the probing signal wavelengths and of the antenna offset. The results show to what extent it is possible to achieve a correct spatial localization of the targets, in conjunction with a generally satisfactory prediction of their 3-D size and shape. It should anyway be noted that the tomographic reconstructions here manage challenging cases of non-penetrable objects with data gathered under a reflection configuration, hence most of the information achievable is expected relating to the upper illuminated parts of the reflectors that give rise to the main scattering effects. The limits in the identification of fine geometrical details are discussed further in connection with the critical aspects of GPR operation, which include the adopted detection configuration and the frequency spectrum of the employed signals. [1] G. Valerio, A. Galli, P. M. Barone, S. E. Lauro, E. Mattei, and E. Pettinelli, "GPR detectability of rocks in a Martian-like shallow subsoil: a numerical approach," Planet. Space Sci., Vol. 62, pp. 31-40, 2012. [2] R. Solimene, A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: vector and multipolarized approaches," IEEE Trans. Geosci. Remote Sens., Vol. 48, pp. 1799-1808, Apr. 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurvinderjit; Singh, Bhajan, E-mail: bhajan2k1@yahoo.co.in; Sandhu, B. S.
2015-08-28
The present measurements are carried out to investigate the multiple scattering of 662 keV gamma photons emerging from targets of binary alloys (brass and soldering material). The scattered photons are detected by 51 mm × 51 mm NaI(Tl) scintillation detector whose response unscrambling converting the observed pulse–height distribution to a true photon energy spectrum, is obtained with the help of 10 × 10 inverse response matrix. The numbers of multiply scattered events, having same energy as in the singly scattered distribution, first increases with target thickness and then saturate. The application of response function of scintillation detector does not result in anymore » change of measured saturation thickness. Monte Carlo calculation supports the present experimental results.« less
Reflectance of micron-sized dust particles retrieved with the Umov law
NASA Astrophysics Data System (ADS)
Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy
2017-03-01
The maximum positive polarization Pmax that initially unpolarized light acquires when scattered from a particulate surface inversely correlates with its geometric albedo A. In the literature, this phenomenon is known as the Umov law. We investigate the Umov law in application to single-scattering submicron and micron-sized agglomerated debris particles, model particles that have highly irregular morphology. We find that if the complex refractive index m is constrained to Re(m)=1.4-1.7 and Im(m)=0-0.15, model particles of a given size distribution have a linear inverse correlation between log(Pmax) and log(A). This correlation resembles what is measured in particulate surfaces, suggesting a similar mechanism governing the Umov law in both systems. We parameterize the dependence of log(A) on log(Pmax) of single-scattering particles and analyze the airborne polarimetric measurements of atmospheric aerosols reported by Dolgos & Martins in [1]. We conclude that Pmax ≈ 50% measured by Dolgos & Martins corresponds to very dark aerosols having geometric albedo A=0.019 ± 0.005.
Two-dimensional fast marching for geometrical optics.
Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore
2014-11-03
We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method
Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...
2017-11-20
The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less
NASA Astrophysics Data System (ADS)
Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.
2018-01-01
The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
A single-scattering correction for the seismo-acoustic parabolic equation.
Collins, Michael D
2012-04-01
An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.
Frnakenstein: multiple target inverse RNA folding.
Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun
2012-10-09
RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.
Frnakenstein: multiple target inverse RNA folding
2012-01-01
Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260
Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
Janssen, A J E M
2014-07-01
The partial derivatives and Laplacians of the Zernike circle polynomials occur in various places in the literature on computational optics. In a number of cases, the expansion of these derivatives and Laplacians in the circle polynomials are required. For the first-order partial derivatives, analytic results are scattered in the literature. Results start as early as 1942 in Nijboer's thesis and continue until present day, with some emphasis on recursive computation schemes. A brief historic account of these results is given in the present paper. By choosing the unnormalized version of the circle polynomials, with exponential rather than trigonometric azimuthal dependence, and by a proper combination of the two partial derivatives, a concise form of the expressions emerges. This form is appropriate for the formulation and solution of a model wavefront sensing problem of reconstructing a wavefront on the level of its expansion coefficients from (measurements of the expansion coefficients of) the partial derivatives. It turns out that the least-squares estimation problem arising here decouples per azimuthal order m, and per m the generalized inverse solution assumes a concise analytic form so that singular value decompositions are avoided. The preferred version of the circle polynomials, with proper combination of the partial derivatives, also leads to a concise analytic result for the Zernike expansion of the Laplacian of the circle polynomials. From these expansions, the properties of the Laplacian as a mapping from the space of circle polynomials of maximal degree N, as required in the study of the Neumann problem associated with the transport-of-intensity equation, can be read off within a single glance. Furthermore, the inverse of the Laplacian on this space is shown to have a concise analytic form.
Early stage breast cancer detection by means of time-domain ultra-wide band sensing
NASA Astrophysics Data System (ADS)
Zanoon, T. F.; Abdullah, M. Z.
2011-11-01
The interest in the use of ultra-wide band (UWB) impulses for medical imaging, particularly early stage breast cancer detection, is driven by safety advantage, super resolution capability, significant dielectric contrast between tumours and their surrounding tissues, patient convenience and low operating costs. However, inversion algorithms leading to recovery of the dielectric profile are complex in their nature, and vulnerable to noisy experimental conditions and environment. In this paper, we present a simplified yet robust gradient-based iterative image reconstruction technique to solve the nonlinear inverse scattering problem. The calculation is based on the Polak-Ribière's approach while the Broyden's formula is used to update the gradient in an iterative scheme. To validate this approach, both numerical and experimental results are presented. Animal derived biological targets in the form of chicken skin, beef and salted butter are used to construct an experimental breast phantom, while vegetable oil is used as a background media. UWB transceivers in the form of biconical antennas contour the breast forming a full view scanning geometry at a frequency range of 0-5 GHz. Results indicate the feasibility of experimental detection of millimetre scaled targets.
NASA Astrophysics Data System (ADS)
Rundell, William; Somersalo, Erkki
2008-07-01
The Inverse Problems International Association (IPIA) awarded the first Calderón Prize to Matti Lassas for his outstanding contributions to the field of inverse problems, especially in geometric inverse problems. The Calderón Prize is given to a researcher under the age of 40 who has made distinguished contributions to the field of inverse problems broadly defined. The first Calderón Prize Committee consisted of Professors Adrian Nachman, Lassi Päivärinta, William Rundell (chair), and Michael Vogelius. William Rundell For the Calderón Prize Committee Prize ceremony The ceremony awarding the Calderón Prize. Matti Lassas is on the left. He and William Rundell are on the right. Photos by P Stefanov. Brief Biography of Matti Lassas Matti Lassas was born in 1969 in Helsinki, Finland, and studied at the University of Helsinki. He finished his Master's studies in 1992 in three years and earned his PhD in 1996. His PhD thesis, written under the supervision of Professor Erkki Somersalo was entitled `Non-selfadjoint inverse spectral problems and their applications to random bodies'. Already in his thesis, Matti demonstrated a remarkable command of different fields of mathematics, bringing together the spectral theory of operators, geometry of Riemannian surfaces, Maxwell's equations and stochastic analysis. He has continued to develop all of these branches in the framework of inverse problems, the most remarkable results perhaps being in the field of differential geometry and inverse problems. Matti has always been a very generous researcher, sharing his ideas with his numerous collaborators. He has authored over sixty scientific articles, among which a monograph on inverse boundary spectral problems with Alexander Kachalov and Yaroslav Kurylev and over forty articles in peer reviewed journals of the highest standards. To get an idea of the wide range of Matti's interests, it is enough to say that he also has three US patents on medical imaging applications. Matti is currently professor of mathematics at Helsinki University of Technology, where he has created his own line of research with young talented researchers around him. He is a central person in the Centre of Excellence in Inverse Problems Research of the Academy of Finland. Previously, Matti Lassas has won several awards in his home country, including the prestigious Vaisala price of the Finnish Academy of Science and Letters in 2004. He is a highly esteemed colleague, teacher and friend, and the Great Diving Beetle of the Finnish Inverse Problems Society (http://venda.uku.fi/research/FIPS/), an honorary title for a person who has no fear of the deep. Erkki Somersalo
Point-particle effective field theory I: classical renormalization and the inverse-square potential
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László
2017-04-01
Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.
Super-multiplex vibrational imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.
New algorithm and system for measuring size distribution of blood cells
NASA Astrophysics Data System (ADS)
Yao, Cuiping; Li, Zheng; Zhang, Zhenxi
2004-06-01
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.
Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment
1997-09-30
water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Wang, Xiang; Zhou, Chen
2018-05-01
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.
PREFACE: Inverse Problems in Applied Sciences—towards breakthrough
NASA Astrophysics Data System (ADS)
Cheng, Jin; Iso, Yuusuke; Nakamura, Gen; Yamamoto, Masahiro
2007-06-01
These are the proceedings of the international conference `Inverse Problems in Applied Sciences—towards breakthrough' which was held at Hokkaido University, Sapporo, Japan on 3-7 July 2006 (http://coe.math.sci.hokudai.ac.jp/sympo/inverse/). There were 88 presentations and more than 100 participants, and we are proud to say that the conference was very successful. Nowadays, many new activities on inverse problems are flourishing at many centers of research around the world, and the conference has successfully gathered a world-wide variety of researchers. We believe that this volume contains not only main papers, but also conveys the general status of current research into inverse problems. This conference was the third biennial international conference on inverse problems, the core of which is the Pan-Pacific Asian area. The purpose of this series of conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries, and to lead the organization of activities concerning inverse problems centered in East Asia. The first conference was held at City University of Hong Kong in January 2002 and the second was held at Fudan University in June 2004. Following the preceding two successes, the third conference was organized in order to extend the scope of activities and build useful bridges to the next conference in Seoul in 2008. Therefore this third biennial conference was intended not only to establish collaboration and links between researchers in Asia and leading researchers worldwide in inverse problems but also to nurture interdisciplinary collaboration in theoretical fields such as mathematics, applied fields and evolving aspects of inverse problems. For these purposes, we organized tutorial lectures, serial lectures and a panel discussion as well as conference research presentations. This volume contains three lecture notes from the tutorial and serial lectures, and 22 papers. Especially at this flourishing time, it is necessary to carefully analyse the current status of inverse problems for further development. Thus we have opened with the panel discussion entitled `Future of Inverse Problems' with panelists: Professors J Cheng, H W Engl, V Isakov, R Kress, J-K Seo, G Uhlmann and the commentator: Elaine Longden-Chapman from IOP Publishing. The aims of the panel discussion were to examine the current research status from various viewpoints, to discuss how we can overcome any difficulties and how we can promote young researchers and open new possibilities for inverse problems such as industrial linkages. As one output, the panel discussion has triggered the organization of the Inverse Problems International Association (IPIA) which has led to its first international congress in the summer of 2007. Another remarkable outcome of the conference is, of course, the present volume: this is the very high quality online proceedings volume of Journal of Physics: Conference Series. Readers can see in these proceedings very well written tutorial lecture notes, and very high quality original research and review papers all of which show what was achieved by the time the conference was held. The electronic publication of the proceedings is a new way of publicizing the achievement of the conference. It has the advantage of wide circulation and cost reduction. We believe this is a most efficient method for our needs and purposes. We would like to take this opportunity to acknowledge all the people who helped to organize the conference. Guest Editors Jin Cheng, Fudan University, Shanghai, China Yuusuke Iso, Kyoto University, Kyoto, Japan Gen Nakamura, Hokkaido University, Sapporo, Japan Masahiro Yamamoto, University of Tokyo, Tokyo, Japan
NASA Astrophysics Data System (ADS)
de Almeida, Valmor F.
2017-07-01
A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.
Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.
2016-01-01
A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime
NASA Astrophysics Data System (ADS)
Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.
2018-04-01
An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.
NASA Technical Reports Server (NTRS)
Deepak, Adarsh; Wang, Pi-Huan
1985-01-01
The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S.; Holody, P.; Loloee, R.
1997-03-01
From data on (Fe{sub 1-x}V{sub x}/Cu/Co/Cu){sub N} multilayers, we show that Fe doped with V gains a negative spin asymmetry for bulk scattering ({beta}{lt}0), which, combined with the positive asymmetry of Co, accounts for the inverse current perpendicular to the plane (CPP) giant magnetoresistance (GMR) we observe. More precisely, the competition between positive and negative asymmetries for interface and bulk scatterings in FeV leads to inverse (normal) GMR for layers thicker (thinner) than a compensation thickness. The negative {beta} of FeV is consistent with theoretical predictions and bulk alloy data. The current in the plane (CIP) GMR is not reversed,more » which illustrates the role of channeling in CIP. {copyright} {ital 1997} {ital The American Physical Society}« less
Global Solutions for the zero-energy Novikov–Veselov equation by inverse scattering
NASA Astrophysics Data System (ADS)
Music, Michael; Perry, Peter
2018-07-01
Using the inverse scattering method, we construct global solutions to the Novikov–Veselov equation for real-valued decaying initial data q 0 with the property that the associated Schrödinger operator is nonnegative. Such initial data are either critical (an arbitrarily small perturbation of the potential makes the operator nonpositive) or subcritical (sufficiently small perturbations of the potential preserve non-negativity of the operator). Previously, Lassas, Mueller, Siltanen and Stahel proved global existence for critical potentials, also called potentials of conductivity type. We extend their results to include the much larger class of subcritical potentials. We show that the subcritical potentials form an open set and that the critical potentials form the nowhere dense boundary of this open set. Our analysis draws on previous work of the first author and on ideas of Grinevich and Manakov.
A simple calculation method for determination of equivalent square field.
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-04-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.
Solvability of the electrocardiology inverse problem for a moving dipole.
Tolkachev, V; Bershadsky, B; Nemirko, A
1993-01-01
New formulations of the direct and inverse problems for the moving dipole are offered. It has been suggested to limit the study by a small area on the chest surface. This lowers the role of the medium inhomogeneity. When formulating the direct problem, irregular components are considered. The algorithm of simultaneous determination of the dipole and regular noise parameters has been described and analytically investigated. It is shown that temporal overdetermination of the equations offers a single solution of the inverse problem for the four leads.
Dark Matter Ignition of Type Ia Supernovae.
Bramante, Joseph
2015-10-02
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin
2008-05-01
For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.
MAP Estimators for Piecewise Continuous Inversion
2016-08-08
MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP
Time-domain full waveform inversion using instantaneous phase information with damping
NASA Astrophysics Data System (ADS)
Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun
2018-06-01
In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional numerical electromagnetic scattering codes based upon the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current two dimensional FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem set section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional electromagnetic scattering codes based on the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.
Solutions to inverse plume in a crosswind problem using a predictor - corrector method
NASA Astrophysics Data System (ADS)
Vanderveer, Joseph; Jaluria, Yogesh
2013-11-01
Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.
Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band
NASA Astrophysics Data System (ADS)
Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.
2013-12-01
In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering coefficients: σHH, σVV and σHV. The inversion process, which is not an ill-posed problem, uses the non-linear optimization method of Levenberg-Marquardt and estimates the three model parameters: vegetation aboveground biomass, average soil moisture and surface roughness. The model analytical formulation will be first recalled and sensitivity analyses will be shown. Then some results obtained with real SAR data will be presented and compared to ground estimates.
An eigenfunction method for reconstruction of large-scale and high-contrast objects.
Waag, Robert C; Lin, Feng; Varslot, Trond K; Astheimer, Jeffrey P
2007-07-01
A multiple-frequency inverse scattering method that uses eigenfunctions of a scattering operator is extended to image large-scale and high-contrast objects. The extension uses an estimate of the scattering object to form the difference between the scattering by the object and the scattering by the estimate of the object. The scattering potential defined by this difference is expanded in a basis of products of acoustic fields. These fields are defined by eigenfunctions of the scattering operator associated with the estimate. In the case of scattering objects for which the estimate is radial, symmetries in the expressions used to reconstruct the scattering potential greatly reduce the amount of computation. The range of parameters over which the reconstruction method works well is illustrated using calculated scattering by different objects. The method is applied to experimental data from a 48-mm diameter scattering object with tissue-like properties. The image reconstructed from measurements has, relative to a conventional B-scan formed using a low f-number at the same center frequency, significantly higher resolution and less speckle, implying that small, high-contrast structures can be demonstrated clearly using the extended method.
Acoustic Inversion in Optoacoustic Tomography: A Review
Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel
2013-01-01
Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060
NASA Astrophysics Data System (ADS)
Dorn, Oliver; Lionheart, Bill
2010-11-01
This proceeding combines selected contributions from participants of the Workshop on Electromagnetic Inverse Problems which was hosted by the University of Manchester in June 2009. The workshop was organized by the two guest editors of this conference proceeding and ran in parallel to the 10th International Conference on Electrical Impedance Tomography, which was guided by Bill Lionheart, Richard Bayford, and Eung Je Woo. Both events shared plenary talks and several selected sessions. One reason for combining these two events was the goal of bringing together scientists from various related disciplines who normally might not attend the same conferences, and to enhance discussions between these different groups. So, for example, one day of the workshop was dedicated to the broader area of geophysical inverse problems (including inverse problems in petroleum engineering), where participants from the EIT community and from the medical imaging community were also encouraged to participate, with great success. Other sessions concentrated on microwave medical imaging, on inverse scattering, or on eddy current imaging, with active feedback also from geophysically oriented scientists. Furthermore, several talks addressed such diverse topics as optical tomography, photoacoustic tomography, time reversal, or electrosensing fish. As a result of the workshop, speakers were invited to contribute extended papers to this conference proceeding. All submissions were thoroughly reviewed and, after a thoughtful revision by the authors, combined in this proceeding. The resulting set of six papers presenting the work of in total 22 authors from 5 different countries provides a very interesting overview of several of the themes which were represented at the workshop. These can be divided into two important categories, namely (i) modelling and (ii) data inversion. The first three papers of this selection, as outlined below, focus more on modelling aspects, being an essential component of any successful inversion, whereas the other three papers discuss novel inversion techniques for specific applications. In the first contribution, with the title A Novel Simplified Mathematical Model for Antennas used in Medical Imaging Applications, the authors M J Fernando, M Elsdon, K Busawon and D Smith discuss a new technique for modelling the current across a monopole antenna from which the radiation fields of the antenna can be calculated very efficiently in specific medical imaging applications. This new technique is then tested on two examples, a quarter wavelength and a three quarter wavelength monopole antenna. The next contribution, with the title An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT by R R Hayes, P A Newill, F J W Podd, T A York, B D Grieve and O Dorn, considers the development of a new visualization tool for monitoring soil moisture content surrounding certain seed breeder plants. An electrical capacitance tomography technique is employed for verifying how efficiently each plant utilises the water and nutrients available in the surrounding soil. The goal of this study is to help in developing and identifying new drought tolerant food crops. In the third contribution Combination of Maximin and Kriging Prediction Methods for Eddy-Current Testing Database Generation by S Bilicz, M Lambert, E Vazquez and S Gyimóthy, a novel database generation technique is proposed for its use in solving inverse eddy-current testing problems. For avoiding expensive repeated forward simulations during the creation of this database, a kriging interpolation technique is employed for filling uniformly the data output space with sample points. Mathematically this is achieved by using a maximin formalism. The paper 2.5D inversion of CSEM data in a vertically anisotropic earth by C Ramananjaona and L MacGregor considers controlled-source electromagnetic techniques for imaging the earth in a marine environment. It focuses in particular on taking into account anisotropy effects in the inversion. Results of this technique are demonstrated from simulated and from real field data. Furthermore, in the contribution Multiple level-sets for elliptic Cauchy problems in three-dimensional domains by A Leitão and M Marques Alves the authors consider a TV-H1regularization technique for multiple level-set inversion of elliptic Cauchy problems. Generalized minimizers are defined and convergence and stability results are provided for this method, in addition to several numerical experiments. Finally, in the paper Development of in-vivo fluorescence imaging with the matrix-free method, the authors A Zacharopoulos, A Garofalakis, J Ripoll and S Arridge address a recently developed non-contact fluorescence molecular tomography technique where the use of non-contact acquisition systems poses new challenges on computational efficiency during data processing. The matrix-free method is designed to reduce computational cost and memory requirements during the inversion. Reconstructions from a simulated mouse phantom are provided for demonstrating the performance of the proposed technique in realistic scenarios. We hope that this selection of strong and thought-provoking papers will help stimulating further cross-disciplinary research in the spirit of the workshop. We thank all authors for providing us with this excellent set of high-quality contributions. We also thank EPSRC for having provided funding for the workshop under grant EP/G065047/1. Oliver Dorn, Bill Lionheart School of Mathematics, University of Manchester, Alan Turing Building, Oxford Rd Manchester, M13 9PL, UK E-mail: oliver.dorn@manchester.ac.uk, bill.lionheart@manchester.ac.uk Guest Editors
NASA Astrophysics Data System (ADS)
Lausch, Tobias; Widera, Artur; Fleischhauer, Michael
2018-03-01
We numerically study the relaxation dynamics of a single, heavy impurity atom interacting with a finite one- or two-dimensional, ultracold Bose gas. While there is a clear separation of time scales between processes resulting from single- and two-phonon scattering in three spatial dimensions, the thermalization in lower dimensions is dominated by two-phonon processes. This is due to infrared divergences in the corresponding scattering rates in the thermodynamic limit, which are a manifestation of the Mermin-Wagner-Hohenberg theorem. This makes it necessary to include second-order phonon scattering above a crossover temperature T2ph . T2ph scales inversely with the system size and is much smaller than currently experimentally accessible.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.